
Appendix A

Second-order reflection traveltime derivatives

In this appendix, I derive equations connecting second-order partial derivatives of the reflec-

tion traveltime with the geometric properties of the reflector in a constant velocity medium.

These equations are used in the main text of Chapter?? for the amplitude behavior description.

Let τ (s,r ) be the reflection traveltime from the sources to the receiverr . Consider a formal

equality

τ (s,r ) = τ1 (s,x(s,r ))+ τ2 (x(s,r ),r ) , (A.1)

wherex is the reflection point parameter,τ1 corresponds to the incident ray, andτ2 corresponds

to the reflected ray. Differentiating (A.1) with respect tos andr yields

∂τ

∂s
=

∂τ1

∂s
+

∂τ

∂x

∂x

∂s
, (A.2)

∂τ

∂r
=

∂τ2

∂r
+

∂τ

∂x

∂x

∂r
. (A.3)

According to Fermat’s principle, the two-point reflection ray path must correspond to the

traveltime stationary point. Therefore

∂τ

∂x
≡ 0 (A.4)
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for anys andr . Taking into account (A.4) while differentiating (A.2) and (A.3), we get

∂2τ

∂s2
=

∂2τ1

∂s2
+ B1

∂x

∂s
, (A.5)

∂2τ

∂r 2
=

∂2τ2

∂r 2
+ B2

∂x

∂r
, (A.6)

∂2τ

∂s∂r
= B1

∂x

∂r
= B2

∂x

∂s
, (A.7)

where

B1 =
∂2τ1

∂s∂x
; B2 =

∂2τ2

∂r ∂x
.

Differentiating equation (A.4) gives us the additional pair of equations

C
∂x

∂s
+ B1 = 0 , (A.8)

C
∂x

∂r
+ B2 = 0 , (A.9)

where

C =
∂2τ

∂x2
=

∂2τ1

∂x2
+

∂2τ2

∂x2
.

Solving the system (A.8) - (A.9) for∂x
∂s and ∂x

∂r and substituting the result into (A.5) - (A.7)

produces the following set of expressions:

∂2τ

∂s2
=

∂2τ1

∂s2
−C−1 B2

1 ; (A.10)

∂2τ

∂r 2
=

∂2τ2

∂r 2
−C−1 B2

2 ; (A.11)

∂2τ

∂s∂r
= −C−1 B1 B2 . (A.12)
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In the case of a constant velocity medium, expressions (A.10) to (A.12) can be applied directly

to the explicit equation for the two-point eikonal

τ1(y,x) = τ2(x, y) =

√
(x − y)2 + z2(x)

v
. (A.13)

Differentiating (A.13) and taking into account the trigonometric relationships for the incident

and reflected rays (Figure??), one can evaluate all the quantities in (A.10) to (A.12) explicitly.

After some heavy algebra, the resultant expressions for the traveltime derivatives take the form

∂τ

∂s
=

∂τ1

∂s
=

sinα1

v
;

∂τ

∂r
=

∂τ2

∂r
=

sinα2

v
; (A.14)

∂τ1

∂x
=

sinγ

v cosα
;

∂τ2

∂x
= −

sinγ

v cosα
; (A.15)

B1 =
∂2τ1

∂s∂x
=

cosα1

v D cosα

(
−1−

sinγ

cosα
sinα1

)
; (A.16)

B2 =
∂2τ2

∂r ∂x
=

cosα2

v D cosα

(
−1+

sinγ

cosα
sinα2

)
; (A.17)

B1 B2 =
cos6γ

v2 D2a4
; B1 + B2 = −2

cos3γ

v D a2

(
2a2

−1
)

; (A.18)

∂2τ1

∂x2
=

cos2γ + D K

v D cos3α
cosα1 ;

∂2τ2

∂x2
=

cos2γ + D K

v D cos3α
cosα2 ; (A.19)

C =
∂2τ1

∂x2
+

∂2τ2

∂x2
= 2 cosγ

cos2γ + D K

v D cos3α
. (A.20)

