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Stewart A. Levin

ABSTRACT

I present a simple, elegant approach to calculating two-point rays reflecting off
a 3D dipping plane and investigate extensions to converted wave reflection and
offset-vector map demigration.

INTRODUCTION

For SEP-147, I calculated the response of various classic seismic algorithms on a re-
flection off of a plane in 3D. After wrestling with spatial geometry in old textbooks,
I derived the following result from scratch using elegant, coordinate-free vector nota-
tion.

Figure 1: Diagram of planar re-
flector and the points and vectors
I use for calculating the reflected
raypath. [NR]
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Given a source location S, a receiver location R, and a plane n · (P − P0) = 0,
where n is a unit normal, to find the reflection point P , drop a perpendicular w
from n to the line connecting P to R. Snell’s Law says that running w in the other
direction connects to the line between P and S. So for some scalars α and β we have

(R− P ) = α(n + w)
(S − P ) = β(n−w)
n ·w = 0

n · (P − P0) = 0

.

Dotting n onto the first two equations gives

n · (R− P ) = n · (R− P0) = α
n · (S − P ) = n · (S − P0) = β

,
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and subtracting the first two equations produces

(R− S) = (α− β)n + (α + β)w,

which can be solved directly for w now that we have α and β. Given this w, the first
equation immediately yields

P = R− α(n + w),

the desired reflection point. This can also be described in terms of the midpoint M
of the source and receiver as

P = M − 1
2
(α + β)n− 1

2
(α− β)w .

CONVERTED WAVE REFLECTION

The same approach applies to P -to-S or S-to-P reflection as well with one important
difference—the angle of reflection differs from the angle of incidence. Now

(R− P ) = α(n + w)
(S − P ) = β(n− ζw)
n ·w = 0

n · (P − P0) = 0

for some scalar ζ. To determined ζ let vs and vr be the velocities of the source and
receiver paths respectively and θs and θr be the corresponding angles of incidence and
reflection. Then Snell’s Law says

sin θs

vs

=
sin θr

vr

.

By our definition of w, we also have the identities

|w| = tan θr

|ζw| = tan θs

which, using the identity,

sin θ =
tan θ√

1 + tan2 θ
,

gives the relation for ζ

1

ζ2
=

(
vr

vs

)2

+

((
vr

vs

)2

− 1

)
|w|2

which, combined with

(R− S) = (α− β)n + (α + ζβ)w ,
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produces a fourth order equation for ζ.

The fourth order equation can be solved directly using algebraic formulas. Lanczos
(1956) provides a clean, efficient numerical approximation, reproduced in Appendix
A, that is about 10 times faster than using a general purpose numerical root finder.
(Appendix B shows how to make it free of floating point divisions.)

An interesting alternative to direct solution is to apply Newton iterations to the
shooting method wherein source ray parameters are repeatedly adjusted to return
very near to the target receiver. This approach applies to multiple layers and mul-
tiple reflections, not just a single interface. In Appendix C, I demonstrate global
convergence of that method when applied to forward ray tracing through a stack of
horizontal layers.

OFFSET-VECTOR MAP DEMIGRATION

Another application of the coordinate neutral approach for 3D reflection point cal-
culation that arose at SEP recently is offset-vector map demigration. For this, the
aim is to model where a point, P , on a planar subsurface reflector will appear in a
constant-offset, constant-azimuth survey.

For this calculation, there is one fixed coordinate, the depth axis, with the sources
and receivers on the surface, described by an arbitrary point Q0 with (downward)
normal z. We are further given the source-to-receiver offset vector 2hx and the
reflector inward normal n from the point P on the reflector.

We know the ellipsoid of specular reflection has its major axis through the source
and receiver, and that the inward normal bisects the reflection angle between the
source and receiver. Therefore the normal line through the reflection point intersects
the source-receiver axis somewhere between the source and receiver. Let Q be the
point on the surface where the normal ray would reach. Then we may write

Q = P + γn

for some scalar γ. As before we calculate

z · (Q−Q0) = z · (P −Q0) + γz · n
0 = z · (P −Q0) + γz · n

γ =
z · (Q0 − P )

z · n
and the horizontal distance of Q from the vertical plane through P as

x · [(P − {z · (P −Q0)} z)− (P + γn)] = γ x · n

thereby fixing the source-receiver axis and the relative location of Q. What still
remains is to ascertain the source-receiver midpoint relative to P . This we can deter-
mine by means of tedious algebra, the way I did it, or by a succinct bit of trigonometry
provide by Daniel Kane (pers. comm.) of the Stanford Department of Mathematics.

