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Chapter 3

Forward interpolation

As I will illustrate in later chapters, the crucial part of data regularization problems is in the

choice and implementation of the regularization operatorD or the corresponding precondi-

tioning operatorP. The choice of the forward modeling operatorL is less critical. In this

chapter, I discuss the nature of forward interpolation, which has been one of the traditional

subjects in computational mathematics. Wolberg (1990) presents a detailed review of differ-

ent conventional approaches. I discuss a simple mathematical theory of interpolation from a

regular grid and derive the main formulas from a very general idea of function bases.

Forward interpolation plays only a supplementary role in this dissertation, but it has many

primary applications, such as trace resampling, NMO, Kirchhoff and Stolt migrations, log-

stretch, and radial transform, in seismic data processing and imaging. Two simple examples

appear at the end of this chapter.

INTERPOLATION THEORY

Mathematical interpolation theory considers a functionf , defined on a regular gridN. The

problem is to findf in a continuum that includesN. I am not defining the dimensionality of

N and f here because it is not essential for the derivations. Furthermore, I am not specifying

the exact meaning of “regular grid,” since it will become clear from the analysis that follows.
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20 CHAPTER 3. FORWARD INTERPOLATION

The function f is assumed to belong to a Hilbert space with a defined dot product.

If we restrict our consideration to a linear case, the desired solution will take the following

general form

f (x) =

∑
n∈N

W(x,n) f (n) , (3.1)

wherex is a point from the continuum, andW(x,n) is a linear weight function that can take

both positive and negative values. If the gridN itself is considered as continuous, the sum in

formula (3.1) transforms to an integral indn. Two general properties of the linear weighting

functionW(x,n) are evident from formula (3.1).

Property 1

W(n,n) = 1 . (3.2)

Equality (3.2) is necessary to assure that the interpolation of a single spike at some pointn

does not change the valuef (n) at the spike.

Property 2

∑
n∈N

W(x,n) = 1 . (3.3)

This property is the normalization condition. Formula (3.3) assures that interpolation of a

constant functionf (n) remains constant.

One classic example of the interpolation weightW(x,n) is the Lagrange polynomial,

which has the form

W(x,n) =

∏
i 6=n

(x − i )

(n− i )
. (3.4)

The Lagrange interpolation provides a unique polynomial, which goes exactly through the data
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points f (n)1. The local 1-point Lagrange interpolation is equivalent to the nearest-neighbor

interpolation, defined by the formula

W(x,n) =

{
1, for n−1/2 ≤ x < n+1/2

0, otherwise
(3.5)

Likewise, the local 2-point Lagrange interpolation is equivalent to the linear interpolation,

defined by the formula

W(x,n) =

{
1−|x −n|, for n−1 ≤ x < n+1

0, otherwise
(3.6)

Because of their simplicity, the nearest-neighbor and linear interpolation methods are very

practical and easy to apply. Their accuracy is, however, limited and may be inadequate for in-

terpolating high-frequency signals. The shapes of interpolants (3.5) and (3.6) and their spectra

are plotted in Figures 3.1 and 3.2. The spectral plots show that both interpolants act as low-

pass filters, preventing the high-frequency energy from being correctly interpolated.
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Figure 3.1: Nearest-neighbor interpolant (left) and its spectrum (right).forwd-nnint [CR]

The Lagrange interpolants of higher order correspond to more complicated polynomials.

Another popular practical approach is cubic convolution (Keys, 1981). The cubic convolution

1It is interesting to note that the interpolation and finite-difference filters developed by Karrenbach (1995)
from a general approach of self-similar operators reduce to a localized form of Lagrange polynomials.
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Figure 3.2: Linear interpolant (left) and its spectrum (right).forwd-linint [CR]

interpolant is a local piece-wise cubic function:

W(x,n) =


3/2|x −n|

3
−5/2|x −n|

2
+1, for 0≤ |x −n|< 1

−1/2|x −n|
3
+5/2|x −n|

2
−4|x −n|+2, for 1≤ |x −n|< 2

0, otherwise

(3.7)

The shapes of interpolant (3.7) and its spectrum are plotted in Figure 3.3.
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Figure 3.3: Cubic-convolution interpolant (left) and its spectrum (right).forwd-ccint [CR]

I compare the accuracy of different forward interpolation methods on a one-dimensional

signal shown in Figure 3.4. The ideal signal has an exponential amplitude decay and a

quadratic frequency increase from the center towards the edges. It is sampled at a regular

50-point grid and interpolated to 500 regularly sampled locations. The interpolation result
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is compared with the ideal one. Figures 3.5 and 3.6 show the interpolation error steadily

decreasing as we proceed from 1-point nearest-neighbor to 2-point linear and 4-point cubic-

convolution interpolation. At the same time, the cost of interpolation grows proportionally to

the interpolant length.

