
Chapter 1

Offset continuation for reflection seismic data

In this chapter, I develop the theory of a regularization operator that is particularly suited for

reflection seismic data. As discussed in Chapter??, an ideal regularization results from a data-

space differential equation that we assume to be satisfied by the input data. Laplace’s equation

is appropriate for certain kinds of potential-field data, and the biharmonic equation applies to

smooth elastic-type surfaces. A special differential equation is required to characterize the

predictable features of seismic reflection data.

Fortunately, such an equation does exist. I introduce it in this chapter and study its theo-

retical properties. The equation describes the process ofoffset continuation, which is a trans-

formation of common-offset seismic gathers from one constant offset to another (Bolondi et

al., 1982). Bagaini et al. (1994) identified offset continuation (OC) with a whole family of

prestack continuation operators, such as shot continuation (Schwab, 1993; Bagaini and Spag-

nolini, 1993), dip moveout as a continuation to zero offset, and three-dimensional azimuth

moveout (Biondi and Chemingui, 1994a; Biondi et al., 1998).

The Earth subsurface is a three-dimensional object, while seismic reflection data from a

multi-coverage acquisition belong to a five-dimensional space (time, 2-D offset, and 2-D mid-

point coordinates). This fact alone is a clear indication of the additional connection that exists

in the data space. The offset continuation equation expresses this connection in a concise math-

ematical form. Its theoretical analysis allows us to explain the data transformation between

1
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different offsets. A simple example is the diffraction point response shown in Figure 1.1 and

analyzed theoretically later in this chapter.

As early as in 1982, Bolondi et al. came up with the idea of describing offset continuation

and dip moveout (DMO) as a continuous process by means of a partial differential equation

(Bolondi et al., 1982). However, their approximate differential operator, built on the results of

Deregowski and Rocca’s classic paper (Deregowski and Rocca, 1981), failed in the cases of

steep reflector dips or large offsets. Hale (1983) writes:

The differences between this algorithm [DMO by Fourier transform] and previ-

ously published finite-difference DMO algorithms are analogous to the differen-

ces between frequency-wavenumber (Stolt, 1978; Gazdag, 1978) and finite-dif-

ference (Claerbout, 1976) algorithms for migration. For example, just as finite-

difference migration algorithms require approximations that break down at steep

dips, finite-difference DMO algorithms are inaccurate for large offsets and steep

dips, even for constant velocity.

Continuing this analogy, one can observe that both finite-difference and frequency-domain

migration algorithms share a common origin: the wave equation. The new OC equation,

presented in this chapter1 and valid for all offsets and dips, plays a role analogous to that

of the wave equation for offset continuation and dip moveout algorithms. A multitude of

seismic migration algorithms emerged from the fundamental wave-propagation theory that is

embedded in the wave equation. Likewise, the fundamentals of DMO algorithms can be traced

to the OC differential equation.

In the first part of the chapter, I prove that the revised equation is, under certain assump-

tions, kinematically valid. This means that wavefronts of the offset continuation process cor-

respond to the reflection wave traveltimes and correctly transform between different offsets.

Moreover, the wave amplitudes are also propagated correctly according to thetrue-amplitude

criterion (Black et al., 1993). The amplitude and phase preservation is additionally confirmed

1To my knowledge, the first derivation of the revised offset continuation equation was accomplished by
Joseph Higginbotham of Texaco in 1989. Unfortunately, Higginbotham’s derivation never appeared in the
open literature.
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Figure 1.1: Common-offset sections of a diffraction point response (superimposed on the same
plot). Top: after NMO. Bottom: before NMO. The offsets are 0, 1, 2, 3, 4, and 5 km. The
offset continuation equation describes the data transformation between different offsets (see
the left plot in Figure 1.5).ofcon-spik [ER]
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by a direct theoretical test, where I represent the input common-offset data by the Kirchhoff

modeling integral (Bleistein, 1984). The first two asymptotic orders of accuracy are satisfied

when the offset continuation equation is applied to the Kirchhoff data.

In the second part of the chapter, I relate the offset continuation equation to different

methods of dip moveout. Considering DMO as a continuation to zero offset, I show that DMO

operators can be obtained by solving a special initial value (Cauchy-type) problem for the

OC equation. Different known forms of DMO (Hale, 1991) appear as special cases of more

general offset continuation operators.

INTRODUCING THE OFFSET CONTINUATION EQUATION

Most of the contents of this chapter refer to the following linear partial differential equation:

h

(
∂2P

∂y2
−
∂2P

∂h2

)
= tn

∂2P

∂tn ∂h
. (1.1)

Equation (1.1) describes anartificial (non-physical) process of transforming reflection seismic

dataP(y,h,tn) in the offset-midpoint-time domain. In equation (1.1),h stands for the half-

offset (h = (r − s)/2, wheres and r are the source and the receiver coordinates),y is the

midpoint (y = (r + s)/2), andtn is the time coordinate after normal moveout correction is

applied: (
tn =

√
t2 −

4h2

v2

)
. (1.2)

The velocityv is assumed to be known a priori. Equation (1.1) belongs to the class of linear

hyperbolic equations, with the offseth acting as a time-like variable. It describes a wave-like

propagation in the offset direction.
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Proof of validity

A simplified version of the ray method technique (Červeňy et al., 1977; Babich, 1991) can

allow us to prove the theoretical validity of equation (1.1) for all offsets and reflector dips by

deriving two equations that describe separately wavefront (traveltime) and amplitude transfor-

mation. According to the formal ray theory, the leading term of the high-frequency asymp-

totics for a reflected wave recorded on a seismogram takes the form

P (y,h,tn) ≈ An(y,h) Rn (tn − τn(y,h)) , (1.3)

whereAn stands for the amplitude,Rn is the wavelet shape of the leading high-frequency term,

andτn is the traveltime curve after normal moveout. Inserting (1.3) as a trial solution for (1.1),

collecting terms that have the same asymptotic order (correspond to the same-order derivatives

of the waveletRn), and neglecting low-order terms, we obtain a set of two first-order partial

differential equations:

h

[(
∂τn

∂y

)2

−

(
∂τn

∂h

)2
]

= −τn
∂τn

∂h
, (1.4)

(
τn −2h

∂τn

∂h

)
∂An

∂h
+2h

∂τn

∂y

∂An

∂y
+h An

(
∂2τn

∂y2
−
∂2τn

∂h2

)
= 0 . (1.5)

Equation (1.4) describes the transformation of traveltime curve geometry in the OC pro-

cess analogously to how the eikonal equation describes the front propagation in the classic

wave theory. What appear to be wavefronts of the wave motion described by equation (1.1)

are traveltime curves of reflected waves recorded on seismic sections. The law of amplitude

transformation for high-frequency wave components related to those wavefronts is given by

equation (1.5). In terms of the theory of partial differential equations, equation (1.4) is the

characteristic equation for (1.1).



6 CHAPTER 1. OFFSET CONTINUATION FOR REFLECTION SEISMIC DATA

Proof of kinematic equivalence

In order to prove the validity of equation (1.4), it is convenient to transform it to the coordinates

of the initial shot gathers:s= y−h, r = y+h, andτ =

√
τ2

n +
4h2

v2 . The transformed equation

takes the form (
τ2

+
(r −s)2

v2

)(
∂τ

∂r
−
∂τ

∂s

)
= 2(r −s)τ

(
1

v2
−
∂τ

∂r

∂τ

∂s

)
. (1.6)

Now the goal is to prove that any reflection traveltime functionτ (r ,s) in a constant velocity

medium satisfies equation (1.6).

