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Finite-difference ω-x migration of unregularized seismic data

Ioan Vlad1

ABSTRACT

Wavefield downward continuation does not need to be done on a structured spatial mesh.
Semistructured meshes have advantages (no need for regularization before migration) but
they sometimes produce artifacts. There are at least two acquisition settings which will
not result in artifacts. The implementation is simple. I present a 2D zero-offsetω-x
semistructured mesh migration (SMM) of a synthetic dataset. Its outputs are compared
with those ofω-x migration on a regular grid, with zero traces inserted in the place of
missing data. There are several potential ways of removing the artifacts. Extension to 3D
is also possible.

INTRODUCTION

Common sense and basic physics suggest that in order to continue a field (gravitational, mag-
netic, wavefield. . . ) into a direction, it is necessary to know the values of the field on one or
more surfaces nonparallel to the continuation direction, and the law that governs the field (ap-
proximations can be made or field laws inferred so that we need only one surface). Because
field quantities are usually invariants, nothing mandates that field continuations be done on
Cartesian grids (although in many cases it is numerically convenient to do so). In particular, a
look at the 45◦ downward continuation equation (Claerbout, 1999) shows that it can be written
as:

2i ω
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∂Q

∂z
+

(
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v

2i ω

∂

∂z

)
1Q = 0 (1)

where1Q, the Laplacian of Q, is an invariant. It can also be computed on an unstructured
spatial mesh. In principle, this means that semistructured mesh migration (SMM) is feasible.
I called the mesh semistructured because it is regular in time, but unstructured in space.

SMM ADVANTAGES AND DISADVANTAGES

There are several pros and cons about doing prestack SMM. First, let us examine the conse-
quences of the assumption that SMM is feasible and accurate. The need for regularization
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before or during migration would disappear. Regularization would be performed after migra-
tion when the imaging condition is applied and simplified, amounting to an image interpola-
tion. Only raw, uninterpolated data would be fed into the migration process, leading to a more
accurate image than that made from a regularized dataset consisting entirely of interpolated
data. The need to fill in with large amounts of zero traces would disappear, leading to com-
putational savings. Also, using the original acquisition geometry for imaging can be a step
towards constructing a probability map of the seismic image: the extra incertitude introduced
by interpolation before downward continuation is eliminated, and therefore is not propagated
through hundreds of depth steps. Such goals are certainly desirable.

The main problem stems from computing the Laplacian on a grid that is too sparse in
places (close to spatial aliasing) or whose step size varies too quickly. Previous attempts
(Dellinger and Muir, 1986) as well as the results of this work show that abrupt variations in
the mesh size lead to numerical artifacts under the form of reflections off the irregularities
in the grid. Such spurious reflections do not appear when the mesh step varies smoothly, or
when the variation is less than half the grid step size. Therefore, two straightforward SMM
applications are:

1. Migrating reflection data acquired from a platform moving with a nonconstant velocity
(i.e., seismic acquisition ship which was not able to maintain constant speed; GPR vehicle that
had to accelerate or decelerate; radar-bearing aircraft that encounters various air currents). In
all these cases, the velocity variation is small enough that it should lead to a smoothly-varying
grid.

2. Migrating reflection data acquired on aheated atomic lattice– a regular grid whose
nodes have been displaced with small (known) amounts from the periodic positions.

In neither of these cases was the data irregular enough to justify the cost of full-fledged
regularization, which involves interpolating the whole dataset. Most often the fact that the
mesh is not really regular is simply overlooked. Applying SMM to such datasets will surely
increase the quality of the image. The implementation is simple, consisting (at least for the 2D
zero-offset case that has been implemented, and for its prestack extension) of simply replacing
the (1,-2,1) coefficients of the second derivative in the differencing star with sets of three
precomputed geometry-dependent values.

