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Short Note

AMO regularization: Effective approximate inverses for ampli-
tude preservation

Robert G. Clapp1

INTRODUCTION

Amplitude preservation in imaging is becoming increasingly important. The irregularity of
seismic data, particularly 3-D data, in both the model domain (in terms of subsurface position
and reflection angle) and the data domain (in terms of midpoint, offset, and time) can have
deleterious effects on amplitude behavior. There have been several general approaches to cor-
rect for this irregularity. The imaging problem is fundamentally an inverse problem, relating
some model m to some data d through a linear operator L, which in this case is the adjoint
of the migration operator. Ronen and Liner (2000); Duquet and Marfurt (1999); Prucha et
al. (2000) cast the problem as such and then try to solve it with an iterative solver. These
approaches have shown promise but are in many cases prohibitively expensive.

The problem is further complicated in that many migration algorithms assume the data is
lying on regular mesh (downward continuation and finite difference schemes for example).
Biondi and Vlad (2001) dealt with the problem of mapping the irregular data to a regular mesh
for downward continuation migration. They set up an inverse problem relating the irregular
input data to a regular model space. They regularized the problem by enforcing consistency
between the various (time,cmpx ,cmpy) cubes. The consistency took two forms. In the first
a simple difference between two adjacent inline offset cubes was minimized. In the second
the difference was taken after transforming the cubes to the same offset through Azimuth
Moveout (AMO) (Biondi et al., 1998). For efficiency the model was preconditioned with
the inverse of the regularization operator (Fomel et al., 1997). Instead of solving the least
squares inverse problem, the Hessian is approximated by a diagonal operator computed from
a reference model (Claerbout and Nichols, 1994; Rickett, 2001; Clapp, 2003).

In this paper I examine and extend the work in Biondi and Vlad (2001). I show that ap-
proximating the inverse matrix with a simple diagonal operator is not sufficient. The resulting
regular dataset has artificial amplitude anomalies. I replace the simple derivative operators
with a filter that smooths along not only offsetx , but also offsety . I conclude by discussing
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how the problem can be effectively parallelized and the computational and storage challenges
of various estimation schemes.

REVIEW

Most downward continuation methods require that the data lie on a regular mesh. To map the
irregular recorded seismic data onto the regular mesh is a far from trivial exercise. A common
approach in industry is to think of the problems in the same way we approach Kirchhoff
migration, namely to loop over data space and spread into our regular model space. The
spreading operation is governed by something like AMO (Biondi et al., 1998), which maps
data from one offset vector to another. If we think of the AMO operator T as mapping from
the regular model space m to the regular data space d, our estimation procedure becomes,

m = T′d. (1)

This formulation suffers from all of the usual problems associated with applying an adjoint
operation. We are spraying into a regular mesh, but the coverage is not regular. Areas with
higher concentration of data traces will tend to map to artificially higher amplitudes in the
model space. We can do some division by hit count to help minimize this effect but will still
see some artifacts that come from approximating the inverse with an adjoint.

We can think of turning (1) into an inversion problem but, in addition to the high cost
associated with the AMO operationm we face the same stability issues that setting up the
migration problem as an inverse problem encounters. The null space of the imaging operator
tends to put high frequency noise in the model space when cast as inverse problem.

Fomel (2001) suggested thinking of the problem more as a missing data problem. We can
write the missing data problem in terms of the fitting goals

d ≈ Lm
0 ≈ εAm, (2)

where L is a simple interpolation operator (nearest-neighbor, linear, etc) and the real work is
done by the regularization operator A which describes the relationship between the irregular
data and the regular sampled model.

We can speed up the convergence of (2) by preconditioning the model with m = A−1p =

Bp . Our new fitting goals become,

d ≈ LBp
0 ≈ εp. (3)

Biondi and Vlad (2001) suggested following the approach of Claerbout and Nichols (1994)
and Rickett (2001). Instead of solving the inverse problem, they suggest filtering the adjoint
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solution with a diagonal operator. We obtain our filtering operator by first noting the least
squares inverse of the interpolation problem,

m = B
(

B′L′LB+ ε
2)−1 B′L′d. (4)

We can think of equation (4) as filtering the adjoint solution with the matrix W−1 where,