Let S andR be the source and the receiver locations, andO be a reflection point for that

pair. Note that the incident raySOand the reflected rayO R form a triangle with the basis on

the offsetSR(l = |SR| = |r − s|). Let α1 be the angle ofSO from the vertical axis, andα2

be the analogous angle ofRO (Figure 1.2). The law of sines gives us the following explicit

relationships between the sides and the angles of the triangleSO R:

|SO| = |SR|
cosα1

sin(α2 −α1)
, (1.7)

|RO| = |SR|
cosα2

sin(α2 −α1)
. (1.8)

Hence, the total length of the reflected ray satisfies

vτ = |SO|+ |RO| = |SR|
cosα1 +cosα2

sin(α2 −α1)
= |r −s|

cosα

sinγ
. (1.9)

Hereγ is the reflection angle (γ = (α2 −α1)/2), andα is the central ray angle (α = (α2 +

α1)/2), which coincides with the local dip angle of the reflector at the reflection point. Recall-

ing the well-known relationships between the ray angles and the first-order traveltime deriva-

tives

∂τ

∂s
=

sinα1

v
, (1.10)

∂τ

∂r
=

sinα2

v
, (1.11)
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we can substitute (1.9), (1.10), and (1.11) into (1.6), which leads to the simple trigonometric

equality

cos2
(
α1 +α2

2

)
+sin2

(
α1 −α2

2

)
= 1−sinα1sinα2 . (1.12)

It is now easy to show that equality (1.12) is true for anyα1 andα2, since

sin2a−sin2b = sin(a+b) sin(a−b) .

Figure 1.2: Reflection rays in a con-
stant velocity medium (a scheme).
ofcon-ocoray[NR]
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Thus we have proved that equation (1.6), equivalent to (1.4), is valid in constant velocity

media independently of the reflector geometry and the offset. This means that high-frequency

asymptotic components of the waves, described by the OC equation, are located on the true

reflection traveltime curves.

The theory of characteristics can provide other ways to prove the kinematic validity of

equation (1.4), as described by Fomel (1994) and Goldin (1994).

Comparison with Bolondi’s OC equation

Equation (1.1) and the previously published OC equation (Bolondi et al., 1982) differ only

with respect to the single term∂
2P
∂h2 . However, this difference is substantial.



8 CHAPTER 1. OFFSET CONTINUATION FOR REFLECTION SEISMIC DATA

From the offset continuation characteristic equation (1.4), we can conclude that the first-

order traveltime derivative with respect to offset decreases with a decrease of the offset. At

zero offset the derivative equals zero, as predicted by the principle of reciprocity (the reflection

traveltime has to be anevenfunction of offset). Neglecting∂τn
∂h in (1.4) leads to the character-

istic equation

h

(
∂τn

∂y

)2

= −τn
∂τn

∂h
, (1.13)

which corresponds to the approximate OC equation of Bolondi et al. (1982). The approximate

equation has the form

h
∂2P

∂y2
= tn

∂2P

∂tn ∂h
. (1.14)

Comparing (1.13) and (1.4), note that approximation (1.13) is valid only if

(
∂τn

∂h

)2

�

(
∂τn

∂y

)2

. (1.15)

To find the geometric constraints implied by inequality (1.15), we can express the traveltime

derivatives in geometric terms. As follows from expressions (1.10) and (1.11),

∂τ

∂x
=

∂τ

∂r
+
∂τ

∂s
=

2sinα cosγ

v
, (1.16)

∂τ

∂h
=

∂τ

∂r
−
∂τ

∂s
=

2cosα sinγ

v
. (1.17)

Expression (1.9) allows transforming equations (1.16) and (1.17) to the form

τn
∂τn

∂y
= τ

∂τ

∂y
= 4h

sinα cosα cotγ

v2
; ; (1.18)

τn
∂τn

∂h
= τ

∂τ

∂h
−

4h

v2
= −4h

sin2α

v2
. (1.19)

Without loss of generality, we can assumeα to be positive. Consider a plane tangent to a true

reflector at the reflection point (Figure 1.3). The traveltime of a wave, reflected from the plane,
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has the well-known explicit expression

τ =
2

v

√
L2 +h2 cos2α , (1.20)

whereL is the length of the normal ray from the midpoint. As follows from combining (1.20)

and (1.9),

cosα cotγ =
L

h
. (1.21)

We can then combine equalities (1.21), (1.18), and (1.19) to transform inequality (1.15) to the

form

h �
L

sinα
= z cotα , (1.22)

wherez is the depth of the plane reflector under the midpoint. For example, for a dip of 45

degrees, equation (1.14) is satisfied only for offsets that are much smaller than the depth.

Figure 1.3: Reflection rays and
tangent to the reflector in a con-
stant velocity medium (a scheme).
ofcon-ocobol [NR]
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Offset continuation geometry: time rays

To study the laws of traveltime curve transformation in the OC process, it is convenient to

apply the method of characteristics (Courant, 1962) to the eikonal-type equation (1.4). The
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characteristics of equation (1.4) [bi-characteristics with respect to equation (1.1)] are the tra-

jectories of the high-frequency energy propagation in the imaginary OC process. Following

the formal analogy with seismic rays, I call those trajectoriestime rays, where the wordtime

refers to the fact that the trajectories describe the traveltime transformation (Fomel, 1994). Ac-

cording to the theory of first-order partial differential equations, time rays are determined by

a set of ordinary differential equations (characteristic equations) derived from equation (1.4) :

dy

dtn
= −

2hY

tnH
,

dY

dtn
=

Y

tn
,

dh

dtn
= −

1

H
+

2h

tn
,

d H

dtn
=

Y2

tnH
, (1.23)

whereY corresponds to∂τn
∂y along a ray andH corresponds to∂τn

∂h . In this notation, equa-

tion (1.4) takes the form

h (Y2
− H2) = − tnH (1.24)

and serves as an additional constraint for the definition of time rays. System (1.23) can be

solved by standard mathematical methods (Tenenbaum and Pollard, 1985). Its general solution

takes the parametric form, where the time variabletn is the parameter changing along a time

ray:

y(tn) = C1 −C2 t2
n ; h(tn) = tn

√
C2

2t2
n +C3 ; (1.25)

Y(tn) =
C2 tn
C3

; H (tn) =
h

C3 tn
(1.26)

andC1, C2, andC3 are independent coefficients, constant along each time ray. To determine

the values of these coefficients, we can pose an initial-value (Cauchy) problem for the system

of differential equations (1.23). The traveltime curveτn(y;h) for a given common offseth

and the first partial derivative∂τn
∂h along the same constant offset section provide natural initial

conditions for the Cauchy problem. A particular case of those conditions is the zero-offset

traveltime curve. If the first partial derivative of traveltime with respect to offset is continuous,

it vanishes at zero offset according to the reciprocity principle (traveltime must be an even
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function of the offset):

t0 (y0) = τn(y;0),
∂τn

∂h

∣∣∣∣
h=0

= 0. (1.27)

Applying the initial-value conditions to the general solution (1.26) generates the following

expressions for the ray invariants:

C1 = y+h
Y

H
= y0 −

t0 (y0)

t ′0 (y0)
; C2 =

h Y

τ2
n H

= −
1

t0 (y0) t ′0 (y0)
;

C3 =
h

τn H
= −

1(
t ′0 (y0)

)2 , (1.28)

wheret ′0 (y0) denotes the derivatived t0
d y0

. Finally, substituting (1.28) into (1.26), we obtain an

explicit parametric form of the ray trajectories:

y1 (t1) = y+
h Y

t2
n H

(
t2
n − t2

1

)
= y0 +

t2
1 − t2

0 (y0)

t0 (y0) t ′0 (y0)
;

h2
1 (t1) =

h t21
t3
n H

(
t2
n + t2

1
h Y2

tn H

)
= t2

1
t2
1 − t2

0 (y0)(
t0 (y0) t ′0 (y0)

)2 .

