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Non-stationary, multi-scale prediction-error filters and
irregularly sampled data

William Curry1

ABSTRACT

Non-stationary prediction-error filters have previously been used to interpolate sparse,
regularly sampled data. I take an existing method used to estimate a stationary prediction-
error filter on sparse, irregularly sampled data, and extend it to use non-stationary
prediction-error filters. I then apply this method to interpolate a non-stationary test case,
with promising results. I also examine a more complex three dimensional test case.

INTRODUCTION

Data interpolation can be cast as in inverse problem, where the known data remains constant,
and the empty bins are regularized to constrain the null space. A two-stage linear approach
was developed (Claerbout, 1999) where a prediction-error filter (PEF) is estimated on known
data, and is then used to constrain the unknown data by minimizing the output of the model
after convolution with the PEF. When the data is not stationary, a non-stationary filter has
been used to fill the unknown data (Crawley, 2000). This gives better results than a patching
approach, where the data is broken up into separate patches that are assumed to be stationary,
largely because most data is smoothly non-stationary. In the case of sparsely (but regularly)
sampled data, the non-stationary filter can be stretched over various scales to fit the data. Most
recently, a PEF was estimated on irregularly sampled data by scaling the data to various grid
sizes and simultaneously estimating a single filter on the various scales of data in a multi-scale
approach (Curry and Brown, 2001).

Here, I take the multi-scale approach for irregular data, and extend it to estimate a non-
stationary PEF. I examine how to choose the parameters needed for this non-stationary PEF
estimation, namely micro-patch size, scale choice, regularization, and filter size, and how they
are related when using this estimation method. I use this approach to interpolate a poorly
sampled 2D test case, where existing methods would fail, with promising results. I then in-
terpolate a suitable 3D test case with very promising results, with the eventual goal of seismic
data interpolation.
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BACKGROUND

A PEF is traditionally estimated by minimizing the output of the known datad, convolved (D)
with a filter f which is unknown except for the first coefficient, which is constrained to 1. This
is expressed below, withK representing a mask which is 1 when all filter coefficients lie on
known data, and 0 when coefficients lie on missing data.

KDf +d ≈ 0 (1)

Fitting goal 1 works well for estimating the PEF if there are sufficiently contiguous data.
However, if the data are irregularly sampled so that there are an inadequate number of fitting
equations, a different method is used (Curry and Brown, 2001), where more fitting equations
are generated by regridding the data (D) with an operatorSi (normalized linear interpolation
followed by its adjoint), and then simultaneously estimating a single filter (f) on all of the
versions of the scaled data (Sid). The mask for the known data (K i) must also be regridded
accordingly for each scale. 

K0D
K1S1D
K2S2D

...
KnSnD

 f =


d

S1d
S2d
...

Snd

 . (2)

Several user-defined parameters must be set during this procedure, specifically the choice of
scales to be used in the estimation as well as the size of the PEF. The only constraint on these
parameters is that the aspect ratio of the data remain constant from scale to scale, meaning that
the ratio of the number of bins in each dimension remain constant. For example, a 50∗40 data
set should not be regridded to 26∗21, since the aspect ratio is changed by the round-off from
20.8 to 21. A better choice would be to use 25∗20 as a scale. The PEF size is only constrained
by the size of the coarsest scale of data.

A non-stationary filter varies with position, so instead of only having indices correspond-
ing to the lag of the filter, there are also indices corresponding to the position of the filter. The
filter would go from looking likea(ia) to a(ia,id) , whereia is the lag of the filter, andid is
the position of the filter. An illustration of this concept is shown in figure 1. Only two indices
are used for lag and position, thanks to the helical coordinate system (Claerbout, 1998).

Since we have moved from estimating a single filter withna filter coefficients to estimat-
ing a non-stationary filter withna*nd filter coefficients, PEF estimation becomes an under-
determined problem instead of an over-determined problem. As a result, we need to incorpo-
rate some type of regularization into the estimation in order to get enough equations. Laplacian
or radial rougheners of common filter coefficients (constantia ) across the spatial axes (id ) are
both used to ensure a filter bank that varies smoothly spatially (Clapp et al., 1999).

Another method used to constrain the filter coefficients is called micro-patching (Crawley,
2000). Instead of the filter varying at every data point, micro-patching uses the same filter
within a small region within the data, reducing the number of filter coefficients that need to be
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Figure 1: An illustration of non-
stationary convolution. The shaded
boxes represent the data, and the hol-
low boxes represent the filter at var-
ious positions. The two indices on
each filter point correspond to the
data position (id ) and the filter lag
(ia ), respectively. At each point in
the convolution, the filter is different.
bill1-nstat [NR]
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estimated. This has two benefits: the PEF estimation problem becomes less under-determined,
and the amount of memory required for the filter, which wasna times the size of the datand,
is now the number of micro-patches,np timesna.

