
Chapter 1

Choice of regularization and numerical

results

This chapter addresses the problem of choosing appropriate regularization and preconditioning

operators. Such a choice plays a crucially important role in iterative data regularization. I

discuss three strategies appropriate for different kinds of data:

1. Smoothly varying surfaces are regularized with recursive helical smoothers based on

the tension-spline theory.

2. The local plane-wave model is often suitable for characterizing different kinds of seis-

mic data. Such data are successfully regularized with plane-wave destructor filters.

3. Seismic reflection data exhibit additional degrees of predictability because of multi-

ple coverage. They can be regularized with finite-difference offset continuation filters.

Among the three methods being discussed, the offset continuation approach is the most

innovative. The theory behind it is explained in Chapter 6.

Combining the constructed regularization operatorD with the appropriate forward operatorL ,

discussed in Chapter??, we obtain a complete problem formulation in the form of system (??)

or (??). This chapter is the culmination of this dissertation. It contains final numerical experi-

ments that test and illustrate the main concepts developed in other chapters.
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REGULARIZING SMOOTH DATA WITH SPLINES IN TENSION

The method of minimum curvature is an old and ever-popular approach for constructing

smooth surfaces from irregularly spaced data (Briggs, 1974). The surface of minimum cur-

vature corresponds to the minimum of the Laplacian power or, in an alternative formulation,

satisfies the biharmonic differential equation. Physically, it models the behavior of an elastic

plate. In the one-dimensional case, the minimum curvature method leads to the natural cubic

spline interpolation (de Boor, 1978). In the two-dimensional case, a surface can be interpo-

lated with biharmonic splines (Sandwell, 1987) or gridded with an iterative finite-difference

scheme (Swain, 1976). According to the general optimization method, outlined in Chapter??,

I approach the gridding (data regularization) problem with an iterative least-squares optimiza-

tion scheme.

In most of the practical cases, the minimum-curvature method produces a visually pleasing

smooth surface. However, in cases of large changes in the surface gradient, the method can

create strong artificial oscillations in the unconstrained regions. Switching to lower-order

methods, such as minimizing the power of the gradient, solves the problem of extraneous

inflections, but also removes the smoothness constraint and leads to gradient discontinuities

(Fomel and Claerbout, 1995). A remedy, suggested by Schweikert (1966), is known assplines

in tension. Splines in tension are constructed by minimizing a modified quadratic form that

includes a tension term. Physically, the additional term corresponds to tension in elastic plates

(Timoshenko and Woinowsky-Krieger, 1968). Smith and Wessel (1990) developed a practical

algorithm of 2-D gridding with splines in tension and implemented it in the popular GMT

software package.

In this section, I develop an application of helical preconditioning to gridding with splines

in tension. Following the results of Chapter??, I accelerate an iterative data regularization al-

gorithm by recursive preconditioning with multidimensional filters defined on a helix (Claer-

bout, 1998a). The efficient Wilson-Burg spectral factorization constructs a minimum-phase

filter suitable for recursive filtering.

I introduce a family of 2-D minimum-phase filters for different degrees of tension. The

filters are constructed by spectral factorization of the corresponding finite-difference forms. In
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the case of zero tension (the original minimum-curvature formulation), we obtain a minimum-

phase version of the Laplacian filter. The case of infinite tension leads to spectral factorization

of the Laplacian and produces the knownhelical derivativefilter (Claerbout, 1999; Zhao,

1999).

The tension filters can be applied not only for data regularization but also for precondi-

tioning in any estimation problems with smooth models. Tomographic velocity estimation is

an obvious example of such an application (Woodward et al., 1998).

Mathematical theory of splines in tension

The traditional minimum-curvature criterion implies seeking a two-dimensional surfacef (x, y)

in regionD, which corresponds to the minimum of the Laplacian power:∫∫
D

∣∣∇2 f (x, y)
∣∣2 dx dy, (1.1)

where∇
2 denotes the Laplacian operator:∇

2
=

∂2

∂x2 +
∂2

∂y2 .

Alternatively, we can seekf (x, y) as the solution of the biharmonic differential equation

(∇2)2 f (x, y) = 0 . (1.2)

Equation (1.2) corresponds to the normal system of equations in the least-square optimization

problem (??), the Laplacian operator beingD, and the surfacef (x, y) corresponding to the

unknown modelm. Fung (1965) and Briggs (1974) derive equation (1.2) directly from (1.1)

with the help of the variational calculus and Gauss’s theorem.

Formula (1.1) approximates the strain energy of a thin elastic plate (Timoshenko and

Woinowsky-Krieger, 1968). Taking tension into account modifies both the energy formula (1.1)

and the corresponding equation (1.2). Smith and Wessel (1990) suggest the following form of

the modified equation:

[
(1−λ)(∇2)2

−λ(∇2)
]

f (x, y) = 0 , (1.3)
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where the tension parameterλ ranges from 0 to 1. The corresponding energy functional is∫∫
D

[
(1−λ)

∣∣∇2 f (x, y)
∣∣2 + λ |∇ f (x, y)|2

]
dx dy. (1.4)

Zero tension leads to the biharmonic equation (1.2) and corresponds to the minimum curvature

construction. The case ofλ = 1 corresponds to infinite tension. Although infinite tension is

physically impossible, the resulting Laplace equation does have the physical interpretation of a

steady-state temperature distribution. An important property of harmonic functions (solutions

of the Laplace equation) is that they cannot have local minima and maxima in the free regions.

With respect to interpolation, this means that, in the case ofλ = 1, the interpolation surface

will be constrained to have its local extrema only at the input data locations.

Norman Sleep (2000, personal communication) points out that if the tension termλ∇2 is

written in the form∇ · (λ∇), we can follow an analogy with heat flow and electrostatics and

generalize the tension parameterλ to a local function depending onx andy. In a more general

form,λ could be a tensor allowing for an anisotropic smoothing in some predefined directions

similarly to Clapp’s steering-filter method (Clapp et al., 1997).

To interpolate an irregular set of data values,fk at points (xk, yk), we need to solve equa-

tion (1.3) under the constraint

f (xk, yk) = fk , (1.5)

which translates to equation (??) in the linear operator notation. Using the results of Chap-

ter ??, we can accelerate the solution by recursive filter preconditioning. IfA is the discrete

filter representation of the differential operator in equation (1.3), and we can find a minimum-

phase filterD whose autocorrelation is equal toA, then an appropriate preconditioning op-

erator is a recursive inverse filtering with the filterD. Formulating the problem in helical

coordinates (Claerbout, 1998a,b) enables both the spectral factorization ofA and the inverse

filtering with D.
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Finite differences and spectral factorization

In the one-dimensional case, one finite-difference representation of the squared Laplacian is as

a centered 5-point filter with coefficients (1,−4,6,−4,1). On the same grid, the Laplacian op-

erator can be approximated to the same order of accuracy with the filter (1/12,−4/3,5/2,−4/3,1/12).

Combining the two filters in accordance with equation (1.3) and performing a spectral fac-

torization with one of the standard methods (Claerbout, 1976, 1992), we can obtain a 3-

point minimum-phase filter suitable for inverse filtering. Figure 1.1 shows a family of one-

dimensional minimum-phase filters for different values of the parameterλ. Figure 1.2 demon-

strates the interpolation results obtained with these filters on a simple one-dimensional syn-

thetic. As expected, a small tension value (λ = 0.01) produces a smooth interpolation, but

creates artificial oscillations in the unconstrained regions around sharp changes in the gradi-

ent. The value ofλ = 1 leads to linear interpolation with no extraneous inflections but with

discontinuous derivatives. Intermediate values ofλ allow us to achieve a compromise: a

smooth surface with constrained oscillations.