(1.29)

Here y1, h1, andt1 are the coordinates of the continued seismic section. The first of equa-

tions (1.29) indicates that the time ray projections to a common-offset section have a parabolic

form. Time rays do not exist fort ′0 (y0) = 0 (a locally horizontal reflector) because in this case

post-NMO offset continuation transform is not required.

The actual parameter that determines a particular time ray is the reflection point location.

This important conclusion follows from the known parametric equations t0(x) = tv secα = tv(x)
√

1+u2
(
t ′v(x)

)2
,

y0(x) = x +utv tanα = x +u2 tv(x)t ′v(x) ,
(1.30)

wherex is the reflection point,u is half of the wave velocity (u = v/2), tv is the vertical time

(reflector depth divided byu), andα is the local reflector dip. Taking into account that the
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derivative of the zero-offset traveltime curve is

dt0
dy0

=
t ′0(x)

y′

0(x)
=

sinα

u
=

t ′v(x)√
1+u2

(
t ′v(x)

)2 (1.31)

and substituting (1.30) into (1.29), we get

y1 (t1) = x +
t2
1 − t2

v (x)

tv (x) t ′v (x)
;

u2t2 (t1) = t2
1

t2
1 − t2

v (x)(
tv (x) t ′v (x)

)2 ,

(1.32)

wheret2 (t1) = t2
1 +h2

1 (t1)/u2.

To visualize the concept of time rays, let us consider some simple analytic examples of its

application to geometric analysis of the offset-continuation process.

The simplest and most important example is the case of a plane dipping reflector. Putting

the origin of they axis at the intersection of the reflector plane with the surface, we can express

the reflection traveltime after NMO in the form

τn(y,h) = p
√

y2 −h2 , (1.33)

wherep = 2 sinα
v

, andα is the dip angle. The zero-offset traveltime in this case is a straight

line:

t0 (y0) = p y0 . (1.34)

According to equations (1.29), the time rays in this case are defined by

y1 (t1) =
t2
1

p2 y0
; h2

1 (t1) = t2
1

t2
1 − p2 y2

0

p4 y2
0

; y0 =
y2

−h2

y
. (1.35)

The geometry of the OC transformation is shown in Figure 1.4.
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Figure 1.4: Transformation of the reflection traveltime curves in the OC process: the case of
a plane dipping reflector. Left: Time coordinate before the NMO correction. Right: Time
coordinate after NMO. The solid lines indicate traveltime curves at different common-offset
sections; the dashed lines indicate time rays.ofcon-ocopln [NR]

The second example is the case of a point diffractor (the left side of Figure 1.5). Without

loss of generality, the origin of the midpoint axis can be put above the diffraction point. In this

case the zero-offset reflection traveltime curve has the well-known hyperbolic form

t0 (y0) =

√
z2 + y2

0

u
, (1.36)

wherez is the depth of the diffractor andu = v/2 is half of the wave velocity. Time rays are

defined according to equations (1.29), as follows:

y1 (t1) =
u2 t2

1 − z2

y0
; u2 t2 (t1) = u2 t2

1 +h2
1 (t1) = u2 t2

1
u2 t2

1 − z2

y2
0

. (1.37)

The third example (the right side of Figure 1.5) is the curious case of a focusing elliptic

reflector. Lety be the center of the ellipse andh be half the distance between the foci of



14 CHAPTER 1. OFFSET CONTINUATION FOR REFLECTION SEISMIC DATA

-7.5 -5 -2.5 0 2.5 5 7.5
midpoint

1

2

3

4

5

6

Diffraction Point

-1 -0.5 0 0.5 1
midpoint

0.2

0.4

0.6

0.8

1.0

1.2

Elliptic Reflector

tim
e

tim
e

Figure 1.5: Transformation of the reflection traveltime curves in the OC process. Left: the case
of a diffraction point. Right: the case of an elliptic reflector. Solid lines indicate traveltime
curves at different common-offset sections, dashed lines indicate time rays.ofcon-ococrv
[NR]

the ellipse. If both foci are on the surface, the zero-offset traveltime curve is defined by the

so-called “DMO smile” (Deregowski and Rocca, 1981):

t0 (y0) =
tn
h

√
h2 − (y− y0)2 , (1.38)

wheretn = 2z/v, andz is the small semi-axis of the ellipse. The time-ray equations are

y1 (t1) = y+
h2

y− y0

t2
1 − t2

n

t2
n

; h2
1 (t1) = h2 t2

1

t2
n

(
1+

h2

(y− y0)2

t2
1 − t2

n

t2
n

)
. (1.39)

Wheny1 coincides withy, andh1 coincides withh, the source and the receiver are in the foci

of the elliptic reflector, and the traveltime curve degenerates to a pointt1 = tn. This remarkable

fact is the actual basis of the geometric theory of dip moveout (Deregowski and Rocca, 1981).
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Proof of amplitude equivalence

This section discusses the connection between the laws of traveltime transformation and the

laws of the corresponding amplitude transformation. The change of the wave amplitudes in

the OC process is described by the first-order partial differential transport equation (1.5). We

can find the general solution of this equation by applying the method of characteristics. The

solution takes the explicit integral form

An (tn) = A0 (t0) exp

(∫ tn

to

[
h

(
∂2τn

∂y2
−
∂2τn

∂h2

) (
τn
∂τn

∂h

)−1
]

dτn

)
. (1.40)

The integral in equation (1.40) is defined on a curved time ray, andAn(tn) stands for the

amplitude transported along this ray. In the case of a plane dipping reflector, the ray amplitude

can be immediately evaluated by substituting the explicit traveltime and time ray equations

from the preceding section into (1.40). The amplitude expression in this case takes the simple

form

An (tn) = A0 (t0) exp

(
−

∫ tn

to

dτn

τn

)
= A0 (t0)

t0
tn

. (1.41)

In order to consider the more general case of a curvilinear reflector, we need to take into

account the connection between the traveltime derivatives in (1.40) and the geometry of the

reflector. As follows directly from the trigonometry of the incident and reflected rays triangle

(Figure 1.2),

h =
r −s

2
= D

cosα sinγ cosγ

cos2α−sin2γ
, (1.42)

y =
r +s

2
= x + D

cos2α sinα

cos2α−sin2γ
, (1.43)

y0 = x + D sinα , (1.44)
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whereD is the length of the normal ray. Letτ0 = 2D/v be the zero-offset reflection traveltime.

Combining equations (1.42) and (1.44) with (1.9), we can get the following relationship:

a =
τn

τ0
=

cosα cosγ(
cos2α−sin2γ

)1/2 =

(
1+

sin2α sin2γ

cos2α−sin2γ

)1/2

=
h√

h2 − (y− y0)2
, (1.45)

which describes the “DMO smile” (1.38) found by Deregowski and Rocca (1981) in geometric

terms. Equation (1.45) allows a convenient change of variables in (1.40). Let the reflection

angleγ be a parameter monotonically increasing along a time ray. In this case, each time ray

is uniquely determined by the position of the reflection point, which in turn is defined by the

values ofD andα. According to this change of variables, we can differentiate (1.45) along a

time ray to get

dτn

τn
= −

sin2α

2 cos2γ
(
cos2γ −sin2α

) d
(
cos2γ

)
. (1.46)

Note also that the quantityh
(
τn

∂τn
∂h

)−1
in equation (1.40) coincides exactly with the time ray

invariantC3 found in equation (1.28). Therefore its value is constant along each time ray and

equals

h

(
τn
∂τn

∂h

)−1

= −
v2

4 sin2α
. (1.47)

