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Amplitude balancing of 3-D angle-domain common-image
gathers

Biondo Biondi1

ABSTRACT

The azimuthal resolution of 3-D Angle Domain Common Image Gathers (ADCIGs)
strongly varies with the reflection aperture angle. This dependence may cause severe
distortions in the image when 3-D ADCIGs are averaged over azimuths. To correct for
these distortions, I derive an effective weighting method based on the jacobian of the
transformation to angle domain. The proposed method avoids the underweighting of the
reflections close to normal incidence by properly taking into account the “folding” of the
azimuth axis. A simple scheme to limit the range of the azimuthal averaging as a function
of the opening angle further attenuates noise in the image. A synthetic example illustrates
the practical application of the proposed methodology .

INTRODUCTION

Tisserant and Biondi (2003) presented a method to create Angle Domain Common Image
Gathers (ADCIGs) in 3-D. In 3-D ADCIGs the image is decomposed at each physical location
(x , y, z) depending on the aperture angle γ and the azimuth φ of the reflections. Given the the
limited azimuthal range of many common acquisition geometries (e.g. marine streamer data),
it is often useful to average the ADCIGs over azimuths and to limit the azimuthal average to
a subrange of the possible azimuths. These procedures can attenuate coherent noise that was
recorded in the data (e.g. multiples) and/or caused by computational shortcuts (Biondi, 2003).
However, because of the variable resolution of the angle decomposition in the azimuthal di-
rection, the averaging over azimuths may cause distortions in the amplitudes and the phases
of the final image.

In this report I address the problems of 1) balancing the amplitudes across aperture angles
while performing the stack over azimuths, 2) determining an “optimal” azimuthal subrange as
a function of the aperture angle. Both of these problems are related to the strong dependence
of the azimuthal resolution with aperture angle. The azimuthal resolution decreases as the
aperture angle gets closer to normal incidence; at the limit, all azimuths are equally illumi-
nated at normal incidence. To preserve the relative amplitudes between the whole range of
aperture angles, we need to introduce a proper weighting factor when stacking the ADCIGs
over azimuths. If no normalization factor is applied during the summation, the reflections with
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Figure 1: Graphical representation
of the mapping from the offset
wavenumber

(

kxh ,kyh

)

plane into the
(γ ,φ) plane. Each dot corresponds to
one value of γ and φ, for fixed kz ,
kxm and kym . biondo1-kh_plane_jac
[CR]
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angles close to normal incidence would totally overshadow the reflections with wider aperture
angles. This normalization factor must be obviously based on the jacobian of the transfor-
mation into angle domain, but a straight application of the jacobian would underweight the
reflections close to normal incidence. To avoid such a problem, I define a weighting method
that takes into account the “wrapping” of the azimuth axis close to normal incidence.

AMPLITUDE CORRECTIONS OF THE MAPPING INTO ANGLE DOMAIN

Tisserant and Biondi (2003) showed that in 3-D the transformation to angle domain is ac-
complished by mapping the image-domain offset wavenumber plane

(

kxh ,kyh

)

into the plane
defined by the reflection aperture angle γ and the reflection azimuth φ. This mapping is per-
formed at fixed depth wavenumber kz and midpoint wavenumbers kxm and kym .

Appendix A provides the analytical form of this transformation. The analytical form is
fairly intricate and not easy to interpret because the reflection azimuth φ enters only indirectly
as a parameter for rotating the midpoint and offset wavenumbers. Figure 1 shows a graphical
representation of the mapping to angle domain, and thus it illustrates the problem that I am
addressing in this paper more intuitively than the formulas. The figure shows a uniformly
sampled Cartesian grid in the (γ ,φ) domain mapped into the

(

kxh ,kyh

)

plane. Each dot cor-
responds to one value of γ and φ, for fixed kz , kxm and kym . The ranges for γ and φ are:
−80◦

≤ γ ≤ 80◦ and −30◦
≤ φ ≤ 30◦. The dots are densely clustered close to the origin (cor-

responding to small values of γ ), and become sparse away from the origin (corresponding to
large values of γ ). If this strong variability in the mapping density were not taken into account
when a summation is performed in the angle domain, the summation would result in a strongly
distorted image.

