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An extension of poroelastic analysis to double-porosity materials:
A new technique in microgeomechanics

James G. Berryman

ABSTRACT

Double-porosity materials were introduced as models for oil and gas reservoirs having
both storage and transport porosities, and were at first usually treated as static mechanical
systems in order to study the flow patterns of fluids during reservoir pump-down. Be-
cause fluid withdrawal normally increases the effective stress acting on the reservoir, it
also turns out to be important to study the geomechanics of the reservoir and how chang-
ing fluid pressure affects the solid compaction and fluid permeability of these systems.
At the microscale, the mechanical properties of the solid constituents and their distribu-
tion in space determine the overall macromechanics of the reservoir system. For systems
containing two porosities and two types of solid constituents, exact results for all but one
(which may be taken as the overall drained bulk modulus of the system) of the mechani-
cal constants can be derived when the constituents’ properties are known using methods
developed in this paper. For multi-porosity systems, closure of the system of equations
remains an open question, although it is clear that the system can always be closed by the
addition of further macroscale measurements.

INTRODUCTION

The subject of “geomechanics” includes such topics as the study of rock mechanics, soil me-
chanics, and engineering geology, and has overlapping interests in some cases with “hydro-
geology” when the mechanical behavior of the earth system of interest is strongly affected by
the presence of water. In general “geomechanics” means the study mechanics of earth sys-
tems, and therefore “microgeomechanics” means the study of the effects of micromechanics
on earth systems. Our main interest here will be in the interaction of fluid pressure changes
(usually induced by reservoir depletion) with the mechanical properties of the reservoir.

Perhaps the most typical applications of geomechanics arise in the engineering disciplines
of mining and oil reservoir assessment and production, and even earlier in soil mechanics. The
history of the main features contained in the theory of geomechanics dates back at least to the
work of Terzaghi (1925) on “effective stress,” which is the observation that, when external
confining stress and internal pore pressure act simultaneously on a porous material, the pore
pressure tends to counteract the confining pressure. Terzaghi’s effective stress law for changes
in volume was the simple statement that the effective stress was the confining stress minus the
pore pressure,i.e. the differential stress. For soils, this approximation is often a very good one.
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For porous materials in general, theory and experiment have shown both that the concept of an
effective stress is valid, and that the actual effective stress is not just the differential stress of
Terzaghi, but rather the confining stress minus some fraction of the pore pressure. This fraction
has often been taken to be some overall average number — for example, in the range 0.85–0.88
(Brandt, 1955; Schopper, 1982) — for the earth’s crust. But it has been shown theoretically by
Biot and Willis (1957) and experimentally by Fatt (1958; 1959) and Nur and Byerlee (1971)
that the volume effective stress coefficient is actually related to the elastic properties of the
porous system. Ifα is this effective stress coefficient, then — in a microhomogeneous porous
material (composed of voids and a single type of granular material) — it is related to the bulk
modulus of the grainsKg and the overall bulk modulus of the drained porous systemK ∗ by
α = 1− K ∗/Kg. This rule reduces to Terzaghi’s effective stress rule for soils when the soil is
very poorly consolidated so thatK ∗ << Kg, for thenα ' 1.

Terzaghi’s early work was expanded into a theory of consolidation, both by himself and
through the work of Biot (1941), Gassmann (1951), Skempton (1957), Geerstma (1966; 1973),
and many others. Biot (1941) is usually given credit for the first comprehensive theory of
consolidation, at least in the case of simple, single porosity systems. Gassmann (1951) was
the first to obtain one of the fundamental results of the theory – sometimes called the fluid-
substitution formula, relating the dry or drained bulk modulusK ∗ to the undrained (or satu-
rated) modulusKu by Ku = K ∗/(1−αB), where the pore-pressure buildup coefficientB is
Skempton’s second coefficient (Skempton, 1954; Carroll 1980). Geertsma (1966; 1973) was
one of the earliest users of this theory for studies of compaction of oil and gas reservoirs dur-
ing and after drawdown of the reservoir. Wang (2000) also gives Geerstma (1966) credit for
coining the term “poroelasticity” that is normally used today to describe Biot’s theory in full.
Early laboratory measurements (Biot and Willis 1957; Fatt 1958; 1959) of the constants in
Biot’s equations helped to establish the theory. Early engineering solutions of the equations
of poroelasticity were given by Rice and Cleary (1976) and Cleary (1977) which helped to
make it a standard tool in civil engineering. Some fundamental extensions of the theory to
systems having multiple solid constituents have been given by Brown and Korringa (1975),
Rice (1975), Berryman and Milton (1991), Berryman (1992), and Norris (1992). Poroelastic-
ity is now a well-established subject having recent technical reviews by Detournay and Cheng
(1993), Wang (1993), Pride and Berryman (1998), Berryman (1999), and books by Bourbié,
Coussy and Zinzner (1987) and Wang (2000) describing the current state of our understanding.

