
Buffers: A library for fast parallel IO and

compression

Robert G. Clapp

ABSTRACT

Data transfer speed improvements from different memory levels has continually
lagged behind floating point operations per second (FLOPS) improvements. For
seismic applications these differing growth curves have made more and more
applications IO bound. We created a library that breaks a dataset into blocks.
These blocks can be read/written to disk in parallel, significantly reducing IO
time when using parallel file system or object store. Each block can further be
compressed, using multi-dimension compression schemes, reducing the amount of
data that needs to be transferred between memory levels.

INTRODUCTION

Until the early 2000s algorithms were judged primarily by the operation count. Today,
due to the drastically different growth rates of Central Processing Unit (CPU) speed
and main memory (McCalpin, 1995, 2007) almost all applications are judged based on
either their memory bandwidth or memory latency behavior. These bottlenecks can
come from many different memory levels: from disk, from main memory on the CPU,
or even global memory on a General Purpose Graphical Processing Unit (GPGPU).
To address the latency issue, it is important to read in large chunks. To address
the bandwidth issue, doing parallel reads can often prove performance particularly
on parallel file and object store (Factor et al., 2005) system. Further performance
improvements can be achieved through compression. Seismic data have been shown
to be compressible when using multi-dimensional schemes(Villasenor et al., 1996).

In this paper we describe a library, called buffers, that breaks a multi-dimensional
hypercube into blocks. These blocks can be compressed using public domain compres-
sion packages designed for scientific computing such as ZFP(Lindstrom and Isenburg,
2006). The library implements its own crude caching system that can be used to
minimize memory usage. The library genericIO(Clapp, 2017) has been extended
to use the buffers library. As a result, any program using this library for IO can
automatically taking advantage of the speedup it offers.

We will begin by describing the interfaces to the library. We will then present
some preliminary results showing both the speedup in IO and the error using various
compression schemes.

SEP–174



Clapp 2 Buffers

LIBRARY

The buffers library functions are controlled by three objects (classes): how/whether
to compress the data, the scheme used to block the hypercube, and how to handle
memory usage. By default it does not compress the data, it holds everything in mem-
ory, and it is a relatively smart blocking scheme for conventional CPU architectures.

Compression

Currently two different compression schemes are offered. The first is noCompression.
The second option uses the ZFP library to compress the data. ZFP is basically a very
fast 1, 2, or 3-D JPEG compresser. For seismic data it can achieve compression rates
of 6-10x with acceptable loss for most applications. Its big advantage is its speed. It
can compress and decompress at nearly memory bandwidth. It is ideally suited for
applications where data access speed is essential, such as visualization or compressing
wavefields. Currently the buffers library supports the tolerance, precision, and rate
methods ZFP uses.

Blocking

Blocking describes how to break up an N-D cube. By default it tries to makes blocks
in the low Megabytes in size, maxing out in 3-D blocks (4 and 5-D blocks are better
for the SZ library). The user can create his own block object specifying a target
blocksize along each axis and desired chunk, the minimum unit to use along each axis
(think cache line).

Memory usage

As mentioned above the library defaults to keeping every block in memory(memoryAll),
often in an uncompressed state. For many applications this is an undesired behavior.
As a result a second memory option, simpleMemoryLimit, exists. This class allows
the user to set a target memory for buffers library. Every time a buffers function
is called the simpleMemoryLimit module will attempt to first compress then store to
disk blocks that have been unused for the longest period. Further, more sophisticated
caching schemes might be added later.

Buffer functions

A buffers object can be created by either initializing with a hypercube (description
of the N-D cube) and potentially the compression, blocking, and memory objects
or by a JSON file that describes these choices. Most of the access to the actual data

SEP–174



Clapp 3 Buffers

is through the getWindow and putWindow functions. As their names imply, they are
used to get and put data to/from the buffers class. The user also has the ability
to changeState which will change between the three possible states of a buffer: on
disk, compressed, and decompressed. The final function setDirectory can be used
to specify where to store the dataset.

GenericIO

A new IO object type, BUFFERS has been created within the GenericIO library. The
BUFFERS IO class uses JSON for parameter handling and file descriptions. Rather
than specifying a file, the user specifies the directory to read/write a buffers object.

RESULTS

To test the speed of library, I compared using standard SEPlib IO routine calls such
as sreed, sreed window with all code compiled with the same optimization level (3).
The test used a 2.5 GB file of migrated seismic data from the Gulf of Mexico. The
file compressed to 670 MB using the ZFP technique using constant rate compression
method. I tested the read speed on a Mac, a local disk on a Linux server, and off of a
parallel file system. On all systems the blocked ZFP dataset proved to be faster with
speedups varying from 3.2 (Mac) to 12 (on an active parallel file system). Speedup
on the cloud should be even more significant.

As a second test, I used a smaller dataset with lower wave number features. When
compressed the dataset shrunk in size from 216 MB to 14 MB. Figure 1 shows an
example of the errors introduced by using the ZFP compression method. The top
left shows a slice from a migrated cube from the North Sea, the top right shows the
result of reconstructing the cube. The bottom left shows the difference. The bottom
right show the difference scaled by 100. Note how the error is small and generally
random.

DISCUSSION AND CONCLUSIONS

In this paper, we described a new library buffers. The library is designed to help
people reduce memory bandwidth bottlenecks. It allows the user to seamlessly read
and write in parallel to improve disk IO. It also can be used in applications such as
visualization and storing/compressing wavefields to greatly reduce the memory and
disk bandwidth requirements.

REFERENCES

Clapp, R. G., 2017, Facilitating code distribution: Docker and Generic IO.

SEP–174



Clapp 4 Buffers

Figure 1: The top left shows a slice from a migrated cube from the North Sea, the
top right shows the result of reconstructing the cube. The bottom left shows the
difference. The bottom right show the difference scaled by 100. [ER]

SEP–174



Clapp 5 Buffers

Factor, M., K. Meth, D. Naor, O. Rodeh, and J. Satran, 2005, Object storage: The
future building block for storage systems: Local to Global Data Interoperability-
Challenges and Technologies, 2005, IEEE, 119–123.

Lindstrom, P., and M. Isenburg, 2006, Fast and efficient compression of floating-point
data: 12, 1245–50.

McCalpin, J. D., 1991-2007, Stream: Sustainable memory bandwidth
in high performance computers: Technical report, University of Vir-
ginia, Charlottesville, Virginia. (A continually updated technical report.
http://www.cs.virginia.edu/stream/).

——–, 1995, Memory bandwidth and machine balance in current high performance
computers: IEEE Computer Society Technical Committee on Computer Architec-
ture (TCCA) Newsletter, 19–25.

Villasenor, J. P., R. A. Ergas, and P. L. Donoho, 1996, Seismic data compression
using high-dimensional wavelet transforms: Snowbird, UT, USA, Proceedings of
the Data Compression Conference, IEEE Computer Society Press, 396–405.

SEP–174