COMPUTING DERIVATIVES ON A SEMISTRUCTURED MESH

Let Q(ω,x,z) denote a 2D zero-offset seismic wavefield, regularly sampled (and Fourier
transformed) in time, but irregularly sampled in space. The measured surface dataset is
Q(ω,x,z= 0). For downward continuing Q with (1) we need to write differencing stars for∂Q

∂z

and for ∂2Q
∂x2 . Fig. 1 shows the differencing star for the entire equation and defines shorthand

notations. Since the differencing star spans only two values of z, it does not matter whether
the sampling along the z axis is regular or not. I denote:

z2 − z1 = δz. (2)
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Figure 1: Differencing star for solv-
ing eq. 1 with the finite difference
method;s1, s2, s3, i1, i2, i3 are just
notations. This is the general case:
the distancex2 − x1 is not necessarily
equal tox3−x2. nick1-diffstar [NR]

All derivatives will be considered to be computed in the middle of the differencing star. When
x2 − x1 = x3 − x2, the middle is inx2. When the two distances are drastically different, the
middle is not inx2 any more and errors are introduced. This may be the cause of the spurious
reflections off the large variations in grid steps that are visible in the bottom panel of Fig. 4.
Dellinger and Muir (1986) discuss this problem and suggest that letting the gridpoints drift
across x as we downward continue can solve it. In order to examine the extent to which this
problem affects the data, I will simply pretend that the problem does not exist, and observe its
negative effects. So, given the values of a functiony(x) in three points,x1, x2 andx3, with
x1 < x2 < x3, the second derivative can be computed by finding the coefficients of parabola
that fits through the three points. The second derivative is twice the coefficient of the second-
degree term in the parabola expression. Thus, by denoting:

ki =
1∏

j ∈9−{i }
(xj − xi )

, i ∈ 9 = {1,2,3} , (3)

which can be more explicitly written out as

k1 =
1

(x3 − x1)(x2 − x1)
, (4)

k2 =
−1

(x3 − x2)(x2 − x1)
, (5)

k3 =
1

(x3 − x1)(x3 − x2)
, (6)

the second derivative is

d2y

dx2
= 2(k1y1 +k2y2 +k3y3) . (7)

The same formula is obtained by computing a first-order approximation of the second
derivative as the first derivative of the first derivative in the pointx2. It should be noticed that
the Laplacian is a low-pass filter of the original functionr. In other words, the curvature of
the hyperbola is the same in each of the three points it fits through;x3 − x2 must be really
different fromx2 − x1 in order for the curvature-fitting hyperbola to be affected by the error
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and for artifacts to be generated. This explains why the method is so robust. As Fig. 3 shows,
artifacts start to become barely visible whenx3 − x2 = 2(x2 − x1). The partial derivatives in x
of even order higher than two of the wavefield will be even more robust. A method that would
make use not of the second-order derivatives but of the fourth-order ones, would be much less
affected by the spurious reflections.

Using the notations in Fig. 1 and eq. (2), the second derivative expression in (7), and
employing a Crank-Nicolson scheme to compute the second derivative in x, we obtain the
following differencing stars:

∂2Q

∂x2
= k1(i1 +s1)+k2(i2 +s2)+k3(i3 +s3), (8)

∂Q

∂z
=

1

δz
(i2 −s2), (9)

∂3Q

∂z∂x2
=

2k1

δz
(i1 −s1)+

2k2

δz
(i2 −s2)+

2k3

δz
(i3 −s3). (10)

The way the derivatives of a function are computed on a irregular mesh does not depend on
the nature of the function, but the result of the computation does: the lower the frequency
content, the better. This means that longer wavelengths will generate less artifacts, and the
spatio-temporal frequency content of the spurious reflections will therefore be biased towards
the high part of the spectrum. Practically no artifacts should be produced when the function
has a very low frequency content, as is the case with potential fields. Upward or downward
continuation of potential fields on a unstructured mesh should be very accurate.

IMPLEMENTATION OF A 2D, ZERO-OFFSET, CONSTANT-VELOCITY ω-X SMM

Although it is not easy to find irregularly sampled zero-offset non-synthetic reflection datasets,
such a case was chosen for investigation because of its simplicity; any results should be di-
rectly applicable to the prestack case.

The Appendix shows a derivation for the 15◦ (parabolic) wave equation (38) and for the
45◦ one (37). Both can be expressed as:

aQxxz+ Qxx +bQz = 0, (11)

where the subscripts denote partial derivatives along the corresponding axes. Plugging in the
templates in (8), (9) (10), we get:(

2a k1
δz +k1

)
i1 +

(
2a k2+b

δz +k2

)
i2 +

(
2a k3
δz +k3

)
i3 =(

2a k1
δz −k1

)
s1 +

(
2a k2+b

δz −k2

)
s2 +

(
2a k3
δz −k3

)
s3.