Another fascinating use of the theory of poroelasticity in reservoirs is its relatively recent
application to the studies of earthquakes induced by oil and gas reservoir pumping (Kovach
1974; Penningtonet al. 1986; Segall 1985; 1989; 1992; Segall and Fitzgerald 1998; Gomberg
and Wolf 1999; Pennington 2001). A related issue arising in the opposite physical extreme
is the subject of CO2 sequestration in the earth (Wawersiket al. 2001), where it is clear that
pumping pressurized fluids into the ground must have a strong tendency to decrease the ef-
fective stress in the earth system used for sequestration. Decreasing effective stress implies
weakening of the system, resulting in undesirable (for this application) increases in fluid per-
meability. Studies of partially saturated systems are also of continuing interest (Li, Zhong,
and Pyrak-Nolte 2001) both for oil and gas exploitation and for environmental cleanup appli-
cations.
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Biot’s original single-porosity, microhomogeneous theory of poroelasticity has significant
limitations when the porous medium of interest is very heterogeneous. One important gener-
alization of poroelasticity that has been studied extensively started with the work on double-
porosity dual-permeability systems by Barenblatt and Zheltov (1960) and Warren and Root
(1963). These papers take explicit note of the fact that real reservoirs tend to be very hetero-
geneous in both their porosity and permeability characteristics. In particular, the two types of
porosity normally treated are storage and transport porosities. Storage porosity holds most of
the volume of the fluid underground but may have rather low permeability, while the trans-
port porosity is low volume but high permeability. The transport porosity is usually treated
as being in the form of fractures in the reservoir, or joints in the rock mass. The theory of
double-porosity dual-permeability media has been expanding in both volume and scope dur-
ing the last 20 years, and now includes work by Wilson and Aifantis (1983), Elsworth and
Bai (1992), Bai, Elsworth, and Roegiers (1993), Berryman and Wang (1995), Tuncay and
Corapciaglu (1995), Bai (1999), and Berryman and Pride (2002). Computations of transport
and subsidence in double-porosity dual-permeability media include work by Khaled, Beskos,
and Aifantis (1984), Nilson and Lie (1990), Cho, Plesha, and Haimson (1991), Lewallen and
Wang (1998), and Bai, Meng, Elsworth, Abousleiman, and Roegiers (1999).

Some technical details follow on the single-porosity poroelasticity needed in the main ar-
guments of the paper. Then equations are formulated for double-porosity systems, and finally
multi-porosity systems are discussed. The focus will be on determining how the coefficients of
the resulting equations depend on the physical properties of the microstructural constituents’
of these complex geomechanical systems. The main results are obtained using new techniques
in micromechanics that permit a rather elementary analysis of these complex systems to be
carried through exactly. For systems containing two porosities and two types of solid con-
stituents, exact results for all but one (which may be taken as the overall drained bulk modulus
of the system) of the macroscopic geomechanical constants are derived.

SINGLE-POROSITY GEOMECHANICS

In the absence of external driving forces that can maintain fluid-pressure differentials over long
time periods, double-porosity and multi-porosity models must all reduce to single-porosity
models. This reduction occurs in the long-time limit when the matrix fluid pressure and joint
fluid pressure become equal. It is therefore necessary to remind ourselves of the basic results
for single-porosity models in poroelasticity (Biot 1941; Detournay and Cheng 1993; Wang
2000), as the long-time behavior may be viewed as providing limiting temporal boundary
conditions (fort → ∞) on the analysis of multi-porosity coefficients. Further, in the specific
models we adopt for the geomechanical constants in the multi-porosity theory, extensive use
of the single-porosity results will be made.

