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Wave-equation migration velocity analysis beyond the Born
approximation

Paul Sava and Sergey Fomel1

ABSTRACT

The Born approximation is based on the assumption of small slowness perturbation. We
investigate the limits of the Born approximation when applied to wave-equation migration
velocity analysis and propose two new schemes which allow for larger slowness anoma-
lies, while improving accuracy and increasing stability. The new schemes are based on
linearizations of exponential functions using bilinear and implicit approximations, rather
than the (Born) explicit approximation. We demonstrate the feasibility of our new opera-
tors on a synthetic example with highly variable background and strong slowness anoma-
lies.

INTRODUCTION

Migration velocity analysis based on downward-continuation methods, commonly referred to
aswave-equation migration velocity analysis(WEMVA), is a promising technique which has
become an active area of research over the recent years (Biondi and Sava, 1999; Sava and
Biondi, 2000, 2001). The main idea of WEMVA is to use downward-continuation operators
not only for migration, but also for migration velocity analysis. This is in contrast with other
techniques which use downward-continuation for migration but traveltime-based techniques
for migration velocity analysis (Clapp, 2001; Liu et al., 2001; Mosher et al., 2001).

The main benefits of WEMVA are identical to the benefits of downward-continuation mi-
gration methods versus the more common Kirchhoff methods. Among these benefits, the most
important are the accurate handling of complex wavefields, characterized by multipathing, and
the band-limited nature of the imaging process, which can handle sharp velocity variations
much better than traveltime-based methods (Woodward, 1992). The areas of complex geology
are those where WEMVA is expected to provide the largest benefits.

The problem with WEMVA is that, in its simplest form, it is based on the Born approx-
imation of the wavefield in the perturbation region. This leads to severe limitations of the
magnitude and size of the anomalies that can be resolved, which means that, in principle, it
cannot operate successfully in the regions of high complexity where it is needed most.

The limitations imposed by the Born approximation can be partially circumvented by spe-
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cial ways of creating the image perturbation in connection with residual migration (Sava and
Biondi, 2001). This process of creating Born-compliant image perturbations is not the ideal
strategy, since it closely links a highly accurate method, wavefield-continuation, to a less ac-
curate method, Stolt residual migration.

In this paper, we introduce a new method of linearization designed to overcome the lim-
itations imposed by the Born approximation. Our method is based on linearizations of the
exponential function containing the slowness perturbation using more accurate approxima-
tions than Born linearization. The resulting operator is more accurate and also more stable in
areas of high contrast, at a cost that is practically identical to the one of the Born linearized
operator.

This paper is organized as follows: in the next two sections we review the theory of
downward-continuation and wave-equation MVA using the Born approximation; then, we
introduce the new operators and analyze their meaning in the general context of non-linear
optimization; and finally, we present a synthetic example that demonstrates the features of our
new method.

DOWNWARD-CONTINUATION MIGRATION

In migration by downward-continuation, the wavefield at depthz+ 1z, W (z+1z), is ob-
tained by phase-shift from the wavefield at depthz, W (z).

W (z+1z) = W (z)e−ikz1z. (1)

This equation corresponds to the analytical solution of the ordinary differential equation

W ′(z) = −ikzW (z), (2)

where the′ sign represents a derivative with respect to the depthz.

We can consider that the depth wavenumber (kz) depends linearly, through a Taylor series
expansion, on its value in the reference medium (kzr ) and the laterally varying slowness in the
depth interval fromz to z+1z, s(x, y,z)

kz ≈ kzr +
dkz

ds

∣∣∣∣
s=sr

(s−sr ) , (3)

wheresr represents the constant slowness associated with the depth slab between the two depth

intervals, anddkz
ds

∣∣∣
s=sr

represents the derivative of the depth wavenumber with respect to the

reference slowness and which can be implemented in many different ways (Sava, 2000). The
wavefield downward-continued through thebackgroundslownesssb (x, y,z) can, therefore, be
written as

Wb (z+1z) = W (z)e
−i

[
kzr +

dkz
ds

∣∣∣
s=sr

(sb−sr )

]
1z

, (4)
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from which we obtain that the full wavefieldW (z+1z) depends on the background wavefield
Wb (z+1z) through the relation

W (z+1z) = Wb (z+1z)e
−i dkz

ds

∣∣∣
s=sr

1s1z
, (5)

where1s represents the difference between the true and background slownesses1s = s−sb.

