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Abstract

As oil and gas extraction becomes more advanced, exploration becomes increasingly

focused on imaging near or under complex salt geology, which necessitates detailed

velocity models with sharp interfaces. Current state-of-the-art practices include the

use of Full-Waveform Inversion (FWI). However, this type of approach can result in

salt body models that lack the sharp interfaces characteristic of this type of geobody.

This is typically due to the computational expense of using increasingly high frequen-

cies in the data. These interfaces can be elegantly tracked as sharp boundaries using

the level sets of an implicit surface. Used in conjunction with shape optimization, one

can invert for salt boundaries that fit recorded data in a FWI style objective function

that is parameterized in terms of both the implicit surface and a background velocity

model. While this addition of the implicit surface requires more model parameters,

radial basis functions can be used to create a sparse parameterization of it, which can

hasten convergence of the inversion. The implicit surface also allows for embedding

information about the certainty of different salt boundary regions by means of its

initialization. This information allows for intelligent guidance of the inversion based

on interpreter input, which can help the inversion avoid local minima. The result of

testing this inversion workflow on a 3D Gulf of Mexico dataset shows that it can be

a useful tool for refining salt models, as the seismic images produced from the final

model shows clearer and more consistent features below the updated salt area.
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Preface

The electronic version of this report1 makes the included programs and applications

available to the reader. The markings ER, CR, and NR are promises by the author

about the reproducibility of each figure result. Reproducibility is a way of organizing

computational research that allows both the author and the reader of a publication

to verify the reported results. Reproducibility facilitates the transfer of knowledge

within SEP and between SEP and its sponsors.

ER denotes Easily Reproducible and are the results of processing described in the

paper. The author claims that you can reproduce such a figure from the pro-

grams, parameters, and makefiles included in the electronic document. The

data must either be included in the electronic distribution, be easily available

to all researchers (e.g., SEG-EAGE data sets), or be available in the SEP data

library2. We assume you have a UNIX workstation with Fortran, Fortran90,

C, X-Windows system and the software downloadable from our website (SEP

makerules, SEPScons, SEPlib, and the SEP latex package), or other free soft-

ware such as SU. Before the publication of the electronic document, someone

other than the author tests the author’s claim by destroying and rebuilding all

ER figures. Some ER figures may not be reproducible by outsiders because

they depend on data sets that are too large to distribute, or data that we do

not have permission to redistribute but are in the SEP data library, or that the

rules depend on commercial packages such as Matlab or Mathematica.

CR denotes Conditional Reproducibility. The author certifies that the commands

are in place to reproduce the figure if certain resources are available. The pri-

mary reasons for the CR designation is that the processing requires 20 minutes

1http://sepwww.stanford.edu/public/docs/sep165
2http://sepwww.stanford.edu/public/docs/sepdatalib/toc html/
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or more.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging their

figures as NR except for figures that are used solely for motivation, comparison,

or illustration of the theory, such as: artist drawings, scannings, or figures taken

from SEP reports not by the authors or from non-SEP publications.

Our testing is currently limited to LINUX 2.7 (using the Intel Fortran90 compiler)

and the SEPlib-7.0.5 distribution, but the code should be portable to other architec-

tures. Reader’s suggestions are welcome. For more information on reproducing SEP’s

electronic documents, please visit http://sepwww.stanford.edu/research/redoc/.
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Chapter 1

Introduction

PROBLEM OVERVIEW

Why is salt hard to model?

Oil producing regions like the Gulf of Mexico are known to have geologically complex

salt body formations. These formations can act as seals, trapping hydrocarbons

underneath, which makes them frequent targets of seismic imaging projects. However,

salt bodies have two important properties that make them difficult to image. First,

the P-wave velocity of salt is high, and contrasts sharply with that of surrounding

sediment layers, making them very reflective to seismic energy. Second, salt bodies

can adopt a variety of complex shapes and geometries. Because of these factors, the

formations themselves act as lenses which focus or disperse seismic energy (Leveille

et al., 2011; Etgen et al., 2016; Barnier and Biondi, 2015). Because salt bodies often

have steep dipping boundaries, useful reflection energy may be directed along ray-

paths that reach the surface far outside of the acquisition geometry extent (see Figure

1.1(b)). With less complex imaging subjects (Figure 1.1(a)) this is not so often the

case. Lack of data capture can subsequently impact the imaging results by creating

‘blind’ spots near the base and flanks of the salt. Figure 1.2(a) demonstrates how

flat portions of the salt boundary have good illumination, while the steeply dipping

flank (Figure 1.2(b)) has poor illumination, making picking the salt boundary more

difficult.

However, even when reflected energy is sufficiently recorded, strong reflectivity

1
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(a) (b)

Figure 1.1: a) Ray path from flat reflector. b) Ray path from salt reflector. Note that
after passing through salt (black) the raypath in 1.1(b) reaches the surface outside of
the acquisition zone. Receivers (green) and source (yellow) are shown on the surface.

[NR] chapter1/. ray-path-no-salt,ray-path-with-salt

(a) (b)

D
epth [m

]

Figure 1.2: Salt model (pink) overlain on seismic image. Green boxes in a) highlight
areas of good illumination, while boxes in b) highlight areas of poorer illumination.

[NR] chapter1/. salt-picking-examp
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and lensing effects can amplify small errors in the salt model and negatively impact

the resulting image. The boundaries of salt are typically improved in an iterative

workflow (interpret salt from image, update salt model, then re-migrate image as in

Figure 1.3). Subsequently, small initial errors may be compounded as velocity model

development proceeds. Furthermore, these methods are time-consuming and tedious

since expert input is necessary for either the actual picking, or the oversight and

correction when picking is semi-automated. Each iteration of this approach can take

days or weeks while coordinating entire teams of people. A robust method for further

automating the salt model building procedure would greatly alleviate this bottleneck.

