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ABSTRACT

We describe an Elastic Wavefield Reconstruction Inversion (EWRI) formulation
and derive the necessary staggered grid wave equation operator. We then demon-
strate that the elastic wave equation operator is the inverse of elastic wave prop-
agation operator through a numerical example.

INTRODUCTION

There is a need for an earth parameter inversion technique that exceeds the ability of
ray tracing, tomography, and dispersion analysis to estimate elastic earth properties
by using all of the information contained in the recored data while simultaneously
avoiding the computational complexity and nonlinearity of Full Waveform Inversion
(FWI). A novel inversion scheme that alternately minimizes a data misfit term and a
wave-equation misfit term was introduced by Van Leeuwen and Herrmann (2013), De
Ridder and Maddison (2017), and De Ridder et al. (2017). The scheme first recon-
structs an estimate of the wavefield that fits (in a least-squares sense) both a wave
equation (given an estimate of the medium parameters) as well as recorded data. This
wavefield is then used to update the earth model parameters with a wave equation
inversion employing gradiometry to measure wavefield gradients (Curtis and Roberts-
son, 2002; Langston, 2007a,b; De Ridder and Biondi, 2015; De Ridder and Curtis,
2017). When the estimate of earth parameters is held constant, the reconstruction
of the wavefield becomes a linear problem with respect to the wavefield. Likewise,
when the wavefield is kept constant the problem becomes linear with respect to the
earth model parameters. In this manner, the inversion scheme iteratively solves two
linear inverse problems ultimately finding an optimal earth model and wavefield that
match recorded data and some wave equation.

This technique is attractive because it does not require forward or adjoint wave
propagation, is bilinear with respect to the wavefield and the earth parameters, and
is linear with respect to seismic experiments, or shots. This frees the entire method
from the stability issues associated with wave propagation, allowing much coarser
discretization in time compared to other wave equation based velocity estimation
techniques such as FWI. Furthermore, adding the minimization over the wavefield
turns this into an extended wavefield inversion problem. In extended formulations,
we expand the model space, beyond the physical earth parameters, to include some
nonphysical space, in our case the wavefield. When our guess of the earth model
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is far from the truth, this nonphysical extension allows us to fit the data without
projecting unfeasible updates to the physical model space. Then, as we iterate, we
slowly eliminate the nonphysical part of the model and update the physical earth
model, hopefully avoiding local minima.

Past Wavefield Reconstruction Inversion (WRI) work has assumed an acoustic
earth and solved for p-wave velocity with frequency domain wave equation formula-
tions where the discretized Helmholtz equation is factorized to obtain a direct inverse
solution for wavefields. This factorization will become unfeasible due to computa-
tional cost when applied to three dimensional problems or problems with high levels
of noise. Futhermore, complex wave modes, such as surface waves and converted
waves, can not be modeled properly when assuming an acoustic earth.

Here we describe a time domain implementation of EWRI that accounts for an
elastic, isotropic, attentuation-free earth. We also construct the operators necessary
for the wavefield inversion step of EWRI.

ELASTIC WAVEFIELD RECONSTRUCTION INVERSION

The goal of EWRI is to estimate some material properties of the earth, m, in some do-
main of the subsurface. Here we assume the subsurface is linear elastic and isotropic.
We parameterize it with the Lame’s first parameter, A, shear modulus, u, and density,
p. Each point in the subsurface, x, is associated with these three elastic parameters:

m(x) = (| . (1)

Following Virieux (1986) we can model how elastic energy interacts with the described
subsurface with five wavefield components and five partial differential equations. The
necessary wavefield components are particle velocity in the x direction, v,, particle
velocity in the z direction, v,, and three components of the stress tensor, o,., 0..,
and o,,. We denote p as the vector describing the wavefield components for a given
location in the subsurface x, at a given time ¢, and for a given earth parameter
function m:

p(x,t;m) = 04| - (2)

We use a wave equation operator, A, which is a function of earth parameters, m, to
map from a wavefield, p(x,t; m), to external forcing terms, f(x,t):

