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Least-squares joint imaging of primaries and multiples

Morgan Brown1

ABSTRACT

Multiple reflections provide redundant, and sometimes additional, information about the
corresponding primary reflections. I implement a least-squares inversion scheme to
jointly image (by normal moveout) primaries and multiples, with the goal of enforc-
ing consistency between the images and the input data. Furthermore, to effect noise
(“crosstalk”) suppression, I introduce a novel form of model regularization which exploits
kinematic similarities between imaged primaries and multiples, and which also preserves
the amplitude-versus-offset (AVO) response of the data. In tests on synthetic data, my ap-
proach exhibits good noise suppression and signal preservation characteristics. Real data
tests highlight the need for careful data preprocessing. Future work points toward use
of migration as the imaging operators, to exploit cases where multiples actually exhibit
better angular coverage than primaries, and thus add new information to the inversion.

INTRODUCTION

Multiple reflections have long been treated as noise in the seismic imaging process. In contrast
to many other types of “noise”, like surface waves, multiply reflected body waves may still
penetrate deep into the earth, and thus have a potential to aid in imaging the prospect zone.
I refer generically tojoint imaging with multiplesas any process which creates a “pseudo-
primary” image from multiples by removing the propogation effects of body waves through
arbitrary multiple layer (generator + free surface), and which then seeks to integrate the infor-
mation provided by the primary and pseudo-primary images.

Reiter et al. (1991) present an early example of imaging multiples directly using a prestack
Kirchhoff scheme. Yu and Schuster (2001) describe a cross-correlation method for imaging
multiples. Berkhout and Verschuur (1994) and Guitton (2002) apply shot-profile migration
for multiples. The aforementioned approaches produce separate-but-complementary pseudo-
primary and primary images, yet they either do not attempt to, or employ simplistic methods
to integrate the information contained in the two images; either add (Reiter et al., 1991) or
multiply (Yu and Schuster, 2001) them together.

In this paper, I introduce a new methodology for jointly imaging primaries and multiples.
In addition to a desire to correctly image the multiples, my approach is driven by three primary
motivations:
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1. Data Consistency- The primary and pseudo-primary images both should be maximally
consistent with the input data.

2. Self-consistency- The primary and pseudo-primary images should be consistent with
one another, both kinematically and in terms of amplitudes.

3. Noise Suppression- In the primary image, all orders of multiples should be suppressed.
In the pseudo-primary image created from, say first-order water-bottom multiples, con-
tributions from primaries and secord-order or greater multiples should be suppressed.

Least squares optimization provides an excellent, and perhaps the only viable approach to
address all three requirements. I adopt an approach similar to Nemeth et al. (1999), which
used a least-squares scheme to jointly image compressional and surface waves, for improved
wavefield separation. Data consistency is effected by minimization of a data residual; self-
consistency and noise suppression through the use of regularization terms which penalize 1)
differences between primary and pseudo-primary images, and 2) attributes which are not char-
acteristic to true primaries or pseudo-primaries.

In my approach, I use the simplest possible imaging operation, Normal Moveout (NMO).
I derive an NMO equation for water-bottom multiple reflections, which maps these multiples
to the same zero-offset traveltime as their associated primaries, creating a “pseudo-primary”
section. To account for the amplitude differences between the primary and pseudo-primary
sections, I assume constant seafloor AVO behavior and estimate a single water-bottom re-
flection coefficient from the data. To address the AVO differences between primary and
pseudo-primary, I derive an expression – valid only for constant velocity – for the AVO of
the pseudo-primary as a function of the AVO of the primary, and then enforce this constraint
in the inversion via an offset- and time-dependent regularization term.

