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Short Note

Reverse time migration in midpoint-offset coordinates

Biondo Biondt

INTRODUCTION

Reverse-time migration (Baysal et al., 1984) has some potential advantages with respect to
downward-continuation migration. It can migrate overturned and prismatic reflections even in
the presence of strong lateral velocity variations (Biondi, 2002). It also models the amplitude
of the transmitted wavefield more accurately than downward-continuation in the presence of
sharp interfaces. However, it has the drawback of being computationally intensive. In partic-
ular, shot profile migration of overturned events can be extremely expensive because we need
to pad the computational domain with a huge number of zero traces to assure that it includes
the reflectors that generated the overturned events.

A similar problem of computational-domain size exists for shot profile migration by down-
ward continuation. For marine data, an efficient solution to the problem is migration in
midpoint-offset coordinate (Biondi and Palacharla, 1996). In the midpoint-offset domain the
wavefield focuses towards zero offset, and thus we can drastically limit the length of the offset
axes (at the limit we can eliminate the cross-line offset altogether by a common-azimuth ap-
proximation). It is thus natural to try to derive a reverse-time migration method that backward
propagates the data in midpoint-offset coordinates.

In this paper, | derive an equation for backward propagating in time midpoint-offset do-
main data. The equation is derived from the Double Square Root equation. The proposed
method successfully images non-overturned events. Unfortunately, the propagation equation
has a singularity for horizontally traveling waves, thus the method does not seem capable of
imaging overturned waves. The root of the problem is that the DSR implicitly assumes that
the sources and the receivers are at the same depth level (or at least that their vertical offset is
constant). This assumptions is clearly unfulfilled by finite-offset overturned events. | speculate
that the assumption of null (constant) vertical offset between sources and receiver could be re-
moved. In this case a midpoint-offset domain might be still computationally attractive because
the reflected wavefield would still tend to focus towards zero offset as it is back-propagated in
time.
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FROM DOWNWARD CONTINUATION TO TIME STEPPING

We would like to propagate the recorded wavefield backward in time instead of downward
into the Earth, but we also would like to preserve the computational advantages of propagat-
ing the recorded wavefield in midpoint-offset coordinates. The advantage of the midpoint-
offset coordinates derives from the focusing of the reflected wavefield towards zero offset as it
approaches the reflector. The wavefield focuses towards zero-offset during downward contin-
uation because we are essentially datuming the whole data set to an increasingly deeper level
in the Earth. It is thus reasonable to start our derivation from the double square root (DSR)
equation, that is the main tool for datuming prestack data. As we will see later, this choice of
a starting point limits the usefulness of the final result.

The DSR equation in the frequency-wavenumber domain is

k, = \/a)zs(s, 22— k2 + \/a)zs(g, 22 -k2, 1)

wherew is the temporal frequenci, andky, are respectively the wavenumber associated
to the source and receiver locations, a(& z) ands(g, z) are the slowness at the source and
receiver locations. We first start by rewriting the DSR in terms of midpqidnd half offset

Xh as

2 2
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wherek,,, andky, are respectively the wavenumber associated to the midpgimind the
half-offsetx;,.

Then, to obtain a time marching equation, we first square equation (2) twice and rearrange
the terms into:

0* As+ 207 (Askupky, — ZskZ) + kg + K2 (K2 +KZ ) +KZ K2 =0, (3)

where
As=5(s,2)°—5(9,2)° 4)
s =5(s,2)°+5(0,2)? 5)

Equation (3) is a second order equatiomh It has another solution in addition to the desired
one. It can be greatly simplified by assuming~ 0. Then equation (3) can be rewritten as

1 k2 k2
2 2 2 2 Xm Xh
W = >3, <kz +Ks., + K, + @ ) (6)
This is the basic equation solved for the numerical examples shown in this paper. Notice
that whenk,, is equal to zero, equation (6) degenerates to the well-known equation used for
reverse-time migration of zero-offset data (Baysal et al., 1984).
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There are few alternatives on how to solve equation (6) numerically. The simplest one
is to use finite-differences for approximating the time derivative, and Fourier transforms for
evaluating the spatial-derivative operators. Because the slownesXxasoutside the paren-
theses in equation (6), using Fourier transforms does not preclude the use of a spatially variable
slowness field. Strong lateral velocity variations would cause problems because of the approx-
imations needed to go from equation (3) to equation (6), not because of the numerical scheme
used to solve equation (6).

The time marching scheme that | used can be summarized as;
2 12
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Using a Fourier method to evaluate the spatial-derivative operators, makes it easy to handle
the real limitation of equation (6); that is, the presence of the vertical wavenumla¢ithe
denominator. Waves propagating horizontally have an effective infinite velocity, making a
finite-difference solution unstable, no matter how small the extrapolation time step. Unfortu-
nately, this is a major obstacle for migrating overturned events, which is one of the main goals
for developing a reverse time migration in midpoint-offset coordinates. The problem exists
only for finite offset dataky, # 0). In retrospective, the occurrence of problems for waves
that overturn at finite offset should not be surprising. Equation (6) was derived from the DSR
that cannot model data for which the source leg overturns at different depth than the receiver
leg.

