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ABSTRACT

We propose a computationally efficient technique for extrapolating seismic waves
in an arbitrary isotropic elastic medium. The method is based on factorizing the
full elastic wave equation into a product of pseudo-differential operators. The
method extrapolates displacement fields, hence can be used for modeling both
pressure and shear waves. A significant reduction in the cost of elastic modeling
can be achieved compared to the currently prevalent time- and frequency-domain
numeric modeling methods and can contribute to making multicomponent elastic
modeling part of the standard seismic processing work flow.

INTRODUCTION

Extrapolation of seismic wave fields in depth using one-way propagation operators
is an efficient alternative to time- and frequency-domain modeling with the full
wave equation, particularly in seismic migration applications (see (Claerbout, 1985),
(Biondi, 2005)). While one-way extrapolators have long been established as key com-
ponents of the seismic imaging toolbox for isotropic acoustic media, extrapolation of
elastic wave fields is still carried out by solving the full elastodynamic system either in
the time or frequency domain, either approach being computationally expensive. The
high computational cost of wave extrapolation in elastic media is one of the barriers
to a widespread adoption of multicomponent seismic processing in industrial applica-
tions. Some progress has been made recently in the development of efficient one-way
methods for certain simplest anisotropic elastic models (e.g., vertically transversally
isotropic or tilted transversally isotropic media – see (Shan, 2007), (Nolte, 2008),
(Maharramov and Nolte, 2011)) However, these methods use the “pseudoacoustic”
approximation (see (Grechka, 2009)) and are used for a kinematically accurate prop-
agation of pressure waves only.

In this paper we present a method for one-way frequency-domain extrapolation of
displacement fields in an elastic isotropic medium. The approach of this paper is based
on factorizing the elastic wave equation using pseudo-differential operators without
introducing stress-related unknown functions into the equations. Our approach is
conceptually similar to the derivation of the acoustic single square-root equation (see
(Claerbout, 1985)), except the resulting factorized propagation operators can not be
obtained analytically, but are computed numerically.
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THE METHOD

We start with the wave equation governing the displacement in an arbitrary heteroge-
nous isotropic elastic medium in the Navier form (see (Segall, 2010)):

ρüi = µ∆ui +
µ

1− 2ν

∂

∂xi

∂uk

∂xk

, i = 1, 2, 3, (1)

where ui denote the components of a displacement field, µ is the shear modulus, ν
is Poisson’s ratio for the medium, and ρ is the density. In this paper we consider a
heterogenous elastic medium under the assumption of local homogeneity – otherwise
the elastic moduli would not be factored outside of the differentiation operators in
equation 1. However, our method can be extended to cover the case when the local
homogeneity assumption is dropped. “Freezing” the coefficients of equation 1 and
applying the Fourier transform in time and horizontal variables x1 = x, x2 = y, and
substituting

µ

1− 2ν
= λ + µ, (2)

where λ is the Lamé coefficient (see (Mavko et al., 2009),(Segall, 2010)), we get

ρω2u1 + µ

[
(−k2

x − k2
y)u

1 +
∂2u1

∂z2

]
+ (λ + µ)

[
−k2

xu
1 − kxkyu

2 + ikx
∂u3
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]
=0,
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∂z2

]
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[
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∂u3

∂z

]
=0,

ρω2u3 + µ

[
(−k2

x − k2
y)u

3 +
∂2u3

∂z2

]
+ (λ + µ)

[
ikx

∂u1

∂z
+ iky

∂u2

∂z
+

∂2u3

∂z2

]
=0, (3)

where kx, ky are horizontal wave numbers and ω is the frequency. The left-hand side of
system 3 is the result of an ordinary differential operator applied to a vector-function
u = (u1, u2, u3) and parameterized by horizontal wave numbers. In the present form
equations 3 cannot be used for computationally efficient explicit depth extrapolation
in a heterogeneous medium; however, these equations can be used for modeling dis-
placements by solving a series of boundary-value problems (see (Maharramov, 2012)).
In (Maharramov, 2012) it was suggested that equations 3 might be factorized in such
a way as to allow solving them by alternating one-way extrapolation in opposite di-
rections. More specifically, we seek a factorization of operator equation 3 of the form:(

E(λ, µ)
∂

∂z
+ A(kx, ky) + cωI

)
×

(
E(λ, µ)

∂

∂z
+ B(kx, ky) + cωI

)
u = 0, (4)

where

E(λ, µ) =

 √
µ 0 0

0
√

µ 0
0 0

√
λ + 2µ

 ,

cω =
√

ρω, (5)
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and A, B are 3×3 matrices with components that are complex-valued functions of the
horizontal wave numbers, I is the 3×3 identity matrix. Performing the multiplication
in equation 4 and using equation 3, we obtain:

