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Converted wave dip moveout

Daniel Rosales1

ABSTRACT

Dip moveout (DMO) introduces a dip-dependent correction for a more appropiate trans-
formation of prestack data into zero-offset data. Converted wave DMO has been discussed
in the literature by severeal authors. Log-stretchf-k PS-DMO has been recently introduced
in the literature. At the moment, however, this PS-DMO operator presents problems of
handling amplitudes properly. A PP-DMO in this domain that accurately handle ampli-
tudes already exists. Therefore, it is important to extend such operator for PS data. This
new operator for converted waves is presented in this paper. I show impulse responses and
real data results using the new PS-DMO operator.

INTRODUCTION

The problem of sorting, NMO correction and stacking for PS data has been widely addressed
in the past (Tessmer and Behle, 1988; Iverson et al., 1989). The solutions presented in these
works apply a lateral shift to the trace midpoints, such that the new trace position corresponds
with the lateral position of the conversion point. Usually, this correction does not incorporate
the effects of the reflector depth and dip.

In order to incorporate the dip effect, Huub Den Rooijen (1991) achieves the transforma-
tion from CMP-sorted data to CCP-sorted data using a dip moveout operator. In a similar way
to the PP-DMO, PS-DMO may reduce the problem of reflection point dispersal due to dip
without knowledge of the reflector geometry. Most of the existing PS-DMO operators present
errors due to truncation of power series and/or second order approximations (Xu et al., 2001).
Xu et al. (2001) show a fast converted dip moveout operator in thef-k domain which partially
alleviates approximation errors.

Harrison (1990) presents the zero-offset mapping equation for the PS-DMO operator, ap-
plying an integral-summation approach in order to implement his PS-DMO operator.

Xu et al. (2001) present a log-stretchf-k PS-DMO operator. His operator correctly handles
the kinematics, but doesn’t handle amplitudes properly. Here, I present a review of the PS-
DMO operator, implement the operator described by Xu et al. (2001) and extend it to handle
the amplitudes properly.
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KINEMATICS OF PS-DMO

The downgoing and upgoing waves travel at different velocities for converted wave data. This
difference makes the kinematics more complicated than that of single mode data.

The kinematics of PS-DMO have been widely discussed in the literature. Harrison (1990)
is the first one to derive the zero-offset mapping equation for converted waves. He uses an
integral-summation approach, similar to Deregowski and Rocca (1981) in order to apply DMO
to converted waves data. He also applies the PS zero-offset mapping and the adjoint of his
operator in order to obtain the PS Rocca’s operator.

I present a review of the kinematics for PS-DMO. The impulse response is produced by
taking an impulse on a constant offset section and migrating it to produce ellipses. Each ele-
ment or point along the ellipses is then diffracted, setting offset to zero, to produce hyperbolas.
This operation creates the impulse response that represents the Rocca’s DMO+NMO operator
(Claerbout, 1999).

Figure 1 shows a comparison between the Rocca’s smear operator for single mode P data
and for converted mode PS data. It is possible to observe, kinematically, that the Rocca’s
operator for converted waves is shifted laterally toward the receiver. This is the expected
result, since the upgoing wave path is slower than the downgoing wave path.

Figure 1: Rocca’s operator, for single mode P data (left) and converted mode PS data (right)
daniel2-rocca[ER,M]

Jaramillo (1997) shows the amplitude distribution for a PS-DMO operator. This amplitude
distribution is also shown in Figure (1). The denser the dots, the higher the amplitude should
be.

One of the challenges is to obtain an independent expression for the DMO operator, but
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this task has already been solved in the literature. Here I present a review of this process, since
the result is used by Rosales and Biondi (2002) and later in this paper.

