
Stanford Exploration Project, Report 111, June 9, 2002, pages 381–392

WEI: Wave-Equation Imaging Library

Paul Sava and Robert G. Clapp1

ABSTRACT

This paper introducesWEI, a new library in the SEP library of programs (SEPlib).
The WEI library implements aFortran90 imaging engine for mixed-domain downward-
continuation operators. The main imaging operators are broken into functional operators
which can be modified by the user without explicit contact with I/O, parallelization etc.
The code is parallelized using a combination of the Open MP and MPI standards, and can
run on both shared-memory and cluster computers.

INTRODUCTION

Over the recent years, the continued increase in computer power backed by a sharp de-
crease in prices, and coupled with the advancements of computer cluster technology, have
brought downward-continuation imaging methods, commonly referred to as wave-equation
techniques, into the mainstream of seismic data processing (SEG Workshop, 2001).

Many research projects at SEP can be included in the wave-equation imaging category.
All of these projects share a substantial part of their theoretical foundations, and a large part
of their software infrastructure. It appears, therefore, redundant for each researcher to develop
individually a substantial part of similar code.

WEI represents aFortran90 library of programs designed for wave-equation imaging using
mixed-domain (f −k, f − x) downward-continuation operators. The main goal of this library
is to provide a program engine that enables the users to develop various imaging operators
without having to deal with I/O or parallelization issues. Parallelization is done over frequen-
cies using a combination of the Open MP2 and MPI3 standards. The code is modular and
reusable, in the sense that the main imaging operator is divided in blocks that perform specific
tasks.

This paper is a brief summary ofWEI. We present some of the theoretical background as
well as the main function interfaces and parameters.

1email: paul@sep.stanford.edu, bob@sep.stanford.edu
2Open MPhttp:www.openmp.org
3Message Passing Interfacehttp:www.mpi-forum.org

381

382 Sava and Clapp SEP–111

OPERATOR OVERVIEW

In migration by downward-continuation, the wavefield at depthz+1z is obtained by phase-
shift from the wavefield at depthz (Claerbout, 1985)

W (z+1z) = W (z)e−ikz1z. (1)

where the depth wavenumberkz depends linearly through a Taylor series expansion on its
value in the reference medium (kzo) and the slowness difference in the depth interval fromz
to z+1z, s(x,z)−so (z):

kz ≈ kzo +
∂kz

∂s

∣∣∣∣
s=so

(s−so) , (2)

where, by definition,1s = s(x,z) − so (z), andx denotes spatial position at depthz. The

expression for∂kz
∂s

∣∣∣
s=so

can take many different forms, summarized in (Sava, 2000).

From Equations (1) and (2), we can write that

W (z+1z) = W (z)e
−i

(
kzo+

∂kz
∂s

∣∣∣
s=so

1s

)
1z

(3)

= W (z)e−ikzo1ze
−i ∂kz

∂s

∣∣∣
s=so

1s1z
. (4)

Equation (3) represents a general form of themainmixed-domain downward-continuation
operator. This operator can be broken up into a group offunctionaloperators as follows:

• Wavefield continuation using mixed-domain phase-shift:

W (z+1z) = W (z)e−i DSR(so)1z︸ ︷︷ ︸
FK op

e
−i ∂kz

∂s

∣∣∣
s=so

SL op︷ ︸︸ ︷
[so −s(x)] 1z︸ ︷︷ ︸

FX op︸ ︷︷ ︸
WC op

; (5)

• Imaging condition which transforms the wavefield into an image at any given depth
level:

W (z+1z)
IG op︷︸︸︷
→ R(z+1z) . (6)

W (z+1z) andW (z) are the wavefields at depthsz+1z andz respectively,1z is the depth
step,so is the constant reference slowness in the slab fromz to1z, s(x) is the variable slowness
in the same depth slab, andDSR(so) represents the depth wavenumber expressed using the
double-square root equation, and which is a function of the reference slowness (so).

For Equations (5) and (6), we can distinguish 5 functional operators. Each operator is
initialized with a call to a function (XXin) and executed with a call to another function (XXop).
In a typical example, the functional operators perform the following tasks:

SEP–111 WEI 383

1. Wavefield continuation operator (WCin & WCop)

Continues the wavefield between two depth levels, using one or more reference slow-
nesses.

Interface: integer function WCop(wfld,iws,izs,ith,FKop,FXop) result(st)

• complex, dimension(:,:,:,:,:), pointer :: wfld (wavefield slice)

• integer :: iws (index of the frequency slice)

• integer :: izs (index of the depth slice)

• integer :: ith (thread number)

• FKop :: f −k operator

• FXop :: f − x operator

Implemented examples:

• weimwc1 (mixed-domain wavefield continuation operator for 1 reference slowness)

• weimwcN mixed-domain wavefield continuation operator forN reference slow-
nesses)

2. Slowness operator(SLin & SLop)

Selects the number and values of the reference slownesses (so), and sets-up the interpo-
lation map between the wavefields continued using the various reference slownesses.