METHODOLOGY

NMO for Multiple Reflections

In a horizontally-stratified,v(z) medium, multiple reflections can be treated as kinematically-
equivalent primaries with the same source-receiver spacing but additional zero-offset travel-
time τ ∗, as illustrated in Figure 1. We can write an extension to the NMO equation which
flattens multiples to the zero-offset traveltime of the reflector of interest.

t2
=

√
(τ + j τ ∗)2 +

x2

V2
ef f

(1)

j τ ∗ is the two-way traveltime of aj th-order multiple in the top layer.Vef f (τ ) is the effective
RMS velocity of the equivalent primary shown in the figure. For the simple case of constant
velocityv∗ in the multiple-generating layer,

Vef f (τ ) =
τ ∗v∗

+ τV(τ )

τ ∗ + τ
(2)
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So for the common case of relatively flat reflectors,v(z), and short offsets, equation (1) should
do a reasonable job of flattening water-bottom multiples of any order to theτ of interest,
assuming that we pick the water bottom (τ ∗) and that we know the seismic velocity of water.

Figure 1: Schematic for NMO of
multiples. From the standpoint
of NMO, multiples can be treated
as pseudo-primaries with the same
source-receiver spacing, but with ex-
tra zero-offset traveltimeτ ∗, as-
suming that the velocity and time-
thickness of the multiple layer are
known. morgan1-schem[NR]

AVO of Multiple Reflections

Even after application of the water-bottom reflection coefficient, the AVO response of the
pseudo-primary section created by equation (1) does not match that of the corresponding
NMO-corrected primary section. Refer to Figure 2 and note that for constant-AVO water-
bottom reflection (and a free surface reflection coefficient of -1), the amplitude of the water-
bottom multiple at offsethp + hm is simply the amplitude of the primary at offsethp, scaled
by the negative water-bottom reflection coefficient. Still, the question remains:what are hm
and hp? For the case of constant velocity, we can use trigonometry to derivehm andhp as a
function of the zero offset traveltimes of the primary reflection and water bottom (τ andτ ∗,
respectively), and the source-receiver offsetx. In constant velocity, the multiple and primary
legs of the raypath are similar triangles:

τv

hp
=

τ ∗v

hm
. (3)

Also, for a first-order water-bottom multiple,

hp +hm = x.

These two independent equations can be solved and simplified to give expressions forhp and
hm:

hp =
τ

τ + τ ∗
x and hm =

τ ∗

τ + τ ∗
x. (4)

I omit the general form of the expression for orders of multiple higher than one, although it is
straightforward to derive.
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Figure 2: Assuming a constant AVO
water-bottom reflection and constant
velocity, we can write the AVO of
water-bottom multiples with offset
hp + hm as a function of the AVO of
the primary recorded at a shorter off-
set,hp. morgan1-avo[NR]

To obtain an estimate of the water-bottom reflection coefficient, I solve a simple least
squares problem to estimate a function of location,a(x), which when applied to a small win-
dow of dimensionnt × nx around the NMO-corrected water-bottom reflection,p(t ,x), op-
timally resembles the NMO-corrected [equation (1)] first-order water-bottom multiple reflec-
tion,m(t ,x). To achieve this,a(x) is perturbed to minimize the following quadratic functional.

min

 nx∑
j =1

nt∑
i =1

a( j )∗ p(i , j )−m(i , j )

2

(5)

a(x) may not be reliable at far offsets, due to either NMO stretch or non-hyperbolicity, so in
practice, an estimate of the single best-fitting water-bottom reflection coefficient is made using
thea(x) from “useful” offsets only.

Least-squares imaging of multiples

Applied to a common-midpoint gather, equation (1) produces an approximate unstacked zero-
offset image of pseudo-primaries from water bottom multiple reflections. In this section, I
introduce a least squares scheme to compute self-consistent images of primaries and pseudo-
primaries which are in turn consistent with the data. First I define some terms:

d ↔ One CMP gather.

mj ↔ Prestack model vector for multiple orderj . Produced by applying equation (1) tod.

Nj ↔ Adjointof NMO for multiple of order j (primaries: j = 0). NT
j applies equation (1) tod.

Rj ↔ Given a single water-bottom reflection coefficient,r , [estimated via equation (5)],

this operator scalesmj by 1/r j to make the amplitudes of all themj comparable.



