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One-way wave equation absorbing boundary condition

Guojian Shan1

ABSTRACT

In modeling and migration based on wave equation, the wavefield has to be extrapolated
in a finite domain due to the limitations of our survey and computers. Absorbing boundary
conditions must be introduced, otherwise some reflections will occur at the artificial grid
boundary. In this paper, I will introduce an absorbing boundary condition based on the
one-way wave equation, with some numerical examples.

INTRODUCTION

Several absorbing boundary conditions have been suggested to reduce the reflections at the
artificial grid boundary (Engquist and Majda, 1977; Bayliss et al., 1982; Berenger, 1994).
One kind of absorbing boundary condition is based on the one-way wave equation, and others
are based on absorbing layers. In this paper, I introduce a high order one-way wave equa-
tion absorbing boundary condition, which can be solved using low order partial differential
equations.

To simulate the wavefield in an open domain, absorbing boundary condition will be trans-
parent to outgoing waves and be an obstacle to incoming waves. So, for a rectangular domain,
the wavefield at the grid boundary satisfies the one-way wave equation. For example, the
wavefield at the right boundary satisfies the leftgoing wave equation, and the wavefield at the
left boundary satisfies the rightgoing wave equation. Solving the internal equation, which
is a full wave equation in modeling and a one-way wave equation in migration, and using
absorbing boundary conditions, we can simulate the wavefield in an open domain.

ONE-WAY WAVE EQUATION

For the one-way wave equation
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we can write its (2n+1)th order approximation (Zhang, 1985) in time domain(
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whereq is the auxiliary wavefield,c is the velocity, and
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Whenn = 0, we obtain the 5o one-way equation(
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Whenn = 1, we obtain the 15o one-way equation in Claerbout (1999)(
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Whenn = 2, we obtain the 45o one-way wave equation in Claerbout (1999)(
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ABSORBING BOUNDARY CONDITION FOR MODELING

Let us consider the explicit finite-difference scheme for the full wave equation
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wherep is the wavefield andf is the force. We can extrapolate the wavefield alongt using
the following explicit finite-difference scheme
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Given the initial conditionpt−1
x,z andpt

x,z, we can solve equation (9) to get the wavefield at time
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Let us consider the wavefield on the boundaryz = Zmax. There are only outgoing waves
at z = Zmax, so the wavefield satisfies the downgoing wave equation, for which we can write
its approximate equations:
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For compatibility with the explicit finite-difference scheme at internal points, we apply the
explicit finite-difference scheme for the boundaries using equation (10) and (11) and get
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where1− is the first order backward finite-difference operator,1+ is the first order forward
finite-difference opertor:
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Assuming that the wavefieldpk
x,z for k ≤ t is known, then we solve the internal equation

(9) to get the wavefield for the internal pointsXmin < x < Xmax, Zmin < z < Zmax at time
t +1, pt+1

x,z first. Then, the auxiliary wavefieldqt+1
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can be solved by equation (13) since

the wavefield of the boundary at timet , pt
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and pt
x,Zmax−1 are known. Finally, we solve

equation (12) to get the wavefield at the boundarypt
x,z=Zmax

. Figure 1 illustrates how the
boundary conditions are solved.

The method of solving the wavefield at the other three boundariesz= Zmin, x = Xmin, and
x = Xmax, is similar to that of boundaryz = Zmax. The only difference is that the boundary
condition equation is an upgoing wave equation atz = Zmin, leftgoing wave equation atx =

Xmin, and right-going wave equation atx = Xmax.

According to Zhang and Wei (1998), this absorbing boundary condition is stable.
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Figure 1: solution at the boundary
z = Zmax shan-boundary[NR]
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NUMERICAL EXAMPLE

I test the absorbing boundary condition on plane waves with different incident angles. I com-
pare the results of a low order absorbing boundary condition (5o one-way wave equation,
equivalent to the method in Engquist and Majda (1977) ) and a high order absorbing boundary
condition (45o one-way wave equation). The results show little benefit in using a high order
absorbing boundary condition for small incident angle plane waves. However, we get a much
better absorbing result of the high order absorbing boundary condition than that of the low
order absorbing boundary condition for large incident angle plane waves. For small incident
angle plane waves (Figure 2), both low order and high order absorbing boundary condition
equations do very well with the reflection. Theoretically, the low order absorbing boundary
condition equation can only handle the reflection with angles less than 5o. So for reflection
with a large angle (middle panels in Figure 3 and Figure 4), there is still a lot of reflected en-
ergy left after absorbing. High order absorbing boundary conditions (bottom panels in Figure
3 and Figure 4), still do well with the large angle reflection, and the results show that most
reflection energy vanishes for both big and small incident angle plane waves.

CONCLUSION

High order one-way wave equation absorbing boundary conditions handle well the reflections
from the boundaries. The method described in this paper is usable for explicit finite-difference
schemes. However, it can be used for both explicit and implicit finite-difference schemes, both
for modeling and migration.
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Figure 2: From top to bottom: modeling with no boundary condition; modeling with low
order absorbing boundary condition; modeling with high order absorbing boundary condition
shan-absorb4[ER]
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Figure 3: From top to bottom: modeling with no boundary condition; modeling with low
order absorbing boundary condition; modeling with high order absorbing boundary condition
shan-absorb2[ER]
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Figure 4: From top to bottom: modeling with no boundary condition; modeling with low
order absorbing boundary condition; modeling with high order absorbing boundary condition
shan-absorb1[ER]
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