A(m)p = £ 3)
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Note how p and f are both functions of space x and time ¢. In our 2D space imple-
mentation, this means p and f live in the 3D space of x, z, and ¢t. The full derivation
of the wave equation operator, A(m), can be found in the Appendix. We know that
the central difference first-order spatial derivatives in the elastic wave equation will
produce significant numerical errors and therefore we must implement this operator
on a staggered grid, seen in Figure 1 (Biondi and O’Reilly, 2015). We spatially stagger
the elastic parameters, wavefield components, and derivative operators to construct
our elastic wave equation operator.
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Figure 1: A representation of the different grids used to store the various wavefields
needed for our elastic wave equation implementation. [NR]

With the elastic wave equation operator defined, we can introduce the EWRI objective
function:

1 €2
®(m,p) = §||Kp—d||§+EIIA(m)p—fIIE, (4)

where m, p, A(m), and f have all been described previously. d is the observed data,
recorded by physical receivers, and the sampling operator, K, extracts the wavefield,
p, at those receiver locations. This objective function forces the reconstructed wave-
field to match both the recorded data and to obey the wave equation in a least squares
sense. As mentioned previously, this relaxes the physics of the problem by allowing
the reconstructed wavefield to not fully obey the wave equation when the correct
earth model parameters are not known.

Note that this objective function is bilinear. When either m or p are fixed, the
objective function becomes linear with respect to the other variable. We minimize
Equation 4 with respect to m or p with an alternating linear conjugate gradient
scheme which is summarized in Algorithm 1. We first fix our earth model to an
initial guess, my, and minimize Equation 4 with respect to p:

1 €2
@p(m) = - ||Kp — |} + 5| A(m)p — £ )
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Once some convergence criteria is met, we arrive at our first guess of the elastic
wavefield, p. Now we hold the wavefield constant and minimize Equation 4 with
respect to m:

1 €2
O (p) = 5I/Kp — dlff + S| A(m)p — £ (6)

Since we reconstructed p, in Equation 5, with an incorrect earth model, it will not
be able to match both the recorded data and the elastic wave equation. This wave
equation mismatch is used to update the earth model parameters when we minimize
Equation 6.

Algorithm 1 Alternating Wavefield Reconstruction Inversion

1: given some observed wavefield, d

2: given a starting earth model, my

3:1=0

4: while 7 < n do > for n iterations
5: p; < argmin, ¢, (p) < d, m; > invert for optimal wavefield
6: m;; < argminy, ¢, (m) < d, p; > invert for new earth model
7 1=1+1

8: end while

9: return m,, > final earth model

WAVE EQUATION VS WAVE PROPAGATION

While elastic wave propagation is not necessary for the EWRI implementation, it is
helpful to compare the elastic wave equation operator to the elastic wave propagator
operator to put the two in context. As shown in Equation 3, the wave equation
operator maps from a wavefield, p, to a forcing term, f. Conversely, elastic wave
propagation maps from a forcing function, f, to a wavefield, p. In the Appendix we
derive the staggered grid elastic wave propagation operator as B(m):

B(m)f = p. (7)

If we begin at some forcing term f and apply the wave propagation operator, B(m),
we arrive at some wavefield, p. If we substitute the resulting p into the wave equation
operator, Equation 3, we will retrieve some other forcing term, f':

B(m)f = p, (8)
A(m)B(m)f = f. (9)

We can see that if f = f' that A(m)B(m) = I and therefore A(m) = B~*(m). So if

we propagate some wavefield from a seismic source, apply the wave equation operator
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to this wavefield, and the result is the original seismic source, we know that the wave
equaton operator is the inverse of the wave propagation operator. This is important to
rectify the physics of the wave equation operator. We can easily code some operator,
it’s correct adjoint, and verify this with the dot product test. Unfortunately, passing
the dot product test gives no indication to whether or not the operator is applying the
correct wave equation physics. If we cannot force the correct wave equation physics
with our operator, there will be no hope of EWRI converging to correct solutions.

