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ABSTRACT

We pose the problem of waveform inversion using one-way wave extrapolation and
derive the modeling operator nonlinear with respect to slowness model and its
linearized operator. We show that linearized operator is composed of three parts
corresponding to upward and downward scattering (low-wavenumber components
of slowness perturbation) and perturbation in reflectivity (high-wavenumber com-
ponents). Using the phase-shift method we simulate wave propagation using full
nonlinear and linearized operators in simple 2D acoustic slowness models and
discuss future work.

INTRODUCTION

The one-way wave equation has been widely and successfully used for decades in the
seismological community. The methods used for solving it have proven to be very
efficient and accurate for seismic modeling and imaging. However, with the develop-
ment of fast computers and rising demand in accuracy of wave simulation in complex
geological areas, the methods based on one-way wave equation gave way to more
accurate methods operating in time domain and solving full wave equation such as
finite-difference modeling and reverse-time migration. Currently, most of the methods
for solving full-waveform inversion are based on these time-domain techniques.

The presence of low frequencies and transmitted waves in the data (long offsets in
the acquisition) is crucial for recovering all the range of wavenumbers of the velocity
model (Mora, 1989). However, historically most of the seismic observations were
focused on reflections and even up to this date they prevail in the majority of the
seismic data. Using the observations dominated by reflected energy still presents
challenges for successful application of FWI (Gauthier et al., 1986).

Modeling and migration methods based on the one-way wave equation are not
capable of handling overturned events and have limited angle range compared to full
wave equation solutions (Stolt and Weglein, 2012). However, within the range of
angles typically observed in the land and streamer seismic data, they are comparable
with time-domain methods for accurately modeling the reflected waves. At the same
time frequency-domain methods are computationally less expensive (Biondi, 2018),
which oftentimes may be a bottleneck for iterative solutions. Moreover, the linearized
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one-way wave extrapolation operators provide natural scale separation of low- and
high-wavenumber components of the slowness model that may also be used when
solving waveform inversion problem.

Following the recipe of posing the nonlinear waveform inversion problem, here we
show all the required ingredients necessary for finding its solution. First, we present
the nonlinear modeling operator in the matrix form. Then we find its linearization
with respect to slowness and derive the operators necessary for solving FWI problem.
Finally, we show examples of data modeling in simple slowness models using full
nonlinear and linearized operators based on phase-shift extrapolation.

THEORY

The full-waveform inversion problem is generally posed as minimization of an objec-
tive function:

JFWI =
1

2
||f(m)− dobs||2.

There are several constituent parts needed for solving this nonlinear inverse prob-
lem. One of the most important is knowledge of forward modeling operator f(m) that
describes the process (the wave propagation in case of FWI). Another crucial part
for solving optimization problem is finding the linearization of the modeling operator
with respect to the model m (e.g., velocity or slowness in case of FWI). The first one
allows us to reproduce the process, while the second one (namely its adjoint) is used
for calculating the gradient of the objective function, which is needed for updating
the model using gradient-based methods.

Nonlinear modeling operator

When using the full wave equation, the typical way of solving it is in the time domain
using finite-difference scheme and updating the wavefields as they progress in time.
Therefore, all the interactions of the wavefields with the media are evolving also with
time.

If, however, we are to use the one-way wave equation to model the wave propa-
gation, we will observe waves advancing sequentially with depth. Henceforth, in this
case the interaction of the wavefields with underlying media evolve with depth rather
than time. Consequently, the wavefields Pi are computed recursively at every i-th
depth level and can be described in the matrix form (Biondi, 2006):

P0

P1

P2
...

Pzmax

 =


0 0 0 . . . 0

E0(s) 0 0 . . . 0
0 E1(s) 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0




P0

P1

P2
...

Pzmax

+


Wω

0
0
...
0

 ,
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where Ei is the propagation operator at the i−th depth level nonlinearly depending
on the slowness s and Wω stands for the source wavelet injected in the propagation
domain at the angular frequency ω.

The forward modeling of the wavefields observed at the surface using one-way
wave extrapolation can be represented by the sequence of three linear operators
(Berkhout, 1982): propagator ”surface-reflector”, the reflection operator and propa-
gator ”reflector-surface”. Using this logic and representing all the operators Ei and
wavefields Pi as one operator E(s) and wavefield vector P respectively, we can write
the forward modeling process in the following form:

{
Pdown = E+(s)Pdown + IWω

Pup = E−(s)Pup + CR(s)Pdown.
(1)

Propagation using system of equations 1 happens in two steps. First, we inject
the source Wω (namely its Fourier spectrum) into the media using operator I and
propagate the waves downwards using propagator E+(s) that nonlinearly depends on
the slowness model s. Then we use reflection operator R(s), that is approximated
by normal-incidence reflectivity, to weight the downgoing wavefield according to the
reflectivity in the model. After that we inject this modified wavefield as the source for
upgoing waves Pup and propagate them upwards using propagator E−. The operator
C is a spreading operator that is needed to match the dimensions of the operators
and is extending the reflectivity over all the frequencies.