Figure 1.1: One-dimensional
minimum-phase filters for different
values of the tension parameterλ.
The filters range from the second
derivative for λ = 0 to the first
derivative for λ = 1. regul-otens
[ER]

To design the corresponding filters in two dimensions, I define the finite-difference repre-

sentation of operator (1.3) on a 5-by-5 stencil. The filter coefficients are chosen with the help

of the Taylor expansion to match the desired spectrum of the operator around the zero spatial

frequency. The matching conditions lead to the following set of coefficients for the squared

Laplacian:
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Figure 1.2: Interpolating a simple one-dimensional synthetic with recursive filter precondi-
tioning for different values of the tension parameterλ. The input data are shown on the top.
The interpolation results range from a natural cubic spline interpolation forλ = 0 to linear
interpolation forλ= 1. regul-int [ER,M]
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The Laplacian representation with the same order of accuracy has the coefficients
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For the sake of simplicity, I assumed equal spacing in thex andy direction. The coefficients

can be easily adjusted for anisotropic spacing. Figures 1.3 and 1.4 show the spectra of the

finite-difference representations of operator (1.3) for the different values of the tension param-

eter. The finite-difference spectra appear to be fairly isotropic (independent on angle in polar

coordinates). They match the exact expressions at small frequencies.
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Figure 1.3: Spectra of the finite-difference splines-in-tension schemes for different values of
the tension parameter (contour plots).regul-specc[CR]

Regarding the finite-difference operators as two-dimensional auto-correlations and apply-

ing the efficient Wilson-Burg method of spectral factorization described in Chapter??, I obtain

two-dimensional minimum-phase filters suitable for inverse filtering. The exact filters contain
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Figure 1.4: Spectra of the finite-difference splines-in-tension schemes for different values
of the tension parameter (cross-section plots). The dashed lines show the exact spectra for
continuous operators.regul-specp[CR]

many coefficients, which rapidly decrease in magnitude at a distance from the first coefficient.

For reasons of efficiency, it is advisable to restrict the shape of the filter so that it contains only

the significant coefficients. Keeping all the coefficients that are 1000 times smaller in mag-

nitude than the leading coefficient creates a 53-point filter forλ = 0 and a 35-point filter for

λ = 1, with intermediate filter lengths for intermediate values ofλ. Keeping only the coeffi-

cients that are 200 times smaller that the leading coefficient, we obtain 25- and 16-point filters

for respectivelyλ= 0 andλ= 1. The restricted filters do not factor the autocorrelation exactly

but provide an effective approximation of the exact factors. As outputs of the Wilson-Burg

spectral factorization process, they obey the minimum-phase condition.

Figure 1.5 shows the two-dimensional filters for different values ofλ and illustrates inverse

recursive filtering, which is the essence of the helix method (Claerbout, 1998a,b, 1999). The

case ofλ= 1 leads to the filter known ashelix derivative(Claerbout, 1999; Zhao, 1999). The

filter values are spread mostly in two columns. The other boundary case (λ = 0) leads to a

three-column filter, which serves as the minimum-phase version of the Laplacian. This filter

has been shown previously in Figure??. As expected from the theory, the inverse impulse

response of this filter is noticeably smoother and wider than the inverse response of the helix

derivative. Filters corresponding to intermediate values ofλ exhibit intermediate properties.
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Figure 1.5: Inverse filtering with the tension filters. The left plots show the inputs composed
of filters and spikes. Inverse filtering turns filters into impulses and turns spikes into inverse
filter responses (middle plots). Adjoint filtering creates smooth isotropic shapes (right plots).
The tension parameter takes on the values 0.3, 0.7, and 1 (from top to bottom). The case of
zero tension corresponds to Figure??. regul-splin [ER,M]
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Theoretically, the inverse impulse response of the filter corresponds to the Green’s function of

equation (1.3). The theoretical Green’s function for the case ofλ= 1 is

G =
1

2π
lnr , (1.6)

wherer is the distance from the impulse:r =

√
(x − xk)2

+ (y− yk). In the case ofλ= 0, the

Green function is smoother at the origin:

G =
1

8π
r 2 lnr . (1.7)

The theoretical Green’s function expression for an arbitrary value ofλ is unknown, but we can

assume that its smoothness lies between the two boundary conditions.

In the next subsection, I illustrate an application of helical inverse filtering to a two-

dimensional interpolation problem.

Regularization example

I chose an environmental Galilee dataset (Fomel and Claerbout, 1995; Claerbout, 1999) for a

simple illustration of smooth data regularization. The data were collected on a bottom sound-

ing survey of the Sea of Galilee in Israel (Ben-Avraham et al., 1990). The data contain a

number of noisy, erroneous and inconsistent measurements, which present a challenge for the

traditional estimation methods.

Figure 1.6 shows the data after a nearest-neighbor binning to a regular grid. The data were

then passed to an interpolation program to fill the empty bins. The results (for different values

of λ) are shown in Figures 1.7 and 1.8. Interpolation with the minimum-phase Laplacian

(λ= 0) creates a relatively smooth interpolation surface but plants artificial “hills” around the

edge of the sea. This effect is caused by large gradient changes and is similar to the sidelobe

effect in the one-dimensional example (Figure 1.2). It is clearly seen in the cross-section plots

in Figure 1.8. The abrupt gradient change is a typical case of a shelf break. It is caused by a

combination of sedimentation and active rifting. Interpolation with the helix derivative (λ= 1)



11

is free from the sidelobe artifacts, but it also produces an undesirable non-smooth behavior in

the middle part of the image. As in the one-dimensional example, intermediate tension allows

us to achieve a compromise: smooth interpolation in the middle and constrained behavior at

the sides of the sea bottom.

Figure 1.6: The Sea of Galilee dataset
after a nearest-neighbor binning. The
binned data is used as an input for the
missing data interpolation program.
regul-mesh[ER]

Smooth surfaces are rarely encountered in the practice of seismic exploration. In the next

section, I develop a regularization operator suitable for characterizing more typical models of

seismic data.

REGULARIZING LOCAL PLANE WAVES WITH PLANE-WAVE DESTRUCTOR

FILTERS

Plane-wave destructor filters, introduced by Claerbout (1992), serve the purpose of character-

izing seismic images by a superposition of local plane waves. They are constructed as finite-

difference stencils for the plane-wave differential equation. In many cases, a local plane-wave
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Figure 1.7: The Sea of Galilee dataset after missing data interpolation with helical precondi-
tioning. Different plots correspond to different values of the tension parameter. An east-west
derivative filter was applied to illuminate the surface.regul-gal [ER,M]
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Figure 1.8: Cross-sections of the Sea of Galilee dataset after missing-data interpolation with
helical preconditioning. Different plots correspond to different values of the tension parameter.
regul-cross[ER]
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model is a very convenient representation of seismic data. Unfortunately, early experiences

with applying plane-wave destructors for interpolating spatially aliased data showed that they

performed poorly in comparison with that of industry-standardF-X prediction-error filters

(Spitz, 1991).

For each given frequency, anF-X prediction-error filter (PEF) can be thought of as aZ-

transform polynomial. The roots of the polynomial correspond precisely to predicted plane

waves (Canales, 1984). Therefore,F-X PEFs simply represent a spectral (frequency-domain)

approach to plane-wave destruction. This powerful and efficient approach is, however, not the-

oretically adequate when the plane-wave slopes or the boundary conditions vary both spatially

and temporally.

MultidimensionalT-X prediction-error filters (Claerbout, 1992, 1999) share the same pur-

pose of predicting local plane waves. They work well with spatially aliased data and allow for

both temporal and spatial variability of the slopes. In practice, however,T-X filters appear

as very mysterious objects, because their construction involves many non-intuitive parame-

ters. The user needs to choose a raft of parameters, such as the number of filter coefficients,

the gap and the exact shape of the filter, the size, number, and shape of local patches for

filter estimation, the number of iterations, and the amount of regularization. Recently devel-

oped techniques for handling non-stationary PEFs (Crawley et al., 1998, 1999; Clapp et al.,

1999; Crawley, 1999), have demonstrated an excellent performance in a variety of applica-

tions (Brown et al., 1999; Clapp and Brown, 2000; Crawley, 2000), but the large number of

adjustable parameters still requires a significant level of human interaction and remains the

drawback of the method.

Clapp et al. (1997) have recently revived the original plane-wave destructors for precon-

ditioning tomographic problems with a predefined dip field (Clapp et al., 1998; Clapp and

Biondi, 1998, 2000). The filters were namedsteering filtersbecause of their ability to steer

the solution in the direction of the local dips.

In this section, I revisit Claerbout’s original technique of finite-difference plane-wave de-

struction. First, I develop an approach for increasing the accuracy and dip bandwidth of the
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method. Applying the improved filter design to several data regularization problems, I dis-

cover that the finite-difference filters often perform as well as or even better thanT-X PEFs.