The volume changes of any isothermal, isotropic material can only be created by hydro-
static pressure changes. The two fundamental pressures of single-porosity poroelasticity are
the confining (external) pressurepc and the fluid (pore) pressurepf . The differential pressure
(or Terzaghi effective stress)pd ≡ pc − pf is often used instead of the confining pressure. The
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volumetric response of a sample due to small changes inpd andpf take the form [e.g., Brown
and Korringa (1975)]

−
δV

V
=

δpd

K ∗
+

δpf

Ks
(1)

for the total volumeV ,

−
δVφ

Vφ

=
δpd

Kp
+

δpf

Kφ

(2)

for the pore volumeVφ = φV (whereφ is the porosity), and

−
δVf

Vf
=

δpf

K f
(3)

for the fluid volumeVf . Equation (1) serves to define the drained (or “jacketed”) frame bulk
modulusK ∗ and the unjacketed bulk modulusKs for the composite frame. Equation (2)
defines the jacketed pore modulusKp and the unjacketed pore modulusKφ. Similarly, (3)
defines the bulk modulusK f of the pore fluid.

Treatingδpc andδpf as the independent variables, we define the dependent variables to
be δe ≡ δV/V and δζ ≡ (δVφ − δVf )/V , which are termed respectively the total volume
dilatation (positive when a sample expands) and the increment of fluid content (positive when
the net fluid mass flow is into the sample during deformation). Then, it follows directly from
these definitions and from (1), (2), and (3) that(

δe
−δζ

)
=

(
1/K ∗ 1/Ks −1/K ∗

−φ/Kp φ(1/Kp +1/K f −1/Kφ)

)(
−δpc

−δpf

)
. (4)

Now we consider two well-known thought experiments: the drained test and the undrained
test (Gassmann 1951; Biot and Willis 1957; Geertsma 1957; Wang, 2000). In the drained
test,the porous material is surrounded by an impermeable jacket and the fluid is allowed to
escape through a conduit penetrating the jacket. Then, in a long duration experiment, the
fluid pressure remains in equilibrium with the external fluid pressure (e.g., atmospheric) and
soδpf = 0. Hence,δpc = δpd. So changes of total volume and pore volume are given by the
drained constants 1/K ∗ and 1/Kp as defined in (1) and (2). In contrast, for the undrained test,
the jacketed sample has no connection to the outside world, so pore pressure responds only to
the confining pressure changes. With no way out, the total fluid content cannot change, so the
incrementδζ = 0. Then, the second equation in (4) shows that

0 = −φ/Kp(δpc − δpf /B), (5)

where Skempton’s pore pressure buildup coefficientB (Skempton 1954) is defined by

B ≡
δpf

δpc

∣∣∣∣
δζ=0

=
1

1+ Kp(1/K f −1/Kφ)
. (6)
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It follows immediately from this definition that the undrained modulusKu is determined by
[also see Carroll (1980)]

Ku =
K ∗

1−αB
, (7)

whereα is the combination of moduli known as the Biot-Willis parameter, or the total volume
effective-stress coefficient. The precise definition ofα follows immediately from the form of
(1), by substitutingδpd = δpc − δpf and rearranging the equation into the form

−
δV

V
=

δpc −α δpf

K ∗
, (8)

with α = 1− K ∗/Ks. The result (7) was apparently first obtained by Gassmann (1951) (though
not in this form) for the case of microhomogeneous porous media (i.e., Ks = Kφ = Km, the
bulk modulus of the single mineral present) and by Brown and Korringa (1975) and Rice
(1975) for general porous media with multiple minerals as constituents. We will sometimes
use the term “Gassmann material” when making reference to a microhomogeneous porous
medium.

Next, to clarify the structure of (4) further, note that Betti’s reciprocal theorem (Love
1927), shows that the drained and undrained pressures and strains satisfy a reciprocal relation,
from which it follows that

1

Ku
=

1

K ∗
−

φB

Kp
. (9)

Comparing (7) with (9), we obtain the general reciprocity relation (Brown and Korringa 1975)

φ

Kp
=

α

K ∗
. (10)

This reciprocity relation and the form of the compressibility laws (4) also follow directly from
general thermodynamic arguments [e.g., Pride and Berryman (1998)]. Then, Skempton’s pore-
pressure buildup coefficient (Skempton 1954) may be written alternatively as

B =
1/K ∗

−1/Ks

1/K ∗ −1/Ks +φ(1/K f −1/Kφ)
. (11)

Finally, the condensed form of (4) — incorporating the reciprocity relations — is(
δe

