
Chapter 1

Fundamentals of data regularization

In this chapter, I develop a general theoretical framework for addressing the data regularization

problem. The problem fundamentals are traced back to statistical estimation theory. Following

Claerbout (1992, 1999), I formulate data regularization as a simple linear-estimation problem.

STATISTICAL ESTIMATION

Let d be the vector of observed data, andm be the ideal underlying model. The regularized

data represent the model estimate<m>. Taking into account the lack of information about

m, we can treat bothm andd as random vectors and approach the problem of finding<m>

statistically.

For any two random vectorsx andy, let us denote byCxy the mathematical expectation of

the random matrixxyT , whereyT denotes the adjoint ofy. Analogously,Cx will denote the

mathematical expectation ofxxT . For zero-mean vectors, the matricesCx andCxy correspond

to covariances. In a more general case, they are second-moment statistics of the corresponding

random processes.

Applying the Gauss-Markoff theorem, one can obtain an explicit form of the estimate

<m> under three very general assumptions (Liebelt, 1967):
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1. The estimate has a linear relationship with the input data:

<m>= Ad , (1.1)

whereA is a linear operator.

2. The estimate corresponds to the minimum ofCe = E
(
eeT

)
, whereE is the mathemat-

ical expectation ande denotes the model errore=<m> −m. For unbiased estimates

(zero mathematical expectation ofe), the matrixCe corresponds to the model error

covariance. Although we do not make any explicit assumptions about the statistical

distribution of the error, minimizingCe is particularly meaningful in case of normal

(Gaussian) distributions (Tarantola, 1987).

3. The square matrixCd is invertible.

Doing a simple algebraic transformation, we find that

Ce = E
[
(<m> −m) (<m> −m)T]

= E
[
(Ad −m)

(
dT AT

−mT)]
=

ACd AT
−CmdAT

−ACT
md+Cm =(

A −CmdC−1
d

)
Cd

(
A −CmdC−1

d

)T
−CmdC−1

d Cmd+Cm . (1.2)

It is evident from equation (1.2) thatCe will be minimized whenA = CmdC−1
d . This leads

immediately to the Gauss-Markoff result

<m>= CmdC−1
d d . (1.3)

Equation (1.3) has fundamental importance in different data regularization schemes. With

some slight modifications, it appears as the basis for such methods as optimal interpolation in

atmospheric data analysis (Gandin, 1965; Daley, 1991), least-squares collocation in geodesy

(Moritz, 1980), and linear kriging in petroleum and mining engineering (Journel and Hui-

jbregts, 1978; Hohn, 1999). In order to apply formula (1.3) in practice, one needs first to get

an estimate of the matricesCmd andCd. In geostatistics, the covariance matrices are usually

chosen from simple variogram models (Deutsch and Journel, 1997).
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Unfortunately, a straightforward application of the Gauss-Markoff formula (1.3) is com-

putationally unaffordable for typical seismic data applications. If the data vector containsN

parameters, a straightforward application will lead to anN by N matrix inversion, which re-

quires storage proportional toN2 and a number of operations proportional toN3. Although

the data can be divided into local patches to reduce the computational requirements for an

individual patch, the total computational complexity is still too high to be affordable for the

values ofN typical in 3-D seismic exploration (N as high as 1010).

We can take two major theoretical steps to reduce the computational complexity of the

method. The first step is to approximate the covariance matrices with sparse operators so that

the matrix multiplication is reduced fromN2 operations to something linear inN. The second

step is to approach model estimation as an optimization problem and to use an iterative method

for solving it. The goal is to obtain a reasonable model estimate after only a small number of

iterations.

REPRESENTING COVARIANCE MATRICES BY SPARSE OPERATORS

In order to understand the structure of the matricesCmd and Cd, we need to make some

assumptions about the relationship between the true modelm and the datad. A natural as-

sumption is that if the model were known exactly, the observed data would be related to it by

a forward interpolation operatorL as follows:

d = Lm +n , (1.4)

wheren is an additive observational noise. For simplicity, we can assume that the noise is

uncorrelated and normally distributed around zero:

Cmn = 0 ; Cn = σ 2
n I , (1.5)

whereI is an identity matrix of the data size, andσn is a scalar. Assuming that there is no

linear correlation between the noise and the model, we arrive at the following expressions for
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the second moment matrices in formula (1.3):

Cd = E
[
(Lm +n)

(
mT L T

+nT)]
= LCmL T

+σ 2
n I , (1.6)

Cmd = E
[
m

(
mT L T

+nT)]
= CmL T . (1.7)

Substituting equations (1.6) and (1.7) into (1.3), we finally obtain the following specialized

form of the Gauss-Markoff formula:

<m>= CmL T (
LCmL T

+σ 2
n I

)−1
d . (1.8)

Assuming thatCm is invertible, we can also rewrite equation (1.8) in a mathematically equiv-

alent form

<m>=
(
LL T

+σ 2
n C−1

m

)−1
L T d . (1.9)

The equivalence of formulas (1.8) and (1.9) follows from the simple matrix equality

CmL T (LCmL T
+σ 2

n I )−1
≡ (L TL +σ 2

n C−1
m )−1L T . (1.10)

It is important to note an important difference between equations (1.8) and (1.9): The inverted

matrix has data dimensions in the first case, and model dimensions in the second case. I

discuss the practical significance of this distinction in Chapter 4.