INVERSE PROPERTY NUMERICAL EXAMPLE

Here we show a simple example to verify that A(m) = B™'(m). We assume the
elastic earth model, m, is known and is a half space, seen in Figure 2. A symmetric
explosive source, f, with frequencies ranging from 4-16 Hz is injected in the top left
corner of the model also illustrated in Figure 2. We show the five components of
f at f(x = x,,t), where x; is the location in space where the source was injected,
in Figure 3. Since f is a volumetric source, the only nonzero components are o,
and o,,. Applying the recursive wave propagation operator to results in p = B(m)f.
A snapshot at ¢ = 1.75 sec of each component of the wavefield, p, is illustrated in
Figure 4. We see that a volumetric source results in all wavefield components being
excited during propagation. We can now apply the wave equation operator, A(m),
to the propagated wavefield, p, which results in another forcing term, f', plotted at
X = X, in Figure 5. Visually, it appears we have recovered the original forcing term,
as f’ seems identical to f. However, when we take the difference between the two, we
notice that there is about a 2 percent discrepancy in the o,, and o,, components,
which is illustrated in Figure 6.

=

Figure 2: Known elastic earth model, m, used to verify that A(m) = B™'(m).
Displayed is the elastic parameter density, p. The other two parameters, A and p, are
also half spaces but are not displayed for sake of redundancy. Source injection point
is labeled with the yellow marker in the top left corner. [ER]

CONCLUSION

We have introduced the elastic formulation of WRI. In order to match converted wave
modes and surface wave scattering we must use an elastic wave equation operator
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Figure 3: The five components of the forcing term f [ER|]
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Figure 4: A snapshot at t = 1.75 sec of the wavefield components of p, the result of
applying the wave propagation operator to the forcing term. p = B(m)f [ER]
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Figure 5: The five components of the recovered forcing term f = A(m)B(m)f [ER]
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Figure 6: The difference between the original forcing term and the recovered forcing
term, f — f’. Notice the 2 percent error in the o,, and o,, components. We believe
this error arises from the limited bandwidth of the spatial derivative stencil in the
wave equation operator. [ER]
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which we derive in the Appendix. We show that the elastic wave equation operator
is applying the same physics as the elastic wave propagation operator through a
numerical example.
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APPENDIX
Deriving the staggered grid elastic wave equation operator

The wave equations to describe relationship of the five elastic wavefield components
are:
ov, 00y, 004,
P — - :fxa
ot ox 0z
ov, 0oy, 00,

'OE  or 0Oz =f=
00 1 0v, ov, B
0o, v, v,
o or PTG =S
00, B 0v, n ov.\ g
o M\ oz Tar) T

where fu, f., Szz, Sz, and S, are the external forcing terms (aka seismic sources
for each component). We assume that p(x,¢ = 0;m) = 0 and an absorbing bound-
ary condition Engquist (1976). It is convenient to write this as a matrix, vector
multiplication:

p% 0 - % 0 _% Uy fx
0 p% 0 - % oz Uy fz
—(A+2u) 2 -2 2 0 0 | |0uz| = |Sea| - (11)
—2\Z —(A+2p) 2 0 2 0 Ozz Sz
—ud —p 0 0 2] |ow- S
We rewrite the derivatives with operator notation for further convenience:
th 0 _D:I: 0 _Dz Vg f:l:
0 th 0 _Dz _D:c Uy fz
—(A+2u)D, —-A\D. D, 0 0 Opz | = |Szz| - (12)
—-\D, —(A+21)D, 0 D, 0 0., S..
_/’LDZ _,qu 0 0 Dt Oxz S:cz

