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Implementing non-stationary filtering in time and in Fourier
domain

Gabriel Alvarez1

ABSTRACT

Non-stationary filtering of seismic data can be accomplished in time or in Fourier domain
by the theory of non-stationary convolution (Margrave, 1998). Here I show the results
of implementing this theory for time-variant filtering of seismic data with an arbitrary
number of filters and for forward and inverse NMO correction in the frequency domain.
In the first case I show that the filters may be made to change sample-by-sample down
the trace without artifacts being introduced and in the second case that the accuracy of the
implied fractional sample interpolation can be controlled as an input parameter.

INTRODUCTION

The frequency content of seismic data decreases with time as a result of absorption as the
wavefield travels through the earth. Therefore, for seismic interpretation it is desirable to
bandpass-filter the seismic traces with different filters at different times. Usual practice con-
sists of applying a few filters in predefined time windows which are made to overlap to provide
a smooth transition between them. There are at least two problems with this approach: on the
one hand, the overlap zones are rather arbitrary and phase distortion can be expected in them.
On the other hand, with this approach we are limited to a few filters corresponding to the few
chosen time windows.

A well-known alternative is the theory of non-stationary convolution and combination (Mar-
grave, 1998; Rickett, 1999). This theory allows the design of arbitrary filters that can be made
to change in a sample-by-sample manner. The design of the filters themselves is done in
the frequency domain and its application to the data can be done in either the time domain,
the frequency domain or a mixed time-frequency domain. In the time domain the process is
similar to stationary filtering, with the columns of the convolutional matrix representing the
delayed impulse responses of the filters applied to each sample, rather than the more familiar
Toeplitz matrix of the stationary case. In the frequency domain, the convolutional matrix is
nearly diagonal with the departure from diagonal being a direct indication of the degree of
non-stationarity of the filters. In the mixed domain, the non-stationary filtering is performed
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via a slow generalized Fourier transform.

Aside from the flexibility in choosing the domain of computation, we can also choose between
non-stationary convolution and combination. The former is more appropriate when the spectra
of the filters vary slowly and the latter when the change is sudden. Both non-stationary convo-
lution and combination, however, reduce to stationary convolution in the limit of stationarity.
This of course means that stationary filtering is a particular case of non-stationary filtering
when the filters are kept constant for all samples.

In this paper I show the implementation of this algorithm for seismic trace filtering and for for-
ward and inverse NMO correction. For the first application I used a set of randomly-generated
seismic traces as well as a few traces of an actual seismic line. It will be shown by a time-
frequency analysis of the data before and after the filter that it is indeed possible to change
the spectrum of the seismic trace in a sample-by-sample basis without noticeable frequency
distortions. For the NMO application I used a few CMP gathers consisting of five hyperbolic
reflections and background Gaussian noise. It will be shown that we can pose the NMO-
correction problem as a time-variant filtering problem and that we can control the accuracy of
the underlying fractional sample interpolation as an input parameter.

THEORY OVERVIEW

Time-variant Filtering

In a linear time-invariant (stationary) filter the outputg(t) is related to the inputh(t) by the
convolution

g(t) = a(t)∗h(t) =

∫
∞

−∞

a(t − τ )h(τ )dτ

wherea(t) is the impulse response of the filter. In order to extend the applicability of this
simple expression for the response of a non-stationary filter, we could replacea(t − τ ) in the
previous equation with the more general expressiona(t ,τ ), indicating that the impulse re-
sponse itself is now a function of the input timeτ . This expression, however, is too general
and gives little insight into what the response of such a time-variant filter would be. Margrave,
(Margrave, 1998) propose to maintain the convolutional nature of the impulse response by
adding an explicit time dependence to it, that is, replacinga(t −τ ) with eithera(t −τ ,τ ) (con-
volution) or a(t − τ ,t) (combination). The formal definitions of non-stationary convolution
and combination are, respectively (Margrave, 1998)

g(t) =

∫
∞

−∞

a(t − τ ,τ )h(τ )dτ (1)

ḡ(t) =

∫
∞

−∞

a(t − τ ,t)h(τ )dτ (2)

These equations are clearly straightforward extensions of the stationary convolution concept.
The introduction of the second index accounts for the non-stationarity. Comparing the two
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equations we see that the difference between non-stationary convolution and combination lies
in the way the impulse responses are considered in the convolutional matrix. In non-stationary
convolution the filter impulse responses (as a function of input timeτ ) correspond to the
columns of the matrix, whereas in the non-stationary convolution case they correspond (as a
function of the output timet) to the rows of the matrix (time reversed).