In order to simplify the model estimation problem further, we can introduce a local differ-

ential operatorD. A modelm complies with the operatorD if the residual after we apply this

operatorr = Dm is uncorrelated and normally distributed. This means that

E
[
DmmT DT]

= DCmDT
= σ 2

m I , (1.11)

where the identity matrixI has the model size. Furthermore, assuming thatD is invertible, we
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can representCm as follows:

Cm = σ 2
m

(
DT D

)−1
. (1.12)

Substituting formula (1.12) into (1.8) and (1.9), we can finally represent the model estimate in

the following equivalent forms:

<m> = PPT L T (
LPPT L T

+ ε2 I
)−1

d ; (1.13)

<m> =
(
LL T

+ ε2DT D
)−1

L T d , (1.14)

wherePPT
=

(
DT D

)−1
andε =

σn
σm

.

The first simplification step has now been accomplished. By introducing additional as-

sumptions, we have approximated the covariance matricesCd andCmd with the forward in-

terpolation operatorL and the differential operatorD. BothL andD act locally on the model.

Therefore, they are sparse, efficiently computed operators. Different examples of operatorsL ,

D, andP are discussed later in this dissertation. In the next section, I proceed to the second

simplification step.

DATA REGULARIZATION AS AN OPTIMIZATION PROBLEM

The Gauss-Markoff equation (1.3) is derived as a solution of an optimization problem – mini-

mizing the model error covariance matrix. After simplifying this equation to the forms (1.13)

and (1.14), we can again recast it as a solution to an optimization problem of a different kind.

In fact, equations (1.13) and (1.14) correspond to two fundamentally different optimization

formulations.

Model-space regularization

Model-space regularization implies adding equations to system

Lm ≈ d (1.15)
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to obtain a fully constrained (well-posed) inverse problem. The additional equations take the

form

εDm ≈ 0 . (1.16)

The full system of equations (1.15)-(1.16) can be written in a short notation as

Gmm =

[
L

εD

]
m ≈

[
d

0

]
= d̂ , (1.17)

whered̂ is the effective data vector:

d̂ =

[
d

0

]
, (1.18)

andGm is acolumnoperator:

Gm =

[
L

εD

]
. (1.19)

The estimation problem (1.17) is fully constrained. We can solve it by means of un-

constrained least-squares optimization, minimizing the squared powerr̂ T r̂ of the compound

residual vector

r̂ = d̂−Gmm =

[
d−Lm

−εDm

]
. (1.20)

The formal solution of the regularized optimization problem has a known form, which coin-

cides with formula (1.14). One can carry out the optimization iteratively with the help of the

conjugate-gradient method (Hestenes and Steifel, 1952) or its analogs (Paige and Saunders,

1982).

The next subsection introduces an alternative formulation of the optimization problem.
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Data-space regularization (model preconditioning)

The data-space regularization approach is closely related to the concept ofmodel precondi-

tioning (Nichols, 1994). Regarding the operatorP from equation (1.13) as a preconditioning

operator, we can introduce a new modelp with the equality

m = Pp . (1.21)

The residual vectorr for the data-fitting equation (1.4) can be defined by the relationship

εr = d−Lm = d−LPp , (1.22)

whereε is the scaling parameter from equation (1.13). Let us consider a compound model

p̂, composed of the preconditioned model vectorp and the residualr . With respect to the

compound model, we can rewrite equation (1.22) as

[
LP εI

][
p

r

]
= Gdp̂ = d , (1.23)

whereGd is arow operator:

Gd =

[
LP εI

]
, (1.24)

andI represents the data-space identity operator.

System (1.23) is clearly underdetermined with respect to the compound modelp̂. If from

all possible solutions of this system we seek the one with the minimal powerp̂T p̂, the formal

(ideal) result takes the well-known form

<p̂ =

[
<p>

<r>

]
= Gd

T (
Gd Gd

T)−1
d =

[
PTL T

(
LPPTL T

+ ε2I
)−1

d

ε
(
LPPTL T

+ ε2I
)−1

d

]
. (1.25)

Applying equation (1.21), we obtain the corresponding estimate<m> for the initial modelm,

which is precisely equivalent to equation (1.13). This proves the legitimacy of the alternative



8 CHAPTER 1. FUNDAMENTALS OF DATA REGULARIZATION

Table 1.1: Comparison between model-space and data-space regularization

Regularization Model-space Data-space

effective model m p̂ =

[
p
r

]

effective data d̂ =

[
d
0

]
d

effective operator Gm =

[
L
εD

]
Gd =

[
LP εI

]
optimization problem minimize r̂ T r̂ ,

where
r̂ = d̂−Gmm

minimizep̂T p̂
under the constraint
Gdp̂ = d

formal estimate form
(
L TL + ε2C−1

)
L Td,

whereC−1
= DTD

CL T (LCL T
+ ε2I )−1d,

whereC = PPT .

data-space approach to data regularization: the model estimation is reduced to least-square

minimization of the specially constructed compound modelp̂ under the constraint (1.22).

I summarize the differences between model-space and data-space regularization in Table

1.1.

Although the two approaches lead to similar theoretical results, they behave quite differ-

ently in the process of iterative optimization. In Chapter 4, I illustrate this fact with many

examples and show that in the case of incomplete optimization, the second (preconditioning)

approach is generally preferable.

The next chapter addresses the choice of the forward interpolation operatorL – the neces-

sary ingredient of the iterative data regularization algorithms.
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