At the same time, they keep the number of adjustable parameters to a minimum, and the only

quantity we estimate has a clear physical meaning of the local plane-wave slope.

High-order plane-wave destructors

Following the physical model of local plane waves, we can define the mathematical basis of

the plane-wave destructor filters as the local plane differential equation

∂P

∂x
+σ

∂P

∂t
= 0 , (1.8)

whereP(t ,x) is the wave field, andσ is the local slope, which may also depend ont andx. In

the case of a constant slope, equation (1.8) has the simple general solution

P(t ,x) = f (t −σ x) , (1.9)

where f (t) is an arbitrary waveform. Equation (1.9) is nothing more than a mathematical

description of a plane wave.

If the slopeσ does not depend ont , we can transform equation (1.8) to the frequency

domain, where it takes the form of the ordinary differential equation

dP̂

dx
+ iωσ P̂ = 0 (1.10)

and has the general solution

P̂(x) = P̂(0)eiωσ x , (1.11)

where P̂ is the Fourier transform ofP. The complex exponential term in equation (1.11)

simply represents a shift of at-trace according to the slopeσ and the trace separationx.

In the frequency domain, the operator for transforming the trace at positionx − 1 to the
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neighboring trace at positionx is a multiplication byeiωσ . In other words, a plane wave can

be perfectly predicted by a two-term prediction-error filter in theF-X domain:

a0 P̂(x)+a1 P̂(x −1) = 0 , (1.12)

wherea0 = 1 anda1 = −e−iωσ . The goal of predicting several plane waves can be accom-

plished by cascading several two-term filters. In fact, anyF-X prediction-error filter repre-

sented in theZ-transform notation as

A(Zx) = 1+a1Zx +a2Z2
x +·· ·+aN ZN

x (1.13)

can be factored into a product of two-term filters:

A(Zx) =

(
1−

Zx

Z1

)(
1−

Zx

Z2

)
· · ·

(
1−

Zx

ZN

)
, (1.14)

whereZ1, Z2, . . . , ZN are the zeroes of polynomial (1.13). According to equation (1.12), the

phase of each zero corresponds to the slope of a local plane wave multiplied by the frequency.

Zeroes that are not on the unit circle carry an additional amplitude gain not included in equa-

tion (1.10).

In order to incorporate time-varying slopes, we need to return to the time domain and

look for an appropriate analog of the phase-shift operator (1.11) and the plane-prediction fil-

ter (1.12). An important property of plane-wave propagation across different traces is that the

total energy of the transmitted wave stays invariant throughout the process. This property is

assured in the frequency-domain solution (1.11) by the fact that the spectrum of the complex

exponentialeiωσ is equal to one. In the time domain, we can reach an equivalent effect by

using an all-pass digital filter. In theZ-transform notation, convolution with an all-pass filter

takes the form

P̂x+1(Zt ) = P̂x(Zt )
B(Zt )

B(1/Zt )
, (1.15)

whereP̂x(Zt ) denotes theZ-transform of the corresponding trace, and the ratioB(Zt )/B(1/Zt )

is an all-pass digital filter approximating the time-shift operator (1.12). In finite-difference
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terms, equation (1.15) represents an implicit finite-difference scheme for solving equation (1.8)

with the initial conditions at a constantx. The coefficients of filterB(Zt ) can be determined,

for example, by fitting the filter frequency response at small frequencies to the response of the

phase-shift operator. The Taylor series technique (equating the coefficients of the Taylor series

expansion around zero frequency) yields the expression

B3(Zt ) =
(1−σ )(2−σ )

12
Z−1

t +
(2+σ )(2−σ )

6
+

(1+σ )(2+σ )

12
Zt (1.16)

for a three-point centered filterB3(Zt ) and the expression

B5(Zt ) =
(1−σ )(2−σ )(3−σ )(4−σ )

1680
Z−2

t +
(4−σ )(2−σ )(3−σ )(4+σ )

420
Z−1

t +

(4−σ )(3−σ )(3+σ )(4+σ )

280
+

(4−σ )(2+σ )(3+σ )(4+σ )

420
Zt +

(1+σ )(2+σ )(3+σ )(4+σ )

1680
Z2

t (1.17)

for a five-point centered filterB5(Zt ). It is easy to generalize these expressions to longer filters.

Figure 1.9 shows the phase of the all-pass filtersB3(Zt )/B3(1/Zt ) and B5(Zt )/B5(1/Zt ) for

two values of the slopeσ in comparison with the exact linear function of equation (1.11).

As expected, the phases match the exact line at low frequencies, and the accuracy of the

approximation increases with the length of the filter.

Figure 1.9: Phase of the implicit finite-difference shift operators in comparison with the exact
solution. The left plot corresponds toσ = 0.5, the right plot toσ = 0.8. regul-phase[CR]
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In two dimensions, equation (1.15) transforms to the prediction equation analogous to (1.12)

with the 2-D prediction filter

A(Zt , Zx) = 1− Zx
B(1/Zt )

B(Zt )
. (1.18)

In order to characterize several plane waves, we can cascade several filters of the form (1.18)

in a manner similar to that of equation (1.14). In the examples of this chapter, I use a modified

version of the filterA(Zt , Zx), namely the filter

C(Zt , Zx) = A(Zt , Zx)B(Zt ) = B(Zt )− Zx B(1/Zt ) , (1.19)

which avoids the need for polynomial division. In case of the 3-point filter (1.16), the 2-D

filter (1.19) has exactly six coefficients, with the secondt column being a reversed copy of the

first column. When filter (1.19) is used in data regularization problems, it can occasionally

cause undesired high-frequency oscillations in the solution, resulting from the near-Nyquist

zeroes of the polynomialB(Zt ). The oscillations are easily removed in practice with appro-

priate low-pass filtering.

In the next subsection, I address the problem of estimating the local slopeσ with filters

having form (1.19). Estimating the slope is a necessary step for applying the finite-difference

plane-wave filters on real data.

Slope estimation

Let us denote byC(σ ) the operator of convolving the data with the 2-D filterC(Zt , Zx) of

equation (1.19) assuming the local slopeσ . In order to determine the slope, we can define the

least-squares goal

C(σ )d ≈ 0 , (1.20)

whered is the known data and the approximate equality implies that the solution is found by

minimizing the power of the left-hand side. Equations (1.16) and (1.17) show that the slopeσ

enters in the filter coefficients in an essentially non-linear way. However, one can still apply
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the linear iterative optimization methods by an analytical linearization of equation (1.20). The

linearization (also known as the Newton iteration) implies solving the linear system

C′(σ0)1σ d+C(σ0)d ≈ 0 (1.21)

for the slope increment1σ . Hereσ0 is the initial slope estimate, andC′(σ ) is a convolution

with the filter, obtained by differentiating the filter coefficients ofC(σ ) with respect toσ .

After system (1.21) is solved, the initial slopeσ0 is updated by adding1σ to it, and one can

solve the linear problem again. Depending on the starting solution, the method may require

several non-linear iterations to achieve an acceptable convergence. The described linearization

approach is similar in idea to tomographic velocity estimation (Nolet, 1987).

In the case of a time- and space-varying slopeσ , system (1.21) may lead to undesirably

rough slope estimates. Moreover, the solution will be undefined in regions of unknown or

constant data. Both these problems are solved by adding a regularization (styling) goal to

system (1.21). The additional goal takes the form analogous to (??):

εD1σ ≈ 0 , (1.22)

whereD is an appropriate roughening operator andε is a scaling coefficient. For simplicity,

I choseD to be the gradient operator. An alternative choice would be to treat local dips

as smooth data and to apply to them the tension-spline preconditioning technique from the

previous section.

In theory, estimating two different slopesσ1 andσ2 from the available data is only marginally

more complicated than estimating a single slope. The convolution operator becomes a cascade

of C(σ1) andC(σ2), and the linearization yields

C′(σ1)C(σ2)1σ1d+C(σ1)C′(σ2)1σ2d+C(σ1)C(σ2)d ≈ 0 . (1.23)
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The regularization condition should now be applied to both1σ1 and1σ2:

εD1σ1 ≈ 0 ; (1.24)

εD1σ2 ≈ 0 . (1.25)

The solution will obviously depend on the initial values ofσ1 andσ2, which should not be

equal to each other. System (1.23) is generally underdetermined, because it contains twice as

many estimated parameters as equations, but an appropriate choice of the starting solution and

the additional regularization (1.24-1.25) allow us to arrive at a practical solution.