Just as with stationary filtering, it is convenient to find equivalent expressions in the frequency
domain. These expressions are (Margrave, 1998)

G( f ) =

∫
∞

−∞

H (F)A( f , f − F)d F (3)

Ḡ( f ) =

∫
∞

−∞

H (F)A(F , f − F)d F (4)

where f andF are the Fourier duals oft andτ respectively andH (F) andG( f ) are the Fourier
transforms ofh(τ ) andg(t). It is interesting to notice from these equations that non-stationary
convolution in time domain translates into non-stationary combination in the frequency do-
main and vice versa. This is as opposed to the stationary case in which convolution in time
domain corresponds to multiplication in the frequency domain.

Since we now have two time indexes (t representing the filter samples andτ to keep track
of the sample index to which each filter is applied), it is possible to have a third domain of
computation, the so-called mixed domain in which the impulse response of the filters in the
convolutional matrix are replaced with their corresponding frequency spectra. The equations
to apply non-stationary filtering in the mixed domain are slow generalized Fourier transforms
given by (Margrave, 1998)

G( f ) =

∫
∞

−∞

α( f ,τ )h(τ )e−2π i f τ dτ (5)

ḡ(t) =

∫
∞

−∞

α(F ,t)H (F)e2π i Ft d F (6)

whereα(p,v) is the so-called non-stationary transfer function which is the basic matrix in
which the horizontal axis is time and the vertical axis is frequency (an example of this matrix
will be given below). The transfer function is given by

α(p,v) =

∫
∞

−∞

a(u,v)e−2π i pudu (7)

wherea(u,v) is the matrix of impulse responses, that is, the matrix withτ as its horizontal
axis andt as its vertical axis (again, an example will be shown below).

Forward and Inverse NMO

The NMO correction time for the small offset-spread approximation is given by the well-
known hyperbolic equation (Yilmaz, 1987):

1tN M O = tx − t0 =

√
t2
0 + x2/V2

s − t0 (8)
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wherex is the trace offset,tx is the two-way travel time at offsetx, t0 is the two-way travel
time at zero offset (normal incidence trace) andVs is the stacking velocity. Clearly, for a
given trace different samples will have different NMO correction times even if the velocity is
constant. Shallow events on the farthest trace with the slowest velocity have the maximum
NMO-correction time whereas deep events on the near traces with the fastest velocity will
have the minimum NMO-correction time. It is also important to note that in general some
fractional sample interpolation will be required since we cannot expect the values of1tN M O

to be integer multiples of the sampling interval.

In order to apply the non-stationary filtering algorithm we need to recast the NMO equation
as an all-pass non-stationary filter that will simply shift each sample by the given value of
1tN M O. This can easily be achieved in the frequency domain by a linear phase shift with
slope proportional to the value of1tN M O. In principle, any value of1tN M O can be handled,
so no fractional interpolation is required. For the sake of efficiency, however, it is convenient
to precompute a given number of1tN M O values. The accuracy of the implicit fractional inter-
polation is determined by the number of precomputed1tN M O values and so can be controlled
as an input parameter. Clearly, this parameter controls the trade-off between accuracy and
speed of computation.

DESCRIPTION OF THE ALGORITHM

Time-variant Filtering

I will now summarize the steps necessary to perform non-stationary filtering in each of the
three domains. In every case I will refer to non-stationary convolution but it is straightforward
to change it to perform non-stationary combination instead.

Time Domain

The algorithm in the time-domain is:

1. Design the filters in the frequency domain. These may be trapezoidal tapered filters
or some other suitable bandpass filter. We can consider these filters as making up a
matrix whose horizontal coordinate is timeτ (that is, the sample time of application of
every filter) and whose vertical component is frequency as shown in the left-hand side
of Figure 1.

2. Get the filter impulse responses in time domain. This essentially means taking an inverse
Fourier transform of each column of the left panel in Figure 1.

3. Form the non-stationary impulse response matrix in time domain. The right panel in
Figure 1 shows an example of this matrix for the case of three different filters to be
applied in three windows of data. The wavelet is zero phase and the impulse responses
are shifted so that the wavelet is centered along the diagonal.
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4. Apply the non-stationary convolution. This is done by matrix multiplication between
the matrix in the right panel of Figure 1 and the seismic trace to be filtered.

Figure 1: Filter design in the time-frequency domain. On the left, filter spectra as a function
of time. On the right, impulse responses on timegabriel1-tvf_td1[ER]

Frequency Domain

To develop an algorithm in the frequency domain, we basically have to take a Fourier transform
in the horizontal direction of the data in the left panel of Figure 1. The algorithm is therefore:

1. Design the filters in the frequency domain, as before.

2. Take a Fourier transform in the horizontal direction (that is, a Fourier transform for each
row of the matrix on the left panel of Figure 1) and form the corresponding frequency-
domain convolutional matrix. Figure 2 shows the resultant matrix (amplitude spec-
trum only). This matrix is called the frequency connection matrix. On the left is a
horizontally-shifted version of the matrix. The center “trace” corresponds to the sta-
tionary response and the “traces” away from it represent the departure from stationarity.
Only a few “traces” are shown. On the right panel we have the complete dataset shifted
so that the “stationary trace” is along the diagonal, which means that the off-diagonal
energy represents again the departure from stationarity.