−δζ

)
=

1

K ∗

(
1 −α

−α α/B

)(
−δpc

−δpf

)
, (12)

where the Biot-Willis (1957) parameterα can now be expressed as

α = (1− K ∗/Ku)/B. (13)

The parameterα is also known as the total volume effective-stress coefficient [see Berryman
(1992) for elaboration]. This form of the compressibility laws is especially convenient because
all the coefficients are simply related to the three moduliK ∗, Ku, andB that have the clearest
physical interpretations. This now completes our review of the standard results concerning the
single-porosity compressibility laws.
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Figure 1: The elements of a double-porosity model are: porous rock matrix intersected by
fractures. Three types of macroscopic pressure are pertinent in such a model: external con-
fining pressurepc, internal pressure of the matrix pore fluidp(1)

f , and internal pressure of the

fracture pore fluidp(2)
f .

DOUBLE-POROSITY GEOMECHANICS

In this section, we present the fundamental governing equations controlling the low-frequency
(inertial effects being neglected) response of a double-porosity geomechanical system. See
Berryman and Wang (1995) for details left out of the following brief summary.

Macroscopic Governing Equations

In the double-porosity formulation, two distinct phases are assumed to exist at the macro-
scopic level: (1) a porous matrix phase with the effective propertiesK (1), K (1)

m , φ(1) occupying
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volume fractionV (1)/V = v(1) of the total volume and (2) a macroscopic crack or joint phase
occupying the remaining fraction of the volumeV (2)/V = v(2)

= 1− v(1). In earlier work
(Berryman and Pride 2002), methods were developed to determine the coefficients of this sys-
tem within a set of specific modeling assumptions. But the general laws presented in this
section are independent of all such modeling assumptions, and the analysis to be presented in
later sections is also independent of them as well.

The main difference between the single-porosity and double-porosity formulations is that
we allow the average fluid pressure in the matrix phase to differ from that in the joint phase
(thus the term “double porosity”) over relatively long time scales. Altogether we have three
distinct pressures: confining (external) pressureδpc, pore-fluid pressureδp(1)

f , and joint-fluid

pressureδp(2)
f . (See Figure 1.) Treatingδpc,δp(1)

f , and δp(2)
f as the independent variables

in the double-porosity theory, we define the dependent variables to beδe ≡ δV/V , δζ (1)
=

(δV (1)
φ − δV (1)

f )/V , andδζ (2)
= (δV (2)

φ − δV (2)
f )/V , which are respectively the total volume

dilatation, the increment of fluid content in the matrix phase, and the increment of fluid content
in the joints. Finally, we assume that the fluid in the matrix is the same kind of fluid as that in
the joints.

Linear relations among strain, fluid content, and pressure then take the general form δe
−δζ (1)

−δζ (2)

=

 a11 a12 a13

a21 a22 a23

a31 a32 a33


 −δpc

−δp(1)
f

−δp(2)
f

 . (14)

By analogy with the single-porosity result (12), it is easy to see thata12 = a21 and a13 =

a31. The symmetry of the new off-diagonal coefficients may be demonstrated using Betti’s
reciprocal theorem in the form

(
δe −δζ (1)

−δζ (2)
) 0

−δ p(1)
f

0

=

(
δe −δζ

(1)
−δζ

(2)
) 0

0
−δp(2)

f

 , (15)

where nonoverlined quantities refer to one experiment and overlined to another experiment to
show that

δζ (1)δ p(1)
f = a23δp(2)

f δ p(1)
f = a32δ p(1)

f δp(2)
f = δζ

(2)
δp(2)

f . (16)

Hence,a23 = a32. Thus, we have established that the matrix in (14) is completely symmetric,
so we need to determine only six independent coefficients.

Constraints on theai j coming from the long-time limit

Before passing on to the specific models for the various coefficients, we state here several gen-
eral constraints (independent of any modeling assumptions) on the geomechanical constants
ai j . Note that in order to measure theai j ’s in the laboratory, we need only consider an isolated
sample immersed in a “reservoir” characterized by three control parameters:pc, p(1)

f , andp(2)
f ;
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i.e., gradients in these quantities and the subsequent flow induced by those gradients do not
enter the definition of theai j ’s.

