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Adaptive subtraction of multiples with the ¢'-norm

Antoine Guitton and Eric Verschutr

ABSTRACT

The estimation of shaping filters with tifé-norm as opposed to the#-norm leads to a
proper attenuation of multiples when significant amplitude discrepancies exist between
multiples and primaries. The actual method implemented is the fairly standard iteratively
re-weighted least-squares method which is an excellent approximatidn ®ynthetic
and field data results illustrate the advantages of thgorm.

INTRODUCTION

A classical approach for attenuating multiples consists of building a multiple model (Verschuur

et al., 1992) and adaptively subtracting this model from the multiple infested-data by estimat-
ing shaping filters (Dragoset, 1995; Liu et al., 2000; Rickett et al., 2001). The estimation of
the shaping filters is usually done in a least-squares sense making these filters relatively easy
to compute. In some cases, however, a least-squares criterion can lead to undesirable artifacts.
This happens when, for example, the relatively strong primaries are surrounded by multiples,
such that the filter tends to distort primary energy as well.

In this paper we show that the estimation of shaping filters with/theorm gives better
results than with thé2-norm when multiples and primaries have noticeable amplitude dif-
ferences. We first illustrate this with a simple 1D problem that highlights the limits of the
least-squares approach. In a second synthetic example, we attenuate internal multiples and
show that the*-norm gives far better results than daés To finish, we utilize shaping filters
on a multiple contaminated gather from a seismic survey showing thattherm leads to a
substantial attenuation of the multiples.

A SIMPLE 1D PROBLEM

In this section, we demonstrate on a 1D problem that the attenuation of multiples with least-

squares adaptive filtering is not effective when amplitude differences exist between primaries
and multiples. This simple example helps us to better understand the behavior of our adaptive
scheme in more complicated cases.
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Shaping filters and the¢?-norm

h This section illustrates some limitations of ttfenorm for the estimation of shaping filters.

In figure 1, we display a very simple 1D problem. On the top we have four events correspond-
ing to one primary (on the left) and three multiples (on the right). Note that the primary has
higher amplitude than the multiples. On the bottom we show a multiple model that exactly
corresponds to the real multiples. Our goal is to estimate one shapind fiti@ minimizes

the objective function

e(f) = [d — Mf |3, (1)

whereM is the matrix representing the convolution with the time series for the multiple model
(Figure 1b) andl the time series for the data (Figure 1a).

Now, if we estimate the filtef with enough degrees of freedom (enough coefficients) to
minimize equation (1), we obtain for the signal Figure 2a, and for the noise Figure 2b. The
estimated signal does not resemble the primary in Figure 1a. We show the corresponding
shaping filter in Figure 3. This filter is not the single spikdag = O that we desire. The
problem stems from the least-squares criterion which yields an estimated signal that has, by
definition, minimum energy. In this 1D case, the total energy in the estimated signal (Fig-
ure 2a) ise = 2.4, which is less than the total energy of the primary alene 4). This is the
fundamental problem if we use tfié-norm to estimate the shaping filter. In the next section,
we show that thé' norm should be used if amplitude differences exist between primaries and
multiples.
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Figure 1: (a) The data with one primary on the left, and three multiples on the right. (b) The
multiple model that we want to adaptively subtract from (@htoinel-datmy[ER]
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Figure 2: (a) The signal estimated with ttfenorm. (b) The noise estimated with tbnorm.
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Figure 3: Shaping filter estimated for
the 1D problem with the¢?-norm.
This filter is not a single spike at

lag = 0. |antoinel-filterl2 [ER]
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Shaping filters and the¢*-norm

We prove that thé*-norm solves the problem highlighted in the preceding section. Now our
goal is to estimate one shaping filfathat minimizes the objective function

e(f) = |d —Mfy. (2)

To achieve this, the shaping filter is estimated iteratively using a nonlinear conjugate gradi-
ent solver (NLCG) as described in Claerbout and Fomel (2001). The objective function we
actually minimize is

e(f) = |W(d — Mf)|)3, ©)

with

W = diag < (4)

_
(L+r2/er)y4 )

wherer; is the residual for one component of the data space,caadonstant we choose

a priori. Equation (3) is minimized with the standard iteratively re-weighted least-squares
approach (Nichols (1994); Bube and Langan (1997); Guitton (2000)) The objective function
in equation (3) amounts to thié measure when /¢ is large and amounts to thé measure
whenr; /e << 1 with a smooth transition between the two.