W = B′L′LB+ ε
2. (5)

The weighting matrix is (np x np) where np is the size of our preconditioned model space.
This matrix will be generally diagonally dominant. We can think of estimating a diagonal
filtering operator Wdiag by using a reference model (in preconditioned model space) p and
applying

Wdiag =
diag

[

(B′L′LB+ ε
2)pref

]

diag (pref)
. (6)

We can then get an estimate of our model through

m = BW−1B′L′d. (7)

Regularization

In the formulation above our model quality is now greatly determined by our choice of reg-
ularization operator. Biondi and Vlad (2001) implemented two different approach. The first
was simply applying a derivative filter, 1 −ρ along the offset axis. The ρ controls the
length of the smoother. For symmetry we can cascade a left derivative Dl followed by a right
derivative Dr for the combined regularization operator A = DrDl.

Biondo and Vlad’s (2001) second choice is more interesting. Vlad and Biondi (2001) de-
scribes a very fast implementation of AMO (based on the DMO formulation in the logstretch
domain of Zhou et al. (1996)) on a regularly sampled mesh. They suggested instead of min-
imizing the difference between two offset cubes, to minimize the difference between the two
cubes continued to the same offset through AMO. If we now imagine the filter operating on
(t ,cmpx ,cmpy) cubes, the right derivative operation becomes I - ρThi+1,i where Thi,i+1 is
the AMO transformation of the (t ,cmpx ,cmpy) at offset i +1 to offset i .

COMPLICATIONS

The procedure described in the last section has several problems when applied to a large 3-D
dataset. In this section I cover some of these; issues, solutions, and compromises that need to
be made for a practical implementation.

Approximate inverses

The approximation of equation (7) at first gives a visually appealing result. But if we take a
closer look, we see that it isn’t as close to the true inverse as we might hope. To see how, let’s
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look at a simpler problem. The circles in Figure 1 show a series of irregular data points sub-
sampled from the solid line curve. The dotted lines show the solution when applying equation
(7). The dashed line represents the solution using fitting goals (3). Note how the approximate
solution approach has the correct low frequency shape but varies significantly from the full
inverse solution. With better choices of p, or additional diagonals (Guitton, 2003), a better

Figure 1: The solid line represents the input signal. The circles represent our data points. The
dashed line shows the solution with fitting goals (3). The dotted lines show the solution using
the approximate method in equation (7). bob1-miss [ER]

solution might be possible, but the potential is limited. The full matrix can not be adequately
described by the limited description we are allowing.

We can see the same effect in our regularization problem. Figure 2 shows the regulariza-
tion result of a small portion of a 3-D land dataset. Figure 3 shows the result of doing five
steps of conjugate gradient solving the fitting goals in (3). Note how we have a smoother,
more believable, amplitude behavior as a function of midpoint. Unfortunately, the effect of
the approximate solution translates directly to an effect on the amplitudes in our migration.
Figure 4 is the result of migrating a single line from the 3-D dataset regularized by the method
described in Biondi and Vlad (2001). Note the stripes of high and low amplitude indicated by
‘A’ and ‘B’. Wavefront healing helps minimize the effect at depth but there is still a noticable
effect on the amplitude.

Solving the full inverse introduces its own problems. First, we have now significantly
increased the cost. The approximate solution (7) required calling both L and B three times.
Even using a minimal number of iteration (3-5) increases the cost by a factor of two or three. In
addition, we have significantly increased our disk space requirement. If we set up the inverse
problem shown in fitting goals (3), we now must store six copies of our model space. We are
quickly approaching the point of impracticality even for a small dataset.
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Figure 2: A portion of the regularized data, (t ,cmpx ,cmpy) cube, estimated using the approxi-
mate solution in equation (7). Note the dimming and brightening due to the irregular sampling
of the input data. bob1-approx [CR]
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Figure 3: A portion of the regularized data, (t ,cmpx ,cmpy) cube, estimated by five conjugate
gradient iterations using (3). Note how the improved amplitude continuity. bob1-inverse
[CR]
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Figure 4: Migration of one line of dataset regularized with the approximation solution (7).
Note the difference in amplitude at ‘A’ and ‘B’ caused by the approximate solution. bob1-mig
[NR]