Figure 3.4: One-dimensional test sig-
nal. Top: ideal. Bottom: sampled at
50 regularly spaced points. The bot-
tom plot is the input in a forward in-
terpolation test.forwd-chirp [ER]

Figure 3.5: Interpolation error of the
nearest-neighbor interpolant (dashed
line) compared to that of the linear in-
terpolant (solid line). forwd-binlin
[ER]

FUNCTION BASIS

A particular form of the solution (3.1) arises from assuming the existence of a basis function

set{ψk(x)}, k ∈ K , such that the functionf (x) can be represented by a linear combination of
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Figure 3.6: Interpolation error of
the linear interpolant (dashed line)
compared to that of the cubic con-
volution interpolant (solid line).
forwd-lincub [ER]

the basis functions in the set, as follows:

f (x) =

∑
k∈K

ckψk(x) . (3.8)

We can find the linear coefficientsck by multiplying both sides of equation (3.8) by one of the

basis functions (e.g.ψj (x)). Inverting the equality

(
ψj (x), f (x)

)
=

∑
k∈K

ck9jk , (3.9)

where the parentheses denote the dot product, and

9jk =
(
ψj (x),ψk(x)

)
, (3.10)

leads to the following explicit expression for the coefficientsck:

ck =

∑
j ∈K

9−1
k j

(
ψj (x), f (x)

)
. (3.11)

Here9−1
k j refers to thek j component of the matrix, which is the inverse of9. The matrix9

is invertible as long as the basis set of functions is linearly independent. In the special case of
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an orthonormal basis,9 reduces to the identity matrix:

9jk =9−1
k j = δjk . (3.12)

Equation (3.11) is a least-squares estimate of the coefficientsck: one can alternatively

derive it by minimizing the least-squares norm of the difference betweenf (x) and the linear

decomposition (3.8). For a given set of basis functions, equation (3.11) approximates the

function f (x) in formula (3.1) in the least-squares sense.

SOLUTION

The usual (although not unique) mathematical definition of the continuous dot product is

( f1, f2) =

∫
f̄1(x) f2(x)dx , (3.13)

where the bar overf1 stands for complex conjugate (in the case of complex-valued functions).

Applying definition (3.13) to the dot product in equation (3.11) and approximating the integral

by a finite sum on the regular gridN, we arrive at the approximate equality

(ψj (x), f (x)) =

∫
ψ̄j (x) f (x)dx ≈

∑
n∈N

ψ̄j (n) f (n) . (3.14)

We can consider equation (3.14) not only as a useful approximation, but also as an implicit

definitionof the regular grid. Grid regularity means that approximation (3.14) is possible. Ac-

cording to this definition, the more regular the grid is, the more accurate is the approximation.

Substituting equality (3.14) into equations (3.11) and (3.8) yields a solution to the interpo-

lation problem. The solution takes the form of equation (3.1) with

W(x,n) =

∑
k∈K

∑
j ∈K

9−1
k j ψk(x)ψ̄j (n) . (3.15)

We have found a constructive way of creating the linear interpolation operator from a specified
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set of basis functions.