In this paper I consider the effects of averaging the image over reflection azimuth because
it is the most challenging and interesting situation, as we will see briefly. However, similar
considerations are needed when summing over aperture angles (for example when computing
the “stacked” image after the application of a residual moveout correction to improve reflec-
tors’ coherency).
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Figure 2: ADCIGs for a synthetic
data set. Left: Image for only one
azimuth (φ = 16◦). Right: Aver-
age of ADCIGs for all the azimuth
within the range of −60◦

≤ φ ≤ 60◦.
biondo1-cig-1-data6 [CR]

The effects of ignoring the variability in the mapping density are demonstrated in Figure 2.
This figure shows two ADCIGs obtained by imaging a synthetic data set with a full source-
receiver 3-D prestack migration. The data set contains 5 dipping planes, from zero dip to
60 degrees dip. The azimuth of the planes is 45 degrees with respect to the direction of the
acquisition. The velocity was V (z) = 1.5 + .5z km/s, which corresponds to the upper limit
among the typical gradients found in the Gulf of Mexico. The acquisition geometry had one
single azimuth and the source-receiver offset range was -1.6–3 km. More detailed description
of this data set can be found in (Vaillant and Biondi, 2000; Biondi, 2001, 2003).

Figure 2a shows an ADCIG computed at fixed reflection azimuth φ of 16 degrees. This
azimuth corresponds – only approximately, because the reflection azimuth changes with the
aperture angle – to the reflection azimuth for the deepest reflector. Correspondingly, the deep-
est reflector has a flat moveout along the aperture angles, but the shallower ones are frowning
downward. Figure 2b shows the result of averaging over azimuths all the ADCIGS within the
range of −60◦

≤ φ ≤ 60◦. In this case the moveouts are flat for all the reflection angles larger
than 10 degrees, but the amplitude of the image is strongly attenuated for all these angles. This
distortion of the image amplitudes is caused by the variable density of the mapping from the
the

(

kxh ,kyh

)

plane into the (γ ,φ) plane illustrated in Figure 1.

The solution to this problem seems straightforward. We can correct the amplitudes by
applying the jacobian of the transformation from the

(

kxh ,kyh

)

plane into the (γ ,φ) plane
(Appendix A presents the formulas to evaluate the jacobian). However, while this correction
yields a much improved result, it is not sufficient. Figure 3a shows the effect of including
the jacobian while transforming the image into angle domain. The amplitudes of the ADCIG
are now distorted in the opposite direction of the previous result (Figure 2b). Now the wide
aperture angles have a good amplitude response, but the narrow angles have been too strongly
attenuated and the γ = 0 trace has been zeroed. This behavior is simply explained by the fact
that the jacobian is zero at γ = 0. This singularity of the jacobian is graphically represented
in Figure 1 by the fact that all the dots corresponding to γ = 0 fall into the origin of the plane,
where the dot density becomes effectively infinite.

A simple solution to this problem is suggested when we examine the inverse mapping,
as it is graphically illustrated in the sketch in Figure 4. In this case an integration segment
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along the line defined by constant γ and close to the origin of the
(

kxh ,kyh

)

plane would
expand into a long segment extending well beyond the usual range of −180◦

≤ φ ≤ 180◦.
However, because of the periodicity of the mapping, the segment is actually folded into the
the −180◦

≤ φ ≤ 180◦, and its effective length is limited to 360 degrees (2π ). Taking into
account of this fact, we can correct the jacobian weighting and recover the image amplitudes
close to normal incidence. The details of the correction and its derivation are presented in
Appendix A.

The effects of taking into account the folding of the azimuth axis in the mapping are
demonstrated in Figure 3b. Now the angles close to near incidence have been properly imaged.
Figure 5 shows windows of the ADCIGs shown in Figure 3 with narrower aperture angle
ranges. The comparison of Figure 5a and Figure 5b demonstrates the improvements achieved
by taking into account the folding of the azimuth axis.

Figures 6–7 illustrate the effect of the amplitude correction from another point of view.
They show depth slices taken at the depth of 1,140 meters (corresponding to the reflector
dipping at 45 degrees) before the stacking over azimuths. The reflection amplitudes are thus
shown as function of both the aperture angle γ and the azimuth φ. Because of the poor
azimuthal resolution close to normal incidence, the azimuthal range is wide for small γ ; it
narrows as γ increases. Comparing Figure 6 with Figure 7 it is evident that the amplitude
correction boost up the relative amplitudes of the image at large γ .