A(kx, ky)B(kx, ky) + cω[A(kx, ky) + B(kx, ky)] = P (kx, ky),

A(kx, ky)E(λ, µ) + E(λ, µ)B(kx, ky) + 2cωE(λ, µ) = S(kx, ky), (6)

where

P =

 −(λ + 2µ)k2
x − µk2

y −(λ + µ)kxky 0
−(λ + µ)kxky −(λ + 2µ)k2

y − µk2
x 0

0 0 −µ(k2
x + k2

y)

 ,

S =

 0 0 i(λ + µ)kx

0 0 i(λ + µ)ky

i(λ + µ)kx i(λ + µ)ky 0

 . (7)

Combining equations 6 and 7, we get the following equation for the operators A and
B:

A(kx, ky)B(kx, ky) + cω(A(kx, ky) + B(kx, ky)) = P (kx, ky),

E(λ, µ)B(kx, ky) + A(kx, ky)E(λ, µ) = S̃(kx, ky), (8)

where
S̃(kx, ky) = S(kx, ky)− 2cωE(λ, µ). (9)

Equations 4, 8 in combination with equations 7 and 9 suggest the following procedure
for extrapolating solutions to system 1 in depth:

1. Solve the system of matrix equations 8 for A, B, for each pair of horizontal wave
numbers kx, ky and two reference values of each elastic parameter λmin, λmax and
µmin, µmax;

2. Evaluate (
E(λ, µ)

∂

∂z
+ B(−i∂x,−i∂y) + cωI

)
u(x, y, z = 0)

from the initial conditions and assign the value to an auxiliary function ũ(x, y, z =
0);

3. Solve (
E(λ, µ)

∂

∂z
+ A(−i∂x,−i∂y) + cωI

)
ũ(x, y, z) = 0 (10)

by downward continuing in depth, using the formula

ũ(x, y, z + ∆z) = exp
[
−∆zE−1(A(−i∂x,−i∂y) + cωI)

]
ũ(x, y, z). (11)
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4. Perform each step of the depth extrapolation for four combinations of the
reference elastic parameters, then apply the inverse Fourier transform to the
four fields and interpolate at each spatial point of the depth slice using true
λ(x, y), µ(x, y) as e.g. in the PSPI method (see (Biondi, 2005)).

5. After reaching the desired maximum depth, find the solution u by upward ex-
trapolation:(

E(λ, µ)
∂

∂z
+ B(−i∂x,−i∂y) + cωI

)
u(x, y, z) = ũ(x, y, z). (12)

6. Repeat the above steps for each frequency component u(ω, x, y, z).

The above algorithm is stable if the spectrum of matrix

A(kx, ky) + cωI (13)

is not in the interior of the left half-plane, and the spectrum of

B(kx, ky) + cωI (14)

is not in the interior of the right half-plane. While the above algorithm tries to mimic
two-way wave propagation, it is effectively just an approximation to the propagation
process as it ignores the interaction between the up and down-going wave at inter-
mediate depth steps. A less accurate alternative would be to downward-continue the
wave field using equation 11 in a way similar to the one-way depth extrapolation us-
ing the scalar square-root equation (see (Claerbout, 1985),(Biondi, 2005)). The latter
approach would be unable to image any dips beyond 90◦, however, it would reduce
the cost of extrapolation by a further factor of 2. Note the cost of solving equation
10 in depth is roughly three times that of solving the scalar square-root equation.

The above analysis may be extended to the case of an arbitrary anisotropic elastic
medium. The fact that the components of the pseudo-differential operator matri-
ces A(−i∂x,−i∂y), B(−i∂x,−i∂y) are not given in an analytical form, but are only
computed numerically, does not limit their applicability.

Factorization of system 3 in the elastostatic case was one of the approaches men-
tioned by the author in Maharramov (2012). However, the one-way extrapolation
technique is mostly useful for elastodynamic problems as the passband of the fac-
torized depth extrapolators (e.g., as in equation 11) narrows down to zero with the
temporal frequency passing to the zero static limit.

Note that equation 1 uses elastic parameterization that degenerates into a sin-
gularity if the shear modulus is equal to zero. This is not causing any problems
with purely acoustic wave extrapolation as the singularity is effectively removed from
equations 3 by the substitution in equation 2.
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Figure 1: The phase of a phase-
shift operator corresponding to
the maximum imaginary part of
the eigenvalues of operator 15.
Multicomponent “phase-shift” is
defined by three such scalar phase-
shift operators and a 3× 3 matrix
Q of equation 16. [ER]

IMPLEMENTATION AND RESULTS

The system of matrix equations 8 is solved only once for each triple of temporal fre-
quency and elastic moduli values, and for each pair of horizontal wave numbers. In
our prototype implementation of the one-way extrapolator we compute the matri-
ces A, B at the beginning of the frequency loop and subsequently use the tabulated
matrices in the depth extrapolation loop (inside the frequency loop). A more effi-
cient approach can be employed in a production implementation of the extrapolation
method: system 8 can be solved using Newton’s method (see e.g. (Higham, 2008))
in a one-off computation for each set of the temporal frequency, elastic moduli and
horizontal wave numbers and stored in a look-up table. The symmetry of the extrap-
olation operators 11, that appear to be multi-component counterparts of the acoustic
phase-shift operator (see Claerbout (1985)), can be exploited to achieve a substantial
reduction in the size of the precomputed operator tables. Figure 1 is the plot of the
maximum of the imaginary parts of the three eigenvalues of operator