It is important to note that the adjoint of the linear operator in formula (3.1) is the contin-

uous dot product of the functionsW(x,n) and f (x). This simple observation follows from the

definition of the adjoint operator and the simple equality(
f1(x),

∑
n∈N

W(x,n) f2(n)

)
=

∑
n∈N

f2(n) ( f1(x),W(x,n)) =

((W(x,n), f1(x)) , f2(n)) . (3.16)

In the final equality, we have assumed that the discrete dot product is defined by the sum

( f1(n), f2(n)) =

∑
n∈N

f̄1(n) f2(n) . (3.17)

Applying the adjoint interpolation operator to the functionf , defined with the help of formula

(3.15), and employing formulas (3.8) and (3.11), we discover that

(W(x,n), f (x)) =

∑
k∈K

∑
j ∈K

9−1
k j ψ̄j (n) (ψk(x), f (x)) =

∑
j ∈K

ψ̄j (n)
∑
k∈K

9−1
jk (ψk(x), f (x)) =

∑
j ∈K

cjψj (n) = f (n) . (3.18)

This remarkable result shows that although the forward linear interpolation is based on approx-

imation (3.14), the adjoint interpolation produces an exact value off (n)! The approximate

nature of equation (3.15) reflects the fundamental difference between adjoint and inverse linear

operators (Claerbout, 1992).

When adjoint interpolation is applied to a constant functionf (x) ≡ 1, it is natural to require

the constant outputf (n) = 1. This requirement leads to yet another general property of the

interpolation functionsW(x,n):

Property 3 ∫
W(x,n)dx = 1 . (3.19)
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The functional basis approach to interpolation is well developed in the sampling theory

(Garcia, 2000). Some classic examples are discussed in the next section.

INTERPOLATION WITH FOURIER BASIS

To illustrate the general theory with familiar examples, I consider in this section the most

famous example of an orthonormal function basis, the Fourier basis of trigonometric functions.

What kind of linear interpolation does this basis lead to?

Continuous Fourier basis

For the continuous Fourier transform, the set of basis functions is defined by

ψω(x) =
1

√
2π

eiωx , (3.20)

whereω is the continuous frequency. For a 1-point sampling interval, the frequency is limited

by the Nyquist condition:|ω| ≤ π . In this case, the interpolation functionW can be computed

from equation (3.15) to be

W(x,n) =
1

2π

∫ π

−π

eiω(x−n)dω =
sin[π (x −n)]

π (x −n)
. (3.21)

The shape of the interpolation function (3.21) and its spectrum are shown in Figure 3.7. The

spectrum is identically equal to 1 in the Nyquist frequency band.

Function (3.21) is well-known as the Shannon sinc interpolant. According to the sam-

pling theorem (Kotel’nikov, 1933; Shannon, 1949), it provides an optimal interpolation for

band-limited signals. A known problem prohibiting its practical implementation is the slow

decay with (x −n), which results in a far too expensive computation. This problem is solved

in practice with heuristic tapering (Hale, 1980), such as triangle tapering (Harlan, 1982), or

more sophisticated taper windows (Wolberg, 1990). One popular choice is the Kaiser window
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Figure 3.7: Sinc interpolant (left) and its spectrum (right).forwd-sincint [CR]

(Kaiser and Shafer, 1980), which has the form

W(x,n) =


sin[π (x −n)]

π (x −n)

I0

(
a
√

1−
(

x−n
N

)2)
I0(a)

for n− N < x < n+ N

0, otherwise

(3.22)

where I0 is the zero-order modified Bessel function of the first kind. The Kaiser-windowed

sinc interpolant (3.22) has the adjustable parametera, which controls the behavior of its spec-

trum. I have found empirically the value ofa = 4 to provide a spectrum that deviates from 1

by no more than 1% in a relatively wide band.

While the functionW from equation (3.21) automatically satisfies properties (3.3) and

(3.19), where bothx andn range from−∞ to ∞, its tapered version may require additional

normalization.

Figure 3.8 compares the interpolation error of the 8-point Kaiser-tapered sinc interpolant

with that of cubic convolution on the example from Figure 3.4. The accuracy improvement is

clearly visible.

The differences among the described forward interpolation methods are also clearly visi-

ble from the discrete spectra of the corresponding interpolants. The left plots in Figures 3.9

and 3.10 show discrete interpolation responses: the functionW(x,n) for a fixed value of

x = 0.7. The right plots compare the corresponding discrete spectra. Clearly, the spectrum
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Figure 3.8: Interpolation error of
the cubic-convolution interpolant
(dashed line) compared to that of an
8-point windowed sinc interpolant
(solid line). forwd-cubkai [ER]

gets flatter and wider as the accuracy of the method increases.

