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ABSTRACT

Our current decons take the data sacrosanct and find the best noncausal wavelet
to deconvolve it with. We propose allowing the data to include an explicit noise
that does not fit the convolutional model. We write regressions to define this
noise, and develop an expression for the gradient needed to fit the regressions.

INTRODUCTION

Data fitting with the `1 norm has well-known remarkable qualities. Even more suit-
able to seismic problems is the hyperbolic penalty function h(r) =

√
1 + r2 − 1 (Li

et al. (2010)). Applying it to deconvolution of 2-D synthetic data easily solved a
complicated case not solveable by `2 decons (Zhang and Claerbout (2010a)). Unfor-
tunately, application to field data was not successful. Returning to synthetic data,
the culprit turned out to be the minimum-phase assumption. This can be understood
by examining the Ricker (non-minimum phase) wavelet, a long-standing example of
a wavelet hard to spike.

Solving for a product of forward and backward PEFs achieved an excellent result
on synthetic data and a spectacular result on a Gulf of Mexico data set (Zhang and
Claerbout (2010b)). By deconvolving properly we were delighted to find we had
made reflection coefficient polarity much more clear. We were highly motivated to
improve on this and integrate it with impedance estimation. Not well documented
were difficulties connected with polarity reversal and apparent time shifts. They were
attributed to the non-linearity of the method.

Claerbout et al. (2011) reformulated the problem in the frequency domain with
the unknown parameters being the values at lags defining the log spectrum. This
avoided many problems, but extensive testing by Qiang Fu and Yi Shen revealed
reliability issues much like those identified by Zhang. For a long while we understood
our difficulty to be a need for preconditioning to guide the non-linear problem closer
to the desired solution. Suddenly we came to realize the problem is more like a null
space, though not exactly that because of the nonlinearity. The apparent polarity
reversals and time shifts resulted from spiking the first or the third lobe of the Ricker
wavelet instead of consistently spiking the middle lobe. Claerbout (2012) resolved
these problems by means of a regularization (called the Ricker regularization) that
ensures Ricker-like wavelets. Unfortunately, like all regularizations, you can never be
sure how much to add, leading to degraded results when you add too much.
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Then the non commutivity of gain with filtering was theoretically resolved leading
to small but noticable improvements (Claerbout et al. (2012)). Guitton and Claerbout
(2012) also added a regularization term that penalizes long positive or negative lags of
the filter. This penalty ensures that the estimated wavelet does not shift in masking
areas that can be present in the gain function (i.e., preventing local minima).

With stability now under much better control (we still need to experiment with
strength of the regularizations) we set out to demonstrate that sparse decon principles
could find natural cutoffs for high and low frequencies in data. We seemed to be seeing
frequencies dangerously close to the 125Hz Nyquist on our available 4ms data so we
ordered and waited to obtain 2ms data to boost the Nyquist to 250 Hz. Much to our
horror (Guitton and Claerbout (2012)), sparseness decon, like old fashioned l2 decon,
boosts energy up to near the new much higher Nyquist. Also discovered in that paper
is that our shot wavelets are picking up sea swell noise. We do not wish to filter out
sea swell as a preprocess because we do not wish to lose low frequency information
that could be essential to impedance estimation. Swell noise modeling has been done
by Parrish (2005). Subtracting such models should work better than filtering.

The formulation of this paper integrates sea swell modeling with our non minimum-
phase, sparseness goaled, shot waveform estimation and data deconvolution. The ex-
perimental results mentioned above led to the theory you find here. What else might
we find? We expect the noise to contain any bits of the data with non-typical spectra,
both amplitude and phase. Besides the low-frequency sea swell, we might find the
water bottom itself and its multiples contain the very high frequencies that we do not
expect in waves that penetrate the earth.

INTRODUCING NOISE AS ITSELF A MODEL

The idea of this paper is that we should not try push all our data into the convolutional
model. We should explicitly solve for an unknown part of the data that poorly fits
this model. I call this part noise and define it negatively −N (so the minus sign is
missing from all the analysis and code).