INTERPRET

MIGRATE

Figure 1.3: Basic velocity model building workflow concept. [NR]

chapter1/. vel-building-workflow

Approaches like full-waveform inversion (FWI) are intended to avoid the repeated

manual interpretation necessary in the approach just described, but can be less than

effective for a variety of reasons. Sometimes high frequencies in the data are of

poor quality, causing difficulty reconstructing sharp velocity models. When high-

frequencies are present with sufficient quality, multi-scale inversion workflows are

typically used, which build a model starting from low and working up to high fre-

quencies Bunks et al. (1995). However, to increase the sharpness of the model requires

higher and higher frequencies, which become increasingly expensive to compute wave

propagations for. To alleviate this expense, multi-scale inversion is sometimes done

using wider frequency band increments, or even using a full band of frequencies from

the beginning.

Unfortunately, using high frequencies too early in the inversion runs a higher
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risk of converging to a local minima. This is because the FWI objective function is

based on the data residual, and the size of the ‘well of convergence’ around the true

model is based on the wavelengths in the data (see Figure 1.4(e), pink). The ‘well of

convergence’ is the model-space region surrounding the true model where the objective

function is convex. When a starting model is within this region, the objective function

gradient will eventually direct convergence to the true model. When a shift in the

modeled data is greater than a half wavelength from the true data, the objective

function gradient will direct updating to a local minima, pushing the data to align

with a wave cycle other than the one representing the true model (i.e. skipping a wave

cycle). With low frequencies the wavelength is longer and the well of convergence is

bigger (Figure 1.4(e)), and thus greater model error can be tolerated Virieux and

Operto (2009). However, even using advanced FWI tools with starting models and

frequencies that thoughtfully consider cycle-skipping, the final results typically lack

sharp resolution around the salt edge (compare Figures 1.5(a), 1.5(b)), which can

impact the clarity of seismic imaging near the salt.

One approach that is used to create sharp boundaries in velocity models is Total-

Variation (TV) regularization, which makes use of the L1 norm to regularize the

model parameters during the inversion (Maharramov and Levin (2015), Esser et al.

(2018)). This creates a regularized version of the FWI objective function that in-

cludes an additional term, λ|Am|1, where A is a Laplacian operator that takes the

spatial derivative of the model space. There are several challenges with this approach.

The first is that a parameter λ must be chosen which appropriately balances the reg-

ularization term with the data residual term. This is can be difficult to find, and

may even need to change with iteration for the best inversion result. The second

problem is that taking the derivative of this new term is difficult. This is because the

L1 norm is not a differentiable function at zero. This means that an optimization

method must be chosen for a non-smooth problem, such as the subgradient method

(Maharramov, 2016), which can be much slower than Newton’s method on a smooth

objective function.

Why are level sets the answer?

A key tool for addressing this problem is the concept of the level set. A level set is a

contour of a higher dimensional surface used to track a discrete boundary. In the salt
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Objective 
function

True data

Early data

Late data

Time [s] Time [s]

Cycle-skip 
data

a)

b)

c)

d)

e)

Figure 1.4: Left column shows higher frequency data while right column shows lower
frequency data. True data (b) and shifted traces (a,c), with the objective function
(e) showing the data residual norm measured at all shift positions. When a trace
is shifted far enough from the true trace (d), the gradient of the objective function
directs updating to a local minima, pushing the trace further from the true position
(red arrows), and cycle skipping occurs. Blue arrows indicate convergence towards
the true solution when the modeled trace shift (and thus model error) is within the

well of convergence (pink). [NR] chapter1/. cycle-skipping
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Figure 1.5: a) Legacy velocity model. b) Velocity model after FWI updating Shen

et al. (2017). [NR] chapter1/. xukai-true,xukai-fwi

modeling problem, the salt boundary can be represented using a level set as in Fig-

ures 1.6(a) and 1.6(b). With this representation, one can easily modify the shape and

topology of the level set implicitly by modifying its higher dimensional surface (for

this reason, called an implicit surface). While explicit boundary tracking schemes

break down for sharp edges or topology changes, level sets very elegantly manage

these cases. For any problem where we wish to track the boundary of a homogeneous

(or approximately homogeneous) body, level sets are an ideal tool. They have found

use in fields like aerospace engineering for modeling fluid flow around airfoils (Xia

et al., 2010), as well as image segmentation problems in medicine (Maciejewski et al.

(2012),Tsai et al. (2003)). For the purposes of salt modeling, they give us the ad-

vantage of adjusting and updating a sharp boundary position (high spatial frequency

content), even when the updates from our data contain only low frequency content

(see Figure 1.7). Since cycle skipping is based on the spectra of the data and not

the velocity model, we can gain the advantage of manipulating high spatial frequency

boundaries while still mitigating the risk of cycle skipping by skewing the spectra of

our data space to low frequencies. Furthermore, computing wave propagations for

low frequencies is cheaper than propagating high frequencies.

What has already been done?

Level sets are an excellent tool for tracking boundaries, and their debut was ushered

in by the work of Osher and Sethian (1988). They are especially useful for the class

of problems called shape optimization that optimize an objective function based on

shape properties. Santosa (1996) provides an early demonstration of solving these
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Figure 1.6: Diagram showing a cross section (orange curve) through a 3D
implicit surface that represents the salt boundary in the 2D model (bot-
tom panel) for both a) circular salt and b) donut-hole models . [NR]

chapter1/. levelset-cross-section,levelset-cross-section-donut
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Level set

Implicit 
surface

Low frequency update

High frequency change

Figure 1.7: Diagram demonstrating how low spatial frequency updating leads to a
change in a high spatial frequency boundary represented by a level set contour. [NR]

chapter1/. levelset-update

types of problems with an L2 norm objective function, namely for deconvolution and

diffraction-screen reconstruction problems. Burger (2003) continued to build a more

unified theory of level set methods for inverse problems. Later work by Lewis et al.

(2012) and Guo and de Hoop (2013) applied shape optimization to the FWI objective

function for the purpose of segmenting salt bodies. Guo and de Hoop (2013) utilize

this approach with frequency domain wave propagation to evolve a salt boundary and

velocity model. However, these approaches use the full model domain to represent

the level set, and do not explore the advantages of using second-order updating. More

recently, Kadu et al. (2016) introduced the use of radial basis functions to sparsify the

model space and speed computation for second order updating, but did not extend

the work to 3D models or field data examples.

What does this thesis add?