SEP–148



Levin 4 3D planar reflection

Figure 2: Diagram used to obtain-
ing a quadratic relation for calcu-
lating x from z, h, and θ0. [NR]
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Due to symmetry, we may rotate the reflection point around the source-receiver
axis until it is directly below that axis. This does not change the unknown distance
to the source-receiver midpoint, but does reduce the computation to one on a planar
ellipse. Let x0 and z0 denote the respective horizontal and vertical distances from
the source-receiver midpoint to the reflection point. The dip angle θ0 is implicitly

determined by sin θ0 = −n · x and cos θ0 =
√

1− sin2 θ0. Using this dip angle, z0 may
be written as γ cos θ0. Referring to Fig. 2, Fermat’s principle of extremal traveltime
tells us that reflecting a focus of the ellipse around the tangent produces an image
point on the straight line connecting the reflection point and the other focus. Hence
we know that AB′C forms a triangle. Denoting the three angles α, β, and θ0 as
illustrated in the figure, we have

α + β + 2θ0 = π

whence

tan 2θ0 = − tan α + tan β

1− tan α tan β
.

But
tan α =

z0

x0 + h

tan β =
z0

x0 − h

hence

tan 2θ0 = −z0(x0 − h) + z0(x0 + h)

x2
0 − h2 − z2

0

=
−2x0z0

x2
0 − z2

0 − h2

and so we have the quadratic relation

x2
0 + 2x0z0 cot 2θ0 − (z2

0 + h2) = 0 .

Solving the quadratic equation we get

x0 = −z0 cot 2θ0 +
√

z2
0 cot2 2θ0 + z2

0 + h2

= −z0 cot 2θ0 +
√

z2
0 csc2 2θ0 + h2

= − z2
0(csc

2 2θ0 − cot2 2θ0) + h2

−z0 cot 2θ0 −
√

z2
0 csc2 2θ0 + h2

=
sin 2θ0(z

2
0 + h2)

z0 cos 2θ0 +
√

z2
0 + h2 sin2 2θ0
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in a form that does not exhibit a numerical singularity at θ0 = 0.

The relation α + β + 2θ0 = π is actually a special case of the more general
proposition attributed to Bošković (Boscovich) (1754):

From any point H outside an ellipse with foci F and f , with F being no farther from
H than f , draw two tangents, touching the ellipse at P and p respectively. Then the
interior angle PHp is half the difference of the interior angles PFp and Pfp.

A translation of his original Latin demonstration appears in Appendix D.

So, in summary, only the dot products z · n and x · n are needed to find the
demigration location of point P .

Reflection gradient

If we are interested in map migration, the information we have is not the reflector
normal, but the normal to the arrival time surface. To calculate this slope, we can
conflate distance and time by choosing an arbitrary temporal unit, say a glorp equated
to 1/V seconds. This makes a traveltime of 1 glorp correspond to 1 meter of travel
distance.

I make life simpler by observing that the traveltime gradient has the same azimuth
as the reflector’s dip azimuth. This must be so because translating the source-receiver
pair along strike does not change the reflection arrival time. I note that this does not
say that the reflection point moves along the dip azimuth when the surface arrival
point moves along the dip azimuth.

The next twist is that instead of translating the source-receiver pair along the
dip azimuth, I’ll translate the reflector plane along its normal direction. This implies
that derivatives with respect to the reflector normal direction need to be scaled by
the sine of the reflector dip, i.e. sin θ =

√
1− (n · z)2, as the surface intercept of

the reflector moves a distance inversely related to the sine of the dip. Fortunately,
even the zero dip case, where the reflector does not intersect the surface, is handled
properly because the sine is zero in that case.

If we translate the initial reflection point P by −εn, where my convention for θ
implies ε ≥ 0 corresponds to a positive time slope, we obtain a point on the displaced
reflection plane, though generally not the new reflection point P̂ . The relation of P̂
to P can be ascertained as before by dotting with n:

n · (R− P̂ ) = n · ((R− P ) + εn)) = α + ε

n · (S − P̂ ) = n · ((S − P ) + εn)) = β + ε
.

Continuing as before,

R− S = (α− β)n + (α + β)w
R− S = ((α + ε)− (β + ε))n + ((α + ε) + (β + ε))ŵ

,
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yielding

ŵ =

(
1− 2ε

α + β + 2ε

)
w

which says that w does not rotate.

