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Multidimensional imaging condition for shot profile migration

Alejandro A. Valenciano, Biondo Biondi, and Antoine Guitton

ABSTRACT

Conventional shot profile migration schemes determine the reflection strength at each sub-
surface point taking into account only the downgoing and the upgoing wavefields at that
location. Since events in the subsurface are not uncorrelated, a better imaging condition
could be one that makes use of the downgoing and upgoing wavefields in a neighborhood
of the point where the reflection strength is calculated. A generalized multidimensjonal
deconvolution imaging condition could be the solution to integrating information from
the neighboring points, but issues related with deconvolution stability still need to be
solved. An alternative to deconvolution may be a new regularized least squares imaging
condition. This could be a feasible approach since the regularization operator can favor a
predetermined distribution of the reflectivity. Improvements can be done in the conven-
tional industry imaging condition adding a spatially variant damping factor, even without
including information of the neighboring points.

INTRODUCTION

Shot profile migration includes three different steps: downgoing wavefield propagation, upgo-
ing wavefield backward propagation and imaging. The last step, imaging, is based on Claer-
bout’s imaging principle (Claerbout, 1971). According to this principle, a reflector exists at a

point where the upgoing and the downgoing wavefields coincide in time and space (Figure 1).

There are two distinct aspects behind this principle: the kinematic (coincidence in time
and space of upgoing and downgoing wavefields) and the dynamic (reflection strength at the
coincidence point). Conventional migration schemes (Jacobs, 1982) determine the reflection
strength in each subsurface point taking into account only the downgoing and the upgoing
wavefields at that location. But these approaches don’t consider that the reflectors in the sub-
surface are spatially correlated. We discuss a multidimensional imaging condition that makes
the reflectivity strength dependent on the downgoing and upgoing wavefields in a neighbor-
hood of the subsurface point.

Based on the equivalence of the deconvolution imaging condition with the exact solution
of the least squares fitting goal, we propose a regularization scheme for the imaging condition
that has the potential of including the previous knowledge of the image in the regularization
operator. This regularization approach has been used to steer the final image in least squares
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Figure 1: Reflector mapping imaging principle, note that the reflector exists at a point where
the upgoing and downgoing wavefields coincide in time and space. Taken from Claerbout
(1971) alejandrol-jon[NR]

inversion (Prucha and Biondi, 2002).

First, we explore a multidimensional deconvolution imaging condition. No clear results
were obtained using this approach yet, but it allows us to study the difficulties of multidimen-
sional deconvolution. Second, a least squares regularized scheme for the imaging condition is
stated.

Finally we test, in a synthetic experiment, a space variable damping factor to improve con-
ventional industry imaging condition. In this case we only consider point to point dependence
of the reflection strength.

MULTIDIMENSIONAL DECONVOLUTION IMAGING CONDITION

Claerbout (1971) expresses the reflector mapping principle by the formula

u(x,ztq)

%2 = ix 2t

1)
wherex is the horizontal coordinate, is the depth{y is the time at which the downgoing
waved(x,zty) and the upgoing wava(x, z,ty) coincide in time. This principle states that
for time equaly the reflectivity strengtin(x, z) depends only on the downgoing wave xat)

and on the upgoing wave at,@). No particular distribution is assumed for the reflectivity

in the horizontal direction or in depth. Neither a dependence of the reflectivity of the future
(wavefields anteceding) or of the past (wavefields precedifyg is assumed.
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Based on the imaging principle described in equation (1) we can propose a more gen-
eral imaging condition that makes the reflectivity iyZ) dependent on the downgoing and
upgoing wavefields in the neighborhood &fy), shown in Figure 2 .

This more general imaging condition can be stated by:

(2)

. U([X —ox,X+0x],[2— 02,2+ 07])
2= Xt: (X —ox, X+ oxh [Z— 07,2+ 7))

where the division symbol{) means 2-D deconvolution of the upgoing wavefield with the
downgoing wavefield in thex( z) plane. Thery,o; are small numbers that define a rectangular
neighborhoodX, y). This 2-D imaging condition states that there will be more than one point
in the downgoing wavefield and the upgoing wavefield contributing to the strength at the

point (x, y).

20x

Figure 2: Multidimensional imaging )
geometry alejandrol-cuboxfigNR]

To address the multidimensional deconvolution we can make use of the helix concept
(Claerbout, 1998). If we put the upgoing and the downgoing wavefields in helical coordinates,
we will be able to treat the multidimensional deconvolution as a 1-D deconvolution.

But deconvolution is not an easy task. To have a stable deconvolution wedrtedae
minimum phase, so an approximation of equation (2) could be

u
I =

— 3

o 3)
wheredm, can be computed in an helix by means of Wilson spectral factorization (Sava et al.,
1998) in spatial coordinates,(y) or by means of Kolmogoroff spectral factorization (Claer-
bout, 1976) in the Fourier domain.

Now, a new question arises: Does the new imaging condition formulation equation (3)
honor Claerbout (1971) imaging principle?