Relative phase shift across aperture angles (γ )

A close examination of both Figure 3 and Figure 5 reveals that the smaller aperture angles
( γ ≤ 8) have a slight phase shift with respect to the rest of the aperture angles. A “frowning”
artifact that is related to this phase shift is also visible in the gathers. This artifact is attenuated
by limiting the azimuthal range of the summation, as described in the next section. Compari-
son of Figures 3–5 with Figure 2a also suggests that the phase shift is caused by the stacking
over azimuths, since it is absent in the gather shown in Figure 2a.

The phase shift is indeed related to the summation over azimuth and it is easily explained
by the analysis of the image as a function of the reflection azimuth φ and at constant aperture
angle γ . The three panels in Figure 8 show such sections for three different aperture angles: a)
γ = 4◦, b) γ = 20◦, and c) γ = 35◦. The curvature of the reflectors as a function of the azimuth
is different in Figure 8a from both Figure 8b and Figure 8c. These differences in the curvature
of the reflector cause the relative phase shift of the stacked gathers shown in Figures 3–5. In
other words, the phase shift at large aperture angles ( γ > 8) is caused by the interference of
the flanks of the hyperbolic curves shown in Figures 3–5 with the correct summation of the
flat spots of the same hyperbolic curves.

Fortunately, both the phase shift and the “frowning” artifact are related to the illumination
of the reflectors by the data (common-azimuth acquisition geometry) and they are not caused
by the methodology employed to image the data. As the azimuthal range of the data increases,
the flat spots at the top of the hyperbolic curves shown in Figures 3–5 should widen. Conse-
quently, when stacking over azimuths the influence of the flanks should decrease relative to
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Figure 3: ADCIGs for a synthetic
data set. Left: Image obtained
when the simple jacobian weighting
is applied before averaging over az-
imuths. Right: Image obtained when
the jacobian weighting takes into ac-
count the folding of the azimuth axis.
biondo1-cig-2-data6 [CR]
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Figure 4: Graphical representation of the stretching involved in the mapping from the
(

kxh ,kyh

)

plane into the (γ ,φ) plane. biondo1-fold [NR]

Figure 5: Zoom into the AD-
CIGS shown in Figure 3 to exam-
ine the differences between the two
panels close to normal incidence.
biondo1-cig-2-data6-win [CR]
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Figure 6: Depth slice taken at
the depth of 1,140 meters (corre-
sponding to the reflector dipping
at 45 degrees) before the stacking
over azimuths. Notice that the
azimuthal resolution is strongly
dependent on the aperture angle.
biondo1-zaz-60-60-dense-all-v3-data6

[CR]

Figure 7: Depth slice taken at the
same depth as the slice shown in
Figure 6 (z=1,1140 meters) after
application of the proposed angular
dependent weighting. Notice that
the amplitudes close to normal
incidence have been attenuated, but
not zeroed, and the ones at large
aperture angle have been boosted up.
biondo1-zaz-60-60-dense-all-jac-v3-data6

[CR]
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Figure 8: Image as function of the re-
flection azimuth at constant aperture
angle: a) γ = 4◦, b) γ = 20◦, and c)
γ = 35◦. biondo1-azim-gamma-all
[CR]

the influence of the flat spot, and the phase shift should disappear. It would be interesting to
confirm this hypothesis with a real data example from a marine data set.

Determining the azimuthal range

It is often useful to limit the azimuthal range of the image. Given the strong dependence of
the azimuthal resolution with aperture angle, it is natural to make the bounds of the azimuthal
range functions of the aperture angle γ . Any smooth function of γ is probably adequate to
define the azimuthal boundaries. I decided to apply a trigonometric function to transition
between the limits at normal incidence and the limits at 90 degrees. If γmax is the maximum
aperture angle, φ0

min and φ0
max are respectively the minimum and maximum azimuth angles

for γ = 0 degrees, and φ90
min and φ90

max are respectively the minimum and maximum azimuth
angles for γ = 90 degrees, then I set the azimuthal limits φ

γ

min, φγ
max, by applying the following

expressions:

φ
γ

min = φ90
min +

(

φ0
min −φ90

min
)

[

sin
(

90−γ

90

)]p

, (1)

φγ
max = φ90

max +
(

φ0
max −φ90

max
)

[

sin
(

90−γ

90

)]p

, (2)

where p is a free parameter that determines the shape of the azimuthal window.