To compute changes in lengths (traveltimes), we have the relations

R− P = α(n + w)

R− P̂ = (α + ε)(n + ŵ) = −(α + ε)(w − ŵ) + (α + ε)(n + w)

and
S − P = β(n−w)

S − P̂ = (β + ε)(n− ŵ) = (β + ε)(w − ŵ) + (β + ε)(n−w)
,

whence
P̂ − P = −(α + ε)(ŵ −w)− ε(n + w)

= (β + ε)(ŵ −w)− ε(n−w)
.

Taking first differences, we have

ŵ −w

ε
= − 2

α + β + 2ε
w

and

P̂ − P

ε
= −(α + ε)

ŵ −w

ε
− (n + w)

= (β + ε)
ŵ −w

ε
− (n−w)

whence

dP

dε
=

(
−1 +

2α

α + β

)
w − n

=

(
1− 2β

α + β

)
w − n

or, averaging the two,

=
α− β

α + β
w − n .

With these in hand, we may differentiate the traveltime

T = TR + TS = |P −R|+ |P − S|
to get

dT

dε
=

(
P −R

|P −R|
+

P − S

|P − S|

)
· dP

dε

= −
(

α(n + w)

TR

+
β(n−w)

TS

)
·
(

α− β

α + β
w − n

)
=

α

TR

(
(1− |w|2)α + (1 + |w|2)β

α + β

)
+

β

TS

(
(1 + |w|2)α + (1− |w|2)β

α + β

)
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which, as remarked earlier, is then multiplied by sin θ to obtain the surface time slope.

This last expression has a simple geometric meaning. As

P −R

|P −R|
and

P − S

|P − S|

are unit vectors pointing towards the reflection point from the receiver and source
respectively, their sum is necessarily parallel to their angle bisector, the normal. In
particular, they sum to −2 cos ξ n where ξ is the angle of incidence or reflection.
Dotting this with dP/dε and multiplying by sin θ we have that the time slope is
simply 2 cos ξ sin θ. Changing units from glorps back to seconds, this agrees with the
well-known zero-offset result 2 sin θ/V .

A Postscript

One of the references I allude to in the introduction was the classic posthumous
publication of Slotnick (1959). In that tome, I found the proposition, a consequence
of Apollonius’ Theorem (see, e.g., Godfrey and Siddons (1908) pages 20–21), that for
a fixed source location and with receivers placed diagonally opposite each other at
equal distances from the source, the sum of the squares of the two source to receiver
traveltimes is independent of source-receiver azimuth. This result, analogous on the
face of it to the updip-downdip refraction shooting method, appears to have been
used fairly routinely to estimate moveout velocities before the advent of the common
midpoint gather but is no longer taught to students or industry professionals. I think
it, or some modern recasting of it, may well provide uplift to both academia and
industry seismic processing and analysis.

DISCUSSION AND CONCLUSIONS

As we have seen, while not a panacea, the power of vector notation really shines once
we leave the Euclidean plane and begin to work in 3D. It can allow us to reduce
a problem to its algebraic or geometric essentials and to subsequently cleanly code
the solution using any Cartesian coordinate system. In addition, the interests of
academic scholarship have brought me new insights into historical thinking about
seismic acquisition, processing, and imaging that offer tantalizing hints how more
recent approaches may benefit from those “old school” ideas. Stay tuned!

APPENDIX A

Lanczos solutions for cubics and quartics

From Lanczos (1956), pages 6–8, 19–22:
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3. Cubic equations. Equations of third and fourth order are still solvable by
algebraic formulas. However, the numerical computations required by the formulas
are usually so involved and time-absorbing that we prefer less cumbersome methods
which give the roots in approximation only but still close enough for later refinement.

The solution of a cubic equation (with real coefficients) is particularly convenient
since one of the roots must be real. After finding this root, the other two roots follow
immediately by solving a quadratic equation.

A general cubic equation can be written in the form

f(ξ) = ξ3 + aξ2 + bξ − c = 0 .

The factor of ξ3 can always be normalized to 1 since we can divide through by the
highest coefficient. Moreover, the absolute term can always be made negative because,
if it is originally positive, we put ξ1 = −ξ and operate with ξ1.

Now it is convenient to introduce a new scale factor which will normalize the
absolute term to −1. We put

x = αξ, a1 = αa, b1 = α2b, c1 = α3c

and write the new equation

f(x) = x3 + a1x
2 + b1x− c1 = 0

If we choose
α = 1/ 3

√
c

we obtain
c1 = 1.