Dimensionality

A 3-D reflection dataset resides in a five dimensional space. Typically we describe this space in
terms of (t ,s,g) or (t ,h,cmp) where t is time and s,g,cmp,h are the source, receiver, midpoint,
and offset vectors. In Biondi and Vlad (2001) the dimensionality of the dataset was decreased
by one by describing offset by a scalar rather than a vector. This is far from an ideal solution,
especially in the case of a land dataset and/or data over complicated geology. In both cases the
earth being sampled at different azimuths can vary significantly. By stacking we are making
an implicit assumption that there isn’t any variation (or at least significant variation) due to
azimuth. This can affect both our amplitudes and our ability to accurately estimate the model
velocity (Clapp and Biondi, 1995).

If we use a five dimensional model space we must modify our estimation procedure. The
solution is to perform individual estimations at different h y or azimuths. Solving independent
problems is not generally a workable solution. First we aren’t imposing any smoothness over
h y or azimuth, something that we know should physically exist. Our estimation procedure
is likely to produce an answer far from smooth over the added axes. Figure 5 and Figure 6
show fold maps for a portion of a 3-D land and marine datasets. The left panel shows the
cmpx ,cmpy ,hx cube, the latter the cmpx ,cmpy ,h y cube at the same midpoint location. Note
how in both cases the coverage varies significantly as a function of h y . Take the marine case for
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Figure 5: The fold from a portion of a 3-D land dataset. The left panel is a subset at a constant
h y . Three panels from the subset are shown. The right panel is a subset at a constant h x . Both
panels show the same cmpx ,cmpy location. bob1-fold.land [CR,M]

example. Standard acquisitions techniques would lead to cmpy (cross-line direction) locations
to be banded along different h y locations (caused by the multiple towed cables) and few large
hx at small h y (due to cable feathering).

Data size

The estimation problem we have set up requires a model space larger than we will typically
use in migration. As mentioned above, traditional implementation of AMO (Biondi et al.,
1998) works like Kirchhoff migration. We define our model space (as sparse or as dense as
we wish) and there sum in nearby traces with appropriate weights. The AMO procedure can
be used as a fairly intelligent partial stack. By implementing the AMO as a regularization
operator we are asking L to map the trace from the irregular data space to the the regular space
that our model exists on. If we have too coarse of a sampling in our model space we end
up mapping numerous data points to each model point. If we think about data’s behavior as
a function of offset (fairly variable even after NMO) the danger of making too large of bins
becomes apparent.

The problem is that our full model space is enormous. A small to mid-size dataset might
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Figure 6: The fold from a portion of a 3-D marine dataset. The left panel is a subset at a
constant h y . Three panels from the subset are shown. The right panel is a subset at a constant
hx . Both panels show the same cmpx ,cmpy locations. bob1-fold.elf [CR,M]

have 1500 time samples, 1000 cmpx , 1000 cmpy , 128hx , and require 20 h y . That amounts 15
TBs, exceeding the entire storage capacity of SEP. Even a small portion of the dataset (500
cmpx , 200 cmpy) will still consume 1.5 TB.

Parallelization and Regularization

The standard Beowulf cluster, and SEP’s cluster, consists of many single or dual processor
nodes with communication between nodes having fairly large latency. As a result we want
limited communication and as coarse a grain scheme as possible. The AMO operation (Vlad
and Biondi, 2001) consists of:

Slog log stretch of time axis,

Ft FFT of the stretched time axis,

Fxy FFT the cmpx and cmpy axes,

C complex multiplication
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F−1
xy = F′

xy FFT the cmpx and cmpy axes,

F−1
t = F′

t FFT of the stretched time axis, and

S−1
log inverse log stretch of time axis.

Our regularization operator is not limited to the AMO operator. Our choice of regularization
also effects our ability to parallelize the problem. Ideally we would like to have a regular-
ization operator that assessed continuity over all axes (a non-stationary Prediction Error Filter
for example), but that would either eliminate our ability to parallelize the problem or require
massive communication between the nodes (to pass the boundary areas over the axes we par-
allelized over).

If we sacrifice regularizing along the time axis the problem becomes more manageable.
We can redefine our data as

dnew = FtSlogd, (8)

along the first axis.