(12)
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In the case of the 15◦ equation,a = 0, and for the 45◦ one,a =
i v
2ω

. In both casesb =
2i ω
v

.
They are the same as for the regular sampling case, which is simply a particular case of this
equation (with particular values ofki ). The stability of the downward continuation undertaken
in this manner is proven for all practical purposes by the results in Figs. 3 and 4. This means
that the special stability precautions taken by Dellinger and Muir (1986) are an unnecessary
complication.

The resulting tridiagonal system is solved and the values ofQ(ω,x,z2) are found. The lens
term (40) which is applied after each downward continuation step with the above described
equations does not depend in any way on the sampling of the x-axis and is therefore the same
as inω - x migrations of evenly sampled data.

Unfortunately, the so-called 1/6 trick [Claerbout (1985b), section 4.3] cannot be straight-
forwardly applied when the spatial axis is unevenly sampled. With a bit of work, an equivalent
formula can also be deduced for the irregular sampling case.

The proof in the Appendix ensures that no hidden regular sampling assumption has been
incorporated in the 15◦ and 45◦ wave equation approximations.

SMM RESULTS - PRESENTATION AND DISCUSSION

I examined the SMM results on a simple synthetic dataset. I chose the one in Claerbout (1999)
because it was small, simple, and the migration result was already known. First, I produced
a surrogate irregular dataset - a zero offset section that was densely and regularly sampled
across the x axis (see Fig. 2, upper panel). The image was migrated with the SMM code, as
if it were a irregularly sampled dataset. Only the numerical values of the traces’ coordinates
were making it regular; the code was the same as for the truly irregular cases. The result is
displayed in the middle panel of Fig. 2. The input data was “made” irregular by applying
masks (shown in the bottom part of Fig. 2). SMM was performed on the traces present in the
mask. For comparison, zero traces were introduced at the locations that were not present in
the masks and surrogate irregular migration was performed.

Fig. 3 shows the input data (top panel), the zero-traces inserted migration (middle panel)
and the SMM (bottom panel). The irregularity introduced by the mask is mild (the sixth
trace has been eliminated in two regions). Inserting zero traces and imaging on a regular grid
introduces noise farther away from the missing traces as depth increases. Overall, the image is
full of incoherent high-frequency noise. Instead, the SMM result introduces no such problems.
Even if the jump in sampling rate is large at the place of the missing traces (the step becomes
2 ·dx instead ofdx), the reflections off the side of the grid are minor. This makes me believe
that for jumps in the grid step of the order of half of dx and under, the artifacts would be
negligible.

Fig. 4 shows the effect of severe irregularities. Both images are severely affected. The
S/N ratio of the zero-traces inserted surrogate irregular migration result is lowered to the limit
of interpretablity, and any mistake while interpolating the traces (if we interpolate instead of
inserting zero traces) would probably have severe effects as well. The SMM result is plagued
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by strong spurious reflections, but we notice that these are: a) localized, and b) highly coherent
and dipping in the opposite direction from the true local dips. These are prone to filtering
with a reasonable apriori assumption about the direction of the dip, and can be obtained as
well from unmigrated data. The SMM image overall is crisp and interpretable. The fact that
the incoherent noise has not been increased is particularly important because input datasets
already suffer from a S/N problem, such as those in crustal seismology.

DEALING WITH THE SPURIOUS REFLECTIONS

There are five basic ways in which spurious reflections can be eliminated: 1) Letting the
mesh points drift across thex axis as we downward continue. This approach, suggested by
Dellinger and Muir (1986), would regularize the spatial grid and address the actual cause
of the problem. 2) Planting interpolated traces at strategic locations. 3) Solving for a wave
equation that incorporates the grid irregularity (dx as a function ofx, or by applying a warping
transform). 4) Filtering them out based on the fact that they are localized and highly coherent
and their dip is opposite from that of local geologic dip. 5) Avoiding the problem altogether
by using a numerical method for downward continuation that handles irregular data better than
the finite difference method.

Method 1 seems to be the most elegant and efficient. For all methods, the biggest problem
is posed by large gaps in the data coverage which would still need to be filled in with interpo-
lated traces. A minimum trace density, related to the minimum spatial wavelength present in
the data, must be maintained. The recent advances in interpolation methods of nonuniformly
sampled data (Aldroubi and Grochenig, 2001) can be instrumental in this respect. Even with
interpolation, the number of fill-in traces required will be smaller for an unconstrained mesh
than that in the case of a Cartesian mesh. This is due to the Cartesian lattices not being the
best at filling space; the same area can be covered by fewer traces placed on a quasi-regular
triangular mesh. This at least should offset the burden of node number bookkeeping for an
unstructured mesh. Large coverage gaps can be covered using the boundary element method.
This method was created with the specific goal of not having to deal with very large numbers
of elements inside a domain – its elements are only on the border of the domain. Another so-
lution may be presented by the finite element method Marfurt (1984), which naturally handles
unstructured meshes.