Figure 9 is a generalization of Figure 1. The red (darker in gray scale) dots are the same as
in Figure 1, and represent the mapping into angle domain with φ0

min = φ90
min = −30 degrees, and

φ0
max = φ90

max = 30 degrees. The green (lighter in gray scale) is the mapping when the azimuthal
range is broader close to normal incidence, that is with φ0

min = −90 degrees, and φ0
max = 90

degrees, and p = 3. Notice that the integration domain represented by the green dots (lighter
in gray scale) does not shrink close to the origin, as the original integration domain does.

Figure 10 shows the effect of the variable azimuthal range on the synthetic data set. Fig-
ure 10b shows the same ADCIG as in Figure 3b. The azimuthal range was constant over γ ;
that is φ0

min = φ90
min = −60 degrees, and φ0

max = φ90
max = 60 degrees. Figure 10a shows the

ADCIG extracted at the same location as the one in Figure 10b, but obtained with variable
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azimuthal range. The parameters were φ0
min = −60 degrees, φ90

min = −5 degrees, φ90
max = 25

degrees, φ0
max = 60 degrees, and p = 3. The reduction in the azimuthal range attenuates the

numerical noise in the image. In particular, it attenuates the “frowning” artifacts that, as I
discussed in the previous section, are related to the narrow azimuthal coverage of the data.

Figure 11 shows a depth slice extracted from the image at the same depth as the slices
shown in Figures 6–7, but with the variable azimuthal range defined by the parameters listed
above. The comparison of Figure 11 with Figure 7 demonstrates that the window defined
using the relationships (1) and (2) preserves the coherent energy of the event, while removing
noise.

Figure 9: Graphical representation of
the effects of the variable azimuthal
range on the mapping from the off-
set wavenumber

(

kxh ,kyh

)

plane into
the (γ ,φ) plane. The green (lighter
in gray scale) dots correspond to
the mapping with variable azimuthal
range. biondo1-kh_plane_wide
[CR]
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Figure 10: ADCIGs for a syn-
thetic data set. Left: Image ob-
tained after application of both the
angular dependent weighting and the
variable azimuthal range. Right:
Image obtained after application of
the angular dependent weighting.
biondo1-cig-3-data6 [CR]

CONCLUSIONS

To avoid distortion in the image, 3-D ADCIGs must be properly weighted before averaging
over azimuths. These weights can be derived from the jacobian of the transformation to angle
domain, after taking into account the folding of the azimuth axis. The weighting method I
presented was successful to correct the image obtained from a synthetic data set.
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Figure 11: Depth slice taken
at the same depth as the slice
shown in Figure 7 (z=1,1140 me-
ters), after application of both
the angular dependent weighting
and the variable azimuthal range.
biondo1-zaz-60-60-dense-all-jac-bound-v3-data6

[CR]

To attenuate both coherent noise and numerical artifacts, I also defined a simple scheme for
limiting the azimuthal range of the image. This variable azimuthal range proved to be useful in
reducing the artifacts caused by the limited azimuthal coverage of the synthetic data. Further
analysis of the artifacts caused by the azimuthal coverage of real acquisition geometries might
be required to make the computation of 3-D ADCIGs a robust tool for velocity analysis and
amplitude analysis.
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APPENDIX A

This appendix derives the expressions for the weights to be applied to the ADCIGs before
averaging over azimuths. These weights are based on the jacobian of the transformation into
angle domain. The first step is therefore to find the expressions for evaluating this jacobian.

The starting point for computing the jacobian is the transformation into angle domain.
Tisserant and Biondi (2003) showed that 3-D ADCIGs can be computed according to the
following mappings:

k ′

xh
= − tanγ

√

k ′2
ym

+ k2
z , (A-1)

k ′

yh
= −

k ′
ym

k ′
xm

k ′
xh

k2
z + k ′2

ym

; (A-2)

(A-3)

where the primes on the wavenumber indicate the rotation of the coordinate axis by φ accord-
ing to the following relationships:

k ′

xm
= cosφkxm − sinφkym , (A-4)

k ′

ym
= sinφkxm + cosφkym , (A-5)

and similarly

k ′

xh
= cosφkxh − sinφkyh , (A-6)

k ′

yh
= sinφkxh + cosφkyh . (A-7)

We need to compute the partial derivatives of the offset wavenumbers at constant aperture
angle γ . Therefore, we start from rewriting the coplanarity condition in equation (A-2) in
terms of reflections angles in the rotated coordinate system: the aperture angle γ ′ , the in-line
dip angle α′

x , and the cross-line dip angle α′
y . The following relationships link the wavenumber

in the image domain to these angles

tanα′

x =
k ′

xm

kz
, (A-8)

tanα′

y =
k ′

ym

kz
, (A-9)

and

tanγ ′
= −cosα′

y
k ′

xh

kz
. (A-10)

