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Short Note

Theoretical aspects of noise attenuation

Antoine Guitton1

INTRODUCTION

In Guitton (2001) I presented an efficient algorithm that attenuates coherent noise based on
the spatial predictability of noise and signal. I called this algorithm the subtraction method. In
this paper I show that the subtraction approach is closely related to another described method,
the filtering method (Brown and Clapp, 2000; Clapp and Brown, 2000; Spitz, 1999; Soubaras,
1994) if I use a preconditioning strategy (Claerbout and Fomel, 2001). In a second part I prove
that the Spitz estimate for the signal PEF (Spitz, 1999) makes the inversion of the Hessian
stable in the subtraction method.

FROM THE FILTERING TO THE SUBTRACTION OF NOISE

The filtering method is essentially based on the signal-preserving properties of the so-called
“projection filters” (Soubaras, 1994). This idea has been widely used to attenuate a large va-
riety of noise in seismic data. Abma (1995) developed a solid mathematical background that
introduces these projection filters and showed that they are related to the classical Wiener esti-
mator (Castleman, 1996). In this section I unravel the link between the filtering and subtraction
method.

Definitions

First I introduce a set of important variables that will help us build the desired filters.

• d: the data vector; input to the problem.

• n: the noise vector; assumed to be known.

• s: the signal vector; output of the problem.

• D: annihilation filter for the data; a Prediction Error Filter (PEF).
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• N: annihilation filter for the noise; a PEF.

• S: annihilation filter for the signal; a PEF.

The leading assumption is that the data vector is the sum of the signal and noise vectors, i.e,

d = s+n. (1)

The filtering method

Abma (1995) solved a constrained least-squares problem to separate signal from spatially
uncorrelated noise:

Nn ≈ 0

εSs ≈ 0 (2)

subject to ↔ d = s+n

The first equation defines mathematically the annihilation filterN whereas the second equa-
tion defines the annihilation filterS. Minimizing in a least-squares sense the fitting goals in
equation (2) with respect tos leads to the following expression for the estimated signal:

ŝ=
(
NTN+ ε2STS

)−1
NTNd. (3)(

NTN+ ε2STS
)−1NTN is a projection filter. I call it the filtering method because the noise

components are filtered out by the PEFN in equation (3).

Preconditioning the filtering method

There is a simple trick that modifies the fitting goals in equation (2). We can pose the following
preconditioning transformations:

n = N−1mn,

s = S−1ms, (4)

wheremn andms are new variables. Now we can derive a new system of fitting goals as
follows:

mn ≈ 0

εms ≈ 0 (5)

subject to ↔ d = S−1ms+N−1mn.

This system is almost equivalent to what I introduced in Guitton (2001), except for the reg-
ularization that I omitted. WithLn = N−1 the noise-modeling operator andL s = S−1 the
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signal-modeling operator, the least-squares inverse of equations (5) without the regularization
terms is then given by (

m̂n

m̂s

)
=

(
(L ′

nRsLn)−1L ′
nRs

(L ′
sRnL s)−1L ′

sRn

)
d,

with

Rs = I −L s(L ′
sL s)−1L ′

s,
Rn = I −Ln(L ′

nLn)−1L ′
n.

(6)

I showed in Guitton et al. (2001) thatRs andRn can also be interpreted in term of projection
filters.

The estimated noise and signal are then computed as follows

n̂ = Lnm̂n,
ŝ = L sm̂s.

(7)

Because of the relationship that exists between the filtering and subtraction methods, the es-
timated noise or signal should be equivalent for both. This has been observed in a multiple
attenuation problem by Guitton et al. (2001).

Discussion

The preceding section derives the relationship between the filtering and subtraction methods.
The preconditioning changes the nature of the problem quite deeply: from a filtering algorithm
we end-up with a prediction/subtraction method. The least-squares inverses in equations (3)
and () are also very different: from a problem with one unknown,s, we end-up with a problem
with two unknowns,mn andms. Fortunately, this preconditioning should speed-up the conver-
gence toward the signal vectors. In addition, this transformation separates the data space in its
natural components, e.g, the signal and noise vectors more explicitely than with the filtering
method.

STABILITY OF THE HESSIAN WITH THE SPITZ ESTIMATE

Nemeth (1996) shows that the Hessians in equations () can be unstable if the signal and noise
operatorsL s andLn predict similar components of the data space. In this section I show that
the Spitz estimate of the signal PEF makes this overlap impossible.

The Spitz estimate

Equation (5) assumes that the signal PEF is known in advance. This argument is circular since
we are estimating the signal needed to computeS! Nonetheless, Spitz (1999) shows thatScan
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be estimated directly from the data PEFD and the noise PEFN. Again, we assume that we are
able to compute a model for the coherent noise we wish to attenuate. In equation, the signal
PEF can be estimated as follows:

S≈ D/N. (8)

In the next section, I show on a simple 1D example that this estimate makes the overlap of the
signal and noise operatorsL s andLn impossible

A 1D example

Now I consider the Z-transforms of the data, signal and noise PEFs for a 1D case. For the data
PEFD, I assume that the filter has the form

D(Z) = α(Z − Z1)(Z − Z2)(Z − Z3)(Z − Z4), (9)

with α = 1/(Z1Z2Z3Z4). The Zi correspond to the roots of the filter. In this example I
consider thatZ1 andZ2 are the roots for the noise andZ3 andZ4 the roots for the signal. Now
I assume that we have for the noise PEFN

N(Z) = β(Z − Z1)(Z − Z2), (10)

with β = 1/(Z1Z2). The Spitz estimate yields for the signal PEFS

S(Z) = γ (Z − Z3)(Z − Z4), (11)

with β = 1/(Z3Z4). We see that by construction, the signal and noise PEF annihilate different
parts of the data space and can’t overlap.

Now, If we assume that the noise PEF is a “bad” estimate of the noise with one erroneous
root, i.e,

N(Z) = β(Z − Z1)(Z − Z5), (12)

with β = 1/(Z1Z5), we find for the signal PEFS

S(Z) =
Z5

Z2Z3Z4

(Z − Z2)(Z − Z3)(Z − Z4)

Z − Z5
. (13)

Because the PEFs are minimum phase, we can write

1

Z − Z5
=

−1

Z5

1

1− Z/Z5
,

=
−1

Z5

(
1+

Z

Z5
+

Z2

Z2
5

+ ...

)
,

≈
−1

Z5

(
1+

Z

Z5

)
, (14)

≈
−1

Z2
5

(Z + Z5).
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Then we obtain for the signal PEF

S(Z) ≈
−1

Z2Z3Z4Z5
(Z − Z2)(Z − Z3)(Z − Z4)(Z + Z5). (15)

The wrong root in the noise PEF leaks in the signal PEF but with an opposite sign. Again,
the Spitz estimate makes it impossible for the signal and noise operators to overlap in the data
space. This simple example in 1D can be easily expendable in 2D via the helical coordinates
(Claerbout, 1998).

CONCLUSION

I have shown that the filtering and subtraction method are linked by a simple preconditioning
transformation. I have also demonstrated that the Spitz estimate for the signal PEF estimation
prevent stability issues when the Hessians in equation () are computed.
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