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Statistical stability and time-reversal imaging in random media

James G. Berrymahliliana Borcea? George C. Papanicolaotiand Chrysoula TsogKa

ABSTRACT

Localization of targets imbedded in a heterogeneous background medium is a common
problem in seismic, ultrasonic, and electromagnetic imaging problems. The best imaging
techniques make direct use of the eigenfunctions and eigenvalues of the array response
matrix, as recent work on time-reversal acoustics has shown. Of the various imaging
functionals studied, one that is representative of a preferred class is a time-domain gener-
alization of MUSIC (MUItiple Signal Classification), which is a well-known linear sup-
space method normally applied only in the frequency domain. Since statistical stability
is not characteristic of the frequency domain, a transform back to the time domain af-
ter first diagonalizing the array data in the frequency domain takes optimum advantage
of both the time-domain stability and the frequency-domain orthogonality of the relevant
eigenfunctions.

INTRODUCTION

There have been many approaches to estimating target location using seismic, ultrasonic, and
electromagnetic imaging methods. Some of the most popular ones in recent years continue
to be matched-field processing (Bucker, 1976; Jeesah, 1994), MUSIC (MUItiple Signal
Classification) (Schmidt, 1979; Johnson, 1982; Schmidt, 1986; Biondi and Kostov, 1989), and
other linear subspace methods (Johnson, 1982; Johnson and DeGraaf, 1982; Cheney, 2001).
When the targets are imbedded in heterogeneous media so that significant multiple scattering
occurs in the background medium during wave propagation between array and target, the
randomness has a different character than that usually envisioned in these traditional analyses.
Yet there are a great many applications (Fink, 1997; 1999; Ein&l, 2000; Fink, 2001,

Fink and Prada, 2001; ter Haar, 2001) ranging from the biomedical to ocean acoustics to
nondestructive evaluation, where imaging is important and where sources of randomness not
associated with the imaging targets can wreak havoc with the traditional methods. Time-
reversal acoustics (Firgt al., 1989; Jackson and Dowling, 1991; Prada and Fink, 1991) offers
part of the answer to these difficult imaging questions, and some significant improvements over
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these methods for imaging in random media are summarized here.

We have found that methods designed to work well for finding targets in homogeneous
media do not necessarily work very well for targets imbedded in random media. In particu-
lar, the fact that the linear subspace methods are normally applied in the frequency domain
combined with the fact that statistically stable methods are normally found only in the time
domain, forces us to seek different imaging strategies in the random media imaging problems
of interest to us here. We find that a set of imaging functionals having the desired charac-
teristics exists, and furthermore that the properties of this set can be completely understood
when the time-domain self-averaging — that gives rise to the required statistical stability of
the target images — is taken properly into account. We can largely eliminate the undesirable
features of the frequency domain methods by making a transform back to the time domain af-
ter first diagonalizing sensor array data. While the frequency domain analysis takes optimum
advantage of eigenfunction orthogonality of the array data, a transform to the time-domain
takes optimum advantage of wave self-averaging which then leads to the statistical stability
we require for reliable and repeatable imaging in random media.

We first introduce the imaging problem in the next section. Then we summarize our techni-
cal approach. Examples of the cross-range (or bearing) estimates obtained with these methods
are presented and then combined with range information from time-delay data to obtain our
best estimates and images of target location. The final section summarizes our conclusions
about the methods discussed.

IMAGING PROBLEM

Our analysis assumes that the array hasransducers located at spatial positios for
p=1,..,N. (See Figure 1.) When used in active mode, the array probes the unknown
acoustic medium containinyl small scatterers by emitting pulses and recording the time
traces of the back-scattered echos. We call the resulting data set the multistatic array response
(or transfer) matrix

P(t) = (Ppq(t)), 1)

wherep andq both range over all the array elements. For our simulations, we consider a linear
array where two adjacent point transducers are a distafizapart, withix being the carrier
(central) wavelength of the probing pulses. Such an arrangement ensures that the collection of
transducers behaves like an array having apeasf€N — 1)\ /2 and not like separate entities,
while keeping the interference among the transducers at a minimum (Steinberg, 1983). Our
goal is to detect and then localize 8l of the targets in the random medium, if possible.

For the numerical examples considered here, we will treat ultrasonic imaging problems.
Our simulations assume that< ¢ <<a= (N —1)A/2 << L, wherea is the central wave-
length, ¢ is a characteristic length scale of the inhomogeneity (like a correlation lerayth),
is the array aperture, arld is the approximate distance to the targets from the array. This
is the regime where multipathing, or multiple scattering, is significant even when the stan-
dard deviation of sound speed fluctuations is only a few percent. Values used in the codes
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Figure 1: Array probing of a randomly inhomogeneous medium contaMisgall scatterers.
jim2-gen_setup[NR]

arer = 0.5mm,a = 2.5mm, and a background wave speectpf 1.5km/s. More details
concerning the simulations may be found in Boreeal. (2002).