The constraints are obtained from the limiting case in which the rate at whichpc, p(1)
f , and

p(2)
f are all changing is much slower than the rate at which internal fluid equilibration can take

place. In this “long-time limit”, we are always in the quasi-static state where

p(1)
f = p(2)

f . (17)

Left to itself, any system having finite permeability will achieve this state ast → ∞.

Drained test, long time

The long-time drained (or “jacketed”) test for a double-porosity system should thus correspond
to the conditionδp(1)

f = δp(2)
f = 0 so that the total volume obeysδe = −a11δpc. It follows

therefore that

a11 ≡
1

K ∗
. (18)

Undrained test, long time

The long-time undrained test for a double-porosity system should also produce the same phys-
ical results as a single-porosity system (assuming only that it makes sense at some appropriate
larger scale to view the medium as homogeneous). The conditions for this test are that

δp(1)
f = δp(2)

f = δpf ,

δζ ≡ δζ (1)
+ δζ (2)

= 0, (19)

from which follow

δe= −a11δpc − (a12+a13)δpf , 0= −(a21+a31)δpc − (a22+2a23+a33)δpf .

These require that the overall pore-pressure buildup coefficient be given by

B ≡
∂pf

∂pc

∣∣∣∣
δζ=0

= −
a21+a31

a22+2a23+a33
, (20)

and that the undrained bulk modulus be given by

1

Ku
≡

δe

δpc

∣∣∣∣
δζ=0

= a11+ (a12+a13)B. (21)
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Fluid injection test, long time

The conditions required to measure the three-dimensional storage coefficientR in the long-
time limit are thatδp(1)

f = δp(2)
f = δpf , while δpc = 0. It follows therefore from (4) and (22)

that

R ≡
∂ζ

∂pf

∣∣∣∣
δpc=0

= a22+2a23+a33 =
α

K ∗
+φ

(
1

K f
−

1

Kφ

)
. (22)

Generalized Biot-Willis parameters

Equation (18) has already determined the coefficienta11. Thus, (21) shows that

a12+a13 = −
1/K ∗

−1/Ku

B
= −α/K ∗. (23)

This relation provides a constraint on the sum of the two generalized Biot-Willis parameters
for the double-porosity problem.

Not all of these long-time results are independent. In fact, there are only three independent
equations among the five given above expressing theai j in terms of the single-porosity (long-
time) moduli.

DOUBLE-POROSITY THOUGHT EXPERIMENT

Several of the main results obtained previously can be derived in a more elegant fashion by us-
ing a new self-similar (uniform expansion) thought experiment. The basic idea we are going
to introduce here is analogous to, but nevertheless distinct from, other thought experiments
used in thermoelasticity by Cribb (1968) and in single-porosity poroelasticity by Berryman
and Milton (1991) and Berryman and Pride (1998). Cribb’s method provided an independent
and simpler derivation of Levin’s (1967) results on thermoelastic expansion coefficients. The
present results also provide an independent and simpler derivation of results obtained recently
by Berryman and Pride (2002) for the double-porosity coefficients. Related methods in mi-
cromechanics are sometimes called “the method of uniform fields” by some authors (Dvorak
and Benveniste, 1997).

We have already shown thata11 = 1/K ∗. We will now show how to determine the remain-
ing five constants in the case of a binary composite system, such as that illustrated in Figure 2.
The components of the system are themselves porous materials 1 and 2, but each is assumed
to be what we call a “Gassmann material” satisfying [in analogy to equation (12)](

δe(1)

−δζ (1)/v(1)

)
=

1

K (1)

(
1 −α(1)

−α(1) α(1)/B(1)

)(
−δp(1)

c

−δp(1)
f

)
(24)

for material 1 and a similar expression for material 2. The new constants appearing on the right
are the drained bulk modulusK (1) of material 1, the corresponding Biot-Willis parameterα(1),
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and the Skempton coefficientB(1). The volume fractionv(1) appears here to correct for the
difference between a global fluid content and the corresponding local variable for material
1. The main special characteristic of a Gassmann porous material is that it is composed of
only one type of solid constituent, so it is “microhomogeneous” in its solid component, and
in addition the porosity is randomly, but fairly uniformly, distributed so there is a well-defined
constant porosityφ(1) associated with material 1, etc.

