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Short Note

Effect of velocity uncertainty on amplitude information

Robert G. Clapp1

INTRODUCTION

Risk assessment is a key component to any business decision. Geostatistics has recognized
this need and has introduced methods, such as simulation, to attempt to assess uncertainty in
their estimates of earth properties (Isaaks and Srivastava, 1989). Geophysics has been slower
to recognize this need, as methods which produce a single solution have long been the norm.

The single solution approach has a couple of significant drawbacks. First, since least-
squares estimates invert for the minimum energy/variance solution, our models tend to have
lower spatial frequency than the true model. Second, it does not provide information on model
variability or provide error bars on the model estimate. Geostatisticians have both of these
abilities in their repertoire through what they refer to as “multiple realizations” or “stochastic
simulations.” They introduce a random component, based on properties of the data, such as
variance, to their estimation procedure. Each realization’s frequency content is more repre-
sentative of the true model’s and by comparing and contrasting the equiprobable realizations,
model variability can be assessed. These models are often used for non-linear problems, such
as fluid flow. In this approach representative realizations are used as an input to a flow simu-
lator.

In geophysics we have a similar non-linear relationship between velocity and migration
amplitudes. Migration amplitudes are used for rock property estimates yet we normally don’t
assess how velocity uncertainty, and the low frequency nature of our velocity estimates, affect
our migration amplitudes. The geostatistical approach is not well suited to answer this ques-
tion. Our velocity covariance is highly spatially variant, and our velocity estimation problem
is non-linear.

In previous works (Clapp, 2000, 2001a,b), I showed how we can modify standard geophys-
ical inverse techniques by adding random noise into the model styling goal to obtain multiple
realizations. In this paper I apply this methodology to a conventional velocity analysis prob-
lem. I then migrate the data with various velocity realization. I perform Amplitude vs. Angle
(AVA) analysis on each migrated image. Finally, I calculate the mean and variance of the
AVA parameter estimates for the various relations. In this paper I review the operator based
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multi-realization methodology. I then apply the methodology on a structural simple 2-D land
dataset from Columbia.

MODEL VARIANCE

We can characterize the standard geophysical problem as a linear relationshipL between a
modelm andd, with a regularization operatorA. In terms of fitting goals this is:

0 ≈ rd = d−Lm (1)

0 ≈ rm = εAm.

Ideally A should be the inverse model covariance. If so, given an accurate modeling operator
we would expectrm to be zero. In fact,A is an approximation of the inverse model covariance.
In practice, we usually assume stationarity, and designA to accurately describe the second
order statistics of the model. The first order statistics, the spatial variance of the model, are
not included. We can produce models that have similarspatialvariance as the true model by
modifying the second goal. This is done by replacing the zero vector0 with standard normal
noise vectorη, scaled by some scalarσm,

0 ≈ d−Lm (2)

σmη ≈ εAm.

For the special case of missing data problems, whereL is simply a masking operatorJ delin-
eating known and unknown points, Claerbout (1998) showed howσm can be approximated by
first estimated model through the fitting goals in (1). Then, by solving,

σm =
1′Jr m2

1′J1
, (3)

where1 is a vector composed of 1s. This basically says that we can find the right level of noise
by looking at the residual resulting from applying our inverse covariance estimate on known
data locations. If we make the assumption thatL is accurate we can use (3) for a more general
case. In the more general case, the operator is 1 at locations whereL ′1 is non-zero.

Tomography

The way I formulate my tomography fitting goals requires some deviation from the generic
multi-realization form. My tomography fitting goals are fully described in Clapp (2001a).
Generally, I relate change in slowness1s, to change in travel time1t by a linear operatorT
The tomography operator is constructed by linearizing around an initial slowness models0. I
regularize the slownesss rather than change in slowness and obtain the fitting goals,

1t ≈ T1s (4)

εAs0 ≈ εA1s.

The calculation ofσd is the same procedure as shown in equation (3). The only difference
is now we initiaterm with both our random noise componentσmη and εAs0. A cororarly
approach for data uncertainty is discussed in Appendix A.
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Results

To test the methodology I decided to start with a structurally simple 2-D line from a land
dataset from Columbia provided by Ecopetrol. Figure 1 shows the estimated velocity for the
data. Note how it is generallyv(z) with some deviation, especially in the lower portion of the
image. Figure 2 shows the result of performing split-step phase shift migration and Figure 3
shows the resulting angle gathers (Sava, 2000). Note how the image is generally well focused
and the gathers with some slight variation below three kilometers atx = 3.5. Figure 4 shows
the moveout of the gathers in Figure 3. Note the traditional ‘W’ pattern associated with the
velocity anomaly can be seen in cross-section at depth.