PS-DMO smile derivation

The trajectory equation of conversion points is
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, and by following Huub Den Rooijen’s (1991) derivations, as
well as work by Xu et al. (2001), we have the following standard form of elliptical equation:
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whereD is the element responsible for transforming the data from CMP coordinates to CCP
coordinates.D comes from solving equation (1) forz2. The difference among the existing
PS-DMO operators is in their definition ofD. In this paper we use the definition presented by
Xu et al. (2001):
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wheretn is the NMO-corrected time.

The spatial shift distance needed to convert CMP gathers to common-reflection point gath-
ers is

b = x + z
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. (4)

The one-way normal-incidence distanceR is given by
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Using equations (2) and (4) we eliminate thez andx dependencies. This result is substituted
in the relationship for the one-way normal-incidence distanceR [equation (5)] in order to get
the equation:
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The two-way normal-incidence time is
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and the traveltime equation, in terms of the normal moveout time, is
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Combining equations (6), (7) and (8) produces the PS-DMO smile equation:
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PS-DMO IN THE FREQUENCY-WAVENUMBER LOG-STRETCH DOMAIN

The previous section shows a kinematic PS-DMO operator. Like PP-DMO, kinematic PS-
DMO can not properly handle phase and amplitude (Xu et al., 2001). Xu et al. (2001); Alfaraj
(1992) discuss a PS-DMO operator on thef-k domain by using a truncation of power series for
the moveout of reflections from dipping reflectors in a constant velocity media.

Zhou et al. (1996) discuss that the PP-DMO operator in thef-k domain is computationally
expensive because the operator is temporarily non-stationary. He uses the idea of Bolondi et
al. (1982) to express a more accurate PP-DMO operator by a logarithmic time stretching.

Xu et al. (2001) exploit the idea of computational efficiency of the logarithmic time stretch-
ing for the PS-DMO operator, however their formulation is not clearly expressed. Therefore,
I reformulate their work using the PS-DMO smile presented in the previous section and fol-
lowing a procedure similar to Hale (1984) and Zhou et al. (1996). This operation accounts for
constant velocity case.

Starting from the PS wave DMO smile,

t2
0

t2
n

+
y2

H2
= 1. (10)

By following Hale’s (1984) assumption thatp0(t0,x, H ) = pn(tn,x, H ), we obtain the 2D PS-
DMO operator in thef-k domain:

P0(ω,k, H ) =

∫ ∫
p0(t0, y, H )ei (ωt0−ky)dt0dy. (11)

Equation (10) implies a change of variable fromt0 to tn. Therefore, equation (11) becomes

P0(ω,k, H ) =

∫ ∫
A−1p0(tn,x, H )ei ωAtne−ik(x+D)dtndx (12)
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where
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Equation (12) is the base for PS-DMO in thef-k domain. By using a time log-stretch transform
pair,

τ = log
t

tc
, (14)

t = tce
τ .

The DMO operator in thef-k log-stretch domain becomes

P0(�,k,h) = Pn(�,k,h)eikD F(�,k,h), (15)
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When eitherkh or � gets the values of 0, the filter goes to 0 as well.

The previous expression is equivalent to the one presented by Xu et al. (2001). Note
that equation (15) is based on the assumption thatp0(t0,x, H ) = pn(tn,x, H ). This doesn’t
include changes in midpoint position and/or common reflection point position. This allows for
a correct kinematic operator but one with a poor amplitude distribution along the reflectors.

Zhou et al. (1996) refers to this problem in the log-stretch frequency wavenumber domain
by reformulating Black’s (1993)f-k DMO operator. This operator is based on the assumption
that p0(t0,x0, H ) = pn(tn,xn, H ). The midpoint location also changes, leading to a more ac-
curate distribution of amplitudes. After implementing the PS-DMO operator Xu et al. (2001),
extending this operator is a feasible task. Following the derivation used by Zhou et al. (1996),
I state a more accurate PS-DMO operator in the log-stretch frequency wavenumber domain.
This new operator differs from the previous one in the filterF(�,k,h). The new filter is
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This filter reduces to 0 ifkh = 0 orkH if � = 0.