In this work, I claim to demonstrate success using shape optimization with level

sets to build 3D models of salt bodies at depth using field data. The differentiating

aspects of this work include a number of advances. First, the use of radial basis

functions (RBFs) to reduce the number of model parameters has been improved

by distributing them with spatial variance according to a given likelihood of salt

updating. I leverage the sparsified model that this representation yields to to speed

our inversion of the Newton step that our Gauss-Newton Hessian approximates. I
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further leverage interpreter guidance as input by molding the initial shape of our

implicit surface according to the same spatial likelihood function that our RBF centers

are based on. Last, I further extend the practice by applying this method to a 3D

ocean bottom node (OBN) dataset.
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Chapter 2

Level sets and shape optimization

In the previous chapter I reviewed the problems with modeling salt and how level sets

are an ideal tool for addressing some of those challenges. In this chapter I explain the

basics of level sets and how they apply to the shape optimization problem of finding

a salt boundary that minimizes the FWI objective function. I derive the gradient and

demonstrate updating on a simple 2D model. Last, I derive the Hessian equations

and demonstrate updating on 2D models with a comparison between the full Hessian

and the Gauss-Newton Hessian approaches.

LEVEL SETS AS A TOOL

Basic definitions

A level set is a contour of a higher dimensional surface, φ. One can use the level set as

an elegant tool for keeping track of boundaries as they change form. If one considers

a 2D level set being the contour of a 3D implicit surface, then the spatial domain of

the 2D level set can be defined as Θ ⊂ R2 with elements χ ∈ Θ. A salt body Ω is

simply a subset of the 2D domain (Ω ⊂ Θ) such that:

Ω = {χ | φ(χ, τ) > 0},

where τ indicates the ‘time’ axis along which the evolution steps progress (τ = 0 is

the initial iteration). As such, for a single updating step (along τ), our current salt

body Ω evolves to Ω
′
. I further define the boundary of the salt body as Γ (see Figure

11
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2.1), such that:

Γ = {χ | φ(χ, τ) = 0}.

I define a point along the boundary curve to be:

χΓ ∈ Γ.

With this definition of the boundary points, the level set of φ that represents the salt

body boundary can be described as:

φ(χΓ, τ) = 0.

While this derivation uses a 2D salt model for simplicity, a 3D salt body would instead

have a four-dimensional implicit surface.

Figure 2.1: Diagram explaining the salt body domain (Ω), the φ values inside and

outside of the salt, and the salt boundary (Γ). [NR] chapter2/. levelset-domain

Shape optimization derivation

With a clear understanding of level sets being established, the first step of the shape

optimization derivation is to define the objective function we wish to minimize. I

choose a variation of the FWI objective function

ψ(p) =
1

2
||F(m(p))− dobs||22, (2.1)
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Here F is the forward acoustic wave propagator which includes a source function, wave

propagation, and sampling based on a receiver geometry. Our seismic velocity model

is m, and dobs is the observed pressure data. I deviate from the traditional FWI

objective function by parameterizing m in terms of p. Here I define p = [φ b]T ,

with φ as the implicit surface function and b as the background velocity function,

both varying across the full spatial domain Θ. In this section, I intend to take the

derivative of equation 2.1 with respect to the underlying parameters b and φ. Since

the chain rule applies, I first take the derivative with respect to m and then p. I start

by expanding our definition of the objective function:

ψ(p) =
1

2
||F(m(p))− dobs||22 (2.2)

=
1

2
(F(m(p))− dobs)

T (F(m(p))− dobs) (2.3)

=
1

2
(F(m(p))TF(m(p))− 2F(m(p))Tdobs + dobs

Tdobs), (2.4)

I then take the first derivative:

dψ

dp
=
dm(p)

dp

T dF(m(p))T

dm
F(m(p))− dm(p)

dp

T dF(m(p))T

dm
dobs (2.5)

=
dm(p)

dp

T dF(m(p))T

dm
(F(m(p))− dobs) (2.6)

=
dm(p)

dp

T

BT (F(m(p))− dobs). (2.7)

Here one recognizes dF(m(p))T

dm
as the familiar adjoint Born operator (BT ) used in

standard FWI (Virieux and Operto (2009)). However, we must continue to expand

our gradient to be defined in terms of our underlying parameters b and φ (contained

in vector p). This requires us to state our model space clearly:

m(p) = m(φ,b) = H(φ)(csalt − b) + b, (2.8)

where H(◦) is the Heaviside function. Because I assume a homogeneous salt body,

csalt is a constant salt-velocity vector, typically about 4500m/s. Figure 2.2 explains

this equation as the sum of a salt overlay created from φ with the background velocity

model b. Note that the background velocity (shown in Figure 2.2c) is defined even
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in the region under the salt footprint. That way if the salt shrinks to a smaller size

or otherwise retracts inward, the background velocity is already defined and does not

need to be interpolated.

(c)(b)(a)

Figure 2.2: a) Full velocity model. b) Salt overlay. c) Background velocity. [NR]

chapter2/. model-components

I expand the definition in equation 2.8 with a Taylor series as:

m1 = m0 +
∂m

∂φ

∣∣∣
m0

4φ+
∂m

∂b

∣∣∣
m0

4b+ .... (2.9)

This approximation is only valid when the Taylor series converges with the addition

of increasingly higher order terms. For the Heaviside function, this is not the case,

since the function is not differentiable in its original form. For this reason, I use a

smoothed approximation of the Heaviside function, such as:

H̃(φ) =
1

2

[
1 +

2

π
arctan(

πφ

ε
)

]
. (2.10)

An advantage of using equation 2.10 as a Heaviside approximation is that the deriva-

tive is non-zero everywhere. One downside is that the support of the function is

infinite, and it will only approach +1 or 0 at + inf or − inf. Further, the derivative of

this function is very high near the zero crossing point. Kadu et al. (2017b) introduces

an alternate approximation that has compact support in the region surrounding the

zero-crossing:
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H̃ε(φ) =


0 if φ < −ε,
1
2

[
1 + φ

ε
+ 1

π
sin
(
πφ
ε

)]
if − ε ≤ φ ≤ ε,

1 if φ > ε.