For our new thought experiment, we ask the question: Is it possible to find combinations
of δpc = δp(1)

c = δp(2)
c , δp(1)

f , andδp(2)
f such that the expansion or contraction of the system is

spatially uniform or self-similar? This is the same as asking if we can find uniform confining
pressureδpc, and pore-fluid pressuresδp(1)

f andδp(2)
f , such that

δe= δe(1)
= δe(2). (25)

If these conditions can all be met simultaneously, then results for system constants can be ob-
tained purely algebraically without ever having to solve the equilibrium equations for noncon-
stant stress and strain. We have initially setδpc = δp(1)

c = δp(2)
c , as the condition of uniform

confining pressure is clearly necessary for this self-similar thought experiment to achieve a
valid solution of the equilibrium equations.

So, the first condition to be considered is the equality of the strains of the two constituents:

δe(1)
= −

1

K (1)
(δpc −α(1)δp(1)

f ) = δe(2)
= −

1

K (2)
(δpc −α(2)δp(2)

f ). (26)

If this condition can be satisfied, then the two constituents are expanding or contracting at
the same rate and it is clear that self-similarity will prevail. If we imagine thatδpc andδp(1)

f

have been chosen, then we only need to choose an appropriate value ofδp(2)
f , so that (26) is

satisfied. This requires that

δp(2)
f = δp(2)

f (δpc,δp(1)
f ) =

1− K (2)/K (1)

α(2)
δpc +

α(1)K (2)

α(2)K (1)
δp(1)

f , (27)

which shows that, except for some very special choices of the material parameters (such as
α(2)

= 0), δp(2)
f can in fact always be chosen so the uniform expansion takes place. (We

are not considering long-term effects here. Clearly, if the pressures are left to themselves,
they will tend to equilibrate over time so thatδp(1)

f = δp(2)
f . We are considering only the

“instantaneous” behavior of the material permitted by our system of equations and finding
what internal consistency of this system of equations implies must be true.)

Using formula (27), we can now eliminateδp(2)
f from the remaining equality so that

δe= −

[
a11δpc +a12δp(1)

f +a13δp(2)
f (δpc,δp(1)

f )
]

= δe(1)
= −

1

K (1)
(δpc −α(1)δp(1)

f ), (28)

whereδp(2)
f (δpc,δp(1)

f ) is given by (27). Making the substitution and then noting thatδpc and

δp(1)
f were chosen independently and arbitrarily, we see that the resulting coefficients of these

two variables must each vanish. The equations we obtain in this way are

a11+a13(1− K (2)/K (1))/α(2)
= 1/K (1) (29)
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and

a12+a13(α
(1)K (2)/α(2)K (1)) = −α(1)/K (1). (30)

Sincea11 is known, equation (29) can be solved directly fora13, giving

a13 = −
α(2)

K (2)

1− K (1)/K ∗

1− K (1)/K (2)
(31)

Similarly, sincea13 is now known, substituting into (30) gives

a12 = −
α(1)

K (1)

1− K (2)/K ∗

1− K (2)/K (1)
. (32)

Thus, three of the six coefficients have been determined.

To evaluate the remaining three coefficients, we must consider what happens to the fluid
increments during the same self-similar expansion thought experiment. We will treat only
material 1, but the equations for material 2 are completely analogous. >From the preceding
equations, it follows that

δζ (1)
= a12δpc +a22δp(1)

f +a23δp(2)
f (δpc,δp(1)

f ) =
v(1)

K (1)

[
−α(1)δpc + (α(1)/B(1))δp(1)

f

]
. (33)

Again substituting forδp(2)
f (δpc,δp(1)

f ) from (27) and noting once more that the resulting equa-

tion contains arbitrary values ofδpc and δp(1)
f , so that the coefficients of these terms must

vanish separately, gives two equations

a12+a23(1− K (2)/K (1))/α(2)
= −α(1)v(1)/K (1), (34)

and

a22+a23
(
α(1)K (2)/α(2)K (1))

= α(1)v(1)/B(1)K (1). (35)

Solving these equations in sequence as before, we obtain

a23 =
K (1)K (2)α(1)α(2)

(K (2) − K (1))2

[
v(1)

K (1)
+

v(2)

K (2)
−

1

K ∗

]
, (36)

and

a22 =
v(1)α(1)

B(1)K (1)
−

(
α(1)

1− K (1)/K (2)

)2[
v(1)

K (1)
+

v(2)

K (2)
−

1

K ∗

]
. (37)

Performing the corresponding calculation forδζ (2) produces formulas fora32 and a33.
Since the formula in (36) is already symmetric in the component indices, the formula fora32

provides nothing new. The formula fora33 is easily seen to be identical in form toa22, but
with the 1 and 2 indices interchanged everywhere.
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This completes the derivation of all five of the needed coefficients of double porosity for
the two constituent model.