However, for the purpose of full-waveform inversion we need a single expression
that models the data in the form of f(s) = d. Reorganizing the equation 1 it is
straightforward to get the modeling operator f(s) in the form:

d = KPup = K[1− E−(s)]−1CR(s)[1− E+(s)]−1IWω

= KUp(s)CR(s)Down(s)IWω = f(s), (2)

where K is an operator sampling wavefield at the receiver locations and operators
Down(s) and Up(s) are propagating a given source downward and upward respec-
tively.

This expression splits the modeling operator into its constituent parts that is
convenient for the modular implementation. Moreover, now it is somewhat straight-
forward to find its linearization with respect to a slowness perturbation.

Linearized forward operator

An important ingredient of any optimization problem using gradient-based methods
relies on the accurate estimation of the gradient of the objective function

∇JFWI =

(
df

dm

)∗
[f(m)− d],
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df
dm

is a Frechet derivative of a nonlinear operator f(m) and can be found using the
perturbation analysis.

In the case of operator f(s) represented by equation 2 we have:

df

ds
(s0) = K

dUp

ds
(s0)R(s0)Down(s0)IWω+

+ KUp(s0)R(s0)
dDown

ds
(s0)IWω+ (3)

+ KUp(s0)
dR

ds
(s0)Down(s0)IWω

Since there are three nonlinear operators with respect to slowness, we are going
to have three linearized operators, which constitute the full expression for df

ds
.

Downward extrapolation operator

The downward E+ and upward E− extrapolation operators are exactly the same
except that in the first we compute the wavefields starting from top down to the
bottom of the model and in the latter the other way around – from bottom to the
top. The nonlinearity of these operators is hidden in the complex exponentials that
constitute the core of the extrapolation (Claerbout, 1985). At every j-th depth level:

E∓j
= diag

[
exp

(
±i∆z

√
ω2s2

j − |k|2
)]

,

where i is the imaginary unit, ∆z is the depth step used in extrapolation, ω is the
angular frequency, sj is the reference slowness at the j-th depth level and k is the
horizontal wavenumber.

Hence, first of all we need to find the linear approximation of the complex expo-
nential with respect to the slowness perturbation ds = [ds0, . . . , dsnz]T . Using Taylor
expansion around background slowness s0 and ignoring higher order terms we get

E∓j
(s0j + dsj) = diag

[
exp

(
±i∆z

√
ω2(s0j + dsj)2 − |k|2

)]
≈ diag

[
exp

(
±i∆z

√
ω2s2

0j − |k|2
)]
× (4)

×

1 + diag

 ±iω∆z√
1− |k|2/ω2s2

0j

dsj

 .

This additional term is easily recognized to be the correction used in split-step and
Fourier finite-difference migration methods.

Consequently, the linearization of downward extrapolation operator E+(s) is rep-
resented in the form

E+(s0 + ds) = E+(s0) + E+(s0)G+(s0)ds, (5)
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where now operator G+(s0) is a forward scattering operator consisting of the afore-
mentioned correction term and is nonlinear with respect to background slowness s0.
Because the expression under the square root is in the mixed space-wavenumber do-
main, its numerical implementation in the laterally heterogeneous medium is challeng-
ing but can be done in the similar fashion with split-step and Fourier finite-difference
migration algorithms.

Now using the perturbation analysis:

P0
down + dPdown = [E+(s0) + E+(s0)G+(s0)ds][P0

down + dPdown] + IWω.

Therefore, the background P0
down and perturbed wavefield dPdown can be com-

puted using following system of equations (based on equation 3) :
P0

down = E+(s0)P0
down + ISω

dPdown = E+(s0)dPdown + E+(s0)G+(s0)P0
downds

dP
(1)
up = E−(s0)dPdown + CR(s0)dPdown.

(6)

First, we propagate the downgoing wavefield P0
down in the background slowness

model s0. Then, we scatter it off of slowness perturbation ds using operator G+ and
propagate scattered wavefield downward. Finally, we reflect the scattered wavefield
from the reflectors existing in the background model using operator R(s0) and prop-
agate the resulting wavefield up to the surface with E−(s0). Hence, this part of the
linearized operator represents the downward scattering (Figure 1).

Figure 1: Downward scattering off the slowness perturbation shown in red. The
wavefront shown in black corresponds to the first line, red – to the second line and
green – to the third line of equation 6. [NR]
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Upward extrapolation operator

In similar manner we can analyze the second part of the full linearized operator that
represents upward scattering. The linearized expression comes from Taylor expansion
of complex exponential, which is exactly the same as for the downward extrapolation
operator (equation 4) except that it propagates the energy from bottom to the top
of the model.

E−(s0 + ds) = E−(s0) + E−(s0)G−(s0)ds (7)

Again using the perturbation analysis and equation 3 we write{
P0

up = E−(s0)P0
up + CR(s0)P0

down

dP
(2)
up = E−(s0)dPup + E−(s0)G−(s0)P0

upds.
(8)

Here we see that the upgoing background wavefield P0
up is formed by reflecting

of the downgoing background wavefield P0
down obtained at the previous step and

propagating the result upwards. This upgoing background wavefield is now scattered
on its way up and contributes to the final scattered wavefield.