Typical array processing methods assume that the targets are far away from the array and,
therefore, they look like points. Similarly, the propagation medium is assumed homogeneous
and so the observed wavefronts scattered by the targets look like plane waves at the array.
Array noise has usually been treated as due either to diffuse sources of white noise coming
simultaneously from all directions, or to isolated “noise” having the same types of source char-
acteristics as the targets of interest. But in random media with significant multiple scattering,
the resulting “noise” cannot be successfully treated in these traditional ways.

Real-space time-reversal processing of the array response data involves an iterative pro-
cedure: sending a signal, recording and storing the scattered return signal, time-reversing and
then rebroadcasting the stored signal, with subsequent repetitions. This procedure amounts to
using the power method for finding the singular vector of the data matrix having the largest
singular value. Alternatively, when the full response/transfer matrix has been measured for a
multistatic active array, the resulting data matrix can be analyzed directly by Singular Value
Decomposition (SVD) to determine not only the singular vector having the largest singular
value, but all singular vectors and singular values — simultaneously (Prada and Fink, 1994;
Pradeet al, 1996; Mordanet al., 1999).

Imaging is always done using a fictitious medium for the simulated backpropagation that
produces these images since the real medium is not known. Its large-scale features could be
estimated from other information, such as geological data obtained by seismic methods. For
example, migration methods (Claerbout, 1976; Aki and Richards, 1980; Blegttein2001)
can be used, where very large arrays — much larger than those we contemplate using here
— are required. However, the small-scale random inhomogeneities are not known and cannot
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be effectively estimated, so the simplest thing to do is ignore them when imaging, and use
methods that are statistically stable and therefore insensitive to the exact character of these
small inhomogeneities.

TECHNICAL APPROACH

In our simulations, the array response maﬂﬁ(«o) [see definition in (1)] in the frequency
domain is symmetric but not Hermitian. In general (as for array elements with nonisotropic
radiation patterns), it is neither Hermitian nor symmetric, but with slight modifications our
methods apply to this case as well. The eigenvectorB(af)P" (w) having unit norm are
denoted b)Ur (w), forr =1,...,N. The eigenvalues OIP(a))PH(a)) areo(w), with oy (w)

being the smgular values ch(a)) The significant singular vectots; (w) [i.e, those in the
range OfP(a))] have singular values; (w) > 0 for 1 <r < M, whereM is either the number

of targets, or the size of the arraf) — whichever is smaller. We assume that the number
of targets is smaller than the array sife so thatM is in fact the number of distinguishable
targets; this assumption is required by the imaging methods we employ (such as MUSIC) as
will become clear while presenting the method.

The notation used here is the same as in Boated. (2002). We denote bgy(y, ) the
deterministic source vector observed at the array for a source locaggd®ien,go(y, ») is
given by

é\O(ys1 X1, a))

aso= | Ve, @

Go(y®, xn, )
whereéo(ys,xj ,w) is the deterministic two-point Green’s function, axgdis the location of
the j-th array element.

We also define the projectioft \Go(y, @) of Go(y®, ) onto the null-space dP PH (w) by

PnOo(y®, w) = To(y®, w)
M

= [OF (@)8o(y*, )] Ur (@), 3)
r=1

for each frequency in the support of the probing puﬁe).

The method we describe here is a time domain variant of MUSIC (Schmidt, 1979; 1986;
Cheney, 2001; Devaney, 2002) which we labgD A, because it gives very stable estimates
of the direction of arrival. Frequency domain MUSIC takes a replica (or trial) vector, which
is the impulse response or Green'’s function for a point source at some point in the space, and
dots this vector into an observed singular vector at the array. With appropriate normalization,
this dot product acts like a direction cosine of the angle between the replica vector and the
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data vector. If the sum of the squares of these direction cosines is very close to unity, then
it is correct to presume that the source point of that replica vector is in fact a target location
since it lies wholely in the range of the array response matrix. Crudely speaking, imaging
is accomplished by plotting/]1 — cos(-)], which will have a strong peak when the replica
source point is close to the target location.

We form the sum
g% => |7V (v t09)|, 4)
p=1
with

FO(ys,t) = [ e o (w)Bo(Y®, w)dw

~ [0 () DI [UF (@)8oly*,)] O (), ©
and display the objective functional
m mingd(y®)
RpoAY®) = ZW (6)

j=1
for pointsy® in the target domain.