Finally, as shown in Appendix A,

τn

(
∂2τn

∂y2
−
∂2τn

∂h2

)
= 4

cos2γ

v2

(
sin2α+ DK

cos2γ + DK

)
, (1.48)

whereK is the reflector curvature at the reflection point. Substituting (1.46), (1.47), and (1.48)

into (1.40) transforms the integral to the form

∫ tn

to

[
h

(
∂2τn

∂y2
−
∂2τn

∂h2

) (
τn
∂τn

∂h

)−1
]

dτn =
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= −
1

2

∫ cos2γ

cos2γ0

(
1

cos2γ ′ −sin2α
−

1

cos2γ ′ + DK

)
d
(
cos2γ ′

)
(1.49)

which we can evaluate analytically. The final formula for the amplitude transformation takes

the form

An = A0

√
cos2γ −sin2α√
cos2γ0 −sin2α

(
cos2γ0 + DK

cos2γ + DK

)1/2

=

= A0
τ0 cosγ

τn cosγ0

(
cos2γ0 + DK

cos2γ + DK

)1/2

. (1.50)

In case of a plane reflector, the curvatureK is zero, and (1.50) coincides with (1.41). Equa-

tion (1.50) can be rewritten as

An =
c cosγ

τn

√
cos2γ + DK

, (1.51)

wherec is constant along each time ray (it may vary with the reflection point location on

the reflector but not with the offset). We should compare equation (1.51) with the known

expression for the reflection wave amplitude of the leading ray series term in 2.5-D media:

A =
CR(γ )9

G
, (1.52)

whereCR stands for the angle-dependent reflection coefficient,G is the geometric spreading

G = vτ

√
cos2γ + DK

cosγ
, (1.53)

and9 includes other possible factors (such as the source directivity) that we can either correct

or neglect in the preliminary processing. It is evident that the curvature dependence of the

amplitude transformation (1.51) coincides completely with the true geometric spreading factor

(1.53) and that the angle dependence of the reflection coefficient is not provided by the offset

continuation process. If the wavelet shape of the reflected wave on seismic sections [Rn in

equation (1.3)] is described by the delta function, then, as follows from the known properties
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of this function,

Aδ (t − τ (y,h)) =

∣∣∣∣dtn
dt

∣∣∣∣ Aδ (tn − τn(y,h)) =
t

tn
Aδ (tn − τn(y,h)) , (1.54)

which leads to the equality

An = A
t

tn
. (1.55)

Combining equation (1.55) with equations (1.52) and (1.51) allows us to evaluate the ampli-

tude after continuation from some initial offseth0 to another offseth1, as follows:

A1 =
CR(γ0)90

G1
. (1.56)

According to equation (1.56), the OC process described by equation (1.1) is amplitude-preserving

in the sense that corresponds to Born DMO (Liner, 1991; Bleistein, 1990). This means that

the geometric spreading factor from the initial amplitudes is transformed to the true geomet-

ric spreading on the continued section, while the reflection coefficient stays the same. This

remarkable dynamic property allows AVO (amplitude versus offset) analysis to be performed

by a dynamic comparison between true constant-offset sections and the sections transformed

by OC from different offsets. With a simple trick, the offset coordinate is transferred to the

reflection angles for the AVO analysis. As follows from (1.45) and (1.9),

τ2
n

τ τ0
= cosγ . (1.57)

If we include the t2
n

t t0
factor in the DMO operator (continuation to zero offset) and divide the

result by the DMO section obtained without this factor, the resultant amplitude of the reflected

events will be directly proportional to cosγ , where the reflection angleγ corresponds to the

initial offset. Of course, this conclusion is rigorously valid for constant-velocity 2.5-D media

only.

Black et al. (1993) suggest a definition of true-amplitude DMO different from that of Born

DMO. The difference consists of two important components:
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1. True-amplitude DMO addresses preserving the peak amplitude of the image wavelet

instead of preserving its spectral density.In the terms of this chapter, the peak amplitude

corresponds to the pre-NMO amplitudeA from formula (1.52) instead of corresponding

to the spectral density amplitudeAn. A simple correction factorttn would help us take

the difference between the two amplitudes into account. Multiplication byt
tn

can be

easily done at the NMO stage.

2. Seismic sections are multiplied by time to correct for the geometric spreading factor

prior to DMO (or, in our case, offset continuation) processing.

As follows from (1.53), multiplication byt is a valid geometric spreading correction for plane

reflectors only. It is the amplitude-preserving offset continuation based on the OC equa-

tion (1.1) that is able to correct for the curvature-dependent factor in the amplitude. To take

into account the second aspect of Black’s definition, we can consider the modified fieldP̂ such

that

P̂ (y,h,tn) = t P (y,h,tn) . (1.58)

Substituting (1.58) into the OC equation (1.1) transforms the latter to the form

h

(
∂2P̂

∂y2
−
∂2P̂

∂h2

)
= tn

∂2P̂

∂tn ∂h
−
∂ P̂

∂h
. (1.59)

Equations (1.59) and (1.1) differ only with respect to the first-order damping term∂ P̂
∂h . This

term affects the amplitude behavior but not the traveltimes, since the eikonal-type equa-

tion (1.4) depends on the second-order terms only. Offset continuation operators based on (1.59)

conform to Black’s definition of true-amplitude processing.

CONFIRMATION OF OFFSET CONTINUATION ON KIRCHHOFF DATA

Another confirmation of the kinematic and amplitude validity of the offset continuation equa-

tion follows from applying the equation to the Kirchhoff modeling approximation.
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The Kirchhoff modeling approximation

In this subsection, I discuss the Kirchhoff approximate integral representation of the upward

propagating response to a single reflector with separated source and receiver points. I then

show how the amplitude of this integrand is related to the zero-offset amplitude at the source

receiver point on the ray that makes equal angles at the scattering point with the rays from

the separated source and receiver. The Kirchhoff integral representation (Haddon and Buchen,

1981; Bleistein, 1984) describes the wavefield scattered from a single reflector. This represen-

tation is applicable in situations where the high-frequency assumption is valid (the wavelength

is smaller than the characteristic dimensions of the model) and corresponds in accuracy to the

WKBJ approximation for reflected waves. The general form of the Kirchhoff modeling inte-

gral is

US(r ,s,ω) =

∫
6

R(x;r ,s)
∂

∂n
[UI (s,x,ω)G(x,r ,ω)] d6 , (1.60)

wheres and r stand for the source and the receiver locations;x denotes a point on the re-

flector surface6; R is the reflection coefficient at6; n is the upward normal to the reflector

at the pointx; andUI and G are the incident wavefield and Green’s function, respectively

represented by their WKBJ approximation,

UI (s,x,ω) = F(ω) As(s,x)eiωτs(s,x) , (1.61)

G(x,r ,ω) = Ar (x,r )eiωτr (x,r ) . (1.62)

In this equation,τs(s,x) andAs(s,x) are the traveltime and the amplitude of the wave propagat-

ing froms to x; τr (x,r ) andAr (x,r ) are the corresponding quantities for the wave propagating

from x to r ; F(ω) is the spectrum of the input signal, assumed to be the transform of a band-

limited impulsive source. In the time domain, the Kirchhoff modeling integral transforms

to

uS(r ,s,t) =

∫
6

R(x;r ,s)
∂

∂n

[
As(s,x) Ar (x,r ) f (t − τs(s,x)− τr (x,r ))

]
dx , (1.63)
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with f denoting the inverse temporal transform ofF . The reflection traveltimeτsr corresponds

physically to the diffraction from a point diffractor located at the pointx on the surface6, and

the amplitudesAs andAr are point diffractor amplitudes.