EXTENSION TO 3D

Because the Laplacian of a function is an invariant, the method should work the same way in
3D. Computing the Laplacian of a function of two arguments in the nodes of an unstructured
mesh is an interesting mathematical problem. The simplest approach, analoguous to the one
used for Cartesian grids, is to interpolate a surface through local sets of points and to compute
the Laplacian analytically from its coefficients:

z = a+bx+cy+dx2
+exy+ f y2

+ gx2y2, (13)
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Figure 2: Input data from Claerbout (1999), its surrogate irregular 45◦ migration and the
sampling masks used for creating irregularly sampled datasetsnick1-init [ER]
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Figure 3: Input data (top panel), migration with zero-traces inserted (middle panel) and the
SMM (bottom panel)nick1-midtk [ER]
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Figure 4: Input data (top panel), migration with zero-traces inserted (middle panel) and the
SMM (bottom panel)nick1-reflgrid [ER]
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1z = 2d +2 f +2g(x2
+ y2). (14)

Since the surface has seven terms, we must know the functionz = f (x, y) at seven points
in order to find the Laplacian at one of the seven. This means solving a 7× 7 linear system
to find the coefficientsa, b, c, d, e, f andg, given three pairs of (x, y,z) points. It seems
frustrating that we have to compute all the seven coefficients while using only the values ofd,
f , andg. Fortunately, we do not have to solve innumerable amounts of 7×7 systems for each
downward continuation step: thex and y values depend only on the geometry of the spatial
mesh. For each point, the matrix inversion can be done only once: in the beginning, and after
that for each point. We only need to multiply the vector ofz values with three rows of the
precomputed inverted matrix in order to find out the values ofd, f , andg.

On a Cartesian grid, only five values are needed to compute the Laplacian. In that case,
we also deal with two extra “hidden” relationships that state the particular geometrical rela-
tionships between the five points. In the general case, we do not have that information and,
therefore, need more points.

The Laplacian may be found in other ways as well; perhaps interpolating with splines
or other basis functions the entire wavefield - not just local neighbourhoods - at each depth
step. The fastest and most elegant approach would nevertheless not involve finding a complete
analytical expression of the wavefield function, but only its curvature information represented
by the Laplacian.

CONCLUSIONS

2D SMM implementation is simple – just replace the (1,-2,1) Laplacian coefficients in the
differencing star with precomputed sets of geometry-dependent coefficients. It is also numer-
ically stable. The images produced are clear and crisp, the only artifacts being the spurious
reflections off the abrupt variations in grid size. There are several possible ways of eliminating
them. These artifacts are not likely to be generated in two particular types of practical applica-
tions – reflection measurements made from a platform moving with nonuniform speed or on a
slightly-perturbed regular grid. Extension to 3D acquisition geometries is not impeded by any
obvious obstacle.
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APPENDIX

A natural question occurs when removing a common assumption like regular sampling: Has it
been discreetly incorporated into some mathematical result which may be used unknowingly?
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This is why I will present a derivation of the 15◦ and 45◦ approximations of the wave equation,
starting from the basic laws of mechanics. The derivation will not “open” the Laplacian in
(1), keeping it as an invariant to the very end. The derivation is not original: it is based on
Claerbout (1985a) and Kjartansson (1978).

The wave equation in an acoustic medium

Let xi , wherei = 1,2,3 be three orthogonal directions andEx the position vector in a coordinate
system associated with the three directions. Let us defineρ = ρ (Ex) as the mass per volume
unit in the acoustic medium,Eu = Eu (Ex) as the velocity of the acoustic medium and K as the bulk
modulus of the acoustic medium. The second law of dynamics states that mass× acceleration
= force = - pressure gradient:

ρ
∂ui

∂t
= −

∂ P

∂xi
. (15)

Energy can be stored by compression and volume variation. If

Eu (Ex + δEx) 6= Eu (Ex) , (16)

we say that the flow diverges (the volume changes). This leads to a pressure variation, propor-
tional to the divergence of the velocity:

−
∂ P

∂t
= K

(
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3

)
. (17)