These results can now be used to show how the constituent propertiesK , α, B average at
the macrolevel for a two-constituent composite. We find

α = −
a12+a13

a11

=
α(1)(K ∗

− K (2))+α(2)(K (1)
− K ∗)

K (1) − K (2)
, (38)

and

1

B
= −

a22+2a23+a33

a12+a13

=
K ∗

α

(
v(1)α(1)

B(1)K (1)
+

v(2)α(2)

B(2)K (2)
−

(
α(1)K (2)

−α(2)K (1)

K (2) − K (1)

)2[
v(1)

K (1)
+

v(2)

K (2)
−

1

K ∗

])
. (39)

It should also be clear that parts of the preceding analysis generalize easily to the multi-
porosity problem. We discuss some of these remaining issues in the final section.

Example

To illustrate the use of the formulas derived for the coefficients of the double-porosity sys-
tem, we will now compute and plot the coefficients for a realistic system. We will use data
of Coyner (1984) for Navajo sandstone, and modify it somewhat to produce a plot that will
highlight the results obtained from the equations. The first problem we encounter in doing
so is that, although we can make reasonable direct estimates of the bulk and shear moduli of
the constituents, we also must have an estimate of the overall bulk modulusK ∗ of the com-
posite double-porosity medium. And more than that, we need it as a function of the volume
fractions of the two constituents. Our analysis has assumed thatK ∗ was given or measured
independently. For present purposes, it is sensible to use an effective medium theory such
as the symmetric self-consistent method [or CPA = coherent potential approximation — see
Berryman and Berge (1996) for a discussion and references therein for elaboration] to estimate
K ∗. The CPA has the advantage that it treats both constituents equally (i.e., symmetrically)
and therefore doesnotassume that one constituent always surrounds the other — so there is no
host material [see Bergeet al. (1993) for further discussion]. With this addition to the theory,
we can proceed to the calculations.

TABLE 1. Input parameters for a Navajo sandstone model of double-porosity system. Bulk
moduli K have units of GPa. Poisson’s ratioν and porosityφ are dimensionless.

Ks K (1)
s K (1) ν(1) φ(1) K (2)

s K (2) ν(2) φ(2)

34.0 34.5 16.5 0.15 0.118 34.5 1.65 0.017 0.354
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The parameters used for Navajo sandstone are listed in Table 1. Although Poisson’s ratio
ν does not appear explicitly in the equations here, it is required in the CPA (or any but the
most elementary) effective medium calculation for the overall bulk modulusK ∗. The results
are shown in Figure 3.

Note that the off-diagonal coefficienta23, which couples the fluid in the storage porosity
to the fluid in the transport porosity, is very close to zero for all values of storage material
volume fraction. This behavior has been observed previously (Berryman and Wang 1995),
and is believed to be a strong indication that the double-porosity approach is appropriate for
the system studied. If this coefficient is not small, then the fluids in the two types of porosity
are strongly coupled and therefore should not be treated as a double-porosity system.

The behavior of the other coefficients is as one would expect: All the coefficients for the
transport porosity tend to vanish as the volume fraction of this phase vanishes, and the medium
again reduces to a single-porosity system in this limit.

DISCUSSION OF MULTI-POROSITY SYSTEMS

Micromechanical analysis provides definite answers to the question of how the coefficients in
double-porosity systems are to be computed from knowledge of the constituents’ properties.
The question then naturally arises whether this analysis can be generalized to multi-porosity
systems. Certainly, multi-porosity systems are the ones most likely to represent realistic sys-
tems occurring in nature, for example, oil and gas reservoirs. And, therefore, we need to
address these issues. Transport in triple-porosity and multi-porosity systems have already
been studied by some authors (Bai, Elsworth, and Roegiers 1993b; Bai and Roegiers, 1997),
hence, it is timely to consider the geomechanical aspects of these problems. We will set up the
problem and describe its general characteristics here, but the full solution will be left to future
work.