The main goal of this section is to test the compliance of representation (1.63) with the

offset continuation differential equation. The OC equation contains the derivatives of the

wavefield with respect to the parameters of observation (s,r , andt). According to the rules of

classic calculus, these derivatives can be taken under the sign of integration in formula (1.63).

Furthermore, since we do not assume that the true-amplitude OC operator affects the reflection

coefficientR, the offset-dependence of this coefficient is outside the scope of consideration.

Therefore, the only term to be considered as a trial solution to the OC equation is the kernel of

the Kirchhoff integral, which is contained in the square brackets in equations (1.60) and (1.63)

and has the form

k(s,r ,x,t) = Asr(s,r ,x) f (t − τsr(s,r ,x)) , (1.64)

where

τsr(s,r ,x) = τs(s,x)+ τr (x,r ) , (1.65)

Asr(s,r ,x) = As(s,x) Ar (x,r ) . (1.66)

In a 3-D medium with a constant velocityv, the traveltimes and amplitudes have the simple

explicit expressions

τs(s,x) =
ρs(s,x)

v
, As(s,x) =

1

4π ρs(s,x)
, (1.67)

τr (x,r ) =
ρr (x,r )

v
, Ar (x,r ) =

1

4π ρr (x,r )
, (1.68)

whereρs andρr are the lengths of the incident and reflected rays, respectively (Figure 1.6). If

the reflector surface6 is explicitly defined by some functionz = z(x), then

ρs(s,x) =

√
(x −s)2 + z2(x) , ρr (x,r ) =

√
(r − x)2 + z2(x) . (1.69)
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Figure 1.6: Geometry of diffraction in a constant-velocity medium: view in the reflection
plane. ofcon-cwpgen[NR]

I then introduce a particular zero-offset amplitude, namely the amplitude along the zero

offset ray that bisects the angle between the incident and reflected ray in this plane, as shown

in Figure 1.6. Let us denote the square of this amplitude byA0. That is,

A0 =
1

(4πρ0)2
. (1.70)

As follows from equations (1.66) and (1.67-1.68), the amplitude transformation in DMO (con-

tinuation to zero offset) is characterized by the dimensionless ratio

Asr

A0
=

ρ2
0

ρsρr
, (1.71)

whereρ0 is the length of the zero-offset ray (Figure 1.6).

As follows from the law of cosines,√
ρ2

s +ρ2
0 −2ρsρ0 cosγ +

√
ρ2

r +ρ2
0 −2ρr ρ0 cosγ =

=

√
ρ2

s +ρ2
r −2ρsρr cos2γ , (1.72)



23

whereγ is the reflection angle, as shown in the figure. After straightforward algebraic trans-

formations of equation (1.72), we arrive at the explicit relationship between the ray lengths:

(ρs +ρr )ρ0

2ρsρr
= cosγ . (1.73)

Substituting (1.73) into (1.71) yields

Asr

A0
=
τ0

τsr
cosγ , (1.74)

whereτ0 is the zero-offset two-way traveltime (τ0 = 2ρ0/v).

What we have done is rewrite the finite-offset amplitude in the Kirchhoff integral in terms

of a particular zero-offset amplitude. That zero-offset amplitude would arise as the geometric

spreading effect if there were a reflector whose dip was such that the finite-offset pair would

be specular at the scattering point. Of course, the zero-offset ray would also be specular in this

case.

Kirchhoff model and the offset continuation equation

Equation (1.1) describes the process of seismogram transformation in the time-midpoint-offset

domain. In order to obtain the high-frequency asymptotics of the equation’s solution by stan-

dard methods, we can introduce a trial asymptotic solution of the form (1.3).

If we then rewrite the eikonal equation (1.4) in the time-source-receiver coordinate system

as (1.6), we can easily2 verify that the explicit expression for the phase of the Kirchhoff integral

kernel (1.65) satisfies the eikonal equation for any scattering pointx. Here,τsr is related toτn

ast is related totn in equation (1.1).

The general solution of the amplitude equation (1.5) has the form

An = A0
τ0 cosγ

τn

(
1+ρ0 K

cos2γ +ρ0 K

)1/2

, (1.75)

2using Mathematica
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which is a particular form of the previously derived equation (1.50) for continuation from zero

offset. Since the kernel (1.64) of the Kirchhoff integral (1.63) corresponds kinematically to the

reflection from a point diffractor, we can obtain the solution of the amplitude equation for this

case by formally setting the curvatureK to infinity (setting the radius of curvature to zero).

The infinite curvature transforms formula (1.75) to the relationship

An

A0
=
τ0

τn
cosγ . (1.76)

Again, we exploit the assumption that the signalf has the form of the delta function. In

this case, the amplitudes before and after the NMO correction are connected according to the

known properties of the delta function, as follows:

Asr δ (t − τsr(s,r ,x)) =

∣∣∣∣∂tn
∂t

∣∣∣∣
t=τsr

Asr δ (tn − τn(s,r ,x)) = An δ (tn − τn(s,r ,x)) , (1.77)

with

An =
τsr

τn
Asr . (1.78)

Combining equations (1.78) and (1.76) yields

Asr

A0
=
τ0

τsr
cosγ , (1.79)

which coincides exactly with the previously found equation (1.74).

It is apparent that the OC differential equation (1.1) and the Kirchhoff representation have

the same effect on reflection data because the amplitude and phase of the former match those

of the latter. Thus, we see that the amplitude and phase of the Kirchhoff representation for

arbitrary offset correspond to the point diffractor WKBJ solution of the offset-continuation

differential equation. Hence, the Kirchhoff approximation is a solution of the OC differen-

tial equation when we hold the reflection coefficient constant. This means that the solution

of the OC differential equation has all the features of amplitude preservation, as does the

Kirchhoff representation, including geometrical spreading, curvature effects, and phase shift
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effects. Furthermore, in the Kirchhoff representation and the solution of the OC partial differ-

ential equation by WKBJ, we have not used the 2.5-D assumption. Therefore the preservation

of amplitude is not restricted to cylindrical surfaces as it is in Bleistein’s and Cohen’s (1995)

true-amplitude proof for DMO.

THE CAUCHY PROBLEM AND THE INTEGRAL OPERATOR

Equation (1.1) describes a continuous process of reflected wavefield continuation in the time-

offset-midpoint domain. In order to find an integral-type operator that performs the one-step

offset continuation, I consider the following initial-value (Cauchy) problem for equation (1.1):

Given a post-NMO constant-offset section at half-offset h1

P(tn,h, y)|h=h1
= P(0)

1 (tn, y) (1.80)

and its first-order derivative with respect to offset

∂P(tn,h, y)

∂h

∣∣∣∣
h=h1

= P(1)
1 (tn, y) , (1.81)

find the corresponding section P(0)(tn, y) at offset h.

Equation (1.1) belongs to the hyperbolic type, with the offset coordinateh being a “time-

like” variable and the midpoint coordinatey and the timetn being “space-like” variables. The

last condition (1.81) is required for the initial value problem to be well-posed (Courant, 1962).

From a physical point of view, its role is to separate the two different wave-like processes

embedded in equation (1.1), which are analogous to inward and outward wave propagation.

We will associate the first process with continuation to a larger offset and the second one

with continuation to a smaller offset. Though the offset derivatives of data are not measured

in practice, they can be estimated from the data at neighboring offsets by a finite-difference

approximation. Selecting a propagation branch explicitly, for example by considering the

high-frequency asymptotics of the continuation operators, can allow us to eliminate the need

for condition (1.81). In this section, I discuss the exact integral solution of the OC equation
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and analyze its asymptotics.