SEP-176



Farris et al. 9 EWRI Operators

We know that the central difference first-order spatial derivatives, D, and D,, will
produce significant numerical errors (Biondi and O’Reilly, 2015). Therefore we must
implement these operators on a staggered grid, seen in Figure 1. We center the
derivatives appropriately and rewrite the wave equation matrix as:

p.D, 0 -D- 0 -Df[uw £
0 pth 0 _Dz_ _D;;_ Uy fz
—(\+2u)D7 ~A\D? D, 0 0 | |ow| = | Sl
D7 ~(A+20)Df 0 D, 0 | |o. S..
(13)

where D' and D~ are the forward and backward derivative operators, respectively.
Now the staggered elastic parameters, wavefield components, and derivative opera-
tors, force each line of the wave equation matrix operation to fall on the same spatial
grid location, thus eliminating the unwanted numerical errors. Equation 13 describes
our elastic wave equation and we denote A(m) as the matrix acting on the wavefield
components of p:

Am)p=f (14)

Deriving the staggered grid elastic wave propagation operator

We can derive a recursive time-stepping scheme to map from our forcing term f
resulting in a wavefield p. We begin from the wave equation operator in Equation 13
and isolate each equation from the matrix, vector multiplication:

peDivy — D, 0wy — D} 00 = fo
p-Div, —D 0., — D, 0., = [.
Doy — (A +2u)Dfv, — ADf v, = S, (15)
Do.. — A\Djv, — (A +2u)D}v, = 5.,
Doy — 12D, v — 2 Dyv. = Se

For each equation, isolate the time derivative operation.

p:Dw, =D 0,0 + Doy, + fo

p-Diw, =D 0.. + D 0, + f.
Doy = (A +2p)Di v, + ADf v, + Sy (16)
D;o.. = ADJv, + (A +2u)Df v, + 5.,
D0y = p12:D; 05 + pa: Dy vz + S5

By using a centered finite difference stencil for the time derivatives, we can rewrite
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the equation with the proper time steps on each component:

Vg (ti—i-%) - Uz(tz‘—l>

UZ(tH-l) —v.(t;_1) _ _
Oxx(ti-i-%) - Uz‘x(ti—%) n n
A7 = (A +2u)DJv,(t;) + ADJ v, (t;) + Szz(ts)
O—ZZ(ti-i-%) - Uzz(ti—%) " n
At = AD; v, (t:) + (A + 2u)DJv.(t;) + S..(t:)
sz(ti l) - UIZ(ti—l)

Notice the time derivatives are centered at ¢t = t; and are computed using wavefields
at t =t and t = ti L. Using half-time step discretization is an implementation
decision made to increase the accuracy of the time derivatives (as compared to using
t =t and t = t;_1). To arrive at a recursive time-stepping scheme, we solve each
equation for the wavefield at ¢ = ¢, 1.

At

U:r:(tzur%) = 'Ux<ti7%) + E [D;O—II(tl) + Djaa:z(ti) + fx<t2>] (17)
v(tip1) = va(tio1) + %t [D;0..(t;) + D, 0,.(t;) + f2(t:)] (18)
ua(tiy1) = Oua(tio1) + AL [N+ 20)DJ v, (8) + ADJ v (t:) + Sea ()] (19)
0ua(tivs) = 0as(tis) + At [AD; v, (t;) + (A + 2p)DF v, (t;) + Sax ()] (20)
(sz(ti_,_%) = UxZ(ti—%) + At [“xzDz_Ux(ti) + :U:czD;UZ(ti) + SxZ(ti>] (21)

We can shift the time sample by one half to simplify the the operator into a lower
traingular matrix:

0a(t) = vltin) + 0 [Drova(ty ) + DEoenlt y) + fulti ). (22)
A
() = v-(ti) + 25 [Pty ) + Dronelte ) + £ltiy)] (23)

Oua(ti) = Oua(tiz1) + At _()‘ + QM)D;Ux(ti—%) + )‘DIUZGF%) + Sxx(ti—%)} ,(24)

02 (ti) = 2a(ti1) + A [ADFu(t_y) + (A + 20)DYs(t_y) + Sealtiy)] - (25)

00z(ti) = Ouz(tio1) + At | oD va(t; 1) + poDiva(ti1) + Sm(ti_é)] . (26)
We denote B(m) as the recursive operator acting on the forcing term f resulting in a

wavefield p:
B(m)f = p. (27)
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