In Figure 4, we display the result of the adaptive subtraction whed'#merm is utilized
to estimate the shaping filter [equation (3) with a smhllThe estimated signal in Figure 4ais
perfect, and so is the estimated noise. Itis easy to check that the energy in Figeiee 2pig
less than the energy in Figure 2a=£ 3.2) if we use th&! norm. Figure 5 shows the shaping
filter associated with thé'-norm. This filter is a spike dag = 0. This simple 1D example
demonstrates that the should be utilized each time significant amplitude differences exist
between multiples and primaries. In the next section, we show another synthetic example
where internal multiples are attenuated.

ATTENUATION OF INTERNAL MULTIPLES

In this section we illustrate the efficiency of thienorm when internal multiples are attenuated
in 2D.

The synthetic data

Figure 6a shows a synthetic shot gather for a 1D medium. This gather is corrupted with
internal multiples only. In Figure 6b, we display the internal multiple model obtained using

the CFP approach (Berkhout and Verschuur, 1999). This internal multiple model is perfect
and could be directly subtracted from the data in Figure 6a. Note that the amplitude of the
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Figure 4: (a) The signal estimated with thlenorm. (b) The noise estimated with tbkenorm.
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Figure 5: Shaping filter estimated for
the 1D problem with the¢*-norm.
This filter is a single spike aag = 0.
lantoinel-filterl1[ER]
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internal multiples is significantly less than the amplitude of the primaries, makirig-therm
unsuitable for estimating the shaping filters. Figure 7 displays the histograms of both the data
and the internal multiples. The narrow peak of the noise indicates that-therm should be

used.

l'race number 'race number

100 200 300 400 100 200 300 400

(b)

Figure 6: (a) A synthetic shot gather infested with internal multiples. (b) The internal multiples
model obtained using the CFP technology. This model matches the internal multiples in (a).

[ER]

Adaptive filtering with non-stationary helical filters

To handle the inherent non-stationarity of seismic data, we estimate a filter bank of non-
stationary filters using helical boundary conditions (Claerbout, 1998). This approach has been
successfully utilized by Rickett et al. (2001) to attenuate surface-related multiples. We use
a NLCG solver with the'-norm and a standard conjugate gradient solver with/fagorm.

The filter coefficients vary smoothly across the output space thanks to a preconditioning of the
problem (Rickett et al., 2001). In the following results, the non-stationary filters are 1D. We
estimate the same number of coefficients per filter withttaeand¢*-norm.

Adaptive subtraction results

Figure 8a shows the estimated primaries when¢fhrorm is used to compute the shaping
filters. Figure 8b displays the estimated internal multiples. As expected, because of the am-
plitude differences between the signal (primaries) and the noise (multiples), the adaptive sub-
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Figure 7: Histograms of the input
data (Figure 6a) and of the noise
(Figure 6b).  The density func-
tion of the noise is much narrower
than for the data. The/t-norm
should be used to estimate the signal.
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traction fails and we retrieve the behavior explained in the preceding section with the 1D
example. Now, in Figure 9, we see the beneficial effects ofttheorm. Figure 9a shows

the estimated primaries and Figure 9b the estimated multiples. The noise subtracted almost
perfectly matches the internal multiple model in Figure 6b, as anticipated.

POSTSTACK LAND DATA MULTIPLE REMOVAL EXAMPLE

In this section we attenuate in the poststack domain surface-related multiples with shaping
filters that we estimate with th&?- and ¢'-norm. These filters are non-stationary. Figure
10a shows the multiple-infested data. Figure 10b displays the multiple model computed with
the Delft modeling approach (Kelamis et al., 1999). Note that for this gather, the amplitude
differences between the primaries and the multiples are not very strong. Our goal is to illustrate
the use of thé'-norm in a more general case when surface-related multiples are present in the
data. We specifically focus on the event at 1.6s in Figure 10. This event is a primary that we
want to preserve during the subtraction.