HereD is the length of the normal (central) ray,α is its dip angle (α =
α1+α2

2 , tanα = z′(x)),

γ is the reflection angle
(
γ =

α2−α1
2

)
, K is the reflector curvature at the reflection point(

K = z′′(x) cos3α
)
, anda is the dimensionless function ofα andγ defined in (??).
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The equations derived in this appendix were used to get the equation

τn

(
∂2τn

∂y2
−

∂2τn

∂h2

)
= 4

(
τ

∂2τ

∂s∂r
+

cos2γ

v2

)
= 4

cos2γ

v2

(
sin2α + DK

cos2γ + DK

)
, (A.21)

which coincides with (??) in the main text.



Appendix B

Solving the Cauchy problem

To obtain an explicit solution of the Cauchy problem (??-??) for equation (??), it is convenient

to apply the following simple transform of the wavefieldP:

P(tn,h, y) = Q(tn,h, y) tn H (tn) . (B.1)

Here the Heavyside functionH is included to take into account the causality of the reflection

seismic gathers (note that the timetn = 0 corresponds to the direct wave arrival). We can

extrapolateQ as an even function to negative times, writing the reverse of (B.1) as follows:

Q(tn,h, y) = Q(−tn,h, y) = P(|tn|,h, y)/|tn| . (B.2)

With the change of function (B.1), equation (??) transforms to

h
∂2Q

∂y2
= h

∂2Q

∂h2
+ tn

∂2Q

∂tn ∂h
+

∂Q

∂h
=

∂

∂h

(
h

∂Q

∂h
+ tn

∂Q

∂tn

)
. (B.3)

Applying the change of variables

ρ =
t2
n

2
, ν =

h2

2t2
n

(B.4)
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and Fourier transform in the midpoint coordinatey

Q̃(ρ,ν,k) =

∫
Q(ρ,ν, y) exp(−iky)dy , (B.5)

I further transform equation (B.3) to the canonical form of a hyperbolic-type partial differential

equation with two variables:

∂2Q̃

∂ρ ∂ν
+k2 Q̃ = 0 . (B.6)

Figure B.1: Domain of dependence
of a point in the transformed coordi-
nate system. appen-rim[NR]
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The initial value conditions (??) and (??) in the{ρ,ν} space are defined on a hyperbola of

the formρ ν =

(
h1
2

)2
= constant. Now the solution of the Cauchy problem follows directly

from Riemann’s method (Courant, 1962). According to this method, the domain of depen-

dence of each point{ρ,ν} is a part of the hyperbola between the points{ρ,
h2

1
4ρ

} and {
h2

1
4ν

,ν}

(Figure B.1). If we let6 denote this curve, the solution takes an explicit integral form:

Q̃(ρ,ν) =
1

2
Q̃(ρ,

h2
1

4ρ
)+

1

2
Q̃(

h2
1

4ν
,ν)

+
1

2

∫
6

(
R(ρ1,ν1;ρ,ν)

∂ Q̃(ρ1,ν1)

∂ρ1
− Q̃(ρ1,ν1)

∂ R(ρ1,ν1;ρ,ν)

∂ρ1

)
dρ1

−
1

2

∫
6

(
R(ρ1,ν1;ρ,ν)

∂ Q̃(ρ1,ν1)

∂ν1
− Q̃(ρ1,ν1)

∂ R(ρ1,ν1;ρ,ν)

∂ν1

)
dν1 . (B.7)
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Here R is the Riemann’s function of equation (B.6), which has the known explicit analytical

expression

R(ρ1,ν1;ρ,ν) = J0

(
2k
√

(ρ1 −ρ) (ν1 −ν)
)

, (B.8)

whereJ0 is the Bessel function of zeroth order. Integrating by parts and taking into account

the connection of the variables on the curve6, we can simplify equation (B.7) to the form

Q̃(ρ,ν) = Q̃0(ρ,ν)+ Q̃1(ρ,ν) , (B.9)

where

Q̃0(ρ,ν) =
∂

∂ρ

∫
6

R(ρ1,ν1;ρ,ν) Q̃(ρ1,ν1)dρ1 , (B.10)

