
Chapter 1

Iterative data regularization

According to the theoretical conclusions of Chapter??, data regularization can be formu-

lated as an optimization problem. In fact, there are two theoretically equivalent formulations:

model-spaceregularization anddata-spaceregularization. The former is closely related to

Tikhonov’s regularization for ill-posed inverse problems (Tikhonov and Arsenin, 1977). Math-

ematically, it extends the data space and constructs a composite column operator. Data-space

regularization extends the model space and constructs a composite row operator. It leads to

the concept of model preconditioning (Nichols, 1994).

Though the final results of the model-space and data-space regularization are theoretically

identical, the behavior of iterative gradient-based methods, such as the method of conjugate

gradients, is different for the two cases. The obvious difference is in the case where the

number of model parameters is significantly larger than the number of data measurements. In

this case, the dimensions of the inverted matrix in the case of the data-space regularization are

smaller that those of the model-space matrix, and the convergence of the iterative conjugate-

gradient iteration is correspondingly faster. But even in the case where the number of model

and data parameters are comparable, preconditioning changes the iteration behavior. This

follows from the fact that the objective function gradients with respect to the model parameters

are different. The first iteration of the model-space regularization yieldsL Td as the model

estimate regardless of the regularization operatorD, while the first iteration of the data-space
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regularization yieldsCL Td, which is an already “simplified” version of the model. Since

iteration to the exact solution is never achieved in the large-scale problems, the results of

iterative optimization may turn out quite differently. Harlan (1995) points out that the two

components of the model-space regularization [Equations (??) and (??)] conflict with each

other: the first one emphasizes “details” in the model, while the second one tries to smooth

them out. He describes the advantage of preconditioning:

The two objective functions produce different results when optimization is incom-

plete. A descent optimization of the original (model-space) objective function

will begin with complex perturbations of the model and slowly converge toward

an increasingly simple model at the global minimum. A descent optimization of

the revised (data-space) objective function will begin with simple perturbations

of the model and slowly converge toward an increasingly complex model at the

global minimum.. . . A more economical implementation can use fewer itera-

tions. Insufficient iterations result in an insufficiently complex model, not in an

insufficiently simplified model.

In this chapter, I illustrate the two approaches on synthetic and real data examples from

simple environmental data sets. All examples show that when we solve the optimization prob-

lem iteratively and take the output only after a limited number of iterations, it is preferable

to use the preconditioning approach. A particularly convenient method is preconditioning by

recursive filtering, which is extended to the multidimensional case with the help of Claer-

bout’s helix transform (Claerbout, 1998a). Invertible multidimensional filters can be created

by helical spectral factorization.

ONE-DIMENSIONAL SYNTHETIC EXAMPLES

The simple test examples in this section are borrowed from Claerbout (1999).

In the first example, the input data were randomly subsampled (with decreasing density)

from a sinusoid (Figure 1.1). The forward operatorL in this case is linear interpolation. In

other words, we seek a regularly sampled model on 200 grid points that could predict the data
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Figure 1.1: The input data (right) are
irregularly spaced samples of a sinu-
soid (left). optim-data [ER]

with a forward linear interpolation. Sparse irregular distribution of the input data makes the

regularization enforcement a necessity. Following Claerbout (1999), I applied convolution

with the simple (1,−1) difference filter as the operatorD that forces model continuity (the

first-order spline). An appropriate preconditionerP in this case is recursive causal integration.

Figures 1.2 and 1.3 show the results of inverse interpolation after exhaustive 300 iterations

of the conjugate-direction method. The results from the model-space and data-space regular-

ization look similar except for the boundary conditions outside the data range. As a result of

using the causal integration for preconditioning, the rightmost part of the model in the data-

space case stays at a constant level instead of decreasing to zero. If we specifically wanted

a zero-value boundary condition, we could easily implement it by adding a zero-value data

point at the boundary.