MULTI-SCALE NON-STATIONARY PEFS

The combination of non-stationary filters and estimation on multiple scales of data introduces
a new issue, that non-stationary filters are linked to the size of the data they operate on. If the
dimensions of the data change, the dimensions of the PEF must change as well. This causes
issues regarding the consistency of the PEF across scales, as well as limits on the type of
regularization that can be applied to the filter coefficients.

In order to maintain a consistent PEF across scales, the filter must be sub-sampled so
that the same spatial coordinates of the PEF correspond to the proper locations within the
scaled data. Since our non-stationary PEF has micro-patches where the filter coefficients are
constant, we can scale the patches to match the scaling of the data, so that the number of filter
coefficients in the non-stationary filter remains constant, but the size of the micro-patches has
decreased. The limiting case for this scaling is when a micro-patch reduces to a single point.
Beyond this point, the patches could be sub-sampled during the scaling. This avenue has not
been explored, since a need for that level of scaling has not yet been shown.

I represent the sub-sampling of the patch table byPi , which acts upon the non-stationary
filter f in the non-stationary fitting goal shown below:
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 f ≈
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d
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Snd

 . (3)

In addition to the above fitting goal, a set of regularization equations must also be solved,
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Figure 2: Regridding both the data (fine grid) and the micro-patches (thick grid) simultane-
ously. In this case a 9∗ 9 grid with 3∗ 3 micro-patches is regridded to a 6∗ 6 grid with 2∗ 2
micro-patches. The sizes of the micro-patches remain constant.bill1-patchscale[NR]

whereA is our regularization operator:

Af ≈ 0 (4)

The scaling of both the filter and the data to some extent limits the choices of regularization
available. Specifically, radial micro-patches do not scale well, so applying radial regular-
ization would have to be done over square micro-patches. Laplacian regularization of filter
coefficients across rectangular micro-patches is also a reasonable approach in some cases.

TEST CASE

A non-stationary, two-dimensional test case has been created as a proof of concept example.
This test is based upon a simple plane wave model (Brown et al., 2000; Curry and Brown,
2001).

In this case, there is one plane wave on each half of the example, and the plane wave on
the right varies in amplitude from left to right. There is also Gaussian noise present in the
data, which largely obscures the low amplitude portion of the plane wave on the right side of
the example.

The data was randomly sub-sampled, keeping only 10− 20 percent of the data. This
sparse data, along with a mask describing the position of the known data, was used in the
non-stationary interpolation scheme. The results of the interpolation are shown in Figure 4.

The results are on the whole quite encouraging. The data was very heavily sub-sampled,
and the interpolation scheme was able to identify the dips in the data and interpolate them
properly. The dip from the left side of the example was smoothed over the area on the right
side of the figure with the low signal-to-noise ratio, which was expected. As the number of
micro-patches drops, the results deteriorate, as the regularization loses its effect and one patch
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Figure 3: The fully sampled version of the non-stationary test data.bill1-testcase[ER]

becomes unstable. A higher number of micro-patches preserves the dips as well as the low
amplitude area.

A more relevant case to interpolating seismic data is the qdome model (Claerbout, 1999),
which has been highly sub-sampled along two of three dimensions, with the vertical axis still
fully sampled. The qdome model is a collection of folding layers, flat layers and a fault,
which acts as an excellent overall test for this interpolation method. I have randomly removed
88 percent of the traces from the data set, and use the non-stationary multi-scale PEF-based
interpolation to attempt to recreate the original model.

The results for the qdome model are very promising. The smoothly varying dips were
correctly estimated and interpolated almost everywhere, excluding very steep dips. This is due
to two things, the size of the PEF might not have been large enough to capture the spatially
aliased dips, and that the dips were changing rapidly within a small area, which was only
covered by a small number of micro-patches.

The results for this 3D case are much more impressive than in the 2D case, even though
more of the data was removed. This is due to several things: The extra dimension of data
allows for more constraints to be applied by the regularization, the greater size of all of the
dimensions allows for more fitting equations to be found, and most importantly that the well-
sampled z-axis gives better coverage of the data space.
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Figure 4: Results for three different sampling levels, from left to right: 10, 15 and 20 per-
cent. From top to bottom: sparse data, sparse data filled with PEF trained on fully sampled
original data, sparse data filled with PEF from sparse data with 64, 16 and 8 micro-patches,
respectively.bill1-testfill [ER]
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Figure 5: Fully sampled and sub-sampled versions of the qdome model.bill1-qdometest
[ER]



332 Curry SEP–111

Figure 6: Above: Sparse data filled with a non-stationary PEF trained on all data. Below:
Sparse data filled with a non-stationary PEF trained on sparse data.bill1-qdomefill [CR]
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CONCLUSIONS AND FUTURE WORK

Overall, estimating a non-stationary prediction-error filter with multiple scales of data appears
to be successful. The method interpolates a very heavily decimated 2D test case successfully.
Results for a 3D case are even more successful, even though the amount of data removed from
the case was greater than in the 2D case.

In the future, this method can be used on real seismic data in two, three, or even five
dimensions, so that prestack 3D data can be interpolated in cases where surface topography,
structures, or other obstacles cause irregularly sampled data.
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