The application examples of the next subsection demonstrate that when the system of

equations (1.23-1.22) or (1.23-1.25) are optimized in the least-squares sense in a cycle of sev-

eral linearization iterations, it leads to smooth and reliable slope estimates. The regularization

conditions (1.22) and (1.24-1.25) assure a smooth extrapolation of the slope to the regions of

unknown or constant data.

Examples of data regularization

In this subsection, I examine the performance of the finite-difference plane-destruction filters

on several test applications.

Gap interpolation

Missing-data interpolation was introduced in Chapter??as a simple case of data regularization

when the input data are already binned to regular grid locations but with remaining uncovered

gaps.

Figure 1.10 shows a simple synthetic example of gap interpolation from Claerbout (1999).

The input data has a large elliptic gap cut out in a two plane-wave model. I estimate both

dip components from the input data by using the method of equations (1.23-1.25). The initial

values for the two local dips were 1 and 0, and the estimated values are close to the true

dips of 2 and -1 (the third and fourth plots in Figure 1.10.) Although the estimation program
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does not make any assumption about dip being constant, it correctly estimates nearly constant

values with the help of regularization equations (1.24-1.25). The rightmost plot in Figure 1.10

shows the result of gap interpolation with a two-plane local plane-wave destructor. The result

is nearly ideal and compares favorably with the analogous result of theT-X PEF technique

(Claerbout, 1999).

Figure 1.10: Synthetic gap interpolation example. From left to right: original data, input data,
first estimated dip, second estimated dip, interpolation output.regul-hole [ER]

Figure 1.11 is another benchmark gap interpolation example from Claerbout (1999), al-

ready featured in Chapter?? (Figures??-??). The data are ocean-depth measurements from

one day SeaBeam acquisition. The data after normalized binning are shown in the left plot

of Figure 1.11. From the known part of the data, we can partially see a certain elongated

and faulted structure on the ocean floor created by fractures around an ocean ridge. Esti-

mating a smoothed dominant dip in the data and interpolating with the plane-wave destructor

filters produces the image in the right plot of Figure 1.11. The V-shaped acquisition pattern

is somewhat visible in the interpolation result, which might indicate the presence of a fault.

Otherwise, the result is both visually pleasing and in full agreement with the input data. Clapp

(2000b) uses the same data example to obtain multiple statistically equivalent realizations of
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the interpolated data.

Figure 1.11: Depth of the ocean from SeaBeam measurements. Left plot: after binning. Right
plot: after binning and gap interpolation.regul-seab[ER,M]

A 3-D interpolation example is shown in Figure 1.12. The input data resulted from a pas-

sive seismic experiment (Cole, 1995) and originally contained many gaps because of instru-

ment failure. I interpolated the 3-D gaps with a pair of two orthogonal plane-wave destructors

in the manner proposed by Schwab and Claerbout (1995) forT-X prediction filters. The in-

terpolation result shows a visually pleasing continuation of locally plane events through the

gaps. It compares favorably with an analogous result of a stationaryT-X PEF.

We can conclude that plane-wave destructors provide an effective method of gap filling

and missing-data interpolation.

Trace interpolation beyond aliasing

Spitz (1991) popularized the application of prediction-error filters to regular trace interpolation

and showed how the spatial aliasing restriction can be overcome by scaling the frequencies of

F-X PEFs. An analogous technique forT-X filters was developed by Claerbout (1992, 1999)
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Figure 1.12: 3-D gap interpolation in passive seismic data. The left 12 panels are slices of
the input data. The right 12 panels are the corresponding slices in the interpolation output.
regul-passfill [ER,M]

and was applied for 3-D interpolation with non-stationary PEFs by Crawley (2000). TheT-X

technique implies stretching the filter in all directions so that its dip spectrum is preserved

while the coefficients can be estimated at alternating traces. After the filter is estimated, it

is scaled back and used for interpolating missing traces between the known ones. A similar

method works for finite-difference plane wave destructors, only we need to take special care

to avoid aliased dips at the dip estimation stage.

A simple synthetic example of interpolation beyond aliasing is shown in Figure 1.13. The

input data are clearly aliased and non-stationary. To take the aliasing into account, I estimate

the two dips present in the data with the slope estimation technique of the previous subsection.

The first dip corresponds to the true slope, while the second dip corresponds to the aliased

dip component. In this example, the true dip is non-negative everywhere and is easily distin-

guished from the aliased one. Throwing away the aliased dip and interpolating intermediate

traces with the true dip produces the accurate interpolation result shown in the right plot of

Figure 1.13.
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Figure 1.13: Synthetic example of interpolation beyond aliasing with plane-wave destructor
filters. Left: input aliased data, right: interpolation output.regul-aliasp2[ER]

Figure 1.14 shows a marine 2-D shot gather from a deep water Gulf of Mexico survey

before and after subsampling in the offset direction. The data are similar to those used by

Crawley (2000). The shot gather has long-period multiples and complicated diffraction events

caused by a salt body. The amplitudes of the hyperbolic events are not as uniformly distributed

as in the synthetic case of Figure 1.13. Subsampling by a factor of two (the right plot in

Figure 1.14) causes a clearly visible aliasing in the steeply dipping events. The goal of the

experiment is to interpolate the missing traces in the subsampled data and to compare the

result with the original gather shown in the left plot of Figure 1.14.

A straightforward application of the dip estimation equations (1.23-1.25) applied to aliased

data can easily lead to erroneous aliased dip estimation. In order to avoid this problem, I chose

a slightly more complex strategy. The algorithm for trace interpolation of aliased data consists

of the following steps:

1. Applying Claerbout’sT-X methodology, stretch a two-dip plane-wave destructor filter

and estimate the dips from decimated data.

2. The second estimated dip will be degraded by aliasing. Ignore this initial second-dip
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Figure 1.14: 2-D marine shot gather. Left: original. Right: subsampled by a factor of two in
the offset direction.regul-sean2[ER]

estimate.

3. Estimate the second dip component again by fixing the first dip component and using

it as the initial estimate of the second component. This trick prevents the nonlinear

estimation algorithm from picking the wrong (aliased) dip in the data.

4. Downscale the estimated two-dip filter and use it for interpolating missing traces.

The two estimated dip components are shown in Figure 1.15. The first component contains

only positive dips. The second component coincides with the first one in the areas where only

a single dip is present in the data. In other areas, it picks the complementary dip, which has a

negative value for back-dipping hyperbolic diffractions.

Figure 1.16 shows the interpolation result and the difference between the interpolated

traces and the original traces, plotted at the same clip value. The method succeeded in the

sense that it is impossible to distinguish interpolated traces from the interpolation result alone.

However, it is not ideal, because some of the original energy is missing in the output. A
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Figure 1.15: Two components of the estimated dip field for the decimated 2-D marine shot
gather. regul-sean2-dip[ER]

close-up comparison between the original and the interpolated traces in Figure 1.17 shows

that imperfection in more detail. Some of the steepest events in the middle of the section are

poorly interpolated, and in some of the other places, the second dip component is continued

instead of the first one.

One could improve the interpolation result considerably by including another dimension.

To achieve a better result, we can use a pair of plane-wave destructors, one predicting local

plane waves in the offset direction and the other predicting local plane waves in the shot

direction.

Plane-wave destruction and B-splines

The general method of B-spline regularization, outlined in Chapter??, is easily applicable

for the case of local plane-wave destruction. The continuous regularization operatorD in

this case comes from the theoretical plane-wave differential equation (1.8). We simply need
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Figure 1.16: Left: 2-D marine shot gather after trace interpolation. Right: Difference between
the interpolated and the original gather.regul-sean2-int[ER]

Figure 1.17: Close-up comparison of the interpolated (right) and the original data (left).
regul-sean2-close[ER,M]
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to construct the auto-correlation filterdj according to formula (??) and factorize it with the

Wilson-Burg method. Figure 1.18 shows three plane waves constructed from three distant

spikes by application of inverse recursive filtering with two different B-spline regularizers.