We can now split the data along the time axis and regularize along any of the remaining
axes. For this paper I chose to only regularize along the offset axes. A 4-D prediction error
filter would be preferable, but would require simultaneously infilling and estimating the filter
or some ad-hoc scheme that is beyond the scope of this paper.

Regularizing only over offset also allows additional cost savings. We can pull out the Fxy
operator outside our filtering operation. For the cascaded derivative operation used in Biondi
and Vlad (2001) we save the cost of six Fxy per iteration step (approximately 67% reduction
in cost).

Our expanded model space (h y axis) requires a new regularization scheme. Two obvious
choices come to mind. The first is to cascade derivative regularization along the h y axis. Our
new regularization operator becomes

A = FxyDhy,rDhy,lDhx,lDhx,r, (9)

where Dha,b is taking the derivative (after transforming the (t ,cmpx ,cmpy) cube) in the b
direction along the a axis. The other approach is to use some arbitrary filter, such as a factored
Laplacion (Claerbout, 1999). I tested both methodologies. The first approach does not have
a completely symmetric impulse response (Fomel, 2001), but proved to converge in fewer
iterations.

On even a small problem the current formulation is still problematic on SEP’s current
architecture. Having to store six copies of the model exceed our node’s disk capacity even after
splitting the data along the time axes. The final simplification is instead of solving a single
global inversion problem to solve for each frequency independently. This final simplification
makes the problem manageable, but at a price. We are doing a low number of conjugate
gradient iterations, therefore our solution step size (and direction after the first iteration) is
going to be different for the global and the individual local problems.
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CONCLUSIONS

Data regularization is an important problem when using migration methods that rely on the
data being on a regular mesh. Traditional methods that apply the adjoint of a continuation
operation such as AMO can lead to poor amplitude information in the regularized (and later
migrated) cube. By setting up the regularization problem as inverse problem the amplitudes in
the regular model space are significantly improved. The problem can be made computationally
acceptable by intelligent parallelization and regularization choices.

REFERENCES

Biondi, B., and Vlad, I., 2001, Amplitude preserving prestack imaging of irregularly sampled
3-D data: SEP–110, 1–18.

Biondi, B., Fomel, S., and Chemingui, N., 1998, Azimuth moveout for 3-D prestack imaging:
Geophysics, 63, no. 2, 574–588.

Claerbout, J., and Nichols, D., 1994, Spectral preconditioning: SEP–82, 183–186.

Claerbout, J., 1999, Geophysical estimation by example: Environmental soundings image
enhancement: Stanford Exploration Project, http://sepwww.stanford.edu/sep/prof/.

Clapp, R. G., and Biondi, B., 1995, Multi-azimuth velocity estimation: SEP–84, 75–88.

Clapp, M. L., 2003, Illumination compensation: Model space weighting vs. regularized inver-
sion: SEP–113, 369–378.

Duquet, B., and Marfurt, K. J., 1999, Filtering coherent noise during prestack depth migration:
Geophysics, 64, no. 4, 1054–1066.

Fomel, S., Clapp, R., and Claerbout, J., 1997, Missing data interpolation by recursive filter
preconditioning: SEP–95, 15–25.

Fomel, S., 2001, Three-dimensional seismic data regularization: Ph.D. thesis, Stanford Uni-
versity.

Guitton, A., 2003, Amplitude and kinematic corrections of migrated images for non-unitary
imaging operators: SEP–113, 349–362.

Prucha, M. L., Clapp, R. G., and Biondi, B., 2000, Seismic image regularization in the reflec-
tion angle domain: SEP–103, 109–119.

Rickett, J., 2001, Model-space vs data-space normalization for finite-frequency depth migra-
tion: SEP–108, 81–90.

Ronen, S., and Liner, C. L., 2000, Least-squares DMO and migration: Geophysics, 65, no. 5,
1364–1371.



168 R. Clapp SEP–114

Vlad, I., and Biondi, B., 2001, Effective AMO implementation in the log-stretch, frequency-
wavenumber domain: SEP–110, 63–70.

Zhou, B., Mason, I. M., and Greenhalgh, S. A., 1996, An accurate formulation of log-stretch
dip moveout in the frequency-wavenumber domain: Geophysics, 61, no. 3, 17–23.



280 SEP–114