The arrival timetp(y®) is the deterministic travel time from th@th transducer to the search
point,

Xp_ys|

(%) = - @)

EXAMPLES AND RANGE ESTIMATION

Examples for frequency-domain MUSIC with two targets are displayed in Fig. 2. It is clear
from this Figure that no range information is obtained from frequency-domain objective func-
tionals, and even the cross-range information is often quite haphazard in random media. Lack
of statistical stability prevents these imaging approaches from being useful in random media
with significant multipathing as considered here. When the realization of the random medium
is changed, the images obtained typically change also — which is what we mean by the phrase
“lack of statistical stability” for these methods. Note that this approach works well for homo-
geneous media, but quickly breaks down when randomness of the velocity field is important.

Examples for time-domain MUSIC with two targets are displayed in Fig. 3. The cross-
range results show dramatic improvement over results using other methods (Begatyahan
2002). Range information is still not to be found here, due to loss of coherence in the random
medium; we cannot get exact cancellation at the targets in this situation whereas coherent
refocusing is possible in homogeneous media. But the statistical stability of the universal
“comet tails” — which was also anticipated by recent theoretical analyses (Bloregadn
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Figure 2: The MUSIC central frequency estimate of the location of two targets in random
media with different strength of the fluctuations of the sound speed. The exact location of the
targets is denoted by green stars (in the color version). The standard desiatidmaximum
fluctuations (M.F.) are indicated on the top of each view. The horizontal axis is the range in
mm and the vertical axis is the cross-range in njim2-Two_short_ MUSIG[NR]

S = 0%, M.F. = 0% s = 2.53%, M.F. = 4,38%

8 = 6.96%, M.F. = 12.05%

Figure 3: The DOA estimate (5) of the location of two target in random media with different
strength of the fluctuations of the sound speed. The exact location of the target is denoted
by the green star (in the color version). The standard deviatemd maximum fluctuations
(M.F.) are indicated on the top of each view. The horizontal axis is the range in mm and the

vertical axis is the cross-range in mh’imZ-Two_short_DOA“NR]
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2002) — is now easily observed. The images are necessarily shown for specific realizations,
but the results do not change significantly when the underlying realization of the random
medium is changed. This fact has been repeatedly shown in our simulations, and is the main
operational characteristic of statistically stable methods.

Target localization requires an estimate of the range. In the far field, only the arrival time
information is useful for this purpose. Arrival time information is present in the singular
vectors and can also be averaged (for the same random medium) using the multiple copies
available in the array response matrix for random media — see Betcala (2002) — to
obtain very stable estimates of arrival times. We will now combine this approach with the
time-domain methods to obtain well-localized images of the targets.

For each search poigt, we compute the objective functional

o) (s
min
M MiNG.SaT(y)

R (yS) = —_— (8)
sat)=2 "o
where
N
9(SJ3°\T(yS) = Z ‘?rgj)(ysip(ys)‘z [Téj) — tp(ys)]z. (9)
p=1

Here U)(ys,t) is defined by (5)tp(y®), for p=1,...,N, are the deterministic arrival times
given by (7) andré”, forp=1,...,N,andj =1,...,M, are the computed arrival times. We
call (8) the Subspace Arrival Time (SAT) estimator.

s = 0%, M.F. = 0% s = 2.53%, M.F. = 4.38%
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Figure 4: The SAT estimate for two targefim2-Two_short_SAT-1[NR]

Examples of SAT (or time-domain MUSIC with arrival time estimates from the averaged
singular vectors) for two targets are displayed in Fig. 4. This method is statistically stable and
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gives good estimates of the target locations. These localization results have degraded the least
of all those considered (Borceaal., 2002; Berrymaret al., 2002) at the highest values of the
random fluctuations.

CONCLUSIONS

For imaging applications in randomly inhomogeneous acoustical media, the results summa-
rized here lead us to the following conclusions: (1) Single frequency methods (including MU-
SIC) are not statistically stable, and therefore cannot be used without modification in the pres-
ence of significant amounts of spatial heterogeneity in the acoustic wave speed distribution.
(2) In contrast, time domain methods are statistically stable for any objective functional hav-
ing the characteristic that the random Green’s functions appear in Hermitian conjugate pairs
of gg* (Borceaet al, 2002), because large random phases cancel precisely. This result has
been shown here to be true for DOA, and is expected to be true more generally. (3) The DOA
gives only cross-range information. Range information must be obtained separately.

To isolate the targets in random media, we need either multiple views (using multiple
arrays) so we can triangulate, or we need to extract a direct measure of range from the data. In
the SAT examples shown here, we used arrival time for the range estimation.
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