Figures 12 displays the estimated signal when the non-stationary shaping filters are com-
puted with the¢? and¢t-norm. The amplitude of the primary at 1.6s is well preserved with
the ¢*-norm in Figure 11a. However, the amplitude of this primary is attenuated witéthe
norm as displayed in Figure 11b. Figure 10 shows a comparison between the subtracted noise
with the ¢! (Figure 10a) and thé?-norm (Figure 10b). We conclude that tteenorm tends to
subtract too much energy.

This last example proves that the estimation of shaping filters can always be done with the
¢-norm. The good thing about our inversion scheme and the objective function in equation
(3) is that only one parametes)(controls thet* — ¢2 behavior. Thus we can decide to switch
from one norm to another very easily. In Figure 13, | show a histogram of the input data and
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Figure 8: (a) The estimated primaries with #tfenorm. (b) The estimated internal multiples
with the ¢2-norm. Ideally, (b) should look like Figure 6b, but it does n@intoinel-interl2
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Figure 9: (a) The estimated primaries with tHenorm. (b) The estimated internal multiples
with the ¢-norm. Beside some edge-effects, (b) resembles closely Figure 6b. The adaptive

subtraction worked very wellantoinel-interl1[ER]
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of the estimated noise with thi¢ and¢2-norms. The theory predicts that the distribution of
the £2 result should be gaussian and that distribution oftheesult should be exponential.
Figure 13 corroborates this.
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Figure 10: (a) Stack infested with multiples. (b) The multiple model computed with the Delft
modeling approach. The subtraction is done poststackoinel-win3[ER]

PRESTACK LAND DATA MULTIPLE REMOVAL EXAMPLE

The above methodology has also been tested on a shot record from a land data survey. The
preprocessing and multiple prediction is described by Kelamis et al. (1999). | display in Figure
14a the selected shot record. Figure 15a shows the predicted multiples. Note that these multi-
ples are the ones that are directly generated by the shot record based convolutions (Berkhout
and Verschuur, 1997) and no adaptation has been applied yet.¢Batid ¢! adaptive sub-
traction has been carried out for this data. The resulting records are displayed in Figures 14b
and c, respectively. The removed multiples are shown in Figures 15b and c.

Figures 15b and 15c demonstrate that the multiples are better attenuated witmtren
for long offsets. Although the truth cannot be revealed from these results, it appears that the
¢* results are more reliable.
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Figure 11: (a) The estimated primaries withnorm adaptive subtraction. (b) The estimated

primaries with¢2-norm subtraction. The primary at 1.6s is very attenuated witftheorm.
The ¢! technique preserves its amplitude bettantoinel-win[ER,M]
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Figure 12: (a) The estimated multiples with thlenorm subtraction. (b) The estimated mul-
tiples with the¢?-norm subtraction. Thé?-norm tends to over-fit some multiples that creates

some leaking of primaries in the estimated nojiaetoinel-win2[ER,M]
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Figure 14: Example of adaptive multiple subtraction for land data. a) One selected shot record
from a land survey. b) Estimated signal aftéradaptive subtraction. c) Estimated signal after
¢! adaptive subtractionantoinel-comp.s/4ER,M]
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Figure 15: a) Predicted multiples for Figure 14a. b) Removed multiples &rithdaptive
subtraction. c) Removed multiples with adaptive subtraction. Far offset multiples are better
attenuated with thé*-norm between 1.2 and 1.8 secod@toinel-comp.n.HER,M]

CONCLUSION

Significant amplitude differences between signal and noise maké&therm an unsuitable
choice to estimate shaping filters. We showed thatthgorm should always be considered in
these circumstances. In addition, applications to real data with surface-related multiples tend
to prove that thé'-norm should also be considered in the simplest cases.
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