For non-overturning events the problem can be sidestepped. The spatial wavenumbers are
related to the reflector geological dip angiend the aperture angéeby the relationship

2 |2
Xm Xh

kg

= tana tany, (8)

By simple trigonometry is also possible to show that for non-overturned events

k2 k2
XEZX“ a<l. (9)
V4

In the Fourier domain it is straightforward to include condition (9) in the time-marching algo-
rithm and thus to avoid instability without suppressing reflected energy.

Stronger lateral velocity variations?

The numerical scheme described by equation (7) can probably handle some amount of lateral
velocity variations, but it would be inaccurate for more complex velocity functions. In the
derivation presented in the previous section there is no assumption of mild lateral velocity
variations up to equation (3). The problem with equation (3) is that it is fourth order in time.

In addition to the desired solution it has another solution that can generate artifacts and cause
instability. Therefore, a direct solution by finite-differences would encounter problems with
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the spurious solution. Alkhalifah (1998) describes a similar problem when solving an acoustic
wave equation for anisotropic media.

However, it is fairly straightforward to derive an approximation to equation (3) that is more
accurate than equation (6). Equation (3) can be easily solvag?fbecause it contains only
the even powers ab. We can then approximate the square root that appears in the formal
solution forw? as

1 As[ki+k2 (k2 +Kk2)+k2 k2 ] 1 As[ky +KZ (K +K3 ) +KE K | o)
(Asky ke, — Zsk2)? 2 (Askyk, — Zsk2)?
The useful solution of equation (3) can then be approximated as
1 k2 k2
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Equation (11) degenerates to equation (6) whans zero. It is more accurate than Equa-
tion (6) for Ag different than zero, but it is likely to break down for strong lateral velocity
variations.

Equation (11) shares with equation (6) the fundamental problem of instability for hori-
zontally propagating waves. Therefore, | have not implemented a numerical scheme to solve
equation (11) yet. However, it is possible to define a mixed implicit-explicit method to solve
equation (11), similar to the one proposed by Klie and Toro (2001) to solve Alkhalifah’s
acoustic wave equation for anisotropic media.

Imaging principle

One of the advantages of the choice of the midpoint-offset coordinate to migrate the data is that
the imaging step is both straightforward and inexpensive. There is no need to crosscorrelate
and shift wavefields, as for shot-profile reverse-time migration (Biondi, 2002).

The equivalent of the “stacked” image is obtained by selecting the propagated wavefield
at zero time and zero offset; that is

| (z,Xm) = P (t =0,Z,Xm, Xn = 0) (12)

The offset-domain Common Image Gathers (CIG) are obtained by simply selecting the prop-
agated wavefield at zero time; that is

I (z,Xm,Xn) = P (t = 0,2, Xm, Xn) . (13)



SEP-111 Midpoint-offset reverse-time migration 153

EXAMPLES OF REVERSE TIME MIGRATION OF A SYNTHETIC DATA SET

To illustrate the use of the proposed method to image seismic data by reverse-time migration,
| migrated the same simple synthetic data set (with a dipping and a flat layer) that | used in
Biondi (2002). Since the data were modeled in shot gathers, | sorted the data set in midpoint-
offset coordinates before migration. As in the other paper, | migrated the data with a constant
velocity to avoid artifacts caused by velocity discontinuities in the migration velocity. There-
fore, the deeper reflector is slightly undermigrated.

Figure 1 is the equivalent of the “stacked” image, obtained by applying equation (12).
The dipping reflector is well imaged within the range that is illuminated by the shots. The flat
reflector is slightly undermigrated, as discussed above. The quality of the image is comparable
to the quality of the image obtained by shot-profile migration using the same data.

Figure 2 shows on the left the offset-domain CIG (a) and on the right the angle-domain
CIG (b). The offset domain CIG was obtained by applying equation (13), and the angle-
domain CIG was obtained by applying the offset-to-angle transformation presented in Sava et
al. (2001). The CIGs are located at a surface location where both reflectors are well illuminated
(1,410 m). As expected the image is well focused at zero-offset in the panel on the left and the
events are flat in the panel on the right.

As for shot-profile migration, the CIGs obtained by midpoint-offset reverse-time migration
can be easily used for velocity updating. To illustrate this capability, | have migrated the same
data set with a lower velocity (.909 km/s). Figure 3 is the “stacked” image obtained using the
lower velocity. Both reflectors are undermigrated and shifted upward.

Figure 4 shows on the left the offset-domain CIG (a) and on the right the angle-domain
CIG (b). Now in the panel on the left, the energy is not well focused at zero offset but is spread
over an hyperbolic trajectory centered at zero offset. The corresponding angle-domain CIG
(ADCIG) (right) shows the characteristic smile typical of undermigrated ADCIG. The velocity
information contained in the panel on the right can be easily used for velocity updating and
tomographic inversion in a similar way as the ADCIG obtained by downward-continuation
migrations are used (Clapp and Biondi, 2000; Clapp, 2001).

CONCLUSIONS

| explore the possibility of imaging prestack data by reverse-time migration in the midpoint-
offset domain. The method that | derive successfully imaged a simple synthetic data set.
However, it is not capable of migrating correctly overturned events, which is one of the main
goals of the effort. This limitation originates from the limitations of the starting point of
my derivation; that is, the Double Square Root equation. The DSR assumes a null (constant)
vertical offset between source and receivers. The choice of a more general starting point might
lead to a useful migration method.
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Figure 2: Offset-domain CIG (left a))
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Figure 3: Image of the syn-
thetic data set with the in-
correct velocity function.
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