Figure 1.2: Estimation of a continu-
ous function by the model-space reg-
ularization. The difference opera-
tor D is the derivative operator (con-
volution with (1,−1)). optim-im1
[ER,M]

As expected from the general theory, the model preconditioning provides a much faster

rate of convergence. I measured the rate of convergence using the model residual, which is

a distance from the current model to the final solution. Figure 1.5 shows that the precondi-

tioning (data regularization) method converged to the final solution in about 6 times fewer

iterations than the model regularization. Since the cost of each iteration for each method is

roughly equal, the computational economy is evident. Figure 1.4 shows the final solution, and
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Figure 1.3: Estimation of a con-
tinuous function by the data-space
regularization. The precondition-
ing operatorP is causal integration.
optim-fm1 [ER,M]

the estimates from model- and data-space regularization after only 5 iterations of conjugate

directions. The data-space estimate looks much closer to the final solution than its competitor.

Figure 1.4: The top figure is the exact solution found in 250 iterations. The middle is with
data-space regularization after 5 iterations. The bottom is with model-space regularization
after 5 iterations. optim-early1 [ER]

Changing the preconditioning operator changes the regularization result. Figure 1.6 shows

the result of data-space regularization after a triangle smoother is applied as the model precon-

ditioner. Triangle smoother is a filter with theZ-transform(1−ZN)(1−Z−N)
(1−Z)(1−Z−1) (Claerbout, 1992).

I chose the filter lengthN = 6.

If, instead of looking for a smooth interpolation, we want to limit the number of frequency

components, then the best choice for the model-space regularization operatorD is a prediction-

error filter (PEF). To obtain a mono-frequency output, we can use a three-point PEF, which

has theZ-transform representationD(Z) = 1+ a1Z + a2Z2. In this case, the corresponding

preconditionerP could be the three-pointrecursivefilter P(Z) = 1/(1+a1Z +a2Z2). To test
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Figure 1.5: Convergence of the itera-
tive optimization, measured in terms
of the model residual. The “d” points
stand for data-space regularization;
the “m” points for model-space reg-
ularization. optim-schwab1[ER]

Figure 1.6: Estimation of a smooth
function by the data-space regulariza-
tion. The preconditioning operatorP
is a triangle smoother. optim-fm6
[ER,M]

this idea, I estimated the PEFD(Z) from the output of inverse linear interpolation (Figure 1.3),

and ran the data-space regularized estimation again, substituting the recursive filterP(Z) =

1/D(Z) in place of the causal integration. I repeated this two-step procedure three times to

get a better estimate for the PEF. The result, shown in Figure 1.7, exhibits the desired mono-

frequency output.

Figure 1.7: Estimation of a mono-
frequency function by the data-space
regularization. The preconditioning
operatorP is a recursive filter (the in-
verse of PEF).optim-pm1 [ER,M]
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Regularization after binning: missing data interpolation

One of the factors affecting the convergence of iterative data regularization is clustering of

data points in the output bins. Since least-squares optimization assigns equal weight to each

data point, it may apply inadequate effort to fit a cluster of data points with similar values in a

particular output bin. To avoid this problem, we can replace the regularized optimization with

a less accurate but more efficient two-step approach: data binning followed by missing data

interpolation.

Missing data interpolation is a particular case of data regularization, where the input data

are already given on a regular grid, and we need to reconstruct only the missing values in

empty bins. Claerbout (1992) formulates the basic principle of missing data interpolation as

follows:

A method for restoring missing data is to ensure that the restored data, after spec-

ified filtering, has minimum energy.

Mathematically, this principle can be expressed by the simple equation

Dm ≈ 0 , (1.1)

wherem is the data vector andD is the specified filter. Equation (1.1) is completely equiv-

alent to equation (??). The approximate equality sign means that equation (1.1) is solved by

minimizing the squared norm (the power) of its left side. Additionally, the known data values

must be preserved in the optimization scheme. Introducing the mask operatorK , which can be

considered as a diagonal matrix with zeros at the missing data locations and ones elsewhere,

we can rewrite equation (1.1) in the extended form

D(I −K )m ≈ −DKm = −Dmk , (1.2)

in which I is the identity operator, andmk represents the known portion of the data. It is

important to note that equation (1.2) corresponds to the limiting case of the regularized linear
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system {
Km = mk ,