The integral solution of problem (1.80-1.81) for equation (1.1) is obtained in Appendix B

with the help of the classic methods of mathematical physics. It takes the explicit form

P(tn,h, y) =

∫ ∫
P(0)

1 (t1, y1)G0(t1,h1, y1; tn,h, y)dt1dy1

+

∫ ∫
P(1)

1 (t1, y1)G1(t1,h1, y1; tn,h, y)dt1dy1 , (1.82)

where the Green’s functionsG0 andG1 are expressed as

G0(t1,h1, y1; tn,h, y) = sign(h−h1)
H (tn)

π

∂

∂tn

{
H (2)
√
2

}
, (1.83)

G1(t1,h1, y1; tn,h, y) = sign(h−h1)
H (tn)

π
h

tn
t2
1

{
H (2)
√
2

}
, (1.84)

and the parameter2 is

2(t1,h1, y1; tn,h, y) =
(
h2

1/t2
1 −h2/t2

n

) (
t2
1 − t2

n

)
− (y1 − y)2 . (1.85)

H stands for the Heavyside step-function.

From equations (1.83) and (1.84) one can see that the impulse response of the offset con-

tinuation operator is discontinuous in the time-offset-midpoint space on a surface defined by

the equality

2(t1,h1, y1; tn,h, y) = 0 , (1.86)

which describes the “wavefronts” of the offset continuation process. In terms of the the-

ory of characteristics (Courant, 1962), the surface2 = 0 corresponds to the characteristic

conoid formed by the bi-characteristics of equation (1.1) – time rays emerging from the point

{tn,h, y} = {t1,h1, y1}. The common-offset slices of the characteristic conoid are shown in the

left plot of Figure 1.7.



27

-0.4 -0.2 0 0.2 0.4
midpoint

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4
midpoint

0.5

1

1.5

2

Figure 1.7: Constant-offset sections of the characteristic conoid - “offset continuation fronts”
(left), and branches of the conoid used in the integral OC operator (right). The upper part
of the plots (small times) corresponds to continuation to smaller offsets; the lower part (large
times) corresponds to larger offsets.ofcon-con [CR]

As a second-order differential equation of the hyperbolic type, equation (1.1) describes

two different processes. The first process is “forward” continuation from smaller to larger

offsets, the second one is “reverse” continuation in the opposite direction. These two pro-

cesses are clearly separated in the high-frequency asymptotics of operator (1.82). To obtain

the asymptotical representation, it is sufficient to note that1
√
π

H (t)
√

t
is the impulse response

of the causal half-order integration operator and thatH (t2
−a2)√

t2−a2
is asymptotically equivalent to

H (t−a)
√

2a
√

t−a
(t ,a > 0). Thus, the asymptotical form of the integral offset-continuation operator

becomes

P(±)(tn,h, y) = D1/2
± tn

∫
w

(±)
0 (ξ ;h1,h,tn) P(0)

1 (θ (±)(ξ ;h1,h,tn), y1 − ξ )dξ

± I1/2
± tn

∫
w

(±)
1 (ξ ;h1,h,tn) P(1)

1 (θ (±)(ξ ;h1,h,tn), y1 − ξ )dξ . (1.87)
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Here the signs “+” and “−” correspond to the type of continuation (the sign ofh−h1), D1/2
± tn

and I1/2
± tn stand for the operators of causal and anticausal half-order differentiation and in-

tegration applied with respect to the time variabletn, the summation pathsθ (±)(ξ ;h1,h,tn)

correspond to the two non-negative sections of the characteristic conoid (1.86) (Figure 1.7):

t1 = θ (±)(ξ ;h1,h,tn) =
tn
h

√
U ± V

2
, (1.88)

whereU = h2
+h2

1−ξ2, andV =

√
U2 −4h2h2

1; ξ is the midpoint separation (the integration

parameter), andw(±)
0 andw(±)

1 are the following weighting functions:

w
(±)
0 =

1
√

2π

θ (±)(ξ ;h1,h,tn)
√

tn V
, (1.89)

w
(±)
1 =

1
√

2π

√
tn h1

√
V θ (±)(ξ ;h1,h,tn)

. (1.90)

Expression (1.88) for the summation path of the OC operator was obtained previously by Sto-

vas and Fomel (1993, 1996) and Biondi and Chemingui (1994a,b). A somewhat different form

of it is proposed by Bagaini and Spagnolini (1996). I describe the kinematic interpretation of

formula (1.88) in Appendix C.

In the high-frequency asymptotics, it is possible to replace the two terms in equation (1.87)

with a single term (Fomel, 1996). The single-term expression is

P(±)(tn,h, y) = D1/2
± tn

∫
w(±)(ξ ;h1,h,tn) P(0)

1 (θ (±)(ξ ;h1,h,tn), y1 − ξ )dξ , (1.91)

where

w(+)
=

√
θ (+)(ξ ;h1,h,tn)

2π

h2
−h2

1 − ξ2

V3/2
, (1.92)

w(−)
=

θ (−)(ξ ;h1,h,tn)
√

2π tn

h2
1 −h2

+ ξ2

V3/2
. (1.93)
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A more general approach to true-amplitude asymptotic offset continuation is developed by

Santos et al. (1997).

The limit of expression (1.88) for the output offseth approaching zero can be evaluated by

L’Hospitale’s rule. As one would expect, it coincides with the well-known expression for the

summation path of the integral DMO operator (Deregowski and Rocca, 1981)

t1 = θ (−)(ξ ;h1,0,tn) = lim
h→0

tn
h

√
U − V

2
=

tn h1√
h2

1 − ξ2
. (1.94)

I discuss the connection between offset continuation and DMO in the next section.

OFFSET CONTINUATION AND DMO

Dip moveout represents a particular case of offset continuation for the output offset equal to

zero. In this section, I consider the DMO case separately in order to compare the solutions

of equation (1.1) with the Fourier-domain DMO operators, which have been the standard for

DMO processing since Hale’s outstanding work (Hale, 1983, 1984).

Starting from equations (B.12)-(B.14) in Appendix B and setting the output offset to zero,

we obtain the following DMO-like integral operators in thet–k domain:

P̃(t0,0,k) = H (t0)
(
P̃0(t0,k)+ t0 P̃1(t0,k)

)
, (1.95)

where

P̃0(t0,k) = −
∂

∂t0

∫
∞

t0

P̃(0)
1 (|t1| ,k) J0

(
k h1

t1

√
t2
1 − t2

0

)
dt1 , (1.96)

P̃1(t0,k) = −

∫
∞

t0

h1 P̃(1)
1 (|t1| ,k) J0

(
k h1

t1

√
t2
1 − t2

0

)
dt1
t2
1

, (1.97)
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the wavenumberk corresponds to the midpoint axisy, andJ0 is the zeroth-order Bessel func-

tion. The Fourier transform of (1.96) and (1.97) with respect to the time variablet0 reduces

to known integrals (Gradshtein and Ryzhik, 1994) and creates explicit DMO-type operators in

the frequency-wavenumber domain, as follows:

˜̃P0(ω0,k) = i
∫

∞

−∞

P̃(0)
1 (|t1| ,k)

sin(ω0 |t1| A)

A
dt1 , (1.98)

˜̃P1(ω0,k) = i
∫

∞

−∞

h1 P̃(1)
1 (|t1| ,k)

sin(ω0 |t1| A)

A

dt1
t2
1

, (1.99)

where

A =

√
1+

(k h1)2

(ω0 t1)2
, (1.100)

˜̃P j (ω0,k) =

∫
P̃j (t0,k) exp(iω0t0)dt0 . (1.101)

It is interesting to note that the first term of the continuation to zero offset (1.98) coincides

exactly with the imaginary part of Hale’s DMO operator (Hale, 1984). However, unlike Hale’s,

operator (1.95) is causal, which means that its impulse response does not continue to negative

times. The non-causality of Hale’s DMO and related issues are discussed in more detail by

Stovas and Fomel (1996) and Fomel (1995).