SEP–111 Imaging with Multiples 21

With these definitions in hand, we can now write the forward modeling operator for joint NMO
of primaries and multiples of order 1 top.

[
N0 N1R1 · · · NpRp

]


m0

m1
...

mp

 = Lm (6)

In words, equation (6) takes a collection of psuedo-primary panels, divides each by the ap-
propriate reflection coefficient, applies inverse (adjoint) NMO to each, and then sums them
together to create something that should resemble “data”. We define the data residual as the
difference between the input data and the forward-modeled data:

rd = d−Lm (7)

Viewed as a standard least-squares inversion problem, minimization ofL2 norm of the data
residual by solution of the normal equations is underdetermined. Additional regularization
terms, defined in later sections, force the problem to be overdetermined.

Consistency of the Data and the Crosstalk Problem

Figure 3 shows the result of applying the adjoint of equation (6) to a synthetic CMP gather
which was constructed by an elastic modeling scheme. Imagine for a moment that the CMP
gather consistsonly of primaries and first- and second-order water-bottom multiples. The
“NMO for Primaries” panel would contain flattened primaries (signal) and downward-curving
first- and second-order multiples (noise). Likewise, the “NMO for multiple 1” and “NMO for
multiple 2” panels contain flattened signal and curving noise. Why do I call these components
“signal” and “noise”? If each of the three panels contained all signal and no noise, then we
could 1) perfectly reconstruct the data from the model by applying equation (6), and 2) be in
the enviable position of having a perfect estimate of the primaries.

Unfortunately, the curved events – so-called “crosstalk” – in all three model panels spoil
this idealized situation (Claerbout, 1992). Because the crosstalk events map back to actual
events in the data, they are difficult to suppress in a least-squares minimization of the data
residual [equation (7)]. Nemeth et al. (1999) shows that crosstalk relates directly to non-
invertibility of the Hessian (L TL ), and that data-space or model-space regularization may
partially overcome the difficulty. In the following section, I introduce a novel form of model-
space regularization which promotes discrimination of signal from crosstalk.

Regularization of the Least-Squares Problem

Visual inspection of Figure 3 motivates the two forms of regularization utilized in this paper.
Find any first-order multiple on the section marked “NMO for Primaries”. Notice that the
corresponding event on the first- and second-order pseudo-primary panels, originally second-
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Figure 3: From left to right: Raw synthetic CMP gather; Conventional NMO applied to data;
NMO for first-order water-bottom multiple; NMO for second-order water-bottom multiples.
morgan1-schem.hask[ER]

and third-order multiples, respectively, all have a different moveout. In fact, the only events
which are kinematically consistent across all offsets are the flattened primary and pseudo-
primaries. The other events, all crosstalk, are inconsistent between panels. Therefore, the
first regularization operator seeks to penalize the difference between themi , at fixedτ . To
account for the dissimilarity of the AVO of primaries and multiples, this difference is taken at
different offsets, as defined in equation (4). Written in the form of a model residual vector,
this difference is:

r [1]
m (τ ,x, i ) = mi (τ ,hp)−mi +1(τ ,x). (8)

The third index in equation (9),i , ranges from 0 tonp − 1, wherenp is the highest order
multiple modeled in the inversion [see equation (6)].

The second form of regularization used in this paper is the more obvious of the two: a
difference operator along offset. This difference exploits the fact that all non-primaries are not
flat after NMO. Again, we can write this difference in the form of a model residual vector:

r [2]
m (τ ,x, i ) = mi (τ ,x)−mi (τ ,x +1x). (9)

The second regularization is applied to all themi . A similar approach is used by Prucha et al.
(2001) to regularize prestack depth migration in the angle domain.
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Combined Data and Model Residuals

To compute the optimal set ofmi , a quadratic objective function,Q(m), consisting of sum of
the weighted norms of a data residual [equation (7)] and of two model residuals [equations (8)
and (9)], is minimized via a conjugate gradient scheme:

minQ(m) = ‖rd‖
2

+ ε2
m‖r [1]

m ‖
2

+ ε2
x‖r [2]

m ‖
2 (10)

εm andεx are scalars which balance the relative weight of the two model residuals with the
data residual.