εDm ≈ 0
(1.3)

for the scaling coefficientε approaching zero. System (1.3) is equivalent to system (??-??)

with the masking operatorK playing the role of the forward interpolation operatorL . Setting

ε to zero implies putting far more weight on the first equation in (1.3) and using the second

equation only to constrain the null space of the solution. Applying the general theory of

data-space regularization from Chapter??, we can immediately transform system (1.3) to the

equation

KPp ≈ mk , (1.4)

whereP is a preconditioning operator, andp is the preconditioning variable, connected with

m by the simple relationship

m = Pp .

According to equations (??) and (??) from Chapter??, equations (1.4) and (1.2) have exactly

the same solutions if the following condition is satisfied:

PPT
=
(
DT D

)−1
, (1.5)

where we need to assume the self-adjoint operatorDT D to be invertible. IfD is represented

by a discrete convolution, the natural choice forP is the corresponding deconvolution (inverse

recursive filtering) operator:

P = D−1 . (1.6)

I illustrate the missing data problem with a simple 1-D synthetic data test taken from

Claerbout (1999). Figure 1.8 shows the interpolation results of the unpreconditioned technique

with three different filters. For comparison with the preconditioned scheme, I changed the
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boundary convolution conditions from internal to truncated transient convolution. As in the

previous example, the system was solved with a conjugate-gradient iterative optimization.

Figure 1.8: Unpreconditioned interpolation with two different regularization filters. Left plot:
the top shows the input data; the middle, the result of interpolation; the bottom, the filter. The
right plot shows the convergence process for the first four iterations.optim-mall [ER]

As depicted on the right side of the figures, the interpolation process starts with a “com-

plicated” model and slowly “simplifies” it until the final result is achieved.

Preconditioned interpolation (Figure 1.9) behaves differently. At the early iterations, the

model is simple. As the iteration proceeds, new details are added into the model. After a

surprisingly small number of iterations, the output closely resembles the final output. The

final output of interpolation with recursive deconvolution preconditioning is exactly the same

as that of the original method.

The next section extends the idea of preconditioning by inverse recursive filtering to mul-

tiple dimensions.
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Figure 1.9: Interpolation with preconditioning. Left plot: the top shows the input data; the
middle, the result of interpolation; the bottom, the filter. The right plot shows the convergence
process for the first four iterations.optim-sall [ER]
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MULTIDIMENSIONAL RECURSIVE FILTER PRECONDITIONING WITH HELIX

TRANSFORM

Claerbout (1997, 1998a,c) proposed ahelix transform for mapping multidimensional convo-

lution operators to their one-dimensional equivalents. This transform proves the feasibility of

multidimensional deconvolution, an issue that has been in question for more than 15 years. By

mapping discrete convolution operators to one-dimensional space, the inverse filtering prob-

lem can be conveniently recast in terms of recursive filtering, a well-known part of the digital

filtering theory.

d

a b c

Figure 1.10: The helix transform of two-dimensional filters to one dimension. The two-
dimensional filter in the left plot is equivalent to the one-dimensional filter in the right plot,
assuming that a shifted periodic condition is imposed on one of the axes.optim-helix1 [CR]

The helix filtering idea is schematically illustrated in Figure 1.10. The left plot (labeled

“a” in the figure) shows a two-dimensional digital filter overlayed on the computational grid.

A two-dimensional convolution computes its output by sliding the filter over the plane. If

we impose helical boundary conditions on one of the axes, the filter will slide to the begin-

ning of the next trace after reaching the end of the previous one (plot “b”). As evident from

plots “c” and “d”, this is completely equivalent to one-dimensional convolution with a long
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1-D filter with internal gaps. For efficiency, the gaps are simply ignored in a helical convo-

lution program. The computational gain is not, however, in the convolution itself, but in the

ability to perform recursive inverse filtering (deconvolution) in multiple dimensions. A multi-

dimensional filter is mapped to its 1-D analog by imposing helical boundary conditions on the

appropriate axes. After that, inverse filtering is applied recursively in a one-dimensional man-

ner. Neglecting parallelization and indexing issues, the cost of inverse filtering is equivalent to

the cost of convolution. It is proportional to the data size and to the number of non-zero filter

coefficients.