The wave equation in an acoustic medium can be deduced from (15) and (17) as follows.
Derivate (17) with respect to time:

∂2P

∂t2
= −K

3∑
i =1

∂2ui

∂t∂xi
. (18)

Divide (15) byρ and derivate it with respect to the axisxi :

∂2ui

∂t∂xi
= −

∂

∂xi

1

ρ

∂ P

∂xi
. (19)

Plug (19) in (18):

∂2P

∂t2
= K

3∑
i =1

∂

∂xi

1

ρ

∂ P

∂xi
. (20)

Approximation:ρ is a constant that does not depend on the position vector. By denoting the
acoustic waves propagation velocity through the medium by v, where

v2
=

K

ρ
, (21)

we obtain the acoustic wave equation:

∂2P

∂t2
= v2

3∑
i =1

∂2P

∂x2
i

. (22)
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New notations and definitions

Until now the proof was pure physics. But because in seismology the depth axis is “special,”
we will change notations. Axisx3 will be denoted by z, and theEx will denote the surface
position vector with the components (x1,x2). Also, the Laplacian will be the operator,

1 =
∂2

∂x2
1

+
∂2

∂x2
2

. (23)

We will use the Fourier transform of the pressure field along the time axis:

P (Ex,z,ω) = F {P (Ex,z,t)} =

∫
∞

−∞

P (Ex,z,t)ei ωtdt. (24)

The following property of the Fourier transform will be needed:

F

{
∂2P (Ex,z,t)

∂t2

}
= −ω2P (Ex,z,ω) . (25)

The spatial frequency is defined as:

m(Ex,z) =
ω

v (Ex,z)
. (26)

Let v̄ be a spatial average ofv in the medium, a known constant that does not depend onEx or
z. We also define

m̄ =
ω

v̄
(27)

and the function

Q (Ex,z,ω) = P (Ex,z,ω)e−i m̄z. (28)

The index notation for derivatives will be used from now on. The symbol∀ will denote the
phrase “for all.”

Downward continuation

Given the values of the functionP (∀Ex,z,∀ω), downward continuation consists of finding the
values of P (∀Ex,z+ δz,∀ω). An expression describing this process lays at the end of the
following proof: Obtain the Helmholtz equation by applying the Fourier transform defined by
(24) to the wave equation (22) while taking into account the notation (26) and the property
(25) and rearranging:

1P + Pzz+m2P = 0. (29)

By derivating relation (28) with respect tox andz we obtain:

Pxi = Qxi e
i m̄z, (30)
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1P = (1Q)ei m̄z, (31)

Pz = (Qz + i m̄Q)ei m̄z, (32)

Pzz = (Qzz+2i m̄Qz − m̄2Q)ei m̄z. (33)

By plugging into in (29) and eliminating the exponential, we get:

1Q+ Qzz+2i m̄Qz +
(
m2

− m̄2) Q = 0. (34)

The second derivative with respect toz can be eliminated by derivating with respect toz,
multiplying by i

2m̄, and adding the result to (34):

i

2m̄
Qzzz+

i

2m̄
(1Q)z +1Q+2i m̄Qz +

i

2m̄

(
m2

− m̄2) Qz +
(
m2

− m̄2) Q+
im

m̄

∂m

∂z
Q = 0.

(35)

Note that no approximation has been made between the wave equation (22) and this point. Eq.
35 is simply the wave equation in a different coordinate system. NowQzzz is approximated
by zero:

i

2m̄
(1Q)z +1Q+2i m̄Qz +

i

2m̄

(
m2

− m̄2) Qz +
(
m2

− m̄2) Q+
im

m̄

∂m

∂z
Q = 0. (36)

For the case of a homogenous medium,m̄ = m and the equation turns into the familiar 45◦

equation:

i

2m̄
(1Q)z +1Q+2i m̄Qz = 0. (37)

The 15◦ equation is obtained by neglecting theQxxz term also:

1Q+2i m̄Qz = 0. (38)

Downward continuation proceeds by considering

Q (∀Ex,z,∀ω) = P (∀Ex,z,∀ω) (39)

then by using one of the equations 36, 37 or 38 to find the values ofQ (∀Ex,z+ δz,∀ω) and by
finally finding P by undoing the variable change:

P (∀Ex,z+ δz,∀ω) = Q (∀Ex,z+ δz,∀ω)eim(Ex,z)δz. (40)
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