Note that for a value ofγ = 1, the filter reduces to the known expression for P waves data
(Zhou et al., 1996).

Figure 2 shows a series of impulse responses for this operator in the frequency domain.

Figure 3 shows the same series of impulse responses as Figure 2 but with the new filter
[equation (17)]. Both operators create the same kinematic response. However, Figure 3 shows
that the filter in equation (17) gives a more accurate amplitude distribution along the impulse
response.

We can trust the PS results since the PP impulse response, obtained with the filter in
equation (17) andγ = 1, is the same as that obtained by Zhou et al. (1996). Moreover, the
amplitude distribution follows Jaramillo’s (1997) result.
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Figure 2: Impulse responses for the DMO operator, PP case (left), PS case (right)
daniel2-imps[ER,M]

Figure 3: Impulse responses for the new PS-DMO operator, PP case (left), PS case (right)
daniel2-imps-new[ER,M]
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REAL DATA

In order to further test our operator, we apply it to a real data line. The Alba Oil Field is located
in the UK North Sea and elongates along a NW-SE axis. The oil reservoir is 9km long, 1.5km
wide, and up to 90m thick at a depth of 1,900m sub sea (?MacLeod et al., 1999).

The producing reservoir consists of unconsolidated high-porosity turbiditic sandstone of
Eocene age. The oil-bearing reservoir sand and the overlying shale have a very low P-wave
acoustic impedance contrast but make a significant S-wave velocity contrast. Hence, the reser-
voir delineation using only normal PP-seismic data is very difficult. Therefore, the ocean
bottom PS-data was acquired (MacLeod et al., 1999).

Even though the Alba field is a 3D data set, we select one line by choosing a source line
that overlaps a receiver line. There are several gaps in our selected data since we are taking a
2D line from a 3D data set.

Figure 4 shows a CMP gather from the PZ-component and the PS-component of the data.
Note the gaps and irregularities in the data.

Figure 5 shows a comparison between the NMO stack and the DMO stack of the PP line.
The DMO was performed by the same algorithm described here, specifyingγ = 1.

Figure 6 shows the PS result. It compares the PS-NMO CCP binning stack and the PS-
DMO stack. The PS-DMO stack was obtained using the filter described in equation (16).
Observe that, even though it is a flat events area, those small dips are better defined after doing
PS-DMO.

Figure 7 shows the PS-DMO result using the filter described in equation (17), which better
handles the amplitudes. Note that some strong dip energy appears. The rest of the section
remains the same. Therefore, the filter in equation (17) produces more accurate results.

DISCUSSION

The PS-DMO operator that we finally used is the operator in thef-k log-stretch domain. Since
this operator is stationary in the time log-stretch domain, the use of FFT in both directions is
possible. This makes the PS-DMO operator in the log-stretch frequency wavenumber domain
a fast operator that yields accurate results.

This new operator is not only accurate kinematicly but also dynamicly becuase it includes
CCP lateral position changes. This is a new result at the time this paper was written.

The operator is valid for constant velocity, however it is necessary to use the work done
by other authors (Alfaraj, 1992; Hale, 1984) to incorporate depth variant velocity and depth
variantγ .

The operator used here is safe, fast and valid for both PP and PS propagation modes. It
is only necessary to specify a value ofγ = 1 to obtain PP-DMO and an appropriate value of
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Figure 4: CMPSdaniel2-cmps[ER]

γ 6= 1 and/orγ > 1 to obtain PS-DMO.
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Figure 5: PP results, NMO-stack (top), DMO-stack (bottom)daniel2-pp[CR,M]
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Figure 6: PS results, PS-NMO CCP binning stack (top), PS-DMO stack (bottom)
daniel2-psone[CR,M]



SEP–111 PS-DMO 57

Figure 7: PS-DMO considering amplitudesdaniel2-pstwo[CR,M]
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