The decon filter C = eU , parameterized by U , we take as noncausal. The con-
straint is no longer a spike at zero lag, but a filter whose log spectrum vanishes at zero
lag, 0 = u0 =

∫
ln C(ω) dω, so we are now constraining the mean of the log spectrum.

This is a fundamental change which we confess to being somewhat mysterious.

The single regression for U including noise N now becomes two.

0 ≈h (D + N)eU = (D + N)C (1)

0 ≈2 N (2)

The notation ≈h means the data fitting is done under a hyperbolic penalty func-
tion. The regularization need not be `2. To save clutter I leave it as `2 until the last
step when I remind how it can easily be made hyperbolic.
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Under the constraint of a causal filter with c0 = 1, traditional auto regression for
ct = FT−1C with its regularization looks more like

0 ≈ N = Dc (3)

0 ≈ c (4)

Comparing equations 1-2 with 3-4 you see we are not simply rehashing traditional
methodology but seem to be off in a wholly new direction! We are here because C = eU

solved our non-minimum phase problem, and seeing sea swell in our estimated shot
wavelets told us we need to replace D by D + N .

Antoine noticed the quasi-Newton method of data fitting requires gradients but
not knowledge of how to update residuals ∆r so the only thing we really need to think
about is getting the gradient. The gradient wrt U is the same as before (Claerbout
et al. (2011)) except that D + N replaces D. The gradient wrt N is the new element
here.

Let d, n, and c be time functions (data, noise, and filter). Let r = (d−n)∗c be the
residual. Let ht = h(rt) = hyperbolic stretch of r. Expressing our two regressions in
the time domain we minimize

min
n

∑
t

n2/2 + h((d + n) ∗ c) (5)

A scaling factor is required between the terms. We expect to learn it by experimen-
tation.

Now we go after the gradient, the derivative of the penalty function wrt each com-
ponent of noise ns. Let the derivative of the penalty function h(rt) wrt its argument
rt be called the softclip and be denoted h′

t = h′(rt). Let H ′ denote the FT of h′. Let
c′(t) be the time reverse of c(t) while in Fourier space C ′ is the conjugate of C.

∆ns = ns +
∂

∂ns

∑
t

h(rt) (6)

= ns +
∑

t

h′(rt)
∂

∂ns

(d + n) ∗ c (7)

= ns +
∑

t

h′
t

∂

∂ns

∑
τ

nt−τcτ (8)

= ns +
∑

t

h′
t

∂

∂ns

∑
j

njct−j (9)

= ns +
∑

t

h′
t ct−s (10)

= ns +
∑

t

h′
t c′s−t (11)

∆N = N + C ′H ′ (12)
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For simplicity I set out with a quadratic penalty function on the noise, but it is
easy to make it hyperbolic. Simply use softclip on n. Change ∆n = n + · · · to
∆n = h′(n) + · · · .

Now having the gradient we should be ready to code.

ALGORITHM

Before altering the old algorithm we need to be careful about a couple things. We may
need different gain functions for (d + n) ∗ c and for n. Sea swell is quite stationary in
its physics, but the hyperbolic penalty function applies to the statistical perspective
which is one where images are boosted in time from their physical form. We also
need to be careful not to mix up h(n) with h(r = (d + n) ∗ c). We will need to scale
the regularization with the fitting by experimentation.

We could update the old algorithm (Claerbout et al. (2011)) with the new noise
parts. Alternately, we could follow the suggestion of Antoine and switch to the quasi
Newton method. In either case we’ll need to introduce a scale factor (learned from
practice) to choose how much of D ends out in N .

INTERNET HUMOR

Theory is when you know everything but nothing works.

Practice is when everything works, but you don’t know why.

In our lab, theory and practice are combined. Nothing works and nobody knows why.
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