Figure 1.11: Illustration of 2-D deconvolution with helix transform. Left is the input: two
spikes and two filters. Right is the output of deconvolution.optim-waves[ER]

An example of two-dimensional recursive filtering is shown in Figure 1.11. The left plot

contains two spikes and two filter impulse responses with different polarity. After deconvolu-

tion with the given filter, the filter responses turn into spikes, and the initial spikes turn into

long-tailed inverse impulse responses (right plot in Figure 1.11). Helical wrap-around, visible

on the horizontal boundaries, indicates the direction of the helix. Claerbout (1999) presents

more examples and discusses all the issues of multidimensional helical deconvolution in detail.

As is known from the one-dimensional theory (Claerbout, 1976), a stable recursive filter-

ing requires a minimum-phase filter, which can be constructed with a spectral factorization

algorithm. The Wilson-Burg spectral factorization method, described in the next section, is

particularly convenient for helical filtering.
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Wilson-Burg spectral factorization

Spectral factorization constructs a minimum-phase signal from its spectrum. The algorithm,

suggested by Wilson (1969), approaches this problem directly with Newton’s iterative method.

In a Z-transform notation, Wilson’s method implies solving the equation

S(Z) = A(Z)Ā(1/Z) (1.7)

for a given spectrumS(Z) and unknown minimum-phase signalA(Z) with an iterative lin-

earization

S(Z) = At (Z)Āt (1/Z)+ At (Z)[ Āt+1(1/Z)− Āt (1/Z)] + Āt (1/Z)[ At+1(Z)− At (Z)]

= At (Z)Āt+1(1/Z)+ Āt (1/Z)At+1 − At (Z)Āt (1/Z) , (1.8)

where At (Z) denotes the signal estimate at iterationt . Starting from some initial estimate

A0(Z), such asA0(Z) = 1, one iteratively solves the linear equation (1.8) for the updated

signal At+1(Z). Wilson (1969) presents a rigorous proof that iteration (1.8) operates with

minimum-phase signals provided that the initial estimateA0(Z) is minimum-phase.

Burg (1998, personal communication) recognized that dividing both sides of equation (1.8)

by Āt (1/Z)At (Z) leads to a particularly convenient form, where the terms on the left are

symmetric, and the two terms on the right are correspondingly strictly causal and anticausal:

1 +
S(Z)

Āt (1/Z) At (Z)
=

At+1(Z)

At (Z)
+

Āt+1(1/Z)

Āt (1/Z)
(1.9)

Equation (1.9) leads to the Wilson-Burg algorithm, which accomplishes spectral factoriza-

tion by a recursive application of convolution (polynomial multiplication) and deconvolution

(polynomial division). The algorithm proceeds as follows:

1. Compute the left side of equation (1.9) using forward and adjoint polynomial division.

2. Abandon negative lags, to keep only the causal part of the signal, and also keep half of

the zero lag. This gives usAt+1(Z)/At (Z).
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iter a0 a1 a2 a3

0 1.000000 0.000000 0.000000 0.000000
1 36.523964 23.737839 6.625787 0.657103
2 26.243151 25.726116 8.471050 0.914951
3 24.162354 25.991493 8.962727 0.990802
4 24.001223 25.999662 9.000164 0.999200
5 24.000015 25.999977 9.000029 0.999944
6 23.999998 26.000002 9.000003 0.999996
7 23.999998 26.000004 9.000001 1.000000
8 23.999998 25.999998 9.000000 1.000000
9 24.000000 26.000000 9.000000 1.000000