BORN WAVE-EQUATION MVA

We define thewavefield perturbation1W (z+1z) as the difference between the wavefield
propagated through the medium with correct velocityW (z+1z) and the wavefield propa-
gated through the background mediumWb (z+1z). With these definitions, we can write

1W (z+1z) = W (z+1z)−Wb (z+1z) , (6)

or

1W (z+1z) = Wb (z+1z)

[
e
−i dkz

ds

∣∣∣
s=sr

1s1z
−1

]
. (7)

Equation (7) represents the foundation of the wave-equation migration velocity analysis method
(Biondi and Sava, 1999). The major problem with Equation (7) is that the wavefield1W and
slowness perturbations1s are not related through a linear relation, therefore, for inversion
purposes, we need to further approximate it by linearizing the equation around the reference
slowness (sr )

Biondi and Sava (1999) choose to linearize Equation (7) using the Born approximation
(ei φ

≈ 1+ i φ), from which the WEMVA equation becomes

1W (z+1z) = Wb (z+1z)

[
−i

dkz

ds

∣∣∣∣
s=sr

1s1z

]
. (8)

The problem with the Born linearization, Equation (8), is that it is is based on an assump-
tion of small phase perturbation,

1+ i φ ≈ lim
φ→0

ei φ

which mainly translates into small slowness perturbations. This fact is more apparent if we
recall that the linearizationei φ

≈ 1+ i φ corresponds to an explicit numerical solution of the
differential equation (2), a numerical solution which is notoriously unstable unless precau-
tions are taken to consider small propagation steps. The main consequence of the limitations
imposed by the Born approximation is that WEMVA can only consider small perturbations
in the slowness model, which are likely too small relative to the demands of real problems.
Since non-linear inversion is still not feasible for large size problems like the ones typical for
seismic imaging, we seek other ways of linearizing Equation (7) which would still enable us
to solve our inversion problem within the framework of linear optimization theory.
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HIGHER ACCURACY LINEARIZATIONS

As noted earlier, the approximation

ei φ
≈ 1+ i φ (9)

corresponds to anexplicit numerical solution to the differential equation (2). However, this is
neither the only possible solution, nor the most accurate, and furthermore it is only condition-
ally stable.

We can, however, solve Equation (2) using other numerical schemes. Two possibilities are
implicit numerical solutions, where we approximate

ei φ
≈

1

1− i φ
, (10)

or bilinear numerical solutions, where we approximate

ei φ
≈

2+ i φ

2− i φ
. (11)

Equations (9) and (10) are first order, but Equation (11) is second order accurate as a func-
tion of the phaseφ. Numerical schemes based on Equation (9) are conditionally stable, but
numerical schemes based on Equations (10) and (11) are unconditionally stable.

In the context of partial differential equations, the bilinear approximation (11) is known
under the name of Crank-Nicolson and has been extensively used in migration by downward-
continuation using the paraxial wave equation (Claerbout, 1985). Figures 1 and 2 compare the
approximations in Equations (9), (10) and (11) as a function of phase. Both the explicit and
implicit solutions lead to errors in amplitude and phase, while the bilinear solution leads just
to errors in phase (Figure 2).

Figure 1: Explicit, bilinear and im-
plicit approximations plotted on the
unit circle. The solid line corre-
sponds to the exact exponential solu-
tion. paul1-unit [NR]
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Figure 2: Amplitude and phase errors
for the explicit, bilinear and implicit
approximations.paul1-exap[NR]
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If, for notation simplicity, we define

β = −i
dkz

ds

∣∣∣∣
s=sr

1z, (12)

the WEMVA equation (7) can be written as

1W = Wb
[
eβ1s

−1
]
, (13)

and so the linearizations corresponding to the explicit, bilinear and implicit solutions respec-
tively become

1W ≈ Wbβ1s

≈ Wb
2β1s

2−β1s

≈ Wb
β1s

1−β1s
(14)

Aparently, just the first equation in (14) provides a linear relationship between1W and1s.
However, a simple re-arrangement of terms leads to

1W ≈ β [Wb] 1s

≈ β

[
Wb +

1

2
1W

]
1s

≈ β [Wb +1W ] 1s. (15)

For MVA, both the background (Wb) and perturbation wavefields (1W ) are known, so it
is not a problem to incorporate them in the linear operator. In any of the cases described in
Equation (15), the approximations can be symbolically written using the fitting goal

d ≈ Lm , (16)



86 Sava and Fomel SEP–111

where the datad is the wavefield perturbation, and the modelm is the slowness perturbation.
The same operatorL is used for inversion in all situations, the only change being in the wave-
field that is fed into the linear operator. Therefore, the new operators are not more expensive
than the Born operator.