Figure 3.9: Discrete interpolation
responses of linear and cubic con-
volution interpolants (left) and their
discrete spectra (right) forx = 0.7.
forwd-speclincub[ER]

Discrete Fourier basis

Assuming that the range of the variablex is limited in the interval from−N to N, the discrete

Fourier basis (Fast Fourier Transform) employs a set of orthonormal periodic functions

ψk(x) =
1

√
2N

eiπ k
N x , (3.23)
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Figure 3.10: Discrete interpolation
responses of cubic convolution and
8-point windowed sinc interpolants
(left) and their discrete spectra (right)
for x = 0.7. forwd-speccubkai[ER]

where the discrete frequency indexk also ranges, according to the Nyquist sampling criterion,

from −N to N. The interpolation function is computed from equation (3.15) to be

W(x,n) =
1

2N

N−1∑
k=−N

eiπ k
N (x−n)

=
1

2N
e−iπ (x−n)

[
1+eiπ x−n

N +·· ·+eiπ 2N−1
N (x−n)

]
=

1

2N
e−iπ (x−n) e

2iπ (x−n)
−1

eiπ x−n
N −1

=
1

2N
e−iπ x−n

2N
eiπ (x−n)

−e−iπ (x−n)

eiπ x−n
2N −e−iπ x−n

2N

=

e−iπ x−n
2N

sin[π (x −n)]

2N sin
[
π (x −n)/2N

] . (3.24)

An interpolation function equivalent to (3.24) has been found by Muir (Lin et al., 1993;

Popovici et al., 1993, 1996). It can be considered a tapered version of the sinc interpolant

(3.21) with smooth tapering function

π (x −n)/2N

tan
[
π (x −n)/2N

] .

Unlike most other tapered-sinc interpolants, Muir’s interpolant (3.24) satisfies not only the

obvious property (3.2), but also properties (3.3) and (3.19), where the interpolation function

W(x,n) should be set to zero forx outside the range fromn− N to n+ N. The form of this

function is shown in Figure 3.11.

The development of the mathematical wavelet theory (Daubechies, 1992) has opened the
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Figure 3.11: The left plots show the sinc interpolation function. Note the slow decay inx.
The middle shows the effective tapering function of Muir’s interpolation; the right is Muir’s
interpolant. The top is forN = 2 (5-point interpolation); the bottom,N = 6 (13-point interpo-
lation). forwd-ma-sinc [CR]

door to a whole universe of orthonormal function bases, different from the Fourier basis. The

wavelet theory should find many useful applications in geophysical data interpolation, but

exploring this interesting opportunity would go beyond the scope of the present work.

The next section carries the analysis to the continuum and compares the mathematical

interpolation theory with the theory of seismic imaging.

CONTINUOUS CASE AND SEISMIC IMAGING

Of course, the linear theory is not limited to discrete grids. It is interesting to consider the

continuous case because of its connection to the linear integral operators commonly used in

seismic imaging. Indeed, in the continuous case, linear decomposition (3.8) takes the form of

the integral operator

f (y) =

∫
m(x)G(y;x)dx , (3.25)
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wherex is a continuous analog of the discrete coefficientk in (3.8), the continuous function

m(x) is analogous to the coefficientck, andG(y;x) is analogous to one of the basis functions

ψk(x). The linear integral operator in (3.25) has a mathematical form similar to the form

of well-known integral imaging operators, such as Kirchhoff migration or “Kirchhoff” DMO.

FunctionG(y;x) in this case represents the Green’s function (impulse response) of the imaging

operator. Linear decomposition of the data into basis functions means decomposing it into the

combination of impulse responses (“hyperbolas”).