Table 1.1: Example convergence of the Wilson-Burg iteration

3. Multiply out (convolve) the denominatorAt (Z). Now we have the desired resultAt+1(Z).

4. Iterate until convergence.

An example of the Wilson-Burg convergence is shown in Table 1.1 on a simple 1-D

signal. The autocorrelationS(Z) in this case is 1334+ 867(Z +1/Z) + 242
(
Z2

+1/Z2
)
+

24
(
Z3

+1/Z3
)
, and the corresponding minimum-phase signal isA(Z) = (2+ Z)(3+ Z)(4+

Z) = 24+26Z+9Z2
+ Z3. A quadratic rate of convergence is visible from the table. The con-

vergence slows down for signals whose polynomial roots are close to the unit circle (Wilson,

1969).

Comparison of Wilson-Burg and Kolmogoroff methods

The Kolmogoroff algorithm of spectral factorization (Kolmogoroff, 1939; Claerbout, 1976) is

widely used because of its computationally efficiency. While this method is easily extended to

the multi-dimensional case with the help of helical transform (Rickett and Claerbout, 1999a,b),

there are several circumstances that make the Wilson-Burg method more attractive in multi-

dimensional filtering applications.
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• The Kolmogoroff method takesO(N logN) operations, whereN is the length of the

auto-correlation function. The cost of the Wilson-Burg method is proportional to the

[number of iterations]× [filter length] ×N. If we keep the filter small and limit the

number of iterations, the Wilson-Burg method can be cheaper (linear inN).

• The Kolmogoroff method works in the frequency domain and assumes periodic bound-

ary conditions. Auto-correlation functions, therefore, need to be padded with zeros

before they are Fourier transformed. For functions with zeros near the unit circle, the

padding may need to be many orders of magnitude greater than the original filter length,

N (Rickett and Claerbout, 1998). The Wilson-Burg method is implemented in the time-

domain, so no padding is required.

• Newton’s method (the basis of the Wilson-Burg algorithm) converges quickly when the

initial guess is close to the solution. If we take advantage of this property, the method

may converge in one or two iterations, reducing the cost even further. It is impossible to

make use of an initial guess with the Kolmogoroff method.

• The Kolmogoroff method, when applied to helix filtering, involves the dangerous step

of truncating the filter coefficients to reduce the size of the filter. If the auto-correlation

function has roots close to the unit circle, truncating filter coefficients may easily lead

to non-minimum-phase filters. With Wilson-Burg, we can fix the shape of the filter

from the very beginning. This does not guarantee that we will find the exact solution,

but at least we can obtain a reasonable minimum-phase approximation to the desired

filter. The safest practical strategy in the case of an unknown initial estimate is to start

with finding the longest possible filter, remove those of its coefficients that are smaller

a certain threshold, and repeat the factoring process again with the shorter filter.

Factorization examples

The first simple example of helical spectral factorization is shown in Figure 1.12. A minimum-

phase factor is found by spectral factorization of its autocorrelation. The result is additionally

confirmed by applying inverse recursive filtering, which turns the filter into a spike (the right-

most plot in Figure 1.12.)
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Figure 1.12: Example of 2-D Wilson-Burg factorization. From left to right: the input filter; its
auto-correlation; the factor obtained by the Wilson-Burg method; the result of the deconvolu-
tion. optim-autowaves[ER]

A practically useful example is depicted in Figure 1.13. The symmetric Laplacian oper-

ator is often used in practice for regularizing smooth data (see a more detailed discussion in

Chapter 5). In order to construct a corresponding recursive preconditioner, I factor the Lapla-

cian auto-correlation (the biharmonic operator) using the Wilson-Burg algorithm. Figure 1.13

shows the resultant filter. The minimum-phase Laplacian filter has several times more coef-

ficients that the original Laplacian. Therefore, its application would be more expensive in a

convolution application. The real advantage follows from the applicability of the minimum-

phase filter for inverse filtering (deconvolution). As demonstrated by 2-D examples later in

this chapter, the gain in convergence from recursive filter preconditioning outweighs the loss

of efficiency from the longer filter. Figure 1.14 shows a construction of the smooth inverse

impulse response by application of theC = PPT operator, whereP is deconvolution with the

minimum-phase Laplacian. The application ofC is equivalent to a numerical solution of the

biharmonic equation, discussed in Chapter 5.