Now, since f(0) is negative and f(∞) is positive, we know that there must be at
least one root between x = 0 and x = ∞. We put x = 1 and evaluate f(1). If f(1)
is positive, the root must be between 0 and 1; if f(1) is negative, the root must be
between 1 and ∞. Moreover, since

x1 · x2 · x3 = 1

we know in advance that we cannot have three roots between 0 and 1, or 1 and ∞.
Hence if f(1) > 0, we know that there must be one and only one real root in the
interval [0, 1], while if f(1) < 0, we know that there must be one and only one real
root in the interval [1,∞]. The latter interval can be changed to the interval [1, 0] by
the transformation

x̄ =
1

x

which simply means that the coefficients of the equation change their sequence:

−c1x̄
3 + b1x̄

2 + a1x̄ + 1 = 0
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Hence we have reduced our problem to the new problem: find the real root of
a cubic equation in the range [0, 1]. We solve this problem in good approximation
by taking advantage of the remarkable properties of the Chebyshev polynomials (cf.
VII, 9) which enable us to reduce a higher power to lower powers with a small error.
In particular, the third Chebyshev polynomial

T ∗
3 (x) = 32x3 − 48x2 + 18x− 1

normalized to the range [0, 1] gives

x3 =
48x2 − 18x + 1

32
= 1.5x2 − 0.5625x + 0.03125

with a maximum error of ± 1
32

. The original cubic is thus reducible to a quadratic
with an error not exceeding 3%.

We now solve this quadratic, retaining only the root between 0 and 1.

...

11. Equations of fourth order. Algebraic equations of fourth order with
generally complex roots occur frequently in the stability analysis of airplanes and
in problems involving servomechanisms. The historical method of solving algebraic
equations of fourth order (also called biquadratic or quartic equations) involves the
following steps. By a transformation of the form x+α the coefficient of the cubic term
is annihilated. Then an auxiliary cubic equation is solved. The roots of the original
equation are constructed with the help of the three roots of the auxiliary cubic.
Numerically this method is lengthy and cumbersome. The following modification of
the traditional procedure yields the four roots of an arbitrary quartic equation with
real coefficients on the basis of a quick and numerically convenient scheme.

Every equation of the form

x4 + c1x
3 + c2x

2 + c3x + c4 = 0

can be rewritten as follows:

(x2 + αx + β)2 = (ax + b)2 .

If the original ci are real, the new coefficients are also real. Hence the original equation
becomes solvable in the form of the quadratic equation

x2 + αx + β ± (ax + b) = 0

which has four (generally complex) roots, obtainable by the standard formula. The
new coefficients can be determined as follows. We evaluate in succession the following
numerical constants:

α =
c1

2
, A = c2 − α2, B = c3 − αA
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and form the cubic equation

ξ3 + (2A− α2)ξ2 + (A2 + 2Bα− 4c4)ξ −B2 = 0

Since the left side is negative at ξ = 0, a positive real root must exist. We determine
this root according to the method of § 3. In order to avoid later corrections, it is
advisable to add at this point Newton’s correction (cf. § 5), obtaining ξ with great
accuracy. The coefficients of the reduced equation are then determined as follows:

α =1
2
c1, β =1

2
(A + ξ)

a =
√

ξ, b =
a

2

(
α− B

ξ

) .

APPENDIX B

Division-free reciprocal cube roots

Sometime back in the ’90s, square roots started to be implemented as z×z−1/2 where
the reciprocal square root was implemented using one or two iterations of Newton’s
method. As the Newton formula for the reciprocal square root could be written
with only multiplications and additions, this was several times faster than computer
division. Indeed, division was often replaced by squaring the reciprocal square root.

For the Lanczos root-finding methods in the previous appendix, a reciprocal cube
root is needed. Fortunately, this, too, can be obtained using Newton’s method in a
division-free manner as follows:

Let

f(x) =
1

x3
− z

be the function whose root we want to find. Taking its derivative,

f ′(x) =
−3

x4
,

produces the Newton step

xn+1 = xn −
f(xn)

f ′(xn)
= xn(4

3
− 1

3
z x3

n) .