Though Hale’s DMO is known to provide correct reconstruction of the geometry of zero-

offset reflections, it does not account properly for the amplitude changes (Black et al., 1993).

The preceding section of this chapter shows that the additional contribution to the amplitude is

contained in the second term of the OC operator (1.82), which transforms to the second term

in the DMO operator (1.95). Note that this term vanishes at the input offset equal to zero,
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which represents the case of the inverse DMO operator.

Considering the inverse DMO operator as the continuation from zero offset to a non-zero

offset, we can obtain its representation in thet-k domain from equations (B.12)-(B.14) as

P̃(tn,h,k) = H (tn)
∂

∂tn

∫ tn

0
P̃0 (|t0| ,k) J0

(
k h

tn

√
t2
n − t2

0

)
dt0 , (1.102)

Fourier transforming equation (1.102) with respect to the time variablet0 according to equa-

tion (1.101), we get the Fourier-domain version of the “amplitude-preserving” inverse DMO:

P̃(tn,h,k) =
H (tn)

2π

∂

∂tn

∫
∞

−∞

˜̃P0(ω0,k)
sin(ω0 |tn| A)

ω0 A
dω0 , (1.103)

A =

√
1+

(k h)2

(ω0 tn)2
. (1.104)

Comparing operator (1.103) with Ronen’s version of inverse DMO (Ronen, 1987), one can

see that if Hale’s DMO is denoted byDt0 H, then Ronen’s inverse DMO isHT D−t0, while the

amplitude-preserving inverse (1.103) isDtn HT . HereDt is the derivative operator
(
∂
∂t

)
, and

HT stands for the adjoint operator defined by the dot-product test

(Hm,d) = (m,HTd), (1.105)

where the parentheses denote the dot product:

(m1,m2) =

∫ ∫
m1(tn, y)m2(tn, y)dtn dy .
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In high-frequency asymptotics, the difference between the amplitudes of the two inverses

is simply the Jacobian termd t0
d tn

, asymptotically equal tot0tn . This difference corresponds ex-

actly to the difference between Black’s definition of amplitude preservation (Black et al., 1993)

and the definition used in Born DMO (Bleistein, 1990; Liner, 1991), as discussed above.

While operator (1.103) preserves amplitudes in the Born DMO sense, Ronen’s inverse sat-

isfies Black’s amplitude preservation criteria. This means Ronen’s operator implies that the

“geometric spreading” correction (multiplication by time) has been performed on the data

prior to DMO.

To construct a one-term DMO operator, thus avoiding the estimation of the offset derivative

in (1.90), let us consider the problem of inverting the inverse DMO operator (1.103). One of

the possible approaches to this problem is the least-squares iterative inversion, as proposed by

Ronen (1987). This requires constructing the adjoint operator, which is Hale’s DMO (or its

analog) in the case of Ronen’s method. The iterative least-squares approach can account for

irregularities in the data geometry (Ronen et al., 1991; Ronen, 1994) and boundary effects,

but it is computationally expensive because of the multiple application of the operators. An

alternative approach is the asymptotic inversion, which can be viewed as a special case of

preconditioning the adjoint operator (Liner and Cohen, 1988; Chemingui and Biondi, 1996).

The goal of the asymptotical inverse is to reconstruct the geometry and the amplitudes of the

reflection events in the high-frequency asymptotical limit.

According to Beylkin’s theory of asymptotical inversion, also known as thegeneralized

Radon transform(Beylkin, 1985), two operators of the form

D(ω) =

∫
X(t ,ω) M(t) exp[iωφ(t ,ω)] dt (1.106)

and

M̃(t) =

∫
Y(t ,ω) D(ω) exp[−iωφ(t ,ω)] dω (1.107)

constitute a pair of asymptotically inverse operators (M̃(t) matchingM(t) in the high-frequency
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asymptotics) if

X(t ,ω)Y(t ,ω) =
Z(t ,ω)

2π
, (1.108)

whereZ is the “Beylkin determinant”

Z(t ,ω) =

∣∣∣∣∂ω∂ω̂
∣∣∣∣ for ω̂ = ω

∂φ(t ,ω)

∂t
. (1.109)

With respect to the high-frequency asymptotical representation, we can recast (1.103) in

the equivalent form by moving the time derivative under the integral sign:

P̃(tn,k) ≈
H (tn)

2π
Re

[∫
∞

−∞

A−2˜̃P0(ω0,k) exp(−iω0 |tn| A) dω0

]
(1.110)

Now the asymptotical inverse of (1.110) is evaluated by means of Beylkin’s method (1.106)-

(1.107), which leads to an amplitude-preserving one-term DMO operator of the form

˜̃P0(ω0,k) = Im

[∫
∞

−∞

BP̃(0)
1 (|t1| ,k) exp(iω0 |t1| A) dt1

]
, (1.111)

where

B = A2 ∂

∂ω0

(
ω0
∂(tn A)

∂tn

)
= A−1 (2 A2

−1) . (1.112)

The amplitude factor (1.112) corresponds exactly to that of Born DMO (Bleistein, 1990)

in full accordance with the conclusions of the asymptotical analysis of the offset-continuation

amplitudes. An analogous result can be obtained with the different definition of amplitude

preservation proposed by Black et al. (1993). In the time-and-space domain, the operator

asymptotically analogous to (1.111) is found by applying either the stationary phase tech-

nique (Liner, 1990; Black et al., 1993) or Goldin’s method of discontinuities (Goldin, 1988,

1990), which is the time-and-space analog of Beylkin’s asymptotical inverse theory (Stovas

and Fomel, 1996). The time-and-space asymptotical DMO operator takes the form
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P0(t0, y) = D1/2
−t0

∫
w0(ξ ;h1,t0) P(0)

1 (θ (−)(ξ ;h1,0,t0), y1 − ξ )dξ , (1.113)

where the weighting functionw0 is defined as

w0(ξ ;h1,t0) =

√
t0

2π

h1 (h2
1 + ξ2)

(h2
1 − ξ2)2

. (1.114)

OFFSET CONTINUATION IN THE LOG-STRETCH DOMAIN

The log-stretch transform, proposed by Bolondi et al. (1982) and further developed by many

other researchers, has proven a useful tool in DMO and OC processing. Applying a log-stretch

transform of the form

σ = ln

∣∣∣∣ tnt∗
∣∣∣∣ , (1.115)

wheret∗ is an arbitrarily chosen time constant, eliminates the time dependence of the coeffi-

cients in equation (1.1) and therefore makes this equation invariant to time shifts. After the

double Fourier transform with respect to the midpoint coordinatey and to the transformed

(log-stretched) time coordinateσ , the partial differential equation (1.1) takes the form of an

ordinary differential equation,

h

(
d2̂̂P
dh2

+k2 ̂̂P)= i�
d̂̂P
dh

, (1.116)

where

̂̂P(h) =

∫ ∫
P(tn = t∗ exp(σ ),h, y) exp(i�σ − iky)dσ dy . (1.117)
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Equation (1.116) has the known general solution, expressed in terms of cylinder functions

of complex orderλ=
1+i�

2 (Watson, 1952)

̂̂P(h) = C1(λ) (kh)λ J−λ(kh)+C2(λ) (kh)λ Jλ(kh) , (1.118)

whereJ−λ andJλ are Bessel functions, andC1 andC2 stand for some arbitrary functions ofλ

that do not depend onk andh.