TWO-DIMENSIONAL ENVIRONMENTAL DATA EXAMPLES

Using the idea of recursive filter preconditioning, which I illustrated on 1-D synthetic exam-

ples at the beginning of this chapter, and the multi-dimensional tools of the previous section,

we can now proceed to multi-dimensional tests. In the first set of tests, I use simple environ-

mental data sets. Such data are convenient for quick testing while appearing less artificial than
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Figure 1.13: Creating a minimum-phase Laplacian filter. From left to right: Laplacian filter; its
auto-correlation; the factor obtained by the Wilson-Burg method (minimum-phase Laplacian);
the result of the deconvolution.optim-laplac [ER]

Figure 1.14: 2-D deconvolution with the minimum-phase Laplacian. Left: input. Center:
output of deconvolution. Right: output of deconvolution and adjoint deconvolution (equivalent
to solving the biharmonic differential equation).optim-thin42 [ER]
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synthetic examples. I proceed to seismic data examples after fully developing the regulariza-

tion tools in Chapter 5.

Chernobyl rainfall in Switzerland

The first test dataset contains rainfall measurements from Switzerland on the 8th of May 1986.

The dataset was used in the Spatial Interpolation Comparison (Dubois, 1999) for comparing

different spatial interpolation methods. Figure 1.15 shows the data area: the Digital Elevation

Model of Switzerland and the country’s borders1. A total of 467 rainfall measurements were

taken. A subset of randomly selected 100 measurements was used in the 1997 Spatial Inter-

polation Comparison in order to compare the results with the known data. Figure 1.16 shows

the spatial location of the selected data samples.

Figure 1.15: Digital Elevation Model
of Switzerland and the country’s bor-
ders. The country borders are ex-
tracted from the Digital Chart of the
World (DCW) provided by ESRI.
optim-elev [ER]

Rainfall level is generally a smoothly varying quantity. We cannot expect it to be rep-

resented a priori by a simple function. Therefore, it is reasonable to take the regularization

operatorD to be a convolution with the Laplacian filter. The corresponding preconditioning

operatorP is then a deconvolution with the minimum-phase Laplacian constructed in the pre-

vious section. The interpolation result using the model-space regularization scheme (??-??) is

shown in Figure 1.17. The input irregular data were regularized on a 376 by 253 grid, which

corresponds to the digital elevation model in Figure 1.15. Similarly to what happens in the

1I provide the elevation image only for reference. It has not been used in the interpolation experiment.
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Figure 1.16: Left: data locations for all 467 measurements. Right: data locations for selected
100 measurements.optim-raindata[ER]

one-dimensional synthetic examples, the solution converges steadily but with a slow spread

of information away from the known data points. It takes about 10,000 iterations to achieve

full convergence. Figure 1.18 is a correlation plot of the observed and interpolated data points

for the 367 points that were not used in the interpolation experiment. If we take into account

the fairly unpredictable distribution of rainfall, the correlation is relatively good in comparison

with analogous results of the Spatial Interpolation Contest (Dubois, 1999).

The result of applying recursive filter preconditioning with the minimum-phase Laplacian

operator is shown in Figure 1.19. Full convergence is achieved after only 100 iterations. The

result after 10 iterations (the left plot in Figure 1.19) is already close to the final solution.

Recursive preconditioning speeded up the iteration count by a factor of 1000. The actual gain

in execution time is several times smaller because of the correspondingly longer filter, but it is

still impressively large.