The resulting coefficient matrices will clearly take a form analogous the ones already stud-
ied. For example, in a triple-porosity system, the macroscopic governing equations are:

δe
−δζ (1)

−δζ (2)

−δζ (3)

=


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




−δpc

−δp(1)
f

−δp(2)
f

−δp(3)
f

 (40)

The meanings of all the coefficients follow immediately from the discussion of (14). The
matrix is again symmetric, so there are four diagonal and six off-diagonal coefficients to be
determined, for a total of ten unique coefficients. The leading coefficienta11 = 1/K ∗ as before,
but the remaining coefficients require further analysis.

In general, for anN-porosity system of the form considered here, the total number of co-
efficients to be determined in the (N + 1)× (N + 1) system of equations isN + 1 diagonal
and N(N + 1)/2 unique off-diagonal coefficients, for a total ofG = (N + 1)(N + 2)/2 coef-
ficients. And the nature ofa11 remains unchanged for anyN. If we assume that each of the
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unique porosities can be associated with a Gassmann (microhomogeneous) material, then we
have equations of the same form as (24) for each of these constituents, and therefore three
mechanical coefficients plus the porosity of each constituent is assumed to be known, at least
approximately, in order for this analysis to proceed. The uniform expansion/contraction sce-
nario carries over to the multi-porosity system, but does not supply enough equations to close
the system by itself forN > 2. To see this, note that onceδpc andδp(1)

f are chosen, then all
the remainingδpf ’s are determined by the uniform strain condition and Gassmann’s relations.
Then, substituting these values into the multi-porosity system [e.g., (40)], we see there are
always two equations for each row of the matrix. This results inS= 2(N +1) equations just
from this self-similar thought experiment. These two sets of numbers are compared in Table 2.
In addition to these equations, we always have the 3 conditions from the long-time limits, and
we can also find other equations as needed by considering other experiments on the system
[e.g., see Berryman and Wang (1995)]. However, it is important to remember that it is the
number of linearly independent equations that is pertinent, and determining this number has
so far not proven to be a easy task for the general case. At the present writing, closure of the
system of equations for the multi-porosity coefficients whenN > 2 is an open question.

The analysis presented here has been strictly for isotropic constituents, and an isotropic
overall multi-porosity system. Generalization to anisotropic systems is both possible and de-
sirable, but the analysis obviously becomes more complex because of the proliferation of
coefficients that results.

TABLE 2. Growth of the numberG = (N +1)(N +2)/2 of geomechanical coefficients and
the numberS= 2(N +1) of equations from the self-similar thought experiment as the

numberN of distinct porosities within the system increases.

N 1 2 3 4
G 3 6 10 15
S – 6 8 10

CONCLUSIONS AND NEW DIRECTIONS

The preceding results show how a micromechanical analysis based on poroelasticity and
Gassmann’s equations can be used to compute the geomechanical double-porosity coefficients
in a very elegant manner. This makes use of all the information available and produces reason-
able estimates of all the coefficients needed in reservoirs modeled by double-porosity geome-
chanics. Triple- and multi-porosity geomechanics can also be studied using similar methods,
but some work remains to be done on closure of the increasingly larger systems of equations
involved. For multi-porosity systems, closure of the system of equations can nevertheless
always be achieved by the addition of further macroscale measurements. Analysis and solu-
tion of these systems of equations to eliminate the need for such additional measurements is
therefore one subject of future work in this area of research.

Extension of this work in other directions is also possible. In particular, the applications
presented here have been restricted for the sake simplicity to isotropic macroscopic systems.
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But it is known that the methods employed are not restricted to isotropic systems — as has
already been shown in other micromechanical studies by Dvorak and Benveniste (1997). So
careful extensions of these ideas to anisotropy, and especially anisotropy due to oriented frac-
tures, in double-porosity systems is both possible and desirable. Such extensions will permit
us to provide more realistic models of reservoir geomechanics, including effects of overbur-
den, tectonic stresses, hydrofracing, etc.
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Figure 2: A composite porous medium is composed of two distinct types of porous solid (1,2).
In the model illustrated here and treated in the text, the two types of materials are well-bonded
but themselves have very different porosity types, one being a storage porosity (type-1) and the
other (type-2) being a transport porosity (and therefore fracture-like, or tube-like as illustrated
in cross-section in this diagram).
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Figure 3: Values of the double-porosity coefficientsai j for a system similar to Navajo sand-
stone. Values used for the input parameters are listed in Table 1.jim1-navajo_good[NR]