The answer to this question is no, equation (3) gives a shifted version of the image. The
minimum phase transformation produces a shift in spatial coordinates (This shift has to
be calculated to obtain a properly placed image.
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Some attempts were made to implement the anteceding procedure using Wilson spectral
factorization to obtain a minimum phase version of the downgoing wavefield. No convergence
of factorization results were obtained. More work needs to be done to understand the causes.

LEAST SQUARES IMAGING CONDITION

Changing deconvolution for convolution, a different imaging condition can be stated for each
time in terms of the following fitting goal:

Dr =u, (4)

whereD is a convolution matrix in which columns are downshifted versions of the downgoing
wavefieldd.

The least squares solution to this problem is
r=(D'D)"'Du.
A damped solution is usually used to guarariie to be invertible as in
r=(DD+&?)Du

wheree is a small positive number to guarantee no zerods ihdiagonal. This is equivalent
to the fitting goal

~ Dr—u 5)

0
0 elr,

&

wherel is the identity matrix that is used here as the regularization operator. Using this
regularization scheme we are adding to the denominator a constant value where it is needed
and where it is not.

As it is our intention to use the previous knowledge of how the image should be, we
could choose an smarter way to fill the zero valuesDofd diagonal. We can substitute the
regularization operator for one constructed with a priori information, using

O ~ Dr—u (6)

0 ~ &gAr

where our regularization operatér could be a steering filter (Clapp et al., 1997). Steering
filters can efficiently guide the solution toward a more geologically appealing form. This type
of filter has been used with success to smooth existing reflectors and fill shadow zones in least
squares inversion (Prucha and Biondi, 2002).
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SPACE VARIABLE DAMPING IN CONVENTIONAL IMAGING CONDITION

Conventional shot profile migration schemes determine the reflection strength at each subsur-
face point taking into account only the downgoing and the upgoing wavefields at that location.
Jacobs (1982) compares two different imaging conditions

r=>Y ud, ©)
t

and

ud
r= . 8
zt: d2 4 g2 ®
The first is one commonly used by the industry. It has the advantage of being robust, but has
the disadvantage of not computing the correct amplitudes. The second computes the correct
amplitudes (except for a damping fact)r but has the disadvantage of being unstable due to
zero division. That is why a damping factors needed.

We propose to add a mask function defined as

W:{ O if ud>a« )

1 otherwise

wherea can be variable in space.

Whenud has enough energy to contribute to the image, the damping fad@et to zero.
When factorud is small, the damping factor is kept to avoid zero division. Thus, the imaging
condition can be set as

ud
r= Z d2 +we2’ (10)
t

where the damping is now variable in space.

A simple synthetic was generated to test the preceding idea using wave equation model-
ing. Figure 3a shows the downgoing wave, and Figure 3b the upgoing wave, at a fixed time.
Figure 4 shows the mask used in this example.

Figure 5a shows the reflection strength calculated using the imaging condition stated in
equation (7). Figure 5b shows the reflection strength calculated using division of the upgoing
wavefieldu by the downgoing wavefield. Figure 5¢ shows the reflection strength calculated
using the imaging condition stated in equation (8), and Figure 5d shows the reflection strength
calculated using the imaging condition stated in equation (10). The advantage of Figure 5d's
result over the others is that it has the correct reflection strength value inside the masked area
and doesn't diverge outside it because of the damping factor.

In Figure 6 we compare the two imaging conditions stated in equations (8) and (10) inside
the masked area for two differeant We can see for the imaging condition stated in equation
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Figure 3: Wavefields at a fixed time. a) Downgoing wave, b) Upgoing wakejandro1-DU
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Figure 4. Mask used in equation (10). Zero at masked area and one out of the masked area.
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Figure 5: Comparison between four different imaging conditions a) Calculated by wavefield
multiplication equation (7), b) Calculated by wavefield divisianyd), c) Calculated using
constant damping equation (8), and d) Calculated using space variable damping equation (10).
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Figure 6: Comparison between imaging condition stated in equations (8) and (10) inside the
masked area. @)= 0.5, b)e =5,¢c)e =0.5,d)e =5 \ aIejandrol-comp_iMER]
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(10) that the reflection strength inside the masked area doesn’t change. This is an important
advantage of space variable damping imaging principle, because it let us to build an adaptive
mask dependent of the subsurface illumination.

We stack the reflection strength from 11 shots to see how the change observed in one shot
affects the final image. The result is shown in Figure 7. We can see imaging condition from
equation (10) gives the best resolution.
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Figure 7. Comparison between 11 shot stacks using three different imaging conditions,
a) equation (7), b) wavefield divisionu(d), c) equation (8), and d) equation (10).
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CONCLUSION

A generalized multidimensional deconvolution imaging condition could be the solution to in-
tegrating information from the neighboring points in the computation of reflection strength for
shot profile migration. However, issues related to deconvolution stability and proper place-
ment of the image still need to be solved. An alternative to deconvolution, stating a new
regularized least squares imaging condition, could be a feasible approach as the regularization
operator can be set to favor a predetermined spatial distribution.

We showed, in a synthetic experiment, that a spatial variant damping factor can improve
the resolution and amplitude preservation of the conventional industry imaging condition. The
damping factor can be related to reflector illumination, adding the damping factor where it is
really needed.
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