SeaBeam water bottom

The next example is the SeaBeam dataset, a result of water bottom measurements from a

single day of acquisition. This dataset has been used at the Stanford Exploration Project

for benchmarking different strategies of data interpolation (Crawley, 1995a,b; Fomel, 1996a;
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Figure 1.17: Rainfall data after model-space regularization with 10, 100, 1000, and 10000
iterations. optim-lapinter [ER]

Figure 1.18: Correlation between ob-
served and predicted rainfall data val-
ues. optim-lapstat[ER]
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Figure 1.19: Rainfall data after data-space regularization (recursive filter preconditioning)
with 10 and 100 iterations.optim-precinter[ER]

Fomel et al., 1997; Fomel, 2000a; Clapp, 2000b). The left plot in Figure 1.20 shows the

original data. The right plot shows the result of (unpreconditioned) missing data interpolation

with the Laplacian filter. The result is unsatisfactory, because the Laplacian filter does not

absorb the spatial frequency distribution of the input dataset. We judge the quality of an

interpolation scheme by its ability to hide the footprints of the acquisition geometry in the

final result.

Figure 1.20: On the left, the SeaBeam data: the depth of the ocean under ship tracks; on the
right, an interpolation with the Laplacian filter.optim-seabdat[ER]
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We can obtain a significantly better result (Figure 1.21) by replacing the Laplacian filter

with a two-dimensional prediction-error filter (PEF) estimated from the input data. The result

in the left plot of Figure 1.21 was obtained after 200 conjugate-gradient iterations. If we stop

after 20 iterations, the output (the right plot in Figure 1.21) shows only a small deviation from

the input data. Large areas of the image remain unfilled. At each iteration, the interpolation

process progresses only to the length of the filter.

Figure 1.21: SeaBeam interpolation with the prediction-error filter. The left plot was taken
after 200 conjugate-gradient iterations; the right after 20 iterations.optim-seabold[ER,M]

Inverting the PEF convolution with the help of the helix transform, we can now apply the

inverse filtering operator to precondition the interpolation problem. As expected, the result

after 200 iterations (the left plot in Figure 1.22) is similar to the result of the corresponding

unpreconditioned interpolation. However, the output after just 20 iterations (the right plot in

Figure 1.22) is already fairly close to the solution.

B-SPLINE REGULARIZATION

As demonstrated in Chapter??, B-splines provide an exceptionally accurate method of for-

ward interpolation. In this section, I discuss how this choice of the forward operator affects

the regularization part of the problem. In the case of B-spline interpolation, the forward oper-

atorL is a cascade of two operators: recursive deconvolutionB−1, which converts the model
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Figure 1.22: SeaBeam interpolation with the inverse prediction-error filter. The left plot was
taken after 200 conjugate-gradient iterations; the right, after 20 iterations.optim-seabnew
[ER,M]

vector m to the vector of spline coefficientsc, and a spline basis construction operatorF.

System (??-??) transforms to

FB−1m ≈ d ; (1.10)

εDm ≈ 0 . (1.11)

We can rewrite (1.10-1.11) in the form that involves only spline coefficients:

Fc ≈ d ; (1.12)

εDBc ≈ 0 . (1.13)

After we find a solution of system (1.12-1.13), the modelm will be reconstructed by the simple

convolution

m = Bc . (1.14)

This approach is clearly just another version of model preconditioning.
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The inconvenient part of system (1.12-1.13) is the complex regularization operatorDB. Is

it possible to avoid the cascade ofB andD and to construct a regularization operator directly

applicable to the spline coefficientsc? The answer is positive. In the following subsection, I

develop a method for constructing spline regularization operators from differential equations.

Spline regularization

In many cases, the regularization condition originates in a continuous differential operator. I

provide several examples of such differential operators in Chapters 5 and 6.

Let us denote the continuous regularization operator byD. Regularization implies seek-

ing a function f (x) such that the least-squares norm ofD
[

f (x)
]

is minimum. Using the

usual expression for the least-squares norm of continuous functions and substituting the basis

decomposition (??), we obtain the expression

∥∥D
[

f (x)
]∥∥=

∫ (
D
[

f (x)
])2

dx =

∫ (∑
k∈K

ck D [β(x −k)]

)2

dx . (1.15)

The problem of finding functionf (x) reduces to the problem of finding the corresponding

set of basis coefficientsck. We can obtain the solution to the least-squares optimization by

differentiating the quadratic objective function (1.15) with respect to the basis coefficientsck.