In the continuous case, equation (3.15) transforms to

W(y,n) =

∫ ∫
9−1(x1,x2)G(y;x1)Ḡ(n;x2)dx1dx2 , (3.26)

where9−1(x1,x2) refers to the inverse of the “matrix” operator

9(x1,x2) =

∫
G(y;x1)Ḡ(y;x2)dy . (3.27)

When the linear operator, defined by equation (3.25), isunitary,

9−1(x1,x2) = δ(x1 − x2) , (3.28)

and equation (3.26) simplifies to the single integral

W(y,n) =

∫
G(y;x)Ḡ(n;x)dx . (3.29)

With respect to seismic imaging operators, one can recognize in the interpolation operator

(3.29) the generic form of azimuth moveout (Biondi et al., 1996), which is derived either as a

cascade of adjoint (̄G(n; y)) and forward (G(x; y)) DMO or as a cascade of migration (Ḡ(n; y))

and modeling (G(x; y)) (Fomel and Biondi, 1995a,b). In the first case, the intermediate vari-

abley corresponds to the space of zero-offset data cube. In the second case, it corresponds to

a point in the subsurface.
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Asymptotically pseudo-unitary operators as orthonormal bases

It is interesting to note that many integral operators routinely used in seismic data processing

have the form of operator (3.25) with the Green’s function

G(t ,y;z,x) =

∣∣∣∣ ∂∂t

∣∣∣∣m/2 A(x; t ,y)δ (z− θ (x; t ,y)) . (3.30)

where we have split the variablex into the one-dimensional componentz (typically depth or

time) and them-dimensional componentx (typically a lateral coordinate withm equal 1 or 2).

Similarly, the variabley is split into t andy. The functionθ represents thesummation path,

which captures the kinematic properties of the operator, andA is the amplitude function. In

the case ofm= 1, the fractional derivative
∣∣ ∂
∂t

∣∣m/2 is defined as the operator with the frequency

response (i ω)m/2, whereω is the temporal frequency (Samko et al., 1993).

The impulse response (3.30) is typical for different forms of Kirchhoff migration and da-

tuming as well as for velocity transform, integral offset continuation, DMO, and AMO. In-

tegral operators of that class rarely satisfy the unitarity condition, with the Radon transform

(slant stack) being a notable exception. In an earlier paper (Fomel, 1996b), I have shown that

it is possible to define the amplitude functionA for each kinematic pathθ so that the operator

becomesasymptotically pseudo-unitary. This means that the adjoint operator coincides with

the inverse in the high-frequency (stationary-phase) approximation. Consequently, equation

(3.28) is satisfied to the same asymptotic order.

Using asymptotically pseudo-unitary operators, we can apply formula (3.29) to find an

explicit analytic form of the interpolation functionW, as follows:

W(t ,y; tn,yn) =

∫ ∫
G(t ,y;z,x)G(tn,yn;z,x)dz dx =∣∣∣∣ ∂∂t

∣∣∣∣m/2 ∣∣∣∣ ∂∂tn

∣∣∣∣m/2∫ A(x; t ,y) A(x; tn,yn)δ (θ (x; t ,y)− θ (x; tn,yn)) dx . (3.31)

Here the amplitude functionA is defined according to the general theory of asymptotically
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pseudo-inverse operators as

A =
1

(2π )m/2

∣∣F F̂
∣∣1/4 ∣∣∣∣∂θ∂t

∣∣∣∣(m+2)/4

, (3.32)

where

F =
∂θ

∂t

∂2θ

∂x∂y
−
∂θ

∂y
∂2θ

∂x∂t
, (3.33)

F̂ =
∂θ̂

∂z

∂2θ̂

∂x∂y
−
∂θ̂

∂x
∂2θ̂

∂y∂z
, (3.34)

and θ̂ (x; t ,y) is the dual summation path, obtained by solving equationz = θ (x; t , y) for t

(assuming that an explicit solution is possible).

For a simple example, let us consider the case of zero-offset time migration with a constant

velocityv. The summation pathθ in this case is an ellipse

θ (x; t ,y) =

√
t2 −

(x−y)2

v2
, (3.35)

and the dual summation patĥθ is a hyperbola

θ̂ (y;z,x) =

√
z2 +

(x−y)2

v2
. (3.36)

The corresponding pseudo-unitary amplitude function is found from formula (3.32) to be

(Fomel, 1996b)

A =
1

(2π )m/2

√
t/z

vmzm/2
. (3.37)

Substituting formula (3.37) into (3.31), we derive the corresponding interpolation function

W(t ,y; tn,yn) =
1

(2π )m

∣∣∣∣ ∂∂t

∣∣∣∣m/2 ∣∣∣∣ ∂∂tn

∣∣∣∣m/2∫ √
t tn

v2mzm+1
δ(z− zn)dx , (3.38)

wherez= θ (x; t ,y), andzn = θ (x; tn,yn). Form = 1 (the two-dimensional case), we can apply
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the known properties of the delta function to simplify formula (3.38) further to the form