The left plot was obtained with first-order B-splines (equivalent to linear interpolation). This

type of regularizer is identical to Clapp’s steering filters (Clapp et al., 1997) and suffers from

numerical dispersion effects. The right plot was obtained with third-order splines. Most of the

dispersion is suppressed by using a more accurate interpolation.

Figure 1.18: B-spline plane-wave regularization. Three plane waves are constructed by 2-D
recursive filtering with the B-spline plane-wave regularizer. Left: using first-order B-splines
(linear interpolation). Right: using third-order B-splines.regul-sthree[ER,M]

Equipped with the powerful B-spline plane-wave construction, we can now approach the

main goal of this work: three-dimensional seismic data regularization. For an illustrative test,

I chose the North Sea dataset, which was previously used for testing azimuth moveout (Biondi

et al., 1998) and common-azimuth migration (Biondi, 1996). Figure?? in the introduction

showed the highly irregular midpoint geometry for a selected in-line and cross-line offset bin

in the data. The data irregularity is also evident in the bin fold map, shown in Figure 1.19.

The goal of data regularization is to create a regular data cube at the specified bins from the

irregular input data, which have been preprocessed by normal moveout.



29

Figure 1.19: Map of the fold
distribution for the 3-D data test.
regul-fold-win [ER]

The data cube after normalized binning is shown in Figure 1.20. Binning works reasonably

well in the areas of large fold but fails to fill the zero fold gaps and has an overall limited

accuracy.

For efficiency, I perform regularization on individual time slices. Figure 1.21 shows the

result of regularization using bi-linear interpolation and smoothing preconditioning with the

minimum-phase Laplacian filter. The empty bins are filled in a consistent manner but the

data quality is distorted because simple smoothing fails to characterize the complicated data

structure. Instead of continuous events, we see smoothed blobs in the time slices. The events

in the in-line and cross-line sections are also not clearly pronounced.

We can use the smoothing regularization result to estimate the local dips in the data, de-

sign invertible local plane-wave destruction filters, and repeat the regularization process. In-

verse interpolation using bi-linear interpolations with plane-wave preconditioning is shown in

Figure 1.22. The regularization result is improved: the continuous reflection events become

clearly visible in the time slices. As expected, a higher quality result is achieved with cubic B-

spline (Figure 1.23). Regularization works again in constant time slices, using recursive filter

preconditioning with plane-wave destructor filters analogous to those in Figure 1.18. Despite

the irregularities in the input data, the regularization result preserves both flat reflection events

and steeply-dipping diffractions. Preserving diffractions is important for correct imaging of
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Figure 1.20: 3-D data after normalized binning.regul-bin-win [CR]
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Figure 1.21: 3-D data regularized with bi-linear interpolation and smoothing preconditioning.
regul-smo2-win[CR]



32 CHAPTER 1. CHOICE OF REGULARIZATION AND NUMERICAL RESULTS

sharp edges in the subsurface structure (Biondi and Palacharla, 1996).

For simplicity, I assumed only a single local dip component in the data. This assumption

degrades the result in the areas of multiple conflicting dips, such as the intersections of plane

reflections and hyperbolic diffractions in Figure 1.23. One could improve the regularization

result by considering multiple local dips. In the next section of this chapter, I describe an al-

ternative offset-continuation approach, which uses a physical connection between neighboring

offsets instead of assuming local continuity in the midpoint domain.

Figure 1.22: 3-D data regularized with bi-linear interpolation and local plane-wave precondi-
tioning. regul-int2-win [CR]

The 3-D results of this subsection were obtained with an efficient 2-D regularization in

time slices. This approach is computationally attractive because of its easy parallelization:
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Figure 1.23: 3-D data regularized with cubic B-spline interpolation and local plane-wave pre-
conditioning. regul-int4-win [CR]
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different slices can be interpolated independently and in parallel. Figure 1.24 shows the inter-

polation result for four selected time slices. Local plane waves, barely identifiable after bin-

ning (left plots in Figure 1.24), appear clear and continuous in the interpolation result (right

plots in Figure 1.24). Different time slices are assembled together to form the 3-D cube shown

in Figure 1.23.

A more powerful, although less convenient, approach to 3-D data regularization, is the full

3-D plane-wave destruction. I discuss it in the next subsection.

Figure 1.24: Selected time slices of the 3-D dataset. Left: after binning. Right: after plane-
wave data regularization. The data regularization program identifies and continues local plane
waves in the data.regul-winslice [CR]
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Plane-wave destruction in 3-D

The theory of plane-wave prediction in three dimensions is described by Claerbout (1993,

1999). Predicting a local plane wave withT-X filters amounts to finding a pair of two-

dimensional filters for two orthogonal planes in the 3-D space. Each of the filters predicts

locally straight lines in the corresponding plane. The system of two 2-D filters is sufficient

for predicting all but purely vertical plane waves. In the latter case, a third 2-D filter for the

remaining orthogonal plane is needed. Schwab (1998) discusses this approach in more detail.

Using two prediction filters implies dealing with two filtering output volumes for each

input volume. This situation becomes inconvenient when plane-wave destructors are used for

regularizing linear inverse problems. We cannot apply the efficient recursive preconditioning

introduced in Chapter?? unless the regularization operator is square, or, in other words, only

one plane-wave destructor is involved.

Helical filtering (Claerbout, 1998a) brings us new tools for addressing this problem. In

this subsection, I show how to combine orthogonal 2-D plane predictors into a single three-

dimensional filter with similar spectral properties. The 3-D filter can then work for precondi-

tioning 3-D inverse problems, such as data regularization. The construction employs again the

Wilson-Burg method of spectral factorization, adapted for multidimensional filtering with the

help of the helix transform.

I use simple synthetic examples to demonstrate the applicability of plane-wave prediction

to 3-D problems.

Factorizing plane waves

Let us denote the coordinates of a three-dimensional space byt , x, andy. A theoretical plane

wave is described by the equation

P(t ,x, y) = f (t −σxx −σyy) , (1.26)



36 CHAPTER 1. CHOICE OF REGULARIZATION AND NUMERICAL RESULTS

where f is an arbitrary function, andσx andσy are the plane slopes in the corresponding

direction. It is easy to verify that a plane wave of the form (1.26) satisfies the following

system of partial differential equations:
(
∂

∂x
+σx

∂

∂t

)
P = 0(

∂

∂y
+σy

∂

∂t

)
P = 0

(1.27)

The first equation in (1.27) describes plane waves on the{t ,x} slices and is completely

equivalent to equation (1.8). In its discrete form, it is represented as a convolution with the

two-dimensional finite-difference filterCx from equation (1.19). Similarly, the second equa-

tion transforms into a convolution with filterCy, which acts on the{t , y} slices. The discrete

(finite-difference) form of equations (1.8) involves a blocked convolution operator:[
Cx

Cy

]
m = 0 , (1.28)

wherem is the model vector corresponding toP(t ,x, y).

As follows from the theoretical analysis of the data regularization problem in Chapter??,

regularization implicitly deals with the spectrum of the regularization filter, which approxi-

mates the inverse model covariance. In other words, it involves the square operator

[
CT

x CT
y

] [
Cx

Cy

]
= CT

x Cx +CT
y Cy . (1.29)

If we were able to transform this operator to the formCTC, whereC is a three-dimensional

minimum-phase convolution, we could use the three-dimensional filterC in place of the in-

convenient pairCx andCy.

The problem of findingC from its spectrum is the familiar spectral factorization problem.

In fact, we already encountered a problem analogous to (1.29) in the previous section in the
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factorization of the discrete two-dimensional Laplacian operator:

1= ∇
T
∇ =

[
∂T

x ∂T
y

] [
∂x

∂y

]
= HTH , (1.30)

where∂x and∂y represent the partial derivative operators along thex andy directions, respec-

tively, and the two-dimensional filterH is known ashelix derivative(Claerbout, 1999; Zhao,

1999).