All linear relationships in Equation (15) belong to a family of approximations of the gen-
eral form

1W ≈ β [Wb + ξ1W ] 1s. (17)

The various approximations can be obtained using appropriate values for the parameterξ =

0. . .1. All forms of Equation (17), however, are approximations to the exact non-linear rela-
tion (13), therefore they are all likely to break for large values of the phase, or equivalently
large values of the slowness perturbation or frequency. Nevertheless, these approximations
enable us to achieve higher accuray in slowness estimation as compared to the simple Born
approximation.

An interesting comparison can be made between the extreme members of the sequence
given by Equation (17): forξ = 0 we use the background wavefieldWb, and forξ = 1 we use
the full wavefieldW = Wb +1W . The physics of scattering would recommend that we use
the later form, since the scattered wavefield (1W ) is generated by the total wavefield (W ), and
not by an approximation of it (Wb), thus naturally accounting for multiple scattering effects.
The later situation also corresponds to what is known in the scattering literature aswavefield
renormalization(Wang, 1997). The details of these ideas and their implications remain open
for future research.

Finally, we note that Equation (17) cannot be used for forward modeling of the wavefield
perturbations1W , except for the particular caseξ = 0, since the output quantity is contained
in the operator itself. However, we can use this equation for inversion for any choice of the
parameterξ .

NEWTON’S METHOD AND WEMVA

One can also consider the problem of estimating the slowness field from wavefields using
WEMVA in the general non-linear inversion framework.

In particular, ifW (z+1z) is the upgpoing wavefield at the bottom of a layer andW (z)
is the upgoing wavefield at the top of the layer, the layer slownesss is constrained by the
nonlinear equation

F [s] = P[s] W (z+1z)−W (z) = 0 , (18)

whereP[s] = ei kz[s] is the wave propagation operator.

The Newton method applied to equation (18) amounts to inversion of the linear system

F ′[sk] (sk+1 −sk) = −F [sk] , (19)
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wherek is the nonlinear iteration counter (the iteration starts with some a priori slowness
models0), andF ′[s] is the Fréchet derivative of the wave propagation operator. SinceF [s] is
complex-valued, we can multiply both sides of system (19) by the adjoint (complex-conjugate)
operatorF ′[sk]T to obtain the purely real system

F ′[sk]T F ′[sk] (sk+1 −sk) = −F ′[sk]T F [sk] (20)(
R′[sk]T R′[sk] + I ′[sk]T I ′[sk]

)
(sk+1 −sk) = −

(
R′[sk]T R[sk] + I ′[sk]T I [sk]

)
,

whereR[s] and I [s] are the real and imaginary parts ofF [s]. Algorithm (21) is equivalent to
the Gauss-Newton method applied to the least-squares solution of

R[s] ≈ 0 , (21)

I [s] ≈ 0 . (22)

It is well-known that the Newton and Newton-Gauss methods possess fast convergence
provided that the original estimates0 is sufficiently close to the solution. They may diverge
otherwise. To guarantee convergence, the norm (spectral radius) of the Fréchet derivative
G′[s] for the operator

G[s] = s−
R′[s]T R[s] + I ′[s]T I [s]

R′[s]T R′[s] + I ′[s]T I ′[s]
(23)

must be strictly smaller than one in the vicinity of the solution that contains the starting value
s0. Convergence follows then from the contraction mapping theorem. The speed of conver-
gence is higher for smaller norms.

It is important to realize that modifying the original nonlinear Equation (18) may change
the convergence behavior and lead to faster convergence and wider convergence area. A par-
ticularly meaningful way to modify Equation (18) is to multiply it byP[s]−ξ , whereξ is a
scalar between 0 and 1. The modified equation takes the form

Fξ [s] = P[s]−ξ F [s] = P[s]1−ξ W (z+1z)− P[s]−ξ W (z) = 0 . (24)

The case ofξ = 0 corresponds to the original system. Its linearization with the Newton method
leads to the Born approximation. Analogously, the case ofξ = 1 corresponds to the implicit
method: the two wavefields are compared at the bottom of the layer rather than at the top. The
case ofξ = 1/2 leads to the bilinear method: both wavefields are continued to the middle of
the layer for comparison. Many other intermediate results are possible,

Example

The simplest case to study analytically is that of vertically-incident waves in laterally homo-
geneous media. In this case, all operators become functions of the scalar variables (unknown
layer slowness). If, for a particular temporal frequencyω and the layer thickness1z, we mea-
sure the slowness in units of 1/(ω1z), the wave continuation operator is simply the phase
shift

P(s) = ei s , (25)
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and the fundamental nonlinear equation takes the form

Fξ (s) = W (z+1z) ei (1−ξ )s
−W (z) e−i ξ s

= 0 . (26)

Noting that

W (z) = W (z+1z) ei s?