RESULTS

Testing the Raw Algorithm

We begin with the results of testing the proposed algorithm on a single synthetic CMP gather,
which was shown previously in Figure 3. This gather, generated using Haskell-Thompson
elastic modeling, with earth properties drawn from a well log provided with the “Mobil AVO”
dataset (see (Lumley et al., 1994) for a description of data details), has traditionally found use
at SEP as a multiple suppression benchmark (Lumley et al., 1994; Nichols, 1994; Clapp and
Brown, 1999; Guitton, 2000; Clapp and Brown, 2000). The data contain all surface-related
and internal multiples, as well as P-to-S-to-P converted waves.

Figure 4 illustrates the application of the proposed algorithm to the so-called “Haskell”
data. Comparing the raw data and the estimated primary panels [m0 in equation (6)], we see
that my algorithm does a decent job of suppressing the strongest multiples, especially at far
offsets, though some residual multiple energy remains at the near offsets. We expect poorer
performance at near offsets; recall that the first regularization operator [equation (8)] penalizes
dissimilarity of events across orders of multiple, yet all orders of multiple align at near offsets.
Moreover, the second regularization operator [equation (9)] penalizes residual curvature, yet
all events in the section, both primaries and the residual multiples, are flat at near offsets.

The difference panel shows little residual primary energy, which illustrates the favorable
signal preservation capability of my approach. The bulk of the residual primary energy exists
at far offsets and small times, where NMO stretch makes the primaries nonflat, and hence,
vulnerable to smoothing across offset by equation (9).

The bottom three panels in Figure 4 show the data residual [equation (7)], and the first two
panels of the two model residuals [equations (9) and (8), respectively]. Put simply, the data
residual consists of events which are not modeled by equation (6) – hopefully, the multiples
only. The model residuals consist roughly of the portions of the model which were removed
by the two regularization terms (again, hopefully multiples only): high-wavenumber events
and events which are inconsistent from one panel to the next.
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Figure 4: Test of equation (10) on Haskell synthetic CMP gather. Top row, left to right:
Raw Haskell data, NMO applied; Estimated primary panel; difference panel. Bottom row,
left to right: Data residual; first panel of model residuals, equations (9) and (8), respectively.
morgan1-cmps.lsrow.hask[ER]



SEP–111 Imaging with Multiples 25

Better Understanding the Regularization

Figure 5 illustrates the effect of settingεx = 0 in equation (10), which removes the influence of
the regularization term which roughens the model across offset [equation (9)]. The results are
intriguing. Most noticeably, leftover multiple reflections in the “Estimated Primaries” panel
appear to be scrambled over offset, while primaries appear mostly intact. Signal-to-noise ratio
has increased considerably. The fact that the roughener across offset decorrelates the residual
multiples should be further exploited.

Notice that the model residual is zero at long offsets and small times. This is due to the
fact that the difference is not taken across the same offsets, to account for the AVO multiples,
according to equation (4). Whenhp +hm > hmax, no difference is taken.

Devil’s Advocate: What do the Multiples Add?

Figure 6 illustrates application of the algorithm without the use of multiples. Only the reg-
ularization across offset, equation (9), is in operation. Though we see some suppression of
multiples, the results are not nearly as good as those in Figure 4. More insidiously, note the
presence of considerable of primary energy in the difference panel. When exploited as a con-
straint against crosstalk, the multiple reflections add considerable information. My approach
integrates this information in a systematic framework.

A Real Data Example

I test the proposed algorithm on a single CMP gather from the Mobil AVO dataset, described
above. The results are shown in Figure 7. Relative to the results seen on the Haskell synthetic,
they are fairly poor. On the bright side, notice decent preservation of signal amplitude. The
earliest water-bottom multiples are suppressed quite effectively, although the later reverbera-
tions are left almost untouched.