Interface: integer function SLop() result(st)

Implemented examples:

• weislo1 (slowness selector for 1 reference slowness)

• weisloN (slowness selector forN reference slownesses)

3. f −k operator (FKin & FKop)

Performs phase-shift using the full 3− D DSR equation (Claerbout, 1985), the common-
azimuth equation (Biondi and Palacharla, 1996), or the offset plane-waves equation
(Mosher and Foster, 2000).

Interface: integer function FXop(iws,izs,ifk,ith,wfld) result(st)

• integer :: iws (index of the frequency slice)

• integer :: izs (index of the depth slice)

• integer :: ifk (index of the reference velocity)

• integer :: ith (thread number)

• complex, dimension(:,:,:,:,:), pointer :: wfld (wavefield slice)

Implemented examples:

• weiwem (3− D prestack or 3− D offset plane-waves phase-shift)

384 Sava and Clapp SEP–111

• weicam (3− D common-azimuth phase-shift)

4. f − x operator (FXin & FXop)

Performs phase shift that accounts for lateral slowness variation. Examples of (f − x)
operators include but are not limited to split-step Fourier (Stoffa et al., 1990), local Born
Fourier or local Rytov Fourier (Huang et al., 1999), Fourier Finite-Difference (Ristow
and Ruhl, 1994), generalized screen propagators (Le Rousseau and de Hoop, 1998), etc.
Interface: integer function FXop(iws,izs,ifk,ith,wfld) result(st)

• integer :: iws (index of the frequency slice)

• integer :: izs (index of the depth slice)

• integer :: ifk (index of the reference velocity)

• integer :: ith (thread number)

• complex, dimension(:,:,:,:,:), pointer :: wfld (wavefield slice)

Implemented example:

• weissf (Split-step correction)

5. Imaging operator (IGin & IGop)

Performs imaging in the offset-domain or the offset ray-parameter domain. This opera-
tor can also incorporate amplitude-preserving corrections.

Interface: integer function IGop(wfld,iws,ith) result(st)

• complex, dimension(:,:,:,:,:), pointer :: wfld (wavefield slice)

• integer :: iws (index of the frequency slice)

• integer :: ith (thread number)

Implemented examples:

• weihcig (Offset-domain common image-gathers)

• weipcig (Offset ray-parameterph common image-gathers)

PARALLELIZATION

As it is common-practice for downward-continuation imaging methods, parallelization is done
over frequencies. The library is designed for cluster computers, although it can also be used
on shared-memory (SMP) machines.

In our implementation, the objects used for imaging, typically the slowness, the data and
the image are spread to the compute nodes before any computation takes place. The main
reasons for choosing this solution is speed and robustness, since no network traffic or remote
file access happens during computation. This design is also more advantageous for inversion

SEP–111 WEI 385

where the same operation is repeatedly done on the same data which would otherwise have to
be repeatedly transferred over the network.

The drawback of this design is that certain objects, for example the slowness and the
image, get duplicated on all the nodes. This may be a problem for extremely big datasets,
although large local storage is not so expensive and likely to further decrease in price (?).

Once the data is distributed to the nodes, each one of them operates independently of the
other nodes until done. Typically, the local data is further broken into blocks (over depth and
frequency) that can be loaded in memory.

There are at least two possibilities of distribution for the wavefield (Figure 1): in strategy 1,
the node which distributes the wavefield acts as a compute node; in strategy 2, a host distributes
the wavefield to the compute nodes and does not participate in the actual computation. Strategy
2 is slightly more efficient (i.e. completes the entire computation faster) than strategy 1, but
it is characterized by poorer usage of the hardware (i.e. the master node is most of the time
idle). Our implementation uses strategy 1.

Figure 1: Two strategies for data
distribution on cluster computers.
paul2-weimpi [NR]

(w/ host)
DISTRIBUTION STRATEGY 2

DISTRIBUTION STRATEGY 1
(no host)

NODE 4

NODE 3

NODE 2

NODE 1

NODE 4

NODE 3

NODE 2

NODE 1

HOST

����������
�����
���������������

����������
�����
���������������

����������
�����
���������������

����������
�����
���������������

	�	�		�	�		�	�	

�
�

�
�

�
�

���������������
���������������

�
�

�
�

�����
�����

���������������
���������������

���������������
���������������

����������
�����
�����

����������
����������

����������
���������� ����������

����������

����������
����������

����������
���������� ����������

 � � � � !�!�!!�!�!
"�"�""�"�" #�#�##�#�#

$�$�$$�$�$ %�%�%%�%�%
&�&�&&�&�& '�'�''�'�'

(�(�((�(�(

)�)�))�)�)
��**�*�*

+�+�++�+�+
,�,�,,�,�,

-�-�--�-�-
.�.�..�.�.