, (27)

wheres? is the true slowness, and that the convergence of Newton’s method does not depend
on scaling the equation by a constant, we can modify equation (26) to the simpler form

F̂ξ (s) = Fξ (s)
e(ξ−1)s?

W (z+1z)
= ei (1−ξ )1s

−e−i ξ 1s
= 0 , (28)

where1s = s− s?. The obvious solution of Equation (28) is1s = 0. Our task is to find the
convergence limits and their dependence onξ .

After a number of algebraic and trigonometric simplifications, the operatorG from equa-
tion (23) takes the form of the function

Ĝξ (s) = s−
sin(1s)

1−2(1− ξ )ξ +2(1− ξ )ξ cos(1s)
(29)

Its derivative is

Ĝ′

ξ (s) = 2 sin2
(

1s

2

)
1−2(1− x)x [3−2(1− x)x] −4(1− x)2 x2 cos(1s)

[1−2(1− ξ )ξ +2(1− ξ )ξ cos(1s)]2 . (30)

The method will converge in the region around1s = 0, where the absolute value ofĜ′

ξ (s) is
strictly smaller than one. This region (as a function of1s andξ ) is plotted in Figure 3. We
can see that the convergence region has a finite extent. Its width is the same forξ = 0, ξ = 1,
andξ = 1/2. Indeed,

Ĝ′

0(s) = Ĝ′

1(s) = 2 sin2
(

1s

2

)
(31)

and

Ĝ′

1/2(s) = − tan2
(

1s

2

)
. (32)

In both cases, the absolute value of the derivative is smaller than one if1s < π
2 . If we take

ω = 2π × 100Hz and1z = 10m, then the convergence radius is1s = 0.25s/km. At small
1z,

Ĝ′

0(s) = Ĝ′

1(s) ≈
(1s)2

2
(33)

and

Ĝ′

1/2(s) ≈
(1s)2

4
. (34)
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The convergence rate is of the same order (cubic) but faster in the case of the bilinear method
(ξ = 1/2), because of the twice smaller constant. Here is an example of iterations starting with
s0 = 2 and converging tos?

= π . The Born iteration:

s1 = 2.9093

s2 = 3.13951

s3 = 3.14159

The bilinear iteration:

s1 = 3.28419

s2 = 3.14135

s3 = 3.14159

A faster convergence can be achieved at some other values ofξ . Examining the Taylor series
of Ĝ′

ξ (s) around1s = 0:

Ĝ′

ξ (s) ≈ [1−6(1− ξ )ξ ]
(1s)2

2
, (35)

we find that the order of convergence is optimized forξ =
1
2 ±

√
3

6 . In this case,

Ĝ′

1/2±
√

3/6
(s) =

4 sin4
(

1s
2

)
[2+cos(1s)]2 ≈

(1s)4

36
, (36)

and the convergence is fifth order! The example iterations with the optimal value ofξ are:

s1 = 3.12903

s2 = 3.14159

s3 = 3.14159

The radius of convergence with the optimal value ofξ is 1s < 2
3 π .

Of course, this analysis does not apply directly to the case of non-vertical wave propaga-
tion and laterally inhomogenous slowness fields. For reflection wavefields at multiple offsets,
the symmetry between downward and upward continuation is broken, as is clear from the ex-
perimental results of this paper. However, the simple analysis points to the potential benefits
of modifying the Born approximation in the wave-equation velocity estimation.

PHYSICAL INTERPRETATION

This section presents a brief physical interpretation of the various members of relation (17).