In the general case of offset continuation,C1 andC2 are constrained by the two initial

conditions (1.80) and (1.81). In the special case of continuation from zero offset, we can

neglect the second term in (1.118) as vanishing at the zero offset. The remaining term defines

the following operator of inverse DMO in the�,k domain:

̂̂P(h) =
̂̂P(0)Zλ(kh) , (1.119)

whereZλ is the analytic function

Zλ(x) = 0(1−λ)
(x

2

)λ
J−λ(x) = 0F1

(
;1−λ;−

x2

4

)
=

∞∑
n=0

(−1)n

n!

0(1−λ)

0(n+1−λ)

(x

2

)2n
, (1.120)

0 is the gamma function and0F1 is the confluent hypergeometric limit function (Petkovsek et

al., 1996).

The DMO operator now can be derived as the inversion of operator (1.119), which is a

simple multiplication by 1/Zλ(kh). Therefore, offset continuation becomes a multiplication

by Zλ(kh2)/Zλ(kh1) (the cascade of two operators). This fact demonstrates an important

advantage of moving to the log-stretch domain: both offset continuation and DMO are simple

filter multiplications in the Fourier domain of the log-stretched time coordinate.

In order to compare operator (1.119) with the known versions of log-stretch DMO, we

need to derive its asymptotical representation for high frequency�. The required asymp-

totic expression follows directly from the definition of functionZλ in (1.120) and the known
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asymptotical representation for a Bessel function of high order (Watson, 1952):

Jλ(λz)
λ→∞

≈

(λz)λ exp
(
λ
√

1− z2
)

eλ0(λ+1)(1− z2)1/4
{
1+

√
1− z2

}√1−z2
. (1.121)

Substituting approximation (1.121) into (1.120) and considering the high-frequency limit of

the resultant expression yields

Zλ(kh) ≈

1+

√
1−

(
kh
λ

)2
2


λ

exp

(
λ

[
1−

√
1−

(
kh
λ

)2])
(
1−

(
kh
λ

)2)1/4 ≈ F(ε)ei�ψ(ε) , (1.122)

whereε denotes the ratio2k h
�

,

F(ε) =

√
1+

√
1+ ε2

2
√

1+ ε2
exp

(
1−

√
1+ ε2

2

)
, (1.123)

and

ψ(ε) =
1

2

(
1−

√
1+ ε2 + ln

(
1+

√
1+ ε2

2

))
. (1.124)

Asymptotical representation (1.122) is valid for high frequency� and|ε| ≤ 1. It can be

shown that the phase functionψ defined in (1.124) coincides precisely with the analogous term

in Liner’s exact log DMO(Liner, 1990), which was proven to provide the correct geometric

properties of DMO. Similar expressions for the log-stretch phase factorψ were derived in

different ways by Zhou et al. (1996) and Canning and Gardner (1996). However, the amplitude

termF(ε) differs from the previously published ones because of the difference in the amplitude

preservation properties.

A number of approximate log DMO operators have been proposed in the literature. As

shown by Liner (1990), all of them but exact log DMO distort the geometry of reflection
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effects at large offsets. The distortion is caused by the implied approximations of the true

phase functionψ . Bolondi’s OC operator (Bolondi et al., 1982) impliesψ(ε) ≈ −
ε2

8 , Notfors’

DMO (Notfors and Godfrey, 1987) impliesψ(ε) ≈ 1−
√

1+ (ε/2)2, and the “full DMO”

(Bale and Jakubowicz, 1987) hasψ(ε) ≈
1
2 ln

[
1− (ε/2)2

]
. All these approximations are valid

for small ε (small offsets or small reflector dips) and have errors of the order ofε4 (Figure

1.8). The range of validity of Bolondi’s operator is defined in equation (1.22).

Figure 1.8: Phase functions of the
log DMO operators. Solid line: ex-
act log DMO; dashed line: Bolondi’s
OC; dashed-dotted line: Bale’s full
DMO; dotted line: Notfors’ DMO.
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In practice, seismic data are often irregularly sampled in space but regularly sampled in

time. This makes it attractive to apply offset continuation and DMO operators in the{�, y}

domain, where the frequency� corresponds to the log-stretched time andy is the midpoint

coordinate. Performing the inverse Fourier transform on the spatial frequency transforms the

inverse DMO operator (1.119) to the{�, y} domain, where the filter multiplication becomes a

convolutional operator:

P̂(�,h, y) =
F̂(�)
√

2π

∫
|ξ |<h

h

h2 − ξ2
P̂0(�, y− ξ ) exp

(
−

i�

2
ln

(
1−

ξ2

h2
1

))
dξ . (1.125)

Here F̂(�) is a high-pass frequency filter:

F̂(�) =
0(1/2− i�/2)

√
1/20(−i�/2)

. (1.126)

At high frequencieŝF(�) is approximately equal to (−i�)1/2, which corresponds to the half-

derivative operator
(
∂
∂σ

)1/2
, which, in turn, is equal to the

(
tn

∂
∂tn

)1/2
term of the asymptotical

OC operator (1.87). The difference between the exact filterF̂ and its approximation by the
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half-order derivative operator is shown in Figure 1.9. This difference is a measure of the

validity of asymptotical OC operators.
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Figure 1.9: Amplitude (left) and phase (right) of the time filter in the log-stretch domain.
The solid line is for the exact filter; the dashed line for its approximation by the half-order
derivative filter. ofcon-flt [CR]

Inverting operator (1.125), we can obtain the DMO operator in the{�, y} domain.

DISCUSSION

The differential model for offset continuation is based on several assumptions. It is important

to fully realize them in order to understand the practical limitations of this model.

• Theconstant velocityassumption is essential for theoretical derivations. In practice, this

limitation is not too critical, because the effects of velocity heterogeneity are partially

compensated by the normal moveout correction. DMO and offset continuation algo-

rithms based on the constant-velocity assumptions are widely used in practice (Hale,

1995).



39

• Thesingle-modeassumption does not include multiple reflections in the model. If multi-

ple events (with different apparent velocities) are present in the data, they might require

extending the model. Convolving two (or more) differential offset continuation oper-

ators, corresponding to different velocities, we can obtain a higher-order differential

operator for predicting multiple events.

• Thecontinuous AVOassumption implies that the reflectivity variation with offset is con-

tinuous and can be neglected in a local neighborhood of a particular offset. While the

offset continuation model correctly predicts the geometric spreading effects in the re-

flected wave amplitudes, it does not account for the variation of the reflection coefficient

with offset.

• The2.5-Dassumption was implicit in the derivation of the offset continuation equation.

According to this assumption, the reflector does not change in the cross-line direction,

and we can always consider the reflection plane in two dimensions. We can remove the

2.5-D assumption by considering a system of two offset continuation equations, acting

in two orthogonal directions. The first equation would involve in-line midpoint and in-

line offset, and the second equation would involve cross-line midpoint and cross-line

offset.

CONCLUSIONS

I have introduced a partial differential equation (1.1) and proved that the process described

by it provides for a kinematically and dynamically equivalent offset continuation transform.

Kinematic equivalence means that in constant velocity media the reflection traveltimes are

transformed to their true locations on different offsets. Dynamic equivalence means that, in the

OC process, the geometric spreading term in the amplitudes of reflected waves transforms in

accordance with the geometric seismics laws, while the angle-dependent reflection coefficient

stays the same.

The offset continuation equation can be applied directly to design OC operators of the

finite-difference type. To construct integral OC operators, I have posed and solved an initial
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value problem for the offset continuation equation (1.1). For the special cases of continuation

to zero offset (DMO) and continuation from zero offset (inverse DMO), the OC operators are

related to the known forms of DMO operators: Hale’s Fourier DMO, Born DMO, and Liner’s

“exact log DMO.” The discovery of these relations sheds additional light on the problem of

amplitude preservation in DMO.
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