(2.11)

Besides being able to capture +1 and 0 values exactly, the derivative of this approx-

imation varies much less (see curves in Figure 2.3) and better balances weighting to

the full boundary region when applying level set updates. By substituting this for-

mulation of the Heaviside function in equation 2.8, I can now truncate the series in

equation 2.9 and ignore higher order terms. This creates a linear approximation for

the perturbation of the velocity model m with respect to φ and b:

4m ≈ ∂m(φo,bo)

∂φ
4φ+

∂m(φo, bo)

∂b
4b. (2.12)

Figure 2.3: Curves of Heaviside approximations based on equation 2.11 for
varying values of ε, and true Heaviside function (red). Note that within
{−ε, ε}, the slope of each curve (its derivative) is relatively constant. [ER]

chapter2/. heaviside-approx-chart
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This can be written as a matrix operation:

4m ≈
[
∂m(φo,bo)

∂φ
∂m(φo,bo)

∂b

] [4φ
4b

]
4m ≈

[
∂m(φo,bo)

∂φ
∂m(φo,bo)

∂b

]
4p,

where I define operator D as:

D =
[
∂m(φo,bo)

∂φ
∂m(φo,bo)

∂b

]
=
[
δ̃(φo)(csalt − bo) I− H̃ε(φo)

]
. (2.13)

Here, H̃ε is the Heaviside approximation (equation 2.11), I is the identity matrix, δ̃

is the derivative of H̃ε, b is the background velocity (b0 is fixed), φ is the implicit

surface (φ0 is fixed), and csalt is the constant salt velocity. Its functional form, δ̃(·)
approximates an impulse function at φ = 0, and its application acts as a selector for

the salt boundary. Because of this, the operator D ultimately scales and masks the

parameter fields 4φ and 4b.

This new approximation of the perturbation can be combined in our velocity

model with equation 2.7 to get:

dψ

dp
=
dm(p)

dp

T

BT (F(m(p))− dobs) (2.14)

≈ DTBT (F(m(p))− dobs) (2.15)

≈ DTBT4d. (2.16)

SIMPLE 2D SYNTHETIC MODEL DEMONSTRATION

In order to demonstrate first order (gradient) updating on φ (assuming b is constant

for simplicity), I apply the inversion workflow shown in Algorithm 1 on a 2D circular

salt model example (Figure 2.8(a)), with an outward normal perturbation (the initial

salt is larger than the true model). This creates an error in the modeled data (Figure

2.4(a)) and thus a data space residual (Figure 2.4(b)). Note that these figures show
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the top and bottom salt events between about 1.7-2.5 seconds.

Algorithm 1 Steepest descent updating algorithm

1: procedure LevelSetInversion-order1( dobs,φ0 )
2: for i in (1,N) do
3: dsyn(i) = F(φi−1)
4: residual(i) = dobs − dsyn(i)
5: gradient(i) = DTBT residual(i)
6: α = linesearch(gradient(i))
7: φi = φi−1 − α · gradient(i)
8: end for
9: Return m(φN)

10: end procedure

(a) (b)

Figure 2.4: a) Observed data. b) Data residuals. Observed data and residuals are a
single shot gather created from the small initial salt example (Figure 2.12(a)). [ER]

chapter2/. obsdata-sample-small,residuals-sample-small

I calculate the search direction for φ (Figure 2.6) by back-propagating the data

residual and cross-correlating it with the source wavefield as per the Born approx-

imation imaging condition (Figure 2.5), followed by applying the D operator from

equation 2.13. In this case, the search direction is negative near the perturbation,

since it wants to decrease what is ultimately a positive velocity error. This search

direction pushes a decrease in the value of the implicit surface (compare Figures

2.7(a) and 2.7(b)). This decrease draws the zero-level set deeper so that it is in closer

alignment with the true salt boundary. Applying the approximate Heaviside function

(equation 2.11) to this updated implicit surface (Figure 2.7(b)) gives us a new model

that is closer in form to the true model (Figure 2.8(b)). This process can be con-

tinued, making iterative updates to the implicit surface and as a result, the velocity
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model itself.

Figure 2.5: Search direction from adjoint Born image of back-propagated residuals
used in conventional FWI. True salt extent (green dashed line), initial salt extent

(black dashed line). [CR] chapter2/. rtmGrad0-big

For an initial model where the salt circle is too small (Figure 2.12(a)), the adjoint

Born component of the search direction (Figure 2.9) is positive, since it is trying to

increase the model velocity to that of the salt. The full search direction for φ gives

a positive perturbation of the implicit surface (Figure 2.10). This update raises the

implicit surface (compare Figures 2.11(a) and 2.11(b)), moving the salt boundary

upwards to correct for the deep boundary discrepancy (Figure 2.12(b)).

INTRODUCING THE HESSIAN OPERATOR

We can use the Newton method (equation 2.17) to perform the inversion, which helps

remove the effect of our operator from the gradient, improves the search direction,

and subsequently speeds up convergence. This is done by inverting the Hessian (H)

of the objective function we are minimizing and applying it to the negative of our

gradient (g) to find the search direction 4m:
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Figure 2.6: Implicit surface search direction (4φ). True salt extent (green dashed

line), initial salt extent (black dashed line). [CR] chapter2/. phiGrad0-big

4m = −H−1g. (2.17)

For our case, we can represent the Hessian as the second derivative (equation 2.18)

of the FWI objective function (equation 2.1):

δψ

δm
=
dF(m)

dmT
(F(m)− dobs)

δ

δm

δψ

δm
=

δ

δm

dF(m)

dm

T

(F(m)− dobs)

δ2ψ

δm2
=
d2F(m)

dm2

T

(F(m)− dobs) +
dF(m)

dm

T dF(m)

dm
.