Consider that we have recorded two wavefields at the top and bottom of a depth slab:W0,
the wavefield at the top of the slab which has not propagated through the anomalous region;



90 Sava and Fomel SEP–111

-2
0

2 0
0.2
0.4
0.6
0.8
1

00.20.40.60.81

-2
0

2

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Figure 3: Convergence region for the Newton-Gauss method in the vertical plane-wave exam-
ple. Left: 3-D projection. Right: contours. The non-white region on the right plot corresponds
to the convergence area. Horizontal axis:1s. Vertical axis:ξ . paul1-zo [NR]

W1, the wavefield at the bottom of the slab which incorporates scattering effects caused by the
slowness anomaly inside the slab. The goal of WEMVA is to extract the slowness perturbation
1s from W0 andW1.

We can imagine that the linearized process can be thought of as a succession of four steps.

1. Continuation ofW0 andW1 to a level inside the slab where we can compare the two
wavefields. This level can be either at the top, bottom or anywhere in between:

W1e−ξkz(s)
= W0e(1−ξ )kz(s) (37)

kz represents the depth wavenumber and is a function of the arbitrary slowness inside
any given depth slab, andξ = 0. . .1 is a scalar which defines where inside the slab we
continue the two wavefields.

2. Linearization ofW0 andW1 with respect to the slowness perturbation:

W1e−ξkz(s0)[1− ξβ1s] = W0e(1−ξ )kz(s0)[1+ (1− ξ )β1s], (38)

whereβ is the function defined in Equation (12).

3. Datuming of the linearized wavefields to the bottom of the slab:

W1[1− ξβ1s] = W0[1+ (1− ξ )β1s]ekz(s0) (39)

= Wb[1+ (1− ξ )β1s] (40)
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4. Subtraction of the wavefield propagated through the perturbed medium from the wave-
field propagated through the background medium:

1W = W1 − Wb = Wb
β1s

1− ξβ1s
(41)

All three cases in Equation (14) can be derived from Equation (41) as follows:

ξ = 0 → 1W = Wbβ1s (42)

ξ =
1

2
→ 1W = Wb

2β1s

2−β1s
(43)

ξ = 1 → 1W = Wb
β1s

1−β1s
. (44)

EXAMPLES

We demonstrate the technique outlined in the preceding sections using a synthetic example.
The model (Figure 4) consists of a body of high velocity incorporated in a background with
strong but smooth lateral velocity variation.

Figure 4: Synthetic model. Reflectivity model (top left) and a few angle-gathers corresponding
to the vertical grid in the upper plot (bottom left). Background slowness model (top right) and
slowness perturbation (bottom right).paul1-model[CR,M]

Our examples show the results of inversion for a regularized problem symbolically suma-
rized by the fitting goals:

1R ≈ L1s

0 ≈ A1s, (45)
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where1R is the image perturbation,1s is the corresponding slowness perturbation,L is one
of the linearized WEMVA operators andA is a roughening operator, an isotropic Laplacian
for our examples. After preconditioning (Claerbout, 1999), our fitting goals become

1R ≈ LA −11p,

0 ≈ 1p (46)

where1p represents the preconditioned1s.

We also note that since the operatorL is large, similar in size to a migration operator,
we cannot implement it in-core, and therefore we have to use out-of-core optimization (Sava,
2001).

For our experiments, we generate two kinds of image perturbations.

• The first kind is created from a given slowness perturbation1s using the linear oper-
ator in Equation (15). We refer to this type of image perturbation aslinear, since it
corresponds to the linearized Born operator. This type of image perturbation cannot be
obtained in real applications, but serves as a reference when we investigate the Born
approximation.

• The second kind is created by taking the difference of two images created using two
slowness models (1R = R− Ro). We refer to this type of image perturbation asnon-
linear, since it corresponds to the non-linear relation in Equation (7).

We analyze several examples where we change the magnitude of the slowness anomaly,
but not its shape. We choose to test various magnitudes for the anomaly from 1% to 50% of
the background slowness.

Figures 5, 7, 9, 11 show the image perturbations created by the slowness anomalies for the
various levels of perturbation. In each figure, the left panels present the linear case, and the
right panels the non-linear case. The top panels depict the stacked sections, and the bottom
panels a few representative image gathers in the angle-domain (Sava and Fomel, 2000) cor-
responding to the locations of the vertical lines in the upper panels. For small values of the
slowness perturbations, the two images should be similar, but for larger values we should see
the image perturbation reaching and eventually breaking the Born approximation.

Figures 6, 8, 10, 12 present the results of inversion of the non-linear1R using the three
WEMVA operators presented in the preceding section: the explicit (Born) operator (top), the
bilinear operator (middle), and the implicit operator (bottom).