If we represent the filterCx with the help of a simple first-order upwind finite-difference

scheme

P(t ,x +1)− P(t ,x)+σx [ P(t +1,x +1)− P(t ,x +1)] = 0 , (1.31)

then, after the helical mapping to 1-D, it becomes a one-dimensional filter with theZ-transform

Cx(Z) = 1−σx ZNt+1
+ (σx −1)ZNt , (1.32)

whereNt is the number of samples on thet-axis. Similarly, the filterCy takes the form

Cy(Z) = 1−σyZNt Nx+1
+ (σy −1)ZNt Nx . (1.33)

The problem is reduced to a 1-D spectral factorization of

Cx(1/Z)Cx(Z)+Cy(1/Z)Cy(Z) = −σy
1

ZNt Nx+1 + (σy −1) 1
ZNt Nx −

σx
1

ZNt +1 + (σx −1) 1
ZNt −1 +

[
σx(1−σx)+σy(1−σy)

] 1
Z +

2+σx(σx −1)+σy(σy −1)+
[
σx(1−σx)+σy(1−σy)

]
Z+

(σx −1)ZNt−1
−σx ZNt+1

+ (σy −1)ZNt Nx −σyZNt Nx+1 . (1.34)

The spectral factorization of (1.34) produces a minimum-phase filter applicable for 3-D for-

ward and inverse convolution. Equation (1.34) is shown here just to illustrate the concept.

In practice, I use the longer and much more accurate plane-wave filters of equation (1.19) in

place of the simplified filters (1.32) and (1.33).
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Figure 1.25: 3-D plane wave construction with the factorized 3-D filter. Left:σx = 0.75,
σy = 0.5. Right:σx = −0.75,σy = 0.5. regul-cube[ER,M]

Figure 1.25 shows examples of plane-wave construction. The two plots in the figure are

outputs of a spike, divided recursively (on a helix) byCTC, whereC is a 3-D minimum-phase

filter, obtained by the Wilson-Burg factorization.

Clapp (2000a) has proposed constructing 3-D plane-wave destruction (steering) filters by

splitting. In Clapp’s method, the two orthogonal 2-D filtersCx andCy are simply convolved

with each other instead of forming the autocorrelation (1.29). While being a much more

efficient approach, splitting suffers from induced anisotropy in the inverse impulse response.

Figure 1.26 illustrates this effect in the 2-D plane by comparing the inverse impulse responses

of plane-wave filters obtained by spectral factorization and splitting. The splitting response is

evidently much less isotropic.

3-D missing data interpolation

Figure 1.27 shows Claerbout’s “qdome” synthetic model (Claerbout, 1993, 1999), which mod-

els a seismic image of a complicated sedimentary geology. In a data regularization experiment,

I randomly remove 60% of the traces in the original model, arriving at the missing data model

shown in the right plot of Figure 1.27. The 3-D slope estimates from the input data are shown

in the bottom plots of Figure 1.28. The estimates fairly accurately match the slope estimates
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Figure 1.26: Two-dimensional inverse impulse responses for filters constructed with spectral
factorization (left) and splitting (right). The splitting response is evidently much less isotropic.
regul-bob [ER]

Figure 1.27: Claerbout’s “qdome” synthetic model. Left: original model. Right: input to
interpolation (60% of the traces removed).regul-qdome[ER]
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Figure 1.28: Plane-wave slope estimates in thex andy directions (left and right plots, respec-
tively) from the “qdome” model. Top: estimated from the original model. Bottom: estimated
from the decimated model.regul-qslope[CR,M]
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obtained from the original model (top plots in Figure 1.28). The missing-data interpolation re-

sult is shown in Figure 1.29. Most of the original signal has been successfully restored. Some

of the fault sharpness is lost in the interpolation result, but all the curved and planar events

are accurately preserved. Clapp (2000a) reports a successful interpolation result using a more

severe decimation of the same synthetic model. However, he assumes a prior knowledge of

the local dip field instead of estimating the dips from the decimated data.

Figure 1.29: Result of missing-data
interpolation with a 3-D local plane-
wave destruction filter. Compare with
Figure 1.27. regul-pmiss[CR]

REGULARIZING REFLECTION SEISMIC DATA WITH OFFSET CONTINUATION

A simple model for reflection seismic data is a set of hyperbolic events on a common mid-

point gather. The simplest filter for this model is the first derivative in the offset direction

applied after the normal moveout correction.1 Going one step beyond this simple approxi-

mation requires taking the dip moveout (DMO) effect into account (Deregowski, 1986). The

DMO effect is fully incorporated in the offset continuation differential equation (Fomel, 1994,

1995a) analyzed theoretically in Chapter 6.

1A similar filter appears in velocity estimation with the differential semblance method (Symes and Caraz-
zone, 1991; Symes, 1999).
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Offset continuation is a process of seismic data transformation across different offsets

(Deregowski and Rocca, 1981; Bolondi et al., 1982; Salvador and Savelli, 1982). As I show in

Chapter 6, different types of DMO operators (Hale, 1995) can be regarded as a continuation

to zero offset and derived as solutions of an initial-value problem with the revised offset con-

tinuation equation (Fomel, 1995b). Within a constant-velocity assumption, this equation not

only provides correct traveltimes on the continued sections but also correctly transforms the

corresponding wave amplitudes (Fomel, 1995a; Fomel and Bleistein, 1996). Integral offset

continuation operators have been derived independently by Stovas and Fomel (1993, 1996),

Bagaini and Spagnolini (1996), and Chemingui and Biondi (1994). The 3-D analog is known

as azimuth moveout (AMO) (Biondi et al., 1998). In the shot-record domain, integral offset

continuation transforms to shot continuation (Schwab, 1993; Bagaini and Spagnolini, 1993;

Spagnolini and Opreni, 1996). Integral continuation operators can be applied directly for

missing data interpolation and regularization (Bagaini et al., 1994; Mazzucchelli and Rocca,

1999). However, they do not behave well for continuation at small distances in the offset

space because of limited integration apertures and, therefore, are not well suited for inter-

polating neighboring records. Additionally, like all integral (Kirchhoff-type) operators, they

suffer from irregularities in the input geometry. The latter problem is addressed by the accurate

but expensive method of inversion to common offset (Chemingui, 1999).

In this section, I propose an application of offset continuation in the form of a finite-

difference filter for seismic data regularization. The filter is designed in the log-stretch fre-

quency domain, where each frequency slice can be interpolated independently. Small filter

size and easy parallelization among different frequencies assure the high efficiency of the

proposed approach. Although the offset continuation filter lacks the predictive power of non-

stationary prediction-error filters, it is much simpler to handle and serves as a gooda priori

guess of an interpolative filter for seismic reflection data.

I test the proposed method by interpolating randomly missing shot gathers in a constant-

velocity synthetic.
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Filter design

A particularly efficient implementation of offset continuation results from a log-stretch trans-

form of the time coordinate (Bolondi et al., 1982), followed by a Fourier transform of the

stretched time axis. After these transforms, equation (6.1) from Chapter 6 takes the form

h

(
∂2P̃

∂y2
−
∂2P̃

∂h2

)
− i �

∂ P̃

∂h
= 0 , (1.35)

where� is the corresponding frequency,h is the half-offset,y is the midpoint, andP̃(y,h,�)

is the transformed data (Fomel, 1995b, 2000). As in otherF-X methods, equation (1.35) can

be applied independently and in parallel on different frequency slices.

Analogously to the case of the plane-wave-destructor filters discussed in the previous sec-

tion, we can construct an effective offset-continuation finite-difference filter by studying first

the problem of wave extrapolation between neighboring offsets. In the frequency-wavenumber

domain, the extrapolation operator is defined in accordance with equation (6.119), as follows:

̂̂P(h2) =
̂̂P(h1) Zλ(kh2)/Zλ(kh1) , (1.36)

whereλ= (1+ i�)/2, andZλ is the special function defined in equation (6.120). The wavenum-

berk corresponds to the midpointy in the original data domain. In the high-frequency asymp-

totics, operator (1.36) takes the form

̂̂P(h2) =
̂̂P(h1) F(2kh2/�)/F(2kh1/�) exp

[
i�ψ (2kh2/�−2kh1/�)

]
, (1.37)

where functionsF andψ are defined in equations (6.123) and (6.124).