K = −∆zE−1 [A(−i∂x,−i∂y) + cωI] , (15)

within its passband. The operator is the one used later to produce images of Fig-
ures 2,3,4,5. The real parts of the eigenvalues of operator 15 are zero within the
operator passband and negative outside. The imaginary parts of the other two eigen-
values exhibit similar behavior. Operator K, of equation 15, is the logarithm of the
extrapolation operator 11, and the spectral plot of Figure 1 corresponds to the phase
of the phase-shift extrapolator in the acoustic case (see (Biondi, 2005)). The crucial
difference in the elastic multicomponent case is that the multicomponent “phase-
shift” is defined by three such scalar phase-shift operators with phases φ1, φ2, φ3, and

SEP–148



Maharramov 6 Efficient elastic modeling

a unitary operator Q, determined by the eigenvector expansion of K as follows:

K = Q

 iφ1 0 0
0 iφ2 0
0 0 iφ3

Q∗. (16)

The pass bands of the three phase shift operators are, generally, different, but the
real parts of the eigenvalues of 15 are non-positive across all three pass bands.

Figures 2,3,4,5 demonstrate the result of applying our method to extrapolating
displacement waves from a concentrated impulse at the surface. Medium parameters
used in this test were 316 m/s shear-wave velocity

vS =
√

µ/ρ

and 632 m/s pressure-wave velocity

vP =
√

(λ + 2µ)/ρ.

The extrapolation grid was 128 × 128 × 128 with a 5 m step, frequency range 2-
12 Hz with 1 Hz step. The values of the elastic parameters used in this test are
uncharacteristically low for seismic applications and were chosen solely for the purpose
of fast small-scale simulation on a single-core PC using Matlab.

Figure 2: Pressure wave extrap-
olated from an impulse displace-
ment, 2-12 Hz, 128 × 128 × 128
grid, 5 m step, 316 m/s shear-wave
and 632 m/s pressure-wave veloc-
ity. [ER]

Since the impulse at the surface is an asymmetric horizontal displacement but
can be assumed to be symmetric in the vertical direction, our waves are effectively a
combination pressure and shear waves for the horizontal components, while the ver-
tical displacement wave should kinematically match the pressure wave. And indeed,
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Figure 3: Vertical component of
a wave extrapolated from an im-
pulse displacement, inline section,
2-12 Hz, 128 × 128 grid, 5 m step,
316 m/s shear-wave and 632 m/s

pressure-wave velocity. [ER]

Figure 4: Inline component of a
wave extrapolated from an im-
pulse displacement, inline section,
2-12 Hz, 128× 128× 128 grid, 5 m

step, 316 m/s shear-wave and 632
m/s pressure-wave velocity. Note
the slow shear wave. [ER]
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Figure 5: Crossline component of
a wave extrapolated from an im-
pulse displacement, inline section,
2-12 Hz, 128× 128× 128 grid, 5 m

step, 316 m/s shear-wave and 632
m/s pressure-wave velocity. Note
the slow shear wave. [ER]

the pressure wave plot 2 and vertical displacement plot 3 exhibit excellent kinematic
agreement.

The horizontal wave-component plots 4 and 5, on the other hand, show pressure-
and shear-wave images, both correctly positioned in agreement with the velocity
values used in the simulation. Boundary reflections and low frequency content cause
some imaging artifacts that are not related to the method.

CONCLUSIONS AND DISCUSSION

The method presented in this paper can be used in seismic migration algorithms
in order to achieve a substantial reduction of run time in comparison with reverse
time migration. More specifically, stability of the time-domain modeling typically
utilized in the reverse-time migration requires time steps significantly smaller than
the time resolution of seismic data (see (Biondi, 2005)). Depth extrapolation of wave
fields using one-way equations 10 and 12 can be performed for an arbitrary frequency
range. Extrapolating wave fields in the frequency domain using two-way system 3
would require solving a large sparse system of equations using e.g. a finite element
method, still posing significant computational challenges for inhomogeneous media.
However, the one-way extrapolation method, while limited in dip and less accurate in
terms of amplitudes, lends itself to efficient implementation using e.g. PSPI or finite
differencing. Furthermore, the approach of this paper can be expected to apply to
more complex elastic anisotropic models (see (Grechka, 2009)) and may be developed
into a computationally efficient alternative to the existing pseudo-acoustic anisotropic
modeling methods while allowing easy separation of pressure and shear waves.
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