3. Take the Fourier transform of the input trace.

4. Multiply the frequency connection matrix (right panel of Figure 2) with the Fourier
transform of the input trace to get the filtered trace in the frequency domain.

5. Take the inverse Fourier transform of the filtered trace to get it in the time domain.
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Figure 2: Frequency domain convolutional matrix. On the left, the filter spectra (amplitude
only). The center “trace” represents the stationary response, the traces to the right positive
frequencies and the traces to the left negative frequencies (only a few “traces” are shown). On
the right the complete matrix shifted so that the stationary “trace” is on the diagonal of the
matrix gabriel1-tvf_fd1 [ER]

Mixed Domain

In a sense this is the most natural domain for time-variant filtering because we design and
apply the filters in the same domain. Hence, the algorithm is simpler:

1. Design the filters in the frequency domain as before and form the time frequency matrix
(the so-called non-stationary transfer matrix). This is just the matrix shown on the left
panel of Figure 1.

2. Apply the filter via the (slow) generalized Fourier transform given by equation (6).

3. Inverse Fourier transform the filtered data to the time domain.

Forward and Inverse NMO

The algorithm for both forward and inverse NMO with the non-stationary all-pass filtering
approach is the following:

1. Compute the maximum and minimum NMO correction required in the data according
to the offsets, reflection times and velocities.
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2. Use the previous information to precompute all the NMO time shifts in the frequency
domain by application of an all-pass non-stationary linear phase filter.

3. Take the inverse Fourier transform to get the precomputed impulse responses in time
domain.

4. For each trace, form the impulse response matrix selecting from the precomputed ones
those required according to the NMO shifts appropriate to that trace.

5. Carry out the filtering by multiplying the trace by the the impulse response matrix.

COMPUTER IMPLEMENTATION

Although the computer implementation of the above algorithms seems straightforward enough,
I will mention some specific details here that, simple as they may be, are important when deal-
ing with these algorithms

1. When using non-causal wavelets it is convenient to apply a time shift to the whole
matrix so that the complete wavelet can be recovered. This can be easily done at the
time of the computation of the filters in the frequency domain. This time shift needs to
be compensated for after the filtering, of course.

2. In the time domain implementation only a few samples of the impulse responses are
required to get a satisfactory result. This allows us to speed up the computation enor-
mously because we need to multiply by a matrix that is non zero only near the diagonal
as opposed to a dense matrix. We don’t even need to store the complete impulse re-
sponses.

3. In the frequency domain similar, even more pronounced savings in computation, can
be achieved by realizing that the frequency connection matrix is very nearly diagonal
except for wildly varying filters. I found that good results could be obtained with only
a few “traces” (perhaps 7 or 9) in the frequency domain.

4. After taking the horizontal Fourier transform in the frequency domain algorithm, it may
be necessary to unscramble the traces to get both the positive and negative frequencies,
otherwise only the amplitudes above or below the diagonal in Figure 2 will be present
and the results will not be satisfactory.
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RESULTS AND DISCUSSION

I will now illustrate the results of doing time-variant filtering and NMO correction with the
algorithms described above.

Time-variant Filtering

For time-variant filtering I will show impulse responses as well as results with synthetic and
real data.

Impulse Responses

Figure 3 shows a synthetic dataset comprising six spikes and their impulse responses when the
dataset is filtered with three different filters. Convolution of a seismic trace with this dataset
will filter it in the time-variant manner implied by the right panel of Figure 3.

Figure 3: Impulse responses. On the left, the input spikes and on the right their corresponding
impulse responses.gabriel1-tvf_ir1 [ER]

Random Traces

The top left-side of Figure 4 shows a dataset composed of randomly generated seismic traces.
The top right-hand-side shows the result of filtering this dataset with constant filters applied in
three time windows corresponding to the top third, the middle third and the bottom third of the
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Figure 4: Random traces. On the top left, the input data. On the top right the filtered data with
a “blocky spectrum,” that is, constant spectrum in each of three time windows corresponding
to one third of the trace length. On the bottom left data filtered with a linear spectrum in the
middle third and constant spectrum in the top and bottom third. On the bottom right is the
difference of the two filtered datasets.gabriel1-tvf_rt1 [ER]
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traces. The applied filters were: in the top window (4-12-90-125) Hz, in the middle window
(4-12-60-90) Hz and in the bottom window (4-12-30-50) Hz. The bottom left-hand-side shows
the same dataset filtered a different way: the top third and the bottom third were filtered as
before, but the middle third was filtered with a linearly changing spectrum that matched the
filters above and below at the window limits. The bottom right-hand side shows the difference
between the two filtered datasets. As expected, there is no difference in either the top or bottom
third of the datasets. In the middle dataset, however, there is a difference which is greatest at
the limits between the three zones where the difference in the filters is greatest.