Returning to the original domain, I approximate the continuation operator with a finite-

difference filter of the form

P̂h+1(Zy) = P̂h(Zy)
G1(Zy)

G2(Zy)
, (1.38)

which is somewhat analogous to (1.15). The coefficients of the filtersG1(Zy) andG2(Zy) are
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found by fitting the Taylor series coefficients of the filter response around the zero wavenum-

ber. In the simplest case of 3-point filters2, this procedure uses four Taylor series coefficients

and leads to the following expressions:

G1(Zy) = 1−
1−c1(�)h2

2 +c2(�)h2
1

6
+

1−c1(�)h2
2 +c2(�)h2

1

12

(
Zy + Z−1

y

)
, (1.39)

G2(Zy) = 1−
1−c1(�)h2

1 +c2(�)h2
2

6
+

1−c1(�)h2
1 +c2(�)h2

2

12

(
Zy + Z−1

y

)
, (1.40)

where

c1(�) =
3(�2

+9−4i �)

�2 (3+ i �)

and

c2(�) =
3(�2

−27−8i �)

�2 (3+ i �)
.

Figure 1.30 compares the phase characteristic of the finite-difference extrapolators (1.38) with

the phase characteristics of the exact operator (1.36) and the asymptotic operator (1.37). The

match between different phases is poor for very low frequencies (left plot in Figure 1.30) but

sufficiently accurate for frequencies in the typical bandwidth of seismic data (right plot in

Figure 1.30).

Figure 1.31 compares impulse responses of the inverse DMO operator constructed by the

asymptotic�−k operator with those constructed by finite-difference offset continuation. Ne-

glecting subtle phase inaccuracies at large dips, the two images look similar, which indicates

the high accuracy of the proposed finite-difference scheme.

When applied on the offset-midpoint plane of an individual frequency slice, the one-

dimensional implicit filter (1.38) transforms to a two-dimensional explicit filter with the 2-D

2An analogous technique applied to the case of wavefield depth extrapolation with the wave equation
would lead to the famous 45-degree implicit finite-difference operator (Claerbout, 1985).
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Z-transform

G(Zy, Zh) = G1(Zy)− ZhG2(Zy) , (1.41)

analogous to filter (1.19) for the case of local plane-wave destruction. Convolution with fil-

ter (1.41) is the regularization operator that I propose for regularizing prestack seismic data.

Figure 1.30: Phase of the implicit offset-continuation operators in comparison with the exact
solution. The offset increment is assumed to be equal to the midpoint spacing. The left plot
corresponds to�= 1, the right plot to�= 10. regul-arg [CR]

Tests

I start numerical testing of the proposed regularization first on the constant velocity synthetic,

where all the assumptions behind the offset continuation equation are valid.

Constant-velocity synthetic

A sinusoidal reflector shown in Figure 1.32 creates complicated reflection data, shown in

Figures 1.33 and 1.34. To set up a test for regularization by offset continuation, I removed

90% of randomly selected shot gathers from the input data. The syncline parts of the reflector

lead to traveltime triplications at large offsets. A mixture of different dips from the triplications

would make it extremely difficult to interpolate the data in individual common-offset gathers,
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Figure 1.31: Inverse DMO impulse responses computed by the Fourier method (left) and by
finite-difference offset continuation (right). The offset is 1 km.regul-off-imp [ER,M]

Figure 1.32: Reflector model for
the constant-velocity testregul-cup
[ER]
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such as those shown in Figure 1.33. The plots of time slices after NMO (Figure 1.34) clearly

show that the data are also non-stationary in the offset direction. Therefore, a simple offset

interpolation scheme is also doomed.

Figure 1.35 shows the reconstruction process on individual frequency slices. Despite the

complex and non-stationary character of the reflection events in the frequency domain, the

offset continuation equation is able to reconstruct them quite accurately from the decimated

data.

Figure 1.36 shows the result of interpolation after the data are transformed back to the time

domain. The offset continuation result (right plots in Figure 1.36) reconstructs the ideal data

(left plots in Figure 1.33) very accurately even in the complex triplication zones, while the

result of simple offset interpolation (left plots in Figure 1.36) fails as expected.

The constant-velocity test results allow us to conclude that, when all the assumptions of

the offset continuation theory are met, it provides a powerful method of data regularization.

Being encouraged by the synthetic results, I proceed to a three-dimensional real data test.

3-D data regularization with the offset continuation equation

Similarly to the case of 3-D plane-wave destruction, where the regularization operator is

constructed from two orthogonal two-dimensional filters, 3-D differential offset continuation

amounts to applying two differential filters, operating on the in-line and cross-line projections

of the offset and midpoint coordinates. The corresponding system of differential equations has

the form 
h1

(
∂2P̃

∂y2
1

−
∂2P̃

∂h2
1

)
− i �

∂ P̃

∂h1
= 0 ;

h2

(
∂2P̃

∂y2
2

−
∂2P̃

∂h2
2

)
− i �

∂ P̃

∂h2
= 0 ,

(1.42)

wherey1 and y2 correspond to the in-line and cross-line midpoint coordinates, andh1 and

h2 correspond to the in-line and cross-line offsets. The projection approach is justified in the

theory of azimuth moveout (Fomel and Biondi, 1995; Biondi et al., 1998).
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Figure 1.33: Prestack common-offset gathers for the constant-velocity test. Left: ideal data
(after NMO). Right: input data (90% of shot gathers removed). Top, center, and bottom plots
correspond to different offsets.regul-cupdata[ER,M]
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Figure 1.34: Time slices of the prestack data for the constant-velocity test. Left: ideal data
(after NMO). Right: input data (90% of random gathers removed). Top, center, and bottom
plots correspond to time slices at 0.3, 0.4, and 0.5 s.regul-tslice [ER,M]
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Figure 1.35: Interpolation in frequency slices. Left: input data (90% of the shot gathers
removed). Right: interpolation output. Top, bottom, and middle plots correspond to different
frequencies. The real parts of the complex-valued data are shown.regul-fslice [ER,M]
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Figure 1.36: Interpolation in common-offset gathers. Left: output of simple offset interpo-
lation. Right: output of offset continuation interpolation. Compare with Figure 1.33. Top,
center, and bottom plots correspond to different common-offset gathers.regul-all [ER,M]
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The result of a 3-D data regularization test is shown in Figure 1.37. The input data cube

corresponds to the one in Figure 1.20. I used neighboring offsets in the in-line and cross-

line directions and the differential 3-D offset continuation to reconstruct the empty traces.

Although the reconstruction appears less accurate than the plane-wave regularization result of

Figure 1.23, it successfully fulfills the following goals:

• The input traces are well hidden in the interpolation result. It is impossible to distinguish

between input and interpolated traces.

• The main structural features are restored without using any assumptions about structural

continuity in the midpoint domain. Only the physical offset continuity is used.

The lower accuracy of the result in Figure 1.37 in comparison with Figure 1.23 is partially

caused by using a simplified missing data interpolation scheme instead of a more accurate

regularization approach. It also indicates a possibility of combining offset continuation with

midpoint-space plane-wave destruction for achieving an optimal accuracy.

In the next section, I return to the 2-D case to consider an important problem of shot gather

interpolation.

Shot continuation

Missing or under-sampled shot records are a common example of data irregularity (Crawley,

2000). The offset continuation approach can be easily modified to work in the shot record

domain. With the change of variabless = y− h, wheres is the shot location, the frequency-

domain equation (1.35) transforms to the equation

h

(
2
∂2P̃

∂s∂h
−
∂2P̃

∂h2

)
− i �

(
∂ P̃

∂h
−
∂ P̃

∂s

)
= 0 . (1.43)

Unlike equation (1.35), which is second-order in the propagation variableh, equation (1.43)

contains only first-order derivatives ins. We can formally write its solution for the initial
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Figure 1.37: 3-D data regularization test. Top: input data, the result of binning in a 50 by 50
meters offset window. Bottom: regularization output. Data from neighboring offset bins in
the in-line and cross-line directions were used to reconstruct missing traces.regul-off4 [CR]
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conditions ats = s1 in the form of a phase-shift operator:

̂̂P(s2) =
̂̂P(s1) exp

[
i kh (s2 −s1)

kh h−�

2kh h−�

]
, (1.44)

where the wavenumberkh corresponds to the half-offseth. Equation (1.44) is in the mixed

offset-wavenumber domain and, therefore, not directly applicable in practice. However, we

can use it as an intermediate step in designing a finite-difference shot continuation filter. Anal-

ogously to the cases of plane-wave destruction and offset continuation, shot continuation leads

us to the rational filter

P̂s+1(Zh) = P̂s(Zh)
S(Zh)

S̄(1/Zh)
, (1.45)

The filter is non-stationary, because the coefficients ofS(Zh) depend on the half-offseth.