(2.18)

However, this second derivative contains a term based on the data residuals. This

term can be expensive to compute and is often neglected, so the Gauss-Newton ap-

proximation is used instead:
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(a)

(b)

Figure 2.7: Implicit surface (φ) model a) before, and b) after updating with search
direction (Figure 2.6). True salt extent shown as green dashed line. [CR]

chapter2/. initphi-big,nextphi-big
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(a)

(b)

Figure 2.8: Velocity model (m) a) before, and b) after updating. True salt extent

shown as green dashed line. [CR] chapter2/. initmodel-big,nextmodel-big
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Figure 2.9: Search direction from adjoint Born image of back-propagated residuals
used in conventional FWI. True salt extent (green dashed line), initial salt extent

(black dashed line). [CR] chapter2/. rtmGrad0-small

Figure 2.10: Implicit surface search direction (4φ). True salt extent (green dashed

line), initial salt extent (black dashed line). [CR] chapter2/. phiGrad0-small
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(a)

(b)

Figure 2.11: Implicit surface (φ) model a) before, and b) after updating with search
direction (Figure 2.10). True salt extent shown as green dashed line. [CR]

chapter2/. initphi-small,nextphi-small
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(a)

(b)

Figure 2.12: Velocity model (m) a) before, and b) after updating. True salt extent

shown as green dashed line. [CR] chapter2/. initmodel-small,nextmodel-small
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δ2ψ

δm2
=
dF(m)

dm

T dF(m)

dm
+
d2F(m)

dm2

T

(F(m)− dobs)

HGN =
dF(m)

dm

T dF(m)

dm

(2.19)

While using this approximation is cheaper to compute, it is not as accurate. Ficht-

ner (2010) and Biondi et al. (2015) show that the residual term of the FWI objec-

tive function Hessian can be found by computing WEMVA-like operations on the

data-space residuals. By comparison, the Gauss-Newton approximation of the FWI

objective function is simply the forward Born operator followed by the adjoint Born

operator. An inherent limitation of the Born operator is that it only models first-order

reflections, and so double-scattered energy such as waves that bounce inside canyons

or salt bodies (Figure 2.13) can be spatially misplaced in the search direction when

using the Gauss-Newton Hessian. One would expect to gain a better search direction

for canyon and salt-type models by using the full Hessian instead. For this reason, I

investigate using the full Hessian on 2D synthetic models.

Figure 2.13: Second order reflection ray paths in a canyon and inside a
salt body (blue). First order reflection off water bottom (red). [NR]

chapter2/. reflection-order-diagram
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HESSIAN INVERSION COMPARISONS

As discussed in the last section, the full Hessian is potentially better than the Gauss-

Newton Hessian at finding a search direction for models that contain salt canyons. I

test this hypothesis by creating a synthetic salt canyon true model, and then perturb it

to create a starting model so that a true search direction is known. Then I run separate

inversions with the full and Gauss Newton Hessians to compare search direction

results. Furthermore, I first test by perturbing only one side of the canyon, and then

test by perturbing both sides. This allows us to see how the starting velocity model

affects the efficacy of the Gauss-Newton and full Hessians relative to one another.

Single canyon perturbation example

For the first example, I select an upper canyon portion of the synthetic Sigsbee model

(Figure 2.14). I perturb the left hand side of the canyon (Figure 2.15) to create

secondary scattering against the opposite canyon wall (shown in Figure 2.16). I use

an evenly spaced acquisition geometry of 38 shots and 230 receivers, and perform

modeling using absorbing boundary conditions and a Ricker wavelet with a central

frequency of 15 Hz. For both the single and double perturbation cases, I assume

that 4b = 0, and so invert for a model defined as 4p = 4φ (inverting only for the

implicit surface update, not the background velocity update).

Double canyon perturbation example

For the second example, I use the same true model as before (Figure 2.14). However,

this time I perturb both the left and right hand sides of the canyon (Figure 2.17).

This offers further complexity to the secondary scattering of the model (shown in

Figure 2.18). The same acquisition geometry and wavelet were used.

Benefits of the full Hessian

When comparing the results of the Gauss-Newton (Figure 2.19) and the full Hessian

results (Figure 2.20) from the double canyon perturbation model, one can see a slight

improvement in the focusing of the energy in the full Hessian example. This improved
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Figure 2.14: The canyon portion of the Sigsbee model that was used. [ER]

chapter2/. single-guess

Figure 2.15: The single canyon perturbation (4mactual) of the Sigsbee model. [ER]

chapter2/. single-pert
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Figure 2.16: Data generated on the true model (dobs) from the center shot
(left). The data residual (4d) for the same center shot (right) generated by dif-
ferencing dobs with data generated from the single perturbation model. [CR]

chapter2/. centershot-analysis-single
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Figure 2.17: The double canyon perturbation (4mactual) of the Sigsbee model. [ER]

chapter2/. double-pert

search direction should lead to better convergence in the greater non-linear inversion

scheme. When comparing against the steepest descent search direction for the double

perturbation case (Figure 2.21), one can see that the search directions by either type

of Hessian inversion create significant improvements. The improvement of the full

Hessian versus the Gauss-Newton Hessian that is seen in the double perturbation

case is minimal compared to the improvement that the Gauss-Newton Hessian has

over the steepest descent direction (Figure 2.21). Similarly in the single perturbation

case, the search direction from inverting the Gauss-Newton Hessian (Figure 2.22) is

significantly better than the steepest descent search direction (Figure 2.23).

Limitations

However, the single perturbation case demonstrates that the advantages of the full

Hessian are not realized for all models, since the Hessian is model dependent. The sin-

gle perturbation example results are much different with regards to the full Hessian
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Figure 2.18: Data generated on the true model (dobs) from the center (left).
The data residual (4d) for the same center shot (right) generated by differ-
encing dobs with data generated from the double perturbation model. [CR]

chapter2/. centershot-analysis-double
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Figure 2.19: The Newton search direction (4φ) using the inverted Gauss-
Newton approximation of the Hessian on the double perturbation model. [CR]

chapter2/. double-final-gn
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Figure 2.20: The Newton search direction (4φ) using the inverted full Hessian on

the double perturbation model. [CR] chapter2/. double-final-full

Figure 2.21: The steepest descent search direction (4φ) (negative of the FWI gradi-

ent) for the double perturbation model. [CR] chapter2/. double-negative-gradient
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Figure 2.22: The Newton search direction (4φ) using the inverted Gauss-
Newton approximation of the Hessian on the single perturbation model. [CR]

chapter2/. single-final-gn
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Figure 2.23: The steepest descent search direction (4φ) (negative of the FWI gradi-

ent) for the single perturbation model. [CR] chapter2/. single-negative-gradient

search direction. While the Gauss-Newton Hessian system inversion rapidly con-

verges (Figures 2.22 and 2.25(a)), the full Hessian inversion becomes unstable part

way through (Figures 2.24 and 2.25(b)). Because the full Hessian operator is not in-

herently positive semi-definite like the Gauss-Newton Hessian, it may have negative

eigenvalues, which can lead to instability during inversion. This was very likely the

case in the single canyon perturbation example. On the other hand, with the dou-

ble perturbation example we get stable convergence using either method (compare

Figures 2.26(a) and 2.26(b)).