Q̃1(ρ,ν) = −

∫
6

R(ρ1,ν1;ρ,ν)
∂ Q̃(ρ1,ν1)

∂ν1
dν1 . (B.11)

Applying the explicit expression for the Riemann functionR (B.8) and performing the

inverse transform of both the function and the variables allows us to rewrite equations (B.9),

(B.10), and (B.11) in the original coordinate system. This yields the integral offset continua-

tion operators in the{tn,h,k} domain

P̃(tn,h,k) = H (tn)
(
P̃0(tn,h,k)+ tn P̃1(tn,h,k)

)
, (B.12)

where

P̃0 =
∂

∂tn

∫ tn

(h1/h) tn

P̃(0)
1 (|t1| ,k) J0

(
k

√(
h2

t2
n

−
h2

1

t2
1

) (
t2
n − t2

1

))
dt1 , (B.13)

P̃1 =

∫ tn

(h1/h) tn

h1 P̃(1)
1 (|t1| ,k) J0

(
k

√(
h2

t2
n

−
h2

1

t2
1

) (
t2
n − t2

1

)) dt1
t2
1

, (B.14)



8 APPENDIX B. SOLVING THE CAUCHY PROBLEM

P̃( j )
1 (t1,k) =

∫
P ( j )

1 (t1, y1)exp(−iky1)dy1 ( j = 0,1) , (B.15)

P̃(tn,h,k) =

∫
P(tn,h, y)exp(−iky)dy ( j = 0,1) . (B.16)

The inverse Fourier transforms of equations (B.13) and (B.14) are reduced to analytically

evaluated integrals (Gradshtein and Ryzhik, 1994) to produce explicit integral operators in the

time-and-space domain

P(tn,h, y) = sign(h−h1)
H (tn)

π
(P0(tn,h, y)+ tn P1(tn,h, y)) , (B.17)

where

P0(tn,h, y) =
∂

∂tn

∫∫
6

P(0)
1 (|t1| , y1) dt1dy1√(

h2

t2
n

−
h2

1
t2
1

) (
t2
n − t2

1

)
− (y− y1)2

, (B.18)

P1(tn,h, y) =

∫∫
6

(
h1/t2

1

)
P(1)

1 (|t1| , y1) dt1dy1√(
h2

t2
n

−
h2

1
t2
1

) (
t2
n − t2

1

)
− (y− y1)2

. (B.19)

The range of integration6 in (B.18) and (B.19) is defined by the inequality(
h2

t2
n

−
h2

1

t2
1

) (
t2
n − t2

1

)
− (y− y1)2 > 0 . (B.20)

Equations (B.17), (B.18), and (B.19) coincide with (??), (??), and (??) in the main text.



Appendix C

The kinematics of offset continuation

In this Appendix, I apply an alternative method to derive equation (??), which describes the

summation path of the integral offset continuation operator. The method is based on the fol-

lowing considerations.

The summation path of an integral (stacking) operator coincides with the phase function

of the impulse response of the inverse operator. Impulse response is by definition the operator

reaction to an impulse in the input data. For the case of offset continuation, the input is a

reflection common-offset gather. From the physical point of view, an impulse in this type of

data corresponds to the special focusing reflector (elliptical isochrone) at the depth. Therefore,

reflection from this reflector at a different constant offset corresponds to the impulse response

of the OC operator. In other words, we can view offset continuation as the result of cascading

prestack common-offset migration, which produces the elliptic surface, and common-offset

modeling (inverse migration) for different offsets. This approach resemble that of Deregowski

and Rocca (1981). It was also applied to a more general case of azimuth moveout (AMO) by

