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Short Note

Speeding up wave equation migration

Robert G. Clapp1

INTRODUCTION

Wave equation migration is gaining prominence over Kirchhoff methods both as an imaging
tool (Biondi and Palacharla, 1996) and for velocity analysis (Clapp, 2001). The relatively high
cost of downward continuation methods, especially in iterative schemes (Biondi and Sava,
1999; Prucha et al., 2000), has limited their adoption.

In this paper I discuss three different methods to speed up midpoint-offset domain down-
ward continuation based migration. I compare the migration results with the more standard
downward continuation method. I show that a factor of two speed up is achievable with little
discernible loss in image quality. In addition I show that for velocity analysis purposes a factor
of three to four speed up is achievable.

THEORY

When doing downward continuation in the offset domain, we begin by organizing our data
cube as a function of midpointx, offseth, and frequencyf . We then apply the double square
root (DSR) equation to move the wavefield down one depth step1z (Claerbout, 1995). We
apply an imaging condition, and then repeat the procedure. This methodology can be quite
expensive even in 2-D because the costC is approximately

C ≈ nz∗ f ∗ (F FT(nx,nh)+nx∗nh∗C E X P) (1)

C ≈ nz∗ f ∗ (nh∗nxlog(nh)+nx∗nhlog(nx)+C E X P(nx,nh)),

whereF FT(nx,nh) is the expense of doing a 2-D FFT on anx by nh dataset andC E X P is
the cost of multiplying by a complex exponential. In 3-D the cost is even more substantial.

Equation (1) indicates that the number of depths can greatly affect the cost of the migration.
As a result, the choice of depth sampling is a major decision. Too fine a depth sampling will
make the cost exorbitant; too coarse will cause resolution and aliasing problems.
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The required depth sampling is also depth varying. We need finer depth sampling near the
surface, while coarser depth sampling is appropriate in the deeper section. So the first obvious
way to speed up our migration is to vary the sampling as a function of depth.

Sampling the wavelet

If we put in a time function, we can charactize the wavelengthλ as it travels through the earth
with

λ =
v

f
, (2)

where f is the frequency andv is the velocity. In practical terms, this says that our input
is a time function that travels in a given interval as a function of the media’s velocity, and
that different frequencies will travel at different velocities. What is important is that we ade-
quately sample the wavelet. As a result, we can take large depth steps at large velocities and
small frequencies. Our migration cost is then generally concentrated at higher frequencies and
shallower depths.

Attenuation

Our second observation is that all signals eventually attenuate, and this attenuation (Q) is a
function of frequency and media properties. How much they attenuate is generally a function
of the media, but a decent first approximation is that after a certain number of cycles, a given
frequency attenuates a given percentage(Kjartansson, 1979). Therefore, after a certain number
of cycles, the wave components at that frequency will no longer be of usable strength so we
can stop downward continuing it. This observation nicely compliments the wavelet sampling
observation that higher frequencies will attenuate quicker in depth, reducing the distance we
need to downward continue them. We can combine these two ideas and replace our original
cost equation with,

C ≈

∑
f

∗nz( f )∗ (nh∗nxlog(nh)+nx∗nhlog(nx)+C E X P(nx,nh)), (3)

where our number of depth stepsnz( f ) is a function of frequency.

Focusing energy

Our imaging condition provides a third idea for decreasing cost. As we go down in depth,
energy focuses at zero offset. The outer offsets will either have no energy, or energy that we
don’t care about. As we step down in depth, we can decrease our offset domain. With this
final savings, we can rewrite our cost function as:

C ≈

∑
f

∑
nz( f )

nh(z)∗nxlog(nh)+nx∗nh(z)log(nx)+C E X P(nx,nh(z))). (4)
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PRACTICAL ASPECTS

Applying the previous cost saving ideas introduces some new challenges. First, our final
image is going to be regularly sampled so we must resample our variably sampled wavefield.
I chose Lagrange interpolation for my resampling. It has the advantage of allowing higher
order interpolation than simple linear interpolation, and you can easily pre-build interpolation
tables, making it fast.

The second thing we have to be concerned with is the speed of our FFT. We generally use
FFTW (Frigo and Johnson, 1999) which can handle any size axes but transforming an axis
of length 512 will be significantly faster than transforming an axis of length 511. The easiest
way to handle this problem it to make a list of ‘good’ axis lengths (e.g., combination of prime
factors and power of two) and only decrease the offset domain at depths where the next lowest
‘good’ axis length is reached.

Finally, when this process is parallelized to be run on a linux cluster load, balancing be-
comes more difficult. Each frequency block has a different number of depth steps, a different
interpolation cost, and a fixed IO cost. Ensuring that each processor finishes at approximately
the same time is a non-linear optimization problem. Presently I assign costs for depth steps, in-
terpolation, and IO and then try 1000 different random solutions, selecting the one that shows
the least cost differential between the nodes.

RESULTS

To test how much the migration could be sped up I chose a 2-D line from a 3-D land dataset
provided by Ecopetrol. Figure 1 shows the result using the conventional approach. The left
plot shows the zero offset image (the standard imaging condition), the right panel shows three
selected angle CRP gathers (Sava and Fomel, 2000). Using five reference velocities and four
processors it took 2034 seconds to run.

Figure 3 shows the same migrated image calculated with variable depth sampling, account-
ing for attenuation, and reducing the size of the offset domain as we go down in depth. The left
panel of Figure 2 shows the sampling in depth for several frequencies. The right panel shows
how the offsets downward continued decrease as the depth increased. The result was achieved
in 1042 seconds (almost half of the time) and is nearly identical to the result in Figure 1.

For velocity analysis the image quality requirements are reduced. By using the sampling
in Figure 4 image gathers can be produced that give accurate moveout information (Figure 5)
while further reducing the migration time to 758 seconds.

FURTHER SPEEDUP

In theory it should also be possible to use sparser sampling in midpoint at low frequencies.
Since this would only affect the relatively inexpensive portion of the downward continuation,
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Figure 1: The left panel is the result of split-step migration. The right panel is three gathers
from the same migration.bob3-mig-slow[CR]

Figure 2: The left panel shows every tenth depth for various frequencies for the migration
show in Figure 3. The right panel shows the reduction in the migrated offset domain as a
function of depth. Note how the sampling in depth sparser, the offset domain is decreased
quicker, and the frequencies are assumed to be of inconsequential energy than in Figure 3.
bob3-fast-sample[CR]
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Figure 3: The left panel is the result of split-step migration. The right panel are three gathers
from the same migration. Note how the image is almost identical to Figure 1 but is calculated
three times faster.bob3-mig-fast[CR]

Figure 4: The left panel shows every tenth depth for various frequencies. The right panel
shows the reduction in the migrated offset domain as a function of depth. Note how the
sampling in depth sparser, the offset domain is decreased quicker, and the frequencies are
assumed to be of inconsequential energy than in Figure 5.bob3-faster-sample[CR]
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Figure 5: The left panel is the result of split-step migration. The right panel is three gathers
from the same migration. Note how the image is slightly different from Figures 1 and 5, but
the moveout information is nearly identical.bob3-mig-faster[CR]
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I would expect at most only a 10− 20% speed up. Another method is to do a better job
choosing appropriate velocities, thereby reducing the number of velocities needed for accurate
downward continuation. Clapp (2002) discussed one method to accomplish this.

CONCLUSIONS

Wave equation migration can be significantly sped up by making depth steps a function of
frequency and velocity while the offset domain can be reduced as we go down in depth. Wave
equation migration can be sped up by a factor of three, and acceptable migration gathers for
velocity analysis can be generated five times quicker than conventional migration methods.
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