The matrix must also be locally case pore pressure. The shear strain under a compressional load (in this shear stress, others that produce a change in volume under an applied shear stress, and because new coefficients must be added to produce a change showing how the effect arises in our equations. Now we will use our newfound physical understanding.
Equation (2)
The result is:

equations.

and substituting this back into the previous set of

\[
\frac{\lambda}{m} - (33 \psi + \psi \frac{\lambda}{\varphi}) = f d
\]

is then given by

\[f d \]

which pressure for \(f d \) solving for \(\lambda = 0 \) by setting \(\lambda \) and the liquid
eliminate both the liquid increment \(\lambda \) and the liquid

So now we use the standard (Cassemann) trick to

Mathematically Example (3)
\[
\begin{pmatrix}
\tilde{\omega}_{12} & \omega_{31} & \omega_{23} & \omega_{33} & \omega_{22} & \omega_{11}
\end{pmatrix}
\begin{pmatrix}
\frac{C_i}{I} \\
\frac{C_i}{I} \\
\frac{C_i}{I} \\
\frac{C_i}{I} \\
\frac{C_i}{I} \\
\frac{C_i}{I}
\end{pmatrix}
\begin{pmatrix}
\frac{C_i}{I} \\
\frac{C_i}{I} \\
\frac{C_i}{I} \\
\frac{C_i}{I} \\
\frac{C_i}{I} \\
\frac{C_i}{I}
\end{pmatrix}
=
\begin{pmatrix}
\tilde{E}_{23} & \tilde{E}_{31} & \tilde{E}_{23} & \tilde{E}_{33} & \tilde{E}_{22} & \tilde{E}_{11}
\end{pmatrix}
\begin{pmatrix}
\tilde{S}_{13} & \tilde{S}_{12} & \tilde{S}_{11} & \tilde{S}_{13} & \tilde{S}_{12} & \tilde{S}_{11}
\end{pmatrix}
\begin{pmatrix}
\tilde{S}_{13} & \tilde{S}_{12} & \tilde{S}_{11} & \tilde{S}_{13} & \tilde{S}_{12} & \tilde{S}_{11}
\end{pmatrix}
\begin{pmatrix}
\tilde{S}_{13} & \tilde{S}_{12} & \tilde{S}_{11} & \tilde{S}_{13} & \tilde{S}_{12} & \tilde{S}_{11}
\end{pmatrix}
\begin{pmatrix}
\tilde{S}_{13} & \tilde{S}_{12} & \tilde{S}_{11} & \tilde{S}_{13} & \tilde{S}_{12} & \tilde{S}_{11}
\end{pmatrix}
\]

Mathematical Example (4a)
Mathematical Example (4b)
\[
\begin{pmatrix}
\theta_{12} \\
\theta_{13} \\
\theta_{23} \\
\theta_{14} \\
\theta_{24} \\
\theta_{34}
\end{pmatrix}
\cdot
\begin{pmatrix}
\tau^m \\
0 \\
\tau^{(m)} \\
0 \\
\tau^{(m)} \\
\tau^{(m)}
\end{pmatrix}
\cdot
\begin{pmatrix}
\tau^m \\
0 \\
\tau^{(m)} \\
0 \\
\tau^{(m)} \\
\tau^{(m)}
\end{pmatrix}
\cdot
\frac{\tau}{1}
\]
than the drained modulus for nonvanishing \(w \).

Note that the saturated shear modulus is always greater

\(\neq \) and

through the coefficients \(w \) and \(\eta \),

depending on the mechanical properties of the liquid

\[
\frac{\eta}{\varepsilon_m^{up}} \frac{C}{C_{sat}} \neq C
\]

modulus for the saturated system now contains a term

The important result we obtain shows that the shear

\((5) \)