One of the few feasible methods for enforcing our operator to be positive semi-

definite is to use the Levenberg-Marquardt (1963) method of regularizing the operator

with a scaled identity matrix:

Ĥfull = Hfull + αI (2.20)

However, in order to use this method properly, the correct scaling of the identity
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Figure 2.24: The Newton search direction using the inverted full Hessian on the single
perturbation model. [CR] chapter2/. single-final-full

matrix must be found. If too large of a scaling is selected, the operator becomes

more like a scaled identity matrix, negating the potential benefit of inverting the full

Hessian system to begin with. If the scaling is too small, the system will still be ill-

conditioned, and prone to instability as observed earlier. The ideal scaling is slightly

more than the value of the most negative eigenvalue of the operator. This makes

the operator positive definite. Since our model (and as a result, our Hessian) is very

large, it is impractical to store or factorize the Hessian matrix to determine the most

negative eigenvalue through traditional non-iterative linear algebra methods.

Power Iteration Method

The most practical way to find the best scaling is by using the power iteration method

outlined in Larson (2009) to find the maximum absolute-valued eigenvalue (positive in

the case shown for Figure 2.27). After this has been found, one shifts the diagonal of

the operator by the negative of this value, and then repeat the power iterations to find

a new maximum absolute-valued eigenvalue. The difference between this value and
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(a)

(b)

Figure 2.25: The objective functions from the Hessian inversions using the single
canyon perturbation model. Note, the values are negative because a conjugate gra-
dient (CG) solver was used instead of a CG least-squares solver. a) Gauss-Newton

Hessian. b) Full Hessian. [CR] chapter2/. objfunc-single-gn,objfunc-single-full
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(a)

(b)

Figure 2.26: The nearly identical objective functions from the Hessian inver-
sions using the double canyon perturbation model. Note, the values are neg-
ative because a conjugate gradient (CG) solver was used instead of a CG
least-squares solver. a) Gauss-Newton Hessian. b) Full Hessian. [CR]

chapter2/. objfunc-double-gn,objfunc-double-full
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Figure 2.27: The power iteration curve showing the progressing approximation of the
maximum absolute value eigenvalue of the full Hessian operator used on the single
canyon perturbation model. [CR] chapter2/. powerit1
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the first one derived is the magnitude of the most negative eigenvalue. I experimented

with this method, but found the benefits of this effort to be minimal, and at notable

computational cost. Figure 2.27 shows that in practice at least 25 iterations (and

so ∼ 25 forward full Hessian operator applications) were necessary for each of the

two power iteration searches. Once these searches were complete and a proper shift

was found, I found that the results of using this Levenberg-Marquardt shift were

almost imperceptible from the Gauss-Newton results. Furthermore, since the Hessian

operator is model-dependent (and so changes with each outer loop iteration of FWI),

these power iteration steps would need to be performed each time the Newton system

was inverted.

CONCLUSIONS

Level set concepts can be combined with the FWI objective function to create a shape

optimization scheme that allows an elegant way to address the problem of finding an

optimal salt body boundary. My demonstrations on simple 2D examples illustrate the

relationship between the FWI and implicit surface search directions, and the effect

that updating this new model space ultimately has on the velocity model. When I

investigate the use of the inverse Hessian to refine the search direction, I find that the

Gauss-Newton Hessian approximation is sufficient to improve convergence. However,

the theoretically more accurate full Hessian gives mixed results which depend on the

model. Robust inversion can only be assured by performing more computation (power

iterations) to find an optimal correction for the diagonal elements of the operator.

For this reason, I find that the impracticalities of maintaining stability in the full

Hessian inversion outweigh the potential benefits from using it. While the Gauss-

Newton Hessian is less accurate than the full Hessian, its inversion is stable, and at

far less cost.
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Chapter 3

Radial basis functions for model

sparsity

In the previous chapter, I reviewed the advantages of using the inverse Hessian to

improve the search direction used in the FWI problem. In this chapter, I first dis-

cuss how re-parameterizing the implicit surface to a sparse domain with Radial Basis

Functions (RBFs) may improve the theoretical convergence rate of the Hessian inver-

sion. Next, I demonstrate how RBFs can give a satisfactory representation of a dense

implicit surface when suitable parameters are chosen. Last, I give a comparison of

level set inversions showcasing the improved convergence rate that is gained by using

RBFs.

MOTIVATION

Any uniform increase in the 3D model size increases the number of model parameters

by O(nxnynz). When using a Newton method as described in equation 2.17, we

make use of a Hessian that (in matrix form) has (nxnynz)
2 elements. As the model

expands to 3D, this quickly becomes intractable to store in memory or even on disk.

In practice, we overwhelmingly prefer to solve the inverse Hessian system (equation

2.17) using the conjugate gradient method, which only requires forward applications

of the Hessian operator (in our case, the Gauss-Newton Hessian). Regardless, the

upper limit of the number of iterations needed to converge fully using the conjugate-

gradient method is inversely proportional to the number of model parameters (Aster

41
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et al., 2013). As such, our desire to improve the rate of convergence when solving

the Newton system motivates us to reduce the number of model parameters in some

manner.