Figure 5 shows a time-frequency analysis of the original data on the left and the filtered data
with the linear spectra on the right. Since the data are random traces, they have all the fre-
quencies from 0 to Nyquist (250 Hz in this case). After the filtering the spectrum is shaped
by the applied filters. The bold line represents approximately the high pass frequency of the
filters applied at each sample. There is no evidence of distortion in the spectrum even though
the spectrum was made to change sample-by-sample in the middle third of the dataset.

Figure 5: Time-frequency analysis for random data. On the left, the time-frequency display
of the input data and on the right the result of the filter with the linear spectrum. The white
areas represent large amplitudes. The thick solid line represents approximately the high cut
frequency of the filters in every windowgabriel1-tvf_tfa1[NR]

Real Data

The top left-hand side of Figure 6 shows a few stacked traces from a real 2-D seismic line. The
top right-hand side shows the result of filtering the data with a “blocky” spectrum in which
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Figure 6: Real traces. On the top left, the input data. On the top right the filtered data with a
“blocky spectrum,” that is, constant spectrum in each third of the data. On the bottom left data
filtered with a linear spectrum in the middle third and constant spectrum in the top and bottom
third. On the bottom right is the difference of the two filtered datasets.gabriel1-tvf_rd1[ER]
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Figure 7: Time-frequency analysis for real data. On the left, the time-frequency display of
the input data and on the right the result of the filter with the linear spectrum. The white
areas represent large amplitudes. The thick solid line represents approximately the high cut
frequency of the filters in every windowgabriel1-tvf_tfa2[NR]

again the top third of the data are filtered with one filter, the middle third with a narrower filter
and the bottom third with an even narrower filter. The bottom left panel corresponds to the
result of filtering the dataset with a linearly changing spectra in the middle third of the trace.
The bottom right shows the difference between the filtered datasets. This time the difference
is small even in the middle third of the trace because the original data spectrum is not very
broad as shown in Figure 7. In this figure the left-hand side corresponds to the time-frequency
spectrum of the data and the right-hand-side corresponds to the equivalent plot for the dataset
filtered with the linearly-changing spectrum. As noted before, there is no apparent frequency
distortion arising from the sample-to-sample change in the trace spectrum.

NMO correction

The top left-hand side of Figure 8 shows a modeled CMP gather consisting of five reflec-
tions in a Gaussian noise background. The top right hand-side shows the result of applying
NMO correction using the time-variant filtering algorithm described above. The fractional
sample interpolation parameter was set to two, meaning that a nearest neighbor interpolation
was implicitly performed in the frequency domain to half the sampling interval. Changes in
the fractional interpolation parameter would allow for better interpolation at the expense of
increased run-time. The result shows a very good correction with very little distortion even
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Figure 8: Frequency domain NMO correction. On the top left, the input synthetic data. On
the top right the NMO-corrected data. On the bottom left inverse NMO-corrected data and on
the bottom right the difference of the inverse NMO-corrected and the input data. Clearly the
difference is due to NMO stretchgabriel1-nmo1[ER]
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for this small interpolation value.

The same algorithm used for forward NMO correction was also applied for inverse NMO
correction. The bottom left panel of Figure 8 shows the inverse-NMO corrected CMP gather.
Finally, the bottom right panel of Figure 8 shows the difference between the original data and
the inverse-NMO result. Except for the obvious effect of the NMO-stretch mute, the inverse
NMO-corrected CMP is nearly identical to the original CMP.

SUMMARY AND CONCLUSIONS

The theory of nonstationary filtering allows great flexibility in the design and application of
time-variant filters. We can choose among three different domains of application: time, fre-
quency and mixed and we can also choose between convolution and combination. From the
results shown and from many other tests that I performed I drew the following conclusions:

1. Time domain should be preferred when filtering with “blocky” spectra, that is, when the
filters are kept constant in each window and change abruptly from window to window.

2. Frequency domain should be preferred when using filters that change from sample-to-
sample.

3. The mixed domain should only be used when filtering a few traces because of its large
run-time.

4. As a general rule, non-stationary combination is preferable to non-stationary convolu-
tion when the filter spectrum changes abruptly from one sample to the next. For slowly
changing spectrum, non-stationary convolution is probably better.
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