We can find them by the Taylor expansion of the phase-shift equation (1.44) around zero

wavenumberkh. For the case of the half-offset sampling equal to the shot sampling, the

simplest three-point filter is constructed with three terms of the Taylor expansion. It takes the

form

S(Zh) = −

(
1

12
+ i

h

2�

)
Z−1

h +

(
2

3
− i

�2
+12h2

12�h

)
+

(
5

12
+ i

�2
+18h2

12�h

)
Zh . (1.46)

Let us consider the problem of doubling the shot density. If we use two neighboring shot

records to find the missing record between them, the problem reduces to the least-squares

system [
S

S̄

]
ps ≈

[
S̄ps−1

Sps+1

]
, (1.47)

whereS denotes convolution with the numerator of equation (1.45),S̄ denotes convolution

with the corresponding denominator,ps−1 andps+1 represent the known shot gathers, andps

represents the gather that we want to estimate. The least-squares solution of system (1.47)
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takes the form

ps =
(
ST S+ S̄T S̄

)−1 (
ST S̄ps−1 + S̄T Sps+1

)
. (1.48)

If we choose the three-point filter (1.46) to construct the operatorsS andS̄, then the inverted

matrix in equation (1.48) will have five non-zero diagonals. It can be efficiently inverted with

a direct banded matrix solver using theL DLT decomposition (Golub and Van Loan, 1996).

Since the matrix does not depend on the shot location, we can perform the decomposition once

for every frequency so that only a triangular matrix inversion will be needed for interpolating

each new shot. This leads to an extremely efficient algorithm for interpolating intermediate

shot records.

Sometimes, two neighboring shot gathers do not fully constrain the intermediate shot. In

order to add an additional constraint, I include a regularization term in equation (1.48), as

follows:

ps =
(
ST S+ S̄T S̄+ ε2ATA

)−1 (
ST S̄ps−1 + S̄T Sps+1

)
, (1.49)

whereA represents convolution with a three-point prediction-error filter (PEF), andε is a

scaling coefficient. The appropriate PEF can be estimated fromps−1 andps+1 using Burg’s

algorithm (Burg, 1972, 1975; Claerbout, 1976). A three-point filter leads does not break the

five-diagonal structure of the inverted matrix. The PEF regularization attempts to preserve

offset dip spectrum in the under-constrained parts of the estimated shot gather.

Figure 1.39 shows the result of a shot interpolation experiment using the constant-velocity

synthetic from Figure 1.33. In this experiment, I removed one of the shot gathers from the

original data and interpolated it back using equation (1.49). Subtracting the true shot gather

from the reconstructed one shows a very insignificant error, which is further reduced by using

the PEF regularization (right plots in Figure 1.39). The two neighboring shot gathers used in

this experiment are shown in the top plots of Figure 1.38. For comparison, the bottom plots in

Figure 1.38 show the simple average of the two shot gathers and its corresponding prediction

error. As expected, the error is significantly larger than the error of the shot continuation. An

interpolation scheme based on local dips in the shot direction would probably achieve a better
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result, but it is generally much more expensive than the shot continuation scheme introduced

above.

A similar experiment with real data from a North Sea marine dataset is reported in Fig-

ure 1.41. I removed and reconstructed a shot gather from the two neighboring gathers shown

in Figure 1.40. The lower parts of the gathers are complicated by salt dome reflections and

diffractions with conflicting dips. The simple average of the two input shot gathers (bottom

plots in Figure 1.41) works reasonably well for nearly flat reflection events but fails to predict

the position of the back-scattered diffractions events. The shot continuation method works

well for both types of events (top plots in Figure 1.41). There is some small and random

residual error, possibly caused by local amplitude variations.

CONCLUSIONS

Several choices exist in selecting the regularization operator for iterative data regularization.

Splines in tension represent an approach to data regularization suitable for smooth data.

The constraint is embedded in a user-specified3 tension parameter. The two boundary values

of tension correspond to cubic and linear interpolation. By applying the method of spectral

factorization on a helix, I have been able to define a family of two-dimensional minimum-

phase filters, which correspond to the spline interpolation problem with different values of

tension. These filters contribute to the collection of useful helical filters. I have used them

for preconditioning in data-regularization problems with smooth surfaces. In general, they are

applicable for preconditioning various estimation problems with smooth models.

I demonstrate that adaptive local plane-wave destructors with an improved finite-difference

design can be a valuable tool in processing multidimensional seismic data. In several ex-

amples, I have shown a good performance of plane-wave destructors in application to data

regularization. It may be useful to summarize here the similarities and differences between

plane-wave destructors andT-X prediction-error filters.

3Developing a method for automatic estimation of the appropriate tension parameter from the input data
is a challenging open problem. It goes beyond the scope of this work.
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Figure 1.38: Top: Two synthetic shot gathers used for the shot interpolation experiment. An
NMO correction has been applied. Bottom: simple average of the two shot gathers (left) and
its prediction error (right).regul-shot3[ER,M]
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Figure 1.39: Synthetic shot interpolation results. Left: interpolated shot gathers. Right: pre-
diction errors (the differences between interpolated and true shot gathers), plotted on the same
scale. Top: without regularization. Bottom: with PEF regularization.regul-shotin [ER]
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Figure 1.40: Two real marine shot gathers used for the shot interpolation experiment. An
NMO correction has been applied.regul-elfshot3[ER,M]

Similarities:

• Both types of filters operate in the original time-and-space domain of recorded data.

• Both filters aim to predict local plane-wave events in the data.

• In most problems, one filter type can be replaced by the other, and certain techniques,

such as Claerbout’s trace interpolation method, are common for both approaches.

Differences:

• The design of plane-wave destructors is purely deterministic and follows the plane-wave

differential equation. The design ofT-X PEF has statistical roots in the framework

of the maximum-entropy spectral analysis (Burg, 1975). In principle,T-X PEF can

characterize more complex signals than local plane waves.

• In the case of PEF, we estimate filter coefficients. In the case of plane-wave destructors,

the estimated quantity is the local plane slope. Several important distinctions follow
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Figure 1.41: Real-data shot interpolation results. Top: interpolated shot gather (left) and its
prediction error (right). Bottom: simple average of the two input shot gathers (left) and its
prediction error (right).regul-elfshotin [ER]
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from that difference:

– The filter-estimation problem is linear. The-slope estimation problem, in the case

of the improved filter design, is non-linear, but allows for an iterative linearization.

In general, non-linearity is an undesirable feature because of local minima and the

dependence on initial conditions. However, we can sometimes use it creatively.

For example, it helped me avoid aliased dips in the trace interpolation example.

– Non-stationarity is handled gracefully in the local slope estimation. It is a much

more difficult issue for PEFs because of the largely under-determined problem.

– Local slope has a clearly interpretable physical meaning, which allows for easy

quality control of the results. The coefficients ofT-X PEFs are much more diffi-

cult to interpret.

• The efficiency of the two approaches is difficult to compare. Plane-wave destructors are

generally more efficient to apply because of the optimally small number of filter coeffi-

cients. However, they may require more computation at the estimation stage because of

the already mentioned non-linearity problem.

I have shown that a 3-D plane-wave destruction filter can be designed from a pair of two-

dimensional filters by using helix transform and the Wilson-Burg spectral factorization algo-

rithm. A special approach to designing plane-wave destructor filters follows from the general

B-spline regularization method.

Differential offset continuation provides a valuable tool for regularization of reflection

seismic data. Starting from analytical frequency-domain solutions of the offset continuation

differential equation, I have designed accurate finite-difference filters for implementing offset

continuation as a local convolutional operator. A similar technique works for shot continuation

across different shot gathers.

Differential offset continuation serves as a bridge between integral and convolutional ap-

proaches to data interpolation. It shares the theoretical grounds with the integral approach but

is applied in a manner similar to that of prediction-error filters in the convolutional approach.
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Tests with synthetic and real data demonstrate that the offset-continuation regularization

can succeed in complex structural situations where more simplistic methods fail.
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