This leads to the system of linear equations

∑
k∈K

ck

∫
D [β(x −k)] D

[
β(x − j )

]
dx =

∑
k∈K

ckdj −k = 0 , (1.16)

where

dj =

∫
D [β(x)] D

[
β(x − j )

]
dx . (1.17)

Equation (1.16) is clearly a discrete convolution of the spline coefficientsck with the filterdj

defined in equation (1.17). To transform the system (1.16) to a regularization condition of the
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form

Dcc ≈ 0 , (1.18)

we need to treat the digital filterdj as an autocorrelation and find its minimum-phase factor by

spectral factorization. The Wilson-Burg algorithm, described earlier, is an appropriate tool for

the task. Equation (1.18) replaces equation (1.13) in the inverse interpolation problem setting.

We have, thus, found a constructive way of creating B-spline regularization operators from

continuous differential equations.

Test example

For a simple 1-D test of B-spline regularization, I chose the function shown in Figure??, but

sampled at irregular locations. To create two different regimes for the inverse interpolation

problem, I chose 50 and 500 random locations. I interpolated these two sets of points to

500 and 50 regular samples, respectively. The first test corresponds to an under-determined

situation, while the second test is clearly over-determined. Figures 1.23 and 1.24 show the

input data for the two test after normalized binning to the selected regular bins.

Figure 1.23: 50 random points binned
to 500 regular grid points. The ran-
dom data are used for testing inverse
interpolation in an under-determined
situation. optim-bin500 [ER]

I solved system (1.12)-(1.18) by the iterative conjugate-gradient method, utilizing a recur-

sive filter preconditioning for faster convergence. To construct the regularization operatorD,
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Figure 1.24: 500 random points
binned to 50 regular grid points.
The random data are used for test-
ing inverse interpolation in an over-
determined situation. optim-bin50
[ER]

I used the method of the previous subsection with the tension-spline differential equation that

I will describe in Chapter 5.

The least-squares differences between the true and the estimated model are plotted in Fig-

ures 1.25 and 1.26. Observing the behavior of the model misfit versus the number of iterations

and comparing simple linear interpolation with the third-order B-spline interpolation, we dis-

cover that

• In the under-determined case, both methods converge to the same final estimate, but

B-spline inverse interpolation does it faster (with fewer iterations). However, the total

computational gain is not significant because each B-spline iteration is more expensive

than the corresponding linear interpolation iteration.

• In the over-determined case, both methods converge similarly at early iterations, but

B-spline inverse interpolation results in a more accurate final estimate.

From the results of this simple experiment, it is apparent that the main advantage of using

more accurate interpolation in the data regularization context occurs in the over-determined

situation, when the estimated model is well constrained by the available data.
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Figure 1.25: Model convergence in
the under-determined case. Dashed
line: using linear interpolation. Solid
line: using third-order B-spline.
optim-norm500[ER]

Figure 1.26: Model convergence in
the over-determined case. Dashed
line: using linear interpolation. Solid
line: using third-order B-spline.
optim-norm50[ER]
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Conclusions

We observe a significant (order-of-magnitude) speed-up in the optimization convergence when

preconditionining interpolation problems with inverse recursive filtering. Since inverse filter-

ing takes almost the same time as forward convolution, this speed-up translates straightfor-

wardly into computational time savings.

The savings are hardly noticeable for simple test problems, but they can have a direct

impact on the mere feasibility of iterative least-square inversion for large-scale (seismic-

exploration-size) problems.

In the multidimensional case, recursive filtering is enabled by Claerbout’s helix transform.

The Wilson-Burg spectral factorization method allows us to construct stable recursive filters.

By analyzing the role of B-spline interpolation in data regularization, I have introduced a

method of constructing B-spline discrete regularization operators from continuous differential

equations.

In the next chapter, I discuss possible choices of the regularization operatorD and the

preconditioning operatorP in data regularization problems.
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