Then equation (A-2) becomes:

k ′

yh
= kz tanγ ′ tanα′

x sinα′

y , (A-11)

and equation (A-1) becomes:

k ′

xh
= −kz

tanγ ′

cosα′
y

. (A-12)
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Evaluation of ∂k ′
xh

/∂φ and ∂k ′
yh

/∂φ

Differentiating equation (A-12) and after some algebraic manipulation, we obtain the follow-
ing:

∂k ′
xh

∂φ
= = −kz tanγ

∂

(

1
cosα′

y

)

∂φ

= −kz tanγ
∂

(

1
cosα′

y

)

∂k ′
ym

∂k ′
ym

∂φ

= −kz tanγ
sinα′

y

kz

∂k ′
ym

∂φ

= − tanγ sinα′

y

∂k ′
ym

∂φ
. (A-13)

Differentiating equation (A-11) we can write the following:

∂k ′
yh

∂φ
= kz tanγ

[

∂ tanα′
x

∂φ
sinα′

y +
∂ sinα′

y

∂φ
tanα′

x

]

. (A-14)

To evaluate equation (A-14) we need ∂ tanα′
x/∂φ and ∂ sinα′

y/∂φ; that is,

∂ tanα′
x

∂φ
=

∂ tanα′
x

∂k ′
xm

∂k ′
xm

∂φ
=

1
kz

∂k ′
xm

∂φ
, (A-15)

and
∂ sinα′

y

∂φ
=

∂ sinα′
y

∂k ′
ym

∂k ′
ym

∂φ
=

1
kz

cos3 α′

y

∂k ′
ym

∂φ
. (A-16)

Substituting equation (A-15) and equation (A-16) into equation (A-14), we finally obtain:

∂k ′
yh

∂φ
= kz tanγ

[sinα′
y

kz

∂k ′
xm

∂φ
+

tanα′
x

kz
cos3 α′

y

∂k ′
ym

∂φ

]

= tanγ

[

sinα′

y
∂k ′

xm

∂φ
+ tanα′

x cos3 α′

y

∂k ′
ym

∂φ

]

.

(A-17)

Evaluation of ∂kxh/∂φ and ∂kyh/∂φ

Equations (A-13) and (A-17) express the partial derivatives of the offset wavenumbers in the
rotated coordinates. We need to evaluate the partial derivatives of the offset wavenumbers in
the data coordinates. Therefore, we need to differentiate the expressions defining the inverse
rotation; that is, differentiate with respect to φ the following expressions:

kxh = cosφk ′

xh
+ sinφk ′

yh
, (A-18)

kyh = −sinφk ′

xh
+ cosφk ′

yh
. (A-19)
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The partial derivatives are then given by the following expressions:

∂kxh

∂φ
= cosφ

∂k ′
xh

∂φ
+ sinφ

∂k ′
yh

∂φ
− sinφk ′

xh
+ cosφk ′

yh
, (A-20)

∂kyh

∂φ
= −sinφ

∂k ′
xh

∂φ
+ cosφ

∂k ′
yh

∂φ
− cosφk ′

xh
.− sinφk ′

yh
. (A-21)

Computation of scaling factor Wγ ,φ

The last step is the computation of the scaling factor Wγ ,φ from the partial derivatives ∂kxh /∂φ

and ∂kyh/∂φ.

The unit vector u tangent to the integration line at constant γ is given by

u =









∂kxh
∂φ

√

∂kxh
∂φ

2
+

∂kyh
∂φ

2
x+

∂kyh
∂φ

√

∂kxh
∂φ

2
+

∂kyh
∂φ

2
y









. (A-22)

The mapping along the azimuth axis of a vector of the same direction as u and length propor-
tional to the sampling in the offset wavenumber domain

(

1kxh ,1kyh

)

is a segment of length

δφ =

2
√

1k2
xh

+1k2
yh

√

∂kxh
∂φ

2
+

∂kyh
∂φ

2
. (A-23)

If 1φ is the azimuthal range of the stacking at γ = 0, the scaling factor is set as in the follow-
ing:

Wγ ,φ =







1 if δφ ≥ 1φ

1φ

δφ
if δφ < 1φ.

(A-24)
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