The remaining issue is choosing an appropriate first guess, x0, of the root in order
to start the iteration. For this I again look to the fast reciprocal square root for
guidance. McEniry (2007) reproduces a classic code (without the profane comment)
containing a “magic number” from which half the integer representation of the floating
point input is subtracted to produce an integer representation of the initial guess. This
starting point was good enough that a single Newton iteration resulted in a worst
case relative error of less than 0.175%. Mimicing McEniry’s development yields the
following code for a reciprocal cube root:
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float InvCubeRoot ( float x ) {

const float onethird = 0.333333333333;

const float fourthirds = 1.333333333333;

float thirdx = x * onethird;

union {

int ix;

float fx;

} z;

z.fx = x;

z.ix = 0x54a21d2a - z.ix/3; /* magic */

x = z.fx;

x = x * ( fourthirds - thirdx * x*x*x ); /* max relerr < 2.34E-3 */

x = x * ( fourthirds - thirdx * x*x*x ); /* max relerr < 1.09E-5 */

return x;

}

There is still one hitch—the “magic” line is not division free. Fortunately, the
hacker and compiler community has worked out division-free integer division. For
division by 3, this is accomplished by multiplying the numerator by the binary ex-
pansion 0.010101010101. . . of 1

3
in fixed point arithmetic just like we were all taught

in elementary school. For 32 bit numerators, we multiply by the hexadecimal con-
stant 55555556 and shift the (64 bit) result down by 32 binary places. Therefore the
“magic” line of code becomes

z.ix = 0x54a21d2a -

(int) ((z.ix * (int64_t) 0x55555556)>>32); /* magic */

where the tail end 6 instead of 5 in the multiplier handles the cases where the integer
is not an exact multiple of 3.

Performing timing tests in C with random numbers, this algorithm ran 20 times
faster than calling powf(x,-1.0f/3.0f) from the C math runtime library and about 10
times faster than my best previous effort to calculate a fast reciprocal cube root.
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APPENDIX C

S
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H
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Globally convergent Newton’s method for ray shooting

Quite some time ago, Bob Keyes at Mobil mentioned that Newton’s method applied to
shooting rays to solve the two-point problem in horizontally layered media is globally
convergent, assuming, of course, that there is a solution. Specifically, there must be
a solution if an initial guess at the ray parameter overshoots the target.

Formally, let the ray parameter p be in the open interval (0, 1/vmax). Starting
from the origin, Snell’s law pv = sin θ says that

x =

∫ z

0

tan θ dz =

∫ z

0

pv

(1− p2v2)1/2
dz

gives the horizontal displacement of the ray from the origin when it reaches depth z.
Taking two derivatives of this formula with respect to p, we have

dx

dp
=

∫ z

0

v

(1− p2v2)3/2
dz ,

d2x

dp2
=

∫ z

0

3pv3

(1− p2v2)5/2
dz .

At a glance one sees that the second derivative is a quantity guaranteed to be positive
in (0, 1/vmax). By Thorlund-Petersen (2004), Newton’s method applied to finding the
p for a ray that reaches a given x at given depth z is therefore globally convergent.
(Technically, we do need to ensure that the Newton update doesn’t overshoot the
range (0, 1/vmax).)
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APPENDIX D

Translation of the geometric proof in Bošković (Boscovich) (1754).

P F 

M 
m 

n 

N 
f 

p 

H 

58. 

186. At Ellipsi in fig. 58 ductis HFN,
Hfn, bini FPH, FpH æquales erunt
binis fPM, fpm, sive quatuor inter-
nis, & oppofitis PfH, PHf, pfH, pHf,
nimirum toti PHp, & toti Pfp. An-
gulus autem PFp æqualis binis PFN,
pFN, sive quatuor internis FPH, FHP,
FpH, FHp, vel binis illis FPH, FpH
cum angulo PHp, adeoque angulo PHp
bis, & toti Pfp semel. Quare angulo
Pfp dempto a PFp, remanet angulus
PHp bis.

186. In the ellipse in fig. 58, draw
HFN and Hfn. Then FPH and FpH
are equal to fPM and fpm respectively
and so the four internal opposite an-
gles PfH, PHf, pFH, and pfH evidently
sum to PHp with Pfp.† Now angle PFp
is the sum of PFN and pFN and so
the sum of internal angles FPH, FHP,
FpH, and FHp, hence [the sum of]
FPH, FpH and angle PHp. [From
above,] this is precisely equal to PHp
twice combined with Pfp once. There-
fore subtracting Pfp from PFp leaves
twice the angle PHp.

†The external angle is the sum of the two
opposite internal angles in a triangle.
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