Figure 2: Upward scattering off the slowness perturbation shown in red. The upgoing
wavefront shown in black corresponds to the first line, red – to the second line of
equation 8. [NR]

Reflection operator

Correct representation of the reflection operator is important because it affects the
amplitudes of the waves. The reflection coefficient varies depending on the P- and
S-velocities, densities and angles of propagation. For this reason, theoretically, in
order to model the amplitudes correctly, the reflection operator should be dependent
on frequency and wavenumber (analogous to angle dependency). Moreover, it is not
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necessarily diagonal, because realistic wave interactions with the reflector are not
local (Aki and Richards, 2002). As a result, it may potentially be applied as the
weighting operator in the wavenumber domain, or equivalently, convolution in space.

Nevertheless, at this stage of our project as a first approximation we can construct
reflection operator as a diagonal weighting operator with diagonal entries equal to
normal incidence reflectivity. This means essentially that in forward modeling we
are primarily aiming at reproducing the kinematics of wave propagation that have
adequate but not necessarily exact amplitudes.

In this way, the reflection operator is equal to

R(s) = diag

[
si − si+1

si + si+1

]
(9)

To find its linearized version we again use perturbation theory. After several
simplifications in the fraction and neglecting higher-order terms:

R(s0 + ds) = diag

[
si + dsi − si+1 − dsi+1

si + dsi + si+1 + dsi+1

]
≈

≈ R(s0) + diag

[
2dsi

(si + si+1)2
+
−2dsi+1

(si + si+1)2

]
= (10)

= R(s0) + dR(s0)

It is easy to see that linearized operator dR(s0) corresponds to weighted backward
difference along the depth axis with weights depending on local slowness values and
consequently, its adjoint is a weighted forward difference.

Using this expression and equation 3 it is easy to see that slowness perturbation
in the reflection operator gives rise to the scattered wavefield dP

(3)
up that can be

computed as:
dP(3)

up = E−(s0)dPR + CdR(s0)P0
down (11)

This part of the linearized operator accounts for reflections of the background
wavefield off the scatterers in contrast with scattering in the previous equations 6
and 8.

It is easy to show that its adjoint corresponds to the one-way wave equation mi-
gration that restores high-wavenumber component of the slowness model (reflectors).
This fact is in concordance with the previously mentioned natural scale separation
inherent to the waveform inversion using one-way wave extrapolation operators.

RESULTS

The full nonlinear modeling and linearized operators were implemented using phase-
shift extrapolation (Gazdag, 1978) with one reference slowness equal to the average

SEP–174



Akhmadiev et al. 8 One-way wave extrapolation FWI

slowness at the current depth level. Due to the modular approach (following from
equation 2), extending the propagator to more complicated wavefield extrapolation
methods such as split-step or Fourier finite-difference and including multiple reference
slownesses can be done in the same framework.

The wavefields are simulated in a simple model consisting of two layers (Figure
3a) of 500 and 1000 m/s with the reflector located at 50 m. The source located at
the surface in the center and the receivers are uniformly distributed at the top of
the model. The source wavelet is the minimum-phase analogue of the Ricker wavelet
with the central frequency of 15 Hz. To test the linearized operator (equation 3), one
scattering point with slowness perturbation equal to 10% of the background value
was added right under the source location (Figure 3b) at the depth of 25 m.

Reflected event has the expected hyperbolic moveout with correct zero-offset time
of 0.2 s (Figure 4a). The artifacts are resulting from the wraparound effect inherent
to the frequency-domain computations. They can be suppressed by adding the lateral
tapering of the propagated wavefields at the model boundaries. The data simulated
using linearized operator (equation 3) has three distinct events (Figure 4b). The first
hyperbola corresponds to the reflection of the background wavefield off the scattering
point (equation 11). The second event corresponds to the downward scattering of the
background wavefield at the slowness perturbation (the hyperbola with faster aparent
velocity) and results from equation 6. The third event (with slower aparent velocity)
corresponds to the upward scattering and equation 8.

(a) (b)

Figure 3: Models used for wave propagation: (a) – background slowness model, (b)
– scattering point used as an input for linearized operator. [ER]

DISCUSSION AND FUTURE WORK

As we have seen the proposed method is able to model the wave propagation using
the full nonlinear operator and its linearized version. The observed data behaves as
expected and is in agreement with theoretical predictions. Easy parallelization of the
algorithm over the frequency will allow faster computations than time-domain meth-
ods. Moreover, absence of limitations on the stability of the method will potentially
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(a) (b)

Figure 4: Wavefield modeling using phase-shift extrapolation: (a) – full nonlinear
operator, (b) – linearized forward operator. [ER]

permit high-resolution waveform inversion. The future work will include extending
the propagator to more complex extrapolation operators (e.g., split-step) and adding
more reference slownesses. The following steps will involve implementing the adjoint
operators and finally, running waveform inversion.
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