For 3D seismic wave propagation, the coarseness of spatial sampling is based

on constraints imposed by the numerical dispersion and numerical stability inherent

in our finite differencing scheme. For the purpose of wave modeling, our spatial

resolution will generally be higher than the features we can robustly resolve from the

data. We can typically use uniform down-sampling methods on the update gradient

to create a smaller model space without significantly affecting our end results (Cox

and Verschuur, 2001). One of the disadvantages of using down-sampling to reduce

the model space is that it uniformly reduces resolution. This runs counter to our

interest in having high resolution in specific areas of interest, like the salt boundaries.

For this reason, any application of down-sampling usually gives less than satisfactory

results for inversion resolution.

In the level set problem, we are most interested in areas around and within the

salt boundaries. The implicit surface tracking our salt boundary doesn’t need to be

represented by a fine grid across the whole domain like the one used for wave propa-

gation. However, aggressive down-sampling schemes will quickly start to deteriorate

the information that we wish to keep. What is needed is a method that allows the

flexibility of spatially varying resolution.

RADIAL BASIS FUNCTION IMPLEMENTATION

One way to achieve model space reduction is with a basis function that lets us use

fewer model parameters to describe a larger spatial area. Radial basis functions

are a simple and effective kernel to use. We can separately scale and then sum an

aggregation of RBFs to approximate a dense implicit surface, with the approximation

accuracy related to the shape of the RBF kernel and the number of RBF kernels

used. Kadu et al. (2017a) propose an implementation like this which replaces a dense

Cartesian grid parametrization of the implicit surface φ with a surface described as

an aggregate of evenly spaced RBFs:
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φ(λ; ε) =

Nλ∑
i

λi exp−(εri)
2

. (3.1)

In this formulation, λ is the new (sparse) model parameter vector, Nλ is the length

of λ, ri is an array of radial distance from the ith RBF center with size Nz ·Nx ·Ny

for the 3D spatial case, and ε controls the sharpness of the RBF taper (constant for

all i). In their approach, Kadu et al. (2017a) chose a uniform distance between each

RBF center location beforehand based on the resolution they desired.

However, there are only a few areas where one really wants high resolution (namely,

the salt edge where we expect boundary movement). The resolution achieved with

the sparse parametrization is primarily based on how many RBFs are used to describe

a particular area (RBF density). Because the salt evolves from an initial boundary,

the further from this initial boundary a model region is, the less likely that it will

be updated, which means low RBF density can be justified. On the other hand,

regions close to the current salt boundary are more likely to update, justifying higher

RBF density. Therefore, I introduce the idea of spatially varying the density of the

RBF centers to represent the implicit surface in a sparse fashion (as shown in Figure

3.1). This allows clustering the center locations of the RBFs in areas I expect to see

updating occur, while using a lower density in regions where I don’t expect updating

(see Figure 3.2). This is a more efficient way to distribute RBF positions, resulting

in fewer RBF parameters needed to attain high resolution around the salt boundary

than if I used the regular RBF spacing described in Kadu et al. (2017a).

For the new representation of φ described in equation 3.1, the operator D must

be modified to account for the additional linear transformation:

D =
[
∂m(φo,bo)

∂φ
∂φ
∂λ

∂m(φo,bo)
∂b

]
=
[
δ̃(φo)(cs − b) exp−(εr)2 I− H̃(φo)

]
. (3.2)

In this formulation, H̃ is the Heaviside approximation (equation 2.11), I is the identity

matrix, δ̃ is the derivative of H̃, r is a tensor of size Nz ·Nx ·Ny ·Nλ for the 3D spatial

case, b is the background velocity (b0 is fixed), φ is the implicit surface (φ0 is fixed),

and cs is the constant salt velocity. Further, the model space has also changed:
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Figure 3.1: The probability distribution used to randomly position the radial basis
function centers in Figure 3.2. [ER] chapter3/. centers-dist

Figure 3.2: Center positions for radial basis functions used to construct the implicit
surface. [ER] chapter3/. centers
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4p =

[
4λ
4b

]
.

When I apply the operator D or DT, I consider the locations of the RBF centers to

be fixed throughout the inversion (for example, as shown in Figure 3.2).

Computational considerations

The forward application of the D operator derived earlier now includes a exp−(εr)2

term. This means that for each element λi in the model vector, I scale and sum

a Gaussian function to the aggregated surface, φ. If I compute exp−(εr)2 over the

full model, then the D operator becomes expensive to apply on a large 3D spatial

domain, since the algorithm would loop over the full model space for each RBF. One

observation that I leverage is that the value of the radial basis function decreases

significantly at high values of r. Furthermore, I scale and sum the same Gaussian

each time (ε is fixed). Based on this, I pre-compute the radial basis function exp−(εr)2

just once over a region where its value is actually significant. Naturally, the size of

this region is based on the taper of the RBF, which is governed by ε. By choosing

ε well, and then pre-computing the corresponding Gaussian function over a limited

region, the RBF summation computation is greatly simplified, and increases the speed

of applying D or DT significantly.

EXAMPLES OF RBF FITTING

In order to show how RBFs can accurately represent a salt body with far fewer

parameters than a dense representation, I demonstrate their use on a Gulf of Mexico

velocity model provided by Shell. I choose a section of the velocity model that has a

notable salt protrusion in it as an example (Figure 3.3). Beginning with this model,

I build a probability density map that favors placing RBF centers near the original

picked boundary (Figure 3.1), with less likelihood further from that boundary. From

this, I generate random RBF positions (Figure 3.2). Using these RBF centers, I then

perform a non-linear conjugate gradient inversion to find the proper weighting of the
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RBF kernels in order to best fit the starting model salt shape (Figure 3.4(b)), which

is built from an initial implicit surface (Figure 3.4(a)). The inversion finds sparse

parameters that create a new implicit surface (Figure 3.5(a)), which looks different

from the one used to build the fitting model (Figure 3.4(a)). However, when I apply

the Heaviside function to either of these to create the salt, we can see that the sparse

parameters create a model with a good fit (compare Figures 3.4(b) and 3.5(b)). The

inversion converges relatively quickly (Figure 3.6), but naturally has some unresolved

residual since the RBF parametrization is sparse and cannot match the dense salt

model guess perfectly (see Figure 3.7(a)).