W =
v

π

∣∣∣∣ ∂∂t

∣∣∣∣1/2 ∣∣∣∣ ∂∂tn

∣∣∣∣1/2 √
t tn√[

(y−yn)2 −v2(t − tn)2
][
v2(t + tn)2 − (y−yn)2

] . (3.39)

The result is an interpolant for zero-offset seismic sections. Like the sinc interpolant in equa-

tion (3.21), which is based on decomposing the signal into sinusoids, equation (3.39) is based

on decomposing the zero-offset section into hyperbolas.

While opening a curious theoretical possibility, seismic imaging interpolants have an un-

desirable computational complexity. Following the general regularization framework of Chap-

ter 2, I shift the computational emphasis towards appropriately chosen regularization operators

discussed in Chapter 5. For the forward interpolation method, all data examples in this dis-

sertation use either the simplest nearest neighbor and linear interpolation or a more accurate

B-spline method, described in the next section.

INTERPOLATION WITH CONVOLUTIONAL BASES

Unser et al. (1993) noticed that the basis function idea has an especially simple implementation

if the basis is convolutional and satisfies the equation

ψk(x) = β(x −k) . (3.40)

In other words, the basis is constructed by integer shifts of a single functionβ(x). Substituting

expression (3.40) into equation (3.8) yields

f (x) =

∑
k∈K

ckβ(x −k) . (3.41)

Evaluating the functionf (x) in equation (3.41) at an integer valuen, we obtain the equation

f (n) =

∑
k∈K

ckβ(n−k) , (3.42)
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which has the exact form of a discrete convolution. The basis functionβ(x), evaluated at inte-

ger values, is digitally convolved with the vector of basis coefficients to produce the sampled

values of the functionf (x). We can invert equation (3.42) to obtain the coefficientsck from

f (n) by inverse recursive filtering (deconvolution). In the case of a non-causal filterβ(n), an

appropriate spectral factorization will be needed prior to applying the recursive filtering.

According to the convolutional basis idea, forward interpolation becomes a two-step pro-

cedure. The first step is the direct inversion of equation (3.42): the basis coefficientsck are

found by deconvolving the sampled functionf (n) with the factorized filterβ(n). The sec-

ond step reconstructs the continuous (or arbitrarily sampled) functionf (x) according to for-

mula (3.41). The two steps could be combined into one, but usually it is more convenient

to apply them separately. I show a schematic relationship among different variables in Fig-

ure 3.12.

Figure 3.12: Schematic relationship
among different variables for inter-
polation with a convolutional basis.
forwd-scheme[NR]
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B-splines represent a particular example of a convolutional basis. Because of their compact

support and other attractive numerical properties, B-splines are a good choice of the basis set

for the forward interpolation problem and related signal processing problems (Unser, 1999).

According to Thévenaz et al. (2000), they exhibit superior performance for any given order of

accuracy in comparison with other methods of similar efficiency.

B-splines of the order 0 and 1 coincide with the nearest neighbor and linear interpolants (3.5)
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and (3.6) respectively. B-splinesβn(x) of a higher ordern can be defined by a repetitive con-

volution of the zeroth-order splineβ0(x) (the box function) with itself:

βn(x) = β0(x)∗ · · · ∗β0(x)︸ ︷︷ ︸
(n+1) times

. (3.43)

There is also the explicit expression

βn(x) =
1

n!

n+1∑
k=0

Cn+1
k (−1)k(x +

n+1

2
−k)n

+
, (3.44)

which can be proved by induction. HereCn+1
k are the binomial coefficients, and the function

x+ is defined as follows:

x+ =

{
x, for x > 0

0, otherwise
(3.45)

As follows from formula (3.44), the most commonly used cubic B-splineβ3(x) has the ex-

pression

β3(x) =


(
4−6|x|

2
+3|x|

3)/6, for 1> |x| ≥ 0

(2−|x|)3/6, for 2> |x| ≥ 1

0, elsewhere

(3.46)

The corresponding discrete filterβ3(n) is a centered 3-point filter with coefficients 1/6, 2/3,

and 1/6. According to the traditional method, deconvolution with this filter is performed as

a tridiagonal matrix inversion (de Boor, 1978). One can, however, accomplish the same task

more efficiently by spectral factorization and recursive filtering (Unser et al., 1993). The

recursive filtering approach generalizes straightforwardly to B-splines of higher orders.