/�/�//�/�/
0�0�00�0�01�1�11�1�1

2�2�22�2�2

3�3�33�3�3
4�4�44�4�4

5�5�55�5�5
5�5�5
6�6�66�6�66�6�6

7�7�77�7�7
7�7�7
8�8�88�8�88�8�8

9�9�99�9�9
:�:�::�:�:

;�;�;;�;�;
<�<�<<�<�<

IDLE

RECEIVE

SEND

PROCESSING

EXAMPLES

Datuming is a simple example of an operator that can be written usingWEI. The wavefield at a
given surface is recursively downward-continued in depth using a mixed-domain (f −k, f −x)
operator using a relation like

W (z+1z) = W (z)e−ikzo1ze
−i ∂kz

∂s

∣∣∣
s=so

1s1z
. (7)

The library is first called to initialize the functional operators

call weidtm_init(SLin=weislxN_init &

, WCin=weimwcN_init &

386 Sava and Clapp SEP–111

, FKin=weiwem3_init &

, FXin=weissf3_init),

where

• SLin represents the slowness operator;

• WCin represents the mixed-domain wavefield-continuation operator, a multi-reference
slowness operator in this example;

• FKin represents the (f −k) operator, full 3− D prestack in this example;

• FXin represents the (f − x) operator, split-step Fourier in this example.

After initialization, the main datuming operator is called:

stat = weidtm(adj,add,D,U &

, SLop=weislxN &

, WCop=weimwcN &

, FKop=weiwem3 &

, FXop=weissf3),

where D and U are tags to the files storing the wavefield at the surface and at depth, re-
spectively. Other parameters from the command line control the execution of the program
(Appendix A).

A second example of operator that can be written inWEI is a modeling/migration pair.
In this case, the main operator requires, in addition to the 4 functional operators used for
datuming, a 5th operator for the imaging condition. As we have done before, theWEI operator
is first initialized

call weimig_init(SLin=weislsN_init &

, WCin=weimwcN_init &

, FKin=weiwem3_init &

, FXin=weissf3_init &

, IGin=weihcig_init),

and then executed

stat = weimig(adj,add,R,D &

, SLop=weislsN &

, WCop=weimwcN &

, FKop=weiwem3 &

, FXop=weissf3 &

, IGop=weihcig).

Figure 2 shows the result of migrating the Marmousi synthetic using seven reference ve-
locities. The main program, makefile, and parameter file are listed in Appendix A.

SEP–111 WEI 387

Figure 2: The top panel shows the Marmousi velocity model. The bottom panel shows the mi-
grated image usingWEI. The main program, makefile, and parameter file are listed in Appendix
A. paul2-marm[CR,M]

388 Sava and Clapp SEP–111

REFERENCES

Biondi, B., and Palacharla, G., 1996, 3-D prestack migration of common-azimuth data: Geo-
physics,61, no. 6, 1822–1832.

Claerbout, J. F., 1985, Imaging the Earth’s Interior: Blackwell Scientific Publications.

Huang, L., Fehler, M. C., and Wu, R. S., 1999, Extended local Born Fourier migration method:
Geophysics,64, no. 5, 1524–1534.

Le Rousseau, J., and de Hoop, M., 1998, Modeling and imaging with the generalized screen
algorithm: 68th Ann. Internat. Meeting, Soc. Expl. Geophys., 1937–1940.

Mosher, C., and Foster, D., 2000, Common angle imaging conditions for prestack depth mi-
gration: 70th Annual Internat. Mtg., Society of Exploration Geophysicists, Expanded Ab-
stracts, 830–833.

Ristow, D., and Ruhl, T., 1994, Fourier finite-difference migration: Geophysics,59, no. 12,
1882–1893.

Sava, P., 2000, A tutorial on mixed-domain wave-equation migration and migration velocity
analysis: SEP–105, 139–156.

SEG Workshop, 2001, Seismic imaging beyond Kirchhoff: Society of Exploration Geophysi-
cists.

Stoffa, P. L., Fokkema, J. T., de Luna Freire, R. M., and Kessinger, W. P., 1990, Split-step
Fourier migration: Geophysics,55, no. 4, 410–421.