Figure 1: Initial velocity model.
bob7-vel-init [CR]

Figure 2: Initial migration using
the velocity shown in Figure 1.
bob7-image-init[CR]

To start we need to solve the problem without accounting for model variance. If we solve
for 1s using fitting goals (4) our updated velocity is shown in Figure 5. The change of the
velocity is generally minor, with an increase in the high velocity structure atx = 3.5,z = 3.2.
The resulting image and migration gathers are shown in Figures 6 and 7. The resulting image
is slightly better focused below the anomaly and the migration gathers are, as expected, a
little flatter. If we apply equation (3) using thern when estimating our improved velocity
model we can find the right amount of noise to add to our fitting goals. We can now resolve
for 1s accounting for the model variability. Figure 8 shows four such realizations. Note that
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Figure 3: Every 10th migrated gather
using the velocity shown in Figure 1.
bob7-mig-init [CR]

Figure 4: Moveout of the gathers
shown in Figure 3. bob7-semb-init
[CR]

Figure 5: New velocity obtained by
inverting for 1s using fitting goals
(4). bob7-vel-none[CR]
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Figure 6: New image obtained by in-
verting for 1s using fitting goals (4)
using the velocity shown in Figure 5.
bob7-image-none[CR]

Figure 7: New gathers obtained by in-
verting for 1s using fitting goals (4)
using the velocity shown in Figure 5.
bob7-mig-none[CR]
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they have the same general structure as seen in Figure 5 but within additional texture that is
accounted for by covariance description. If we migrate with these new velocity models we
get the images and migrated gathers shown in Figures 9 and 10. In printed form these images
appear identical, or close to identical. If watched as a movie, amplitude differences can be
observed.

Figure 8: Four different realizations of the velocity accounting for model variability.
bob7-vel-multi [CR,M]

AVA analysis

For the AVA analysis I chose the simple slope*intercept (A*B) methodology used in (Castagna
et al., 1998; Gratwick, 2001). Figure 11 shows the slope (left), intercept (center), and slope*intercept
(right) for the migrated image without model variability. Note the positive, hydrocarbon indi-
cating, anomalies circled at approximately 2.3 km.

I then performed the same procedure on all of the migrated images obtained from the var-
ious realizations (Figure 12). The left panel shows intercept, the center panel slope, the right
panel, slope*intercept. The top shows the average of the realizations. The center panel shows
the variance of the realizations. The bottom panel shows the variance scaled by the inverse of
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Figure 9: Four different realizations of the migration accounting for model variability. Note
how the reflector position is nearly identical in each realization and with the image without
variability (Figure 6), but the amplitudes vary slightly.bob7-image-multi[CR,M]
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Figure 10: Four different realizations of the migration accounting for model variability. Note
how the reflector position is nearly identical in each realization and with the image without
variability (Figure 7). bob7-mig-multi [CR,M]
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Figure 11: AVA analysis for the migrated image in Figure 7. The left panel shows the slope,
the center the intercept, and the right panel the slope*intercept.bob7-ava-none[CR,M]

the smoothed amplitude. What is interesting is the varying behavior at the three zones with
hydrocarbon indicators. Figure 13 shows a closeup in the zone with the hydrocarbon indica-
tors. The left blob ‘A’ shows a high variance in the AVA indicator. The center blob ‘B’ shows
a mild variance, and the right blob ‘C’ shows low variance. This would seem to indicate that
at location ‘C’ the hydrocarbon indicator is more valid. Without drilling of each target a more
general conclusion cannot be drawn.

CONCLUSIONS

I showed how AVA parameter variability can be assessed by adding a random component to
our fitting goals when estimating velocity. The methodology shows promise in allowing error
bars to be placed upon AVA parameter estimates.
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Figure 12: AVA analysis for the the various velocity realizations. The left panel shows inter-
cept, the center panel slope, the right panel, slope*intercept. The top shows the average of the
realizations. The center panel shows the variance of the realizations. The bottom panel shows
the variance inverse scaled by a smoothed amplitude.bob7-ava-multi[CR,M]
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Figure 13: A close up of the reservoir zone. The left panel shows the slope*intercept. The
right panel shows the variance of the slope*intercept for the various realizations. Note how
the left blob ‘A’ shows a high variance in the AVA indicator. The center blob ‘B’ shows a mild
variance, and the right blob ‘C’ shows low variance.bob7-ava-multi-close[CR,M]
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APPENDIX A

We can follow a parallel definition for the data fitting goal in terms of the inverse noise covari-
anceN:

σdη ≈ N(d−Lm ). (A-1)

Noise covariance for velocity estimation

Using the multiple realization methodology for velocity estimation problem posed in the man-
ner results in several difficulties. First, what I would ideally like is a model of the noise. This
poses the problem of how to get the noise inverse covariance. The first obstacle is that our data
is generally a uniform function of angleθ and a non-uniform function ofx. What we would
really like is a uniform function of just space. We can get this by first removing the angle
portion of our data.

I obtain 1t by finding the moveout parameterγ that best describes the moveout in mi-
grated angle gathers. I calculate1t by mapping my selectedγ parameter back into residual
moveout and the multiplying by the local velocity. Conversely I can write my fitting goals in
terms ofγi by introducing an operatorS that maps1t to γ ,

γi ≈ ST1s (A-2)

As0 ≈ εA1s.

Making the data a uniform function of space is even easier. I can easily write an operator
that maps my irregularγi to a regular function ofγr by a simple inverse interpolation operator
M . I then obtain a new set of fitting goals,

γr ≈ MST1s (A-3)

As0 ≈ εA1s.

On this regular field the noise inverse covarianceN is easier to get a handle on. We can ap-
proximate the noise inverse covariance as a chain of two operators. The first,N1, f a fairly
traditional diagonal operator that amounts for uncertainty in our measurements. For the to-
mography problem this translate into the width of our semblance blob. For the second operator
we can estimate a Prediction Error Filter (PEF) onrd (Guitton, 2000) after solving

0 ≈ rd = N1(γr MST1s) (A-4)

As0 ≈ = rmεA1s.

If we combine all these points and add in the data variance we get,

σdη ≈ N1N2(γr −MST1s) (A-5)

σmηAs0 ≈ εA1s.
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