The reasons for the less-than-perfect are likely numerous. First, and most important, the
multiple reflections quickly become incoherent with an increasing number of bounces. They
match well with the primaries only for the strongest reflections. I estimated a relatively small
water-bottom reflection coefficient, 0.1, so the multiples are relatively weak in amplitude. I
did not perform any preprocessing on the data, and I believe they were donated to SEP as raw
gathers. Berlioux and Lumley (1994) applied cable balancing to the Mobil AVO dataset. High-
wavenumber, offset-variant amplitude variations along events spoil the ability regularization
equation (8) to discriminate against crosstalk.

DISCUSSION

I presented a new approach for the joint imaging of primary and multiple reflections. My
approach goes further than the separate imaging of multiples and primaries. I integrate infor-
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Figure 5: Only the regularization which roughens across orders of pseudo-primary, equation
(8), is used in the inversion. Top row, left to right: Raw Haskell data, NMO applied; Estimated
primary panel; difference panel. Bottom row, left to right: Data residual; first panel of model
residuals, equations (9) and (8), respectively.morgan1-cmps.nograd.hask[ER]
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Figure 6: Only the regularization which roughens across offset, equation (9) is used in the
inversion. Only one order of pseudo-primary is used, so no information is added by the mul-
tiples. Top row, left to right: Raw Haskell data, NMO applied; Estimated primary panel;
difference panel. Bottom row, left to right: Data residual; first panel of model residuals, equa-
tions (9) and (8), respectively.morgan1-cmps.devils.hask[ER]
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Figure 7: Application of equation (10) to CMP from Mobil AVO data. Top row, left
to right: Raw CMP gather, NMO applied; Estimated primary panel; difference panel.
morgan1-cmps.lsrow.haskreal[ER]
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mation from the multiples and primaries in a least-squares inversion, via a new regularization
term which exploits the kinematic similarity of primaries and pseudo-primaries, and the kine-
matic dissimilarity of crosstalk terms to obtain a noise-free image of the primaries.

The proposed algorithm demonstrates good noise suppression and signal preservation
characteristics in the synthetic tests of Figure 4. Comparison of Figures 5 and 6 proves the
validity of the new regularization term, equation (8), and more importantly, that the multiples
provide valuable information in the inversion.

The results of testing a real data gather were mixed. I believe the single largest problem
in this case is poor coherency of the water-bottom multiples. As the water bottom and most
shallow reflectors on the Mobil AVO dataset are nearly perfectly flat, geologic complexity is
surely not to blame. More likely, the solution(s) to the trouble is(are) more mundane; things
like source/cable balancing and spherical divergence. An accurate RMS velocity function is
important to success, but errors can be tolerated. Velocity errors lead to curvature in NMO’ed
primaries and pseudo-primaries, but as I have dealt here only with water-layer multiples, the
real danger, a large phase shift between primaries and pseudo-primaries, is somewhat unlikely.

In all tests, the removal of multiples at near offsets was incomplete. Since the near offsets
contribute most to residual multiple energy in the stack, it is of crucial importance to improve
performance.

FUTURE DIRECTIONS

The obvious direction in which to move this project is migration. By using migration, rather
than NMO, as the imaging operator, the limiting assumptions of NMO (v(z), flat reflectors)
can be abandoned. Furthermore, the limitations of operating in the offset domain can be over-
come by moving to the more intuitive angle domain. In some cases, multiples provide better
angular coverage over a recorded cable length. Systematic integration of this extra informa-
tion could prove revolutionary in regions of poor illumination. But the fruits of this transition
are not without challenges. Because NMO is a vertical mapping, each CMP can be processed
independently, making the memory requirements of the current implementation reasonable,
and parallelization quite simple. Correctly handling the transformation of amplitudes between
primary and pseudo-primary may prove even more of a challenge. Also, regardless of whether
NMO or migration is used, the move to 3-D is never a forgiving one from the computational
standpoint.
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