SEP–111 WEI 389

APPENDIX A

Main program

mini WEI example code

Performs modeling and migration by downward continuation

using Split-Step Fourier with N reference velocities

Authors: Paul Sava (paul@sep) and Bob Clapp (bob@sep)

program WEImini{

use sep+wei_util+wei_process+wei_mig+wei_cig+wei_kxmig+wei_slo+wei_ssf+wei_wem

implicit none

logical :: verb

integer :: stat,ierr,iverb,n,i

#ifdef SEP_MPI

call MPI_INIT(stat)

call set_no_putch()

#endif

call sep_init(SOURCE)

#ifdef SEP_MPI

call MPI_COMM_SIZE(MPI_COMM_WORLD, n,ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, i,ierr)

if(i==0) {

call from_param("verb",verb,.false.)

iverb=0;if(verb) iverb=1

call MPI_SEP_SEND_ARGS(n,10,iverb)

} else call MPI_SEP_RECEIVE_ARGS()

#endif

pro%operator=".R_.D"

call weimig_init(SLin=weisloN_init, &

WCin=weimwcN_init, &

FKin=weiwem_init, &

FXin=weissf_init, &

IGin=weihcig_init)

stat =weimig(pro%adj,pro%add,pro%R,pro%D, &

SLop=weisloN, &

WCop=weimwcN, &

FKop=weiwem, &

FXop=weissf, &

IGop=weihcig)

#ifdef SEP_MPI

call MPI_FINALIZE(ierr)

#endif

call sep_close();call exit(0)

}

makefile

#LOCATION OF DATA

DIR= /net/koko/data/data_syn/2d/marmousi/

DATA_0=${DIR}/marmcmp.H

390 Sava and Clapp SEP–111

DATA=data.H

#TRANSFORM THE DATA INTO TIME,CMPX,CMPY,OFFX,OFFY

#SWITCH TO KM FOR CONVENIENCE

${DATA}: ${DATA_0}

Transp plane=23 < ${DATA_0} >a.H

Pad < a.H >b.H n3out=52 n2out=600

Window3d < b.H n3=51 |Reverse >c.H which=4

Cat axis=3 b.H c.H |Pad n3out=108 >$@

echo o2=1.725 d2=.0125 o3=-1.275 d3=.025 >>$@

#SWITCH TO KM FOR CONVENIENCE

vel_cor.view.H: ${DIR}/marmvel.H

Window < ${DIR}/marmvel.H j1=2 j2=2 |Scale dscale=.001 >b.H

Cp b.H $@

echo d1=.008 d2=.008 >>$@

#TRANSFORM DATA TO CMPX,CMPY,OFFX,OFFY,FREQ

freq.H: ${DATA}

Transf f_min=1 f_max=40 shift2=1 wei=y < ${DATA} >$@

#TRANSFORM THE VELOCITY INTO CMPX,CMPY,CMPZ

vel.mig.H: vel_cor.view.H

Transp < vel_cor.view.H plane=12 |Transp plane=23 >$@

#MIGRATE THE DATA IMAGE=cmpx,cmpy,offx,offy,depth

image.H: vel.mig.H freq.H mig.P ${BINDIR}/WEImini.x

${BINDIR}/WEImini.x D=freq.H S=vel.mig.H R=$@ par=mig.P

#THE ZERO OFFSET IMAGE

image.zero.H: image.H

Window3d < image.H min3=0. n3=1 |Transp plane=12 >$@

#MAKE THE PICTURE

${RESDIR}/marm.v3 ${RESDIR}/marm.v: image.zero.H vel_cor.view.H

Grey < vel_cor.view.H allpos=y bias=1.5 >a.V label1="Depth(km)" \

label2="X Position(km)" title=" "

Grey < image.zero.H >b.V label1="Depth(km)" label2="X Position(km)" title=" "

Vppen gridnum=1,2 vpstyle=n < a.V b.V >c.V out=marm.v

Vppen vpstyle=n < a.V b.V >c.V out=marm.v3

Migration parameter file

operation=’migration.’ operator=".R_.D" #WE ARE TRANSFORMING BETWEEN IMAGE AND DATA

adj=y #MIGRATION IS THE ADJOINT OPERATION

amy_n=1 amy_o=0. amy_d=1. #CMPY AXIS

amx_n=600 amx_o=1.725 amx_d=.0125 #CMPX AXIS

az__n=376 az__o=0. az__d=.008 #DEPTH AXIS

ahx_n=64 ahx_o=-.175 ahx_d=.025 #OFFSET X AXIS

ahy_n=1 ahy_o=0. ahy_d=1. #OFFSET Y AXIS

aw__n=114 aw__o=0.689655 aw__d=0.344828 #FREQUENCY AXIS

SEP–111 WEI 391

velocity=y #WE ARE USING VELOCITY RATHER THAN SLOWNESS

image_real=y #WE WANT THE IMAGE TO BE A REAL CUBE

nfk=7 #WE ARE USING 7 VELOCITIES

nzs=47 nfk=15 #NUMBER OF DEPTH AND FREQUENCIES TO HOLD IN MEMORY