For the case of the small slowness perturbation (1%), the linear and non-linear image
perturbations are very similar, as seen in Figure (5). The corresponding slowness anomaly ob-
tained by inversion is well focused, confirming that, for this case, even the Born approximation
is satisfactory, as suggested by the theory.

The larger anomaly of 5% of the background slowness shows the serious signs of break-
down for the Born approximation. For the case of the even larger slowness perturbation (20%),
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the linear and non-linear image perturbations are not that similar anymore, indicating that we
have already violated the limits of the Born approximation (Figure 9). Consequently, the inver-
sion from the non-linear image perturbation using the Born operator blows-up. However, the
WEMVA operators employing the bilinear and implicit approximations are still well-behaved,
although the shape of the anomaly is slightly modified.

The case of the largest slowness anomaly (40%), bring us closer to the limits of both the
bilinear and implicit approximations. Although neither has blown-up yet, the shape of the
anomalies is somewhat altered.

CONCLUSIONS

In this paper, we investigate the limits of the Born approximation when applied to wave-
equation migration velocity analysis. Experimentally we find that the Born approximation is
only valid for small slowness anomalies, on the order of 1−2% of the background slowness
for an anomaly of the shape and size used in the example in this paper. These numbers,
however, are model dependent, because we have to consider both the magnitude and size of
the anomaly: a small anomaly of large magnitude can have a similar effect as a large anomaly
of small magnitude.

Moving beyond the Born approximation involves one of the two solutions: we can either
artificially create image perturbations that are compliant with this approximation (Sava and
Biondi, 2001), or we can improve the WEMVA operator to better handle the non-linearity in
the image perturbations, as presented in this paper.2

We propose two improved versions of the WEMVA operator which are more appropriate
for the case of large/strong slowness anomalies. Our new operators involve linearizations using
bilinear and implicit approximations to the exponential function. With the new operators, we
not only improve accuracy but we also maintain stability of the inversion scheme at much
higher values of the slowness anomalies, even in the order of 25% of the background.

Finally, we note that our new operators come at a cost which is practically no different
than the cost of the Born-linearized operator, while improving its accuracy and stability.
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Figure 5: Anomaly of 1%: linear and non-linear image perturbations (left/right); zero offset
section (top) and selected angle-gathers (bottom) corresponding to the locations of the vertical
lines in the upper panel. Large differences between the linear and non-linear image perturba-
tions indicate situations in which we violate the Born approximation.paul1-01.perturbation
[CR,M]

Figure 6: Anomaly of 1%: in-
version from the non-linear image
perturbation (7) using the explicit
(top), bilinear (middle) and im-
plicit (bottom) WEMVA operators.
paul1-01.inversion[CR,M]
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Figure 7: Anomaly of 5%: linear and non-linear image perturbations (left/right); zero offset
section (top) and selected angle-gathers (bottom) corresponding to the locations of the vertical
lines in the upper panel. Large differences between the linear and non-linear image perturba-
tions indicate situations in which we violate the Born approximation.paul1-05.perturbation
[CR,M]

Figure 8: Anomaly of 5%: in-
version from the non-linear image
perturbation (7) using the explicit
(top), bilinear (middle) and im-
plicit (bottom) WEMVA operators.
paul1-05.inversion[CR,M]
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Figure 9: Anomaly of 20%: linear and non-linear image perturbations (left/right); zero offset
section (top) and selected angle-gathers (bottom) corresponding to the locations of the vertical
lines in the upper panel. Large differences between the linear and non-linear image perturba-
tions indicate situations in which we violate the Born approximation.paul1-20.perturbation
[CR,M]

Figure 10: Anomaly of 20%: in-
version from the non-linear image
perturbation (7) using the explicit
(top), bilinear (middle) and im-
plicit (bottom) WEMVA operators.
paul1-20.inversion[CR,M]
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Figure 11: Anomaly of 40%: linear and non-linear image perturbations (left/right); zero offset
section (top) and selected angle-gathers (bottom) corresponding to the locations of the vertical
lines in the upper panel. Large differences between the linear and non-linear image perturba-
tions indicate situations in which we violate the Born approximation.paul1-40.perturbation
[CR,M]

Figure 12: Anomaly of 40%: in-
version from the non-linear image
perturbation (7) using the explicit
(top), bilinear (middle) and im-
plicit (bottom) WEMVA operators.
paul1-40.inversion[CR,M]