Both the support length and the smoothness of B-splines increase with the order. In the

limit, B-splines converge to the Gaussian function. Figures 3.13 and 3.14 show the third- and

seventh-order splinesβ3(x) andβ7(x), respectively, and their continuous spectra.
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Figure 3.13: Third-order B-splineβ3(x) (left) and its spectrum (right).forwd-splint3 [CR]
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Figure 3.14: Seventh-order B-splineβ7(x) (left) and its spectrum (right).forwd-splint7 [CR]
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It is important to realize the difference between B-splines and the corresponding inter-

polantsW(x,n), which are sometimes calledcardinal splines. An explicit computation of

the cardinal splines is impractical, because they have infinitely long support. Typically, they

are constructed implicitly by the two-step interpolation method outlined above. The cardinal

splines of orders 3 and 7 and their spectra are shown in Figures 3.15 and 3.16. As B-splines

converge to the Gaussian function, the corresponding interpolants rapidly converge to the sinc

function (3.21). Good convergence is achieved with the help of the implicitly-generated long

support, which results from recursive filtering at the first step of the interpolation procedure.
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Figure 3.15: Effective third-order B-spline interpolant (left) and its spectrum (right).
forwd-crdint3 [CR]
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Figure 3.16: Effective seventh-order B-spline interpolant (left) and its spectrum (right).
forwd-crdint7 [CR]

In practice, the recursive filtering step adds only marginally to the total interpolation cost.

Therefore, ann-th order B-spline interpolation is comparable in cost with any other method

that uses an (n+1)-point interpolant. The comparison in accuracy usually turns out in favor of
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B-splines. Figures 3.17 and 3.18 compare interpolation errors of B-splines and other similar-

cost methods on the example from Figure 3.4.

Figure 3.17: Interpolation error
of the cubic-convolution interpolant
(dashed line) compared to that of
the third-order B-spline (solid line).
forwd-cubspl [ER]

Figure 3.18: Interpolation error of the
8-point windowed sinc interpolant
(dashed line) compared to that of the
seventh-order B-spline (solid line).
forwd-kaispl [ER]

Similarly to the comparison in Figures 3.9 and 3.10, we can also compare the discrete

responses of B-spline interpolation with those of other methods. The right plots in Figures 3.19

and 3.20 show that the discrete spectra of the effective B-spline interpolants are genuinely

flat at low frequencies and wider than those of the competitive methods. Although the B-

spline responses are infinitely long because of the recursive filtering step, they exhibit a fast

amplitude decay.
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Figure 3.19: Discrete interpola-
tion responses of cubic convolution
and third-order B-spline interpolants
(left) and their discrete spectra (right)
for x = 0.7. forwd-speccubspl[ER]

Figure 3.20: Discrete interpolation
responses of 8-point windowed
sinc and seventh-order B-spline
interpolants (left) and their dis-
crete spectra (right) forx = 0.7.
forwd-speckaispl[ER]
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2-D example

For completeness, I include a 2-D forward interpolation example. Figure 3.21 shows a 2-D

analog of the function in Figure 3.4 and its coarsely-sampled version.

Figure 3.21: Two-dimensional test function (left) and its coarsely sampled version (right).
forwd-chirp2 [ER]

Figure 3.22 compares the errors of the 2-D nearest neighbor and 2-D linear (bi-linear) in-

terpolation. Switching to bi-linear interpolation shows a significant improvement, but the error

level is still relatively high. As shown in Figures 3.23 and 3.24, B-spline interpolation again

outperforms other methods with comparable cost. In all cases, I constructed 2-D interpolants

by orthogonal splitting. Although the splitting method reduces computational overhead, the

main cost factor is the total interpolant size, which is squared when the interpolation goes from

one to two dimensions.