Fomel and Biondi (1995). The geometric approach implies that in order to find the summation

pass of the OC operator, one should solve the kinematic problem of reflection from an elliptic

reflector whose focuses are in the shot and receiver locations of the output seismic gather.
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In order to solve this problem , let us consider an elliptic surface of the general form

h(x) =

√
d2 −β (x − x′)2 , (C.1)

where 0< β < 1. In a constant velocity medium, the reflection ray path for a given source-

receiver pair on the surface is controlled by the position of the reflection pointx. Fermat’s

principle provides a required constraint for finding this position. According to Fermat’s prin-

ciple, the reflection ray path corresponds to a stationary value of the travel-time. Therefore, in

the neighborhood of this path,

∂τ (s,r ,x)

∂x
= 0 , (C.2)

wheres andr stand for the source and receiver locations on the surface, andτ is the reflection

traveltime

τ (s,r ,x) =

√
h2(x)+ (s− x)2

v
+

√
h2(x)+ (r − x)2

v
. (C.3)

Substituting (C.3) and (C.1) into (C.2) leads to a quadratic algebraic equation on the re-

flection point parameterx. This equation has the explicit solution

x(s,r ) = x′
+

ξ2
+ H2

−h2
+sign(h2

− H2)
√(

ξ2 − H2 −h2
)2

−4H2h2

2ξ (1−β)
, (C.4)

whereh = (r −s)/2, ξ = y−x′, y = (s+r )/2, andH2
= d2

(
1
β

−1
)
. Replacingx in equation

(C.3) with its expression (C.4) solves the kinematic part of the problem, producing the explicit

traveltime expression

τ (s,r ) =



1

v

√
4h2 −β ( f + g)2

1−β
for h2 > H2

1

v

√
4h2 +β (F + G)2

1−β
for h2 < H2

, (C.5)
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where

f =

√
(r − x′)2 − H2 , g =

√
(s− x′)2 − H2 ,

F =

√
H2 − (r − x′)2 , G =

√
H2 − (s− x′)2 .

The two branches of equation (C.5) correspond to the difference in the geometry of the

reflected rays in two different situations. When a source-and-receiver pair is inside the focuses

of the elliptic reflector, the midpointy and the reflection pointx are on the same side of the

ellipse with respect to its small semi-axis. They are on different sides in the opposite case

(Figure C.1).

Figure C.1: Reflections from an el-
lipse. The three pairs of reflected rays
correspond to a common midpoint (at
0.1) and different offsets. The fo-
cuses of the ellipse are at 1 and -1.
appen-ell [CR]
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If we apply the NMO correction, equation (C.5) is transformed to

τn(s,r ) =



1

v

√
β

1−β

√
4h2 − ( f + g)2 for h2 > H2

1

v

√
β

1−β

√
4h2 + (F + G)2 for h2 < H2

. (C.6)

Then, recalling the relationships between the parameters of the focusing ellipser , x′ andβ

and the parameters of the output seismic gather (Deregowski and Rocca, 1981)

r =
v tn
2

, x′
= y , β =

t2
n

t2
n +

4h2

v2

, H = h , (C.7)
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and substituting expressions (C.7) into equation (C.6) yields the expression

t1(s1,r1;s,r ,tn) =


tn
2h

√
4h2

1 − ( f + g)2 for h2
1 > h2

t2
2h

√
4h2

1 + (F + G)2 for h2
1 < h2

, (C.8)

where

f =

√
(r1 − r ) (r1 −s) , g =

√
(s1 − r ) (s1 −s) ,

F =

√
(r − r1) (r1 −s) , G =

√
(s1 − r ) (s−s1) .

It is easy to verify algebraically the mathematical equivalence of equation (C.8) and equa-

tion (??) in the main text. The kinematic approach described in this appendix applies equally

well to different acquisition configurations of the input and output data. The source-receiver

parameterization used in (C.8) is the actual definition for the summation path of the integral

shot continuation operator (Schwab, 1993; Bagaini and Spagnolini, 1993, 1996). A family of

these summation curves is shown in Figure C.2.
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Figure C.2: Summation paths of the integral shot continuation. The output source is at -0.5
km. The output receiver is at 0.5 km. The indexes of the curves correspond to the input source
location. appen-shc[CR]
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