Beyond B-splines

It is not too difficult to construct a convolutional basis with more accurate interpolation proper-

ties than those of B-splines, for example by sacrificing the function smoothness. The following
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Figure 3.22: 2-D Interpolation errors of nearest neighbor interpolation (left) and linear inter-
polation (right). The top graphs show 1-D slices through the center of the image. Bi-linear
interpolation exhibits smaller error and therefore is more accurate.forwd-plcbinlin [ER]

piece-wise cubic function has a lower smoothness thanβ3(x) in equation (3.46) but slightly

better interpolation behavior:

µ3(x) =


(
10−13|x|

2
+6|x|

3)/16, for 1> |x| ≥ 0

(2−|x|)2(5−2|x|)/16, for 2> |x| ≥ 1

0, elsewhere

(3.47)

Figures 3.25 and 3.26 compare the test interpolation errors and discrete responses of meth-

ods based on the B-spline functionβ3(x) and the lower smoothness functionµ3(x). The latter

method has a slight but visible performance advantage and a slightly wider discrete spectrum.

Blu et al. (1998) have developed a general approach for constructing non-smooth piece-

wise functions with optimal interpolation properties. However, the gain in accuracy is often

negligible in practice. In the rest of the dissertation, I use the classic and better tested B-spline

method.
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Figure 3.23: 2-D Interpolation errors of cubic convolution interpolation (left) and third-order
B-spline interpolation (right). The top graphs show 1-D slices through the center of the image.
B-spline interpolation exhibits smaller error and therefore is more accurate.forwd-plccubspl
[ER]
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Figure 3.24: 2-D Interpolation errors of 8-point windowed sinc interpolation (left) and
seventh-order B-spline interpolation (right). The top graphs show 1-D slices through the cen-
ter of the images. B-spline interpolation exhibits smaller error and therefore is more accurate.
forwd-plckaispl [ER]

Figure 3.25: Interpolation error of
the third-order B-spline interpolant
(dashed line) compared to that of the
lower smoothness spline interpolant
(solid line). forwd-splmom4[ER]
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Figure 3.26: Discrete interpolation
responses of third-order B-spline and
lower smoothness spline interpolants
(left) and their discrete spectra (right)
for x = 0.7. A slight but visible dif-
ference in the interpolation responses
accounts for a small improvement in
accuracy.forwd-specsplmom4[ER]

SEISMIC APPLICATIONS OF FORWARD INTERPOLATION

For completeness, I conclude this section with two simple examples of forward interpolation in

seismic data processing. Figure 3.27 shows a 3-D impulse response of Stolt migration (Stolt,

1978), computed by using 2-point linear interpolation and 8-point B-spline interpolation. As

noted by Ronen (1982) and Harlan (1982), inaccurate interpolation may lead to spurious arti-

fact events in Stolt-migrated images. Indeed, we see several artifacts in the image with linear

interpolation (the left plots in Figure 3.27). The artifacts are removed if we use a more accurate

interpolation method (the right plots in Figure 3.27).

Another simple example is the radial trace transform (Ottolini, 1982). Figure 3.28 shows

a land shot gather contaminated by nearly radial ground-roll. As discussed by Claerbout

(1983), Henley (1999, 2000), and Brown and Claerbout (2000a,b), one can effectively elimi-

nate ground-roll noise by applying a radial trace transform followed by high-pass filtering and

the inverse radial transform. Figure 3.29 shows the result of the forward radial transform of the

shot gather in Figure 3.28 in the radial band of the ground-roll noise and the transform error

after we go back to the original domain. Comparing the results of using linear and third-order

B-spline interpolation, we see once again that the transform artifacts are removed with a more

accurate interpolation scheme.
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Figure 3.27: Stolt-migration impulse response. Left: using linear interpolation. Right: us-
ing seventh-order B-spline interpolation. Migration artifacts are removed by a more accurate
forward interpolation method.forwd-stolt [ER]

Figure 3.28: Ground-roll-
contaminated shot gather used in a
radial transform testforwd-radialdat
[ER]
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Figure 3.29: Radial trace transform results. Top: radial trace domain. Bottom: residual error
after the inverse transform. The error should be zero in a radial band from 0 to 0.65 km/s radial
velocity. Left: using linear interpolation. Right: using third-order B-spline interpolation.
forwd-radial [ER]
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