Figure 3.3: Salt model used by Shell (white) overlaid on the corresponding RTM

image. [ER] chapter3/. both

Figure 3.7(a) shows that the matching model and the resulting inverted model

after Heaviside function application are quite similar. However, if we choose ε and

the corresponding RBF footprint poorly, we wont be able to represent the original

salt model as well as we could. When ε is too high, the RBF decays quickly, resulting

in a model that is less smooth. Alternatively, when ε is too low, the RBF decays

slowly and creates a model that is too smooth. Figure 3.7(b) shows a case where

these parameters were chosen poorly, while Figure 3.7(a) does a much better job in
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(a)

(b)

Figure 3.4: a) Implicit surface φo that creates the salt body shape (b) that my
inversion tries to match. b) is the result of applying the Heaviside function to φo.

chapter3/. matching-phi,matching-phi-Heavi
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(a)

(b)

Figure 3.5: a) Implicit surface φfinal created from final inverted RBF parame-
ters (φfinal = Dλfinal); b) the result of applying the Heaviside function to φfinal.

chapter3/. resulting-phi,resulting-phi-Heavi
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both the salt center region as well as the boundary.

Figure 3.6: Log of normalized objective function from the non-linear inversion
used to find the RBF parameters used in Figures 3.5(a), 3.5(b) and 3.7(a). [ER]

chapter3/. objfunc

COMPARISON OF SPARSE (RBF) AND DENSE MODEL

INVERSIONS

In order to illustrate the improved rate of convergence gained by using a sparse

RBF model, I demonstrate on a 2D synthetic inversion example. The goal here is

to show how RBFs affect the greater shape optimization problem by comparing the

inversion convergence rates between a sparse RBF parametrization and a dense non-

RBF parametrization.

I choose a ‘true’ model similar to Figure 3.3 that I wish to invert for (Figure

3.8) that has an inclusion close to the edge. This model is chosen to show how the

RBF inversion can invert for a more unusual model geometry. I begin with a model

containing a much smaller inclusion (Figure 3.9). Just as in chapter two (Algorithm

1), the inversion workflow has an outer loop where I do non-linear modeling to find the
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(a)

(b)

Figure 3.7: Differences between original salt model and the resulting model produced
by the RBF representation. (a) shows difference of fitted salt model using ε = 0.25
value, while (b) shows difference of fitted salt model using ε = 2.25 value. Both cases
used 98% fewer model parameters than the original full-grid scheme, and both used
the same RBF positions. Background velocity is 2.5 km/s and salt velocity is 4.5

km/s. [ER] chapter3/. rbfinv-diff-full,rbfinv-diff-sparse
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Figure 3.8: True velocity model that was used to synthetically generate the ‘observed’
data. [ER] chapter3/. true-model-rbf-inversion

Figure 3.9: Starting velocity model. Note the inclusion is much smaller than in the
true model (Figure 3.8). [ER] chapter3/. start-model-rbf-inversion
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residual and use the adjoint Born operator to find the gradient. However, following

this I now have an inner loop using iterative methods to invert the Hessian and find

the search direction from the gradient (solving equation 2.17), before performing the

linesearch. In these examples, the inner loop uses a Gauss-Newton Hessian, and I

compare using a dense model (no RBF parametrization) to using a sparse model (with

RBF parametrization). The RBF model has only 7% of the model points that the

dense model has. I perform the same number of iterations (20) for each inner-loop

linear inversion of the Gauss-Newton Hessian using a conjugate gradient solver. For

the first Hessian inversion, the sparse RBF parameterization (Figure 3.10) converges

faster than the dense model example (Figure 3.11). Note that the objective function

curves become negative since I use a conjugate gradient (CG) solver based on equation

3.3:

minψ(4m) =
1

2
4mTH4m− gT4m, (3.3)

instead of a conjugate gradient least-squares (CGLS) solver (based on equation 3.4):

minψ(4m) =
1

2
||H4m− g||22. (3.4)

Because the Hessian is a symmetric operator, I can take advantage of using the CG

solver instead of the more expensive CGLS solver. However, the residual is not

squared as in CGLS, so the objective function can take negative values.

I find that after 14 outer loop (non-linear) iterations the sparse (RBF) inversion

converges, while the dense (non-RBF) inversion objective function is still descending

after 40 iterations (Figure 3.12). The normalized model norm for the sparse inver-

sion also reaches a lower value (Figure 3.13), while the non-RBF inversion actually

increases instead. By representing the dense model sparsely with RBFs, I reduce the

number of parameters as well as create a smoother equivalent update in the dense

model space (with smoothness based on the ε used). In this sense, the RBFs act some-

what like a regularization. Both these factors contribute to the improved convergence

rate that I find when using RBFs in the inversion. When comparing the inverted

model results of each parametrization, one can clearly see that the RBF approach

(Figure 3.14) provides a superior result to the dense model space parametrization

(Figure 3.15).
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Figure 3.10: Objective function from the first inner-loop Gauss Newton inversion of
the sparse (RBF) model system. [CR] chapter3/. GNinversion-rbf-objfunc-0

Figure 3.11: Objective function from the first inner-loop Gauss Newton inversion of
the dense (non-RBF) model system. [CR] chapter3/. GNinversion-norbf-objfunc-0
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Figure 3.12: Objective function (data norm) comparison of the outer-loop in-
version for RBF and non-RBF parameterized model approaches. [CR]

chapter3/. RBF-vs-noRBF-dataNorm

Figure 3.13: Model norm comparison of the outer-loop inversion
for RBF and non-RBF parameterized model approaches. [CR]

chapter3/. RBF-vs-noRBF-modelNorm
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Figure 3.14: Velocity model after 30 outer loop (non-linear) iterations using RBF

parametrization. chapter3/. model-30-RBF-inversion

Figure 3.15: Velocity model after 30 outer loop (non-linear) iterations without RBF

parametrization. chapter3/. model-30-noRBF-inversion
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CONCLUSIONS

The speed at which one can invert the Hessian system and find the search direction

is sensitive to the number of parameters in the model, and using 3D spatial models

requires a large number of model parameters for wave propagation. However, I can

sparsely represent this dense model using radial basis functions to achieve significant

parameter reduction. I show that this representation allows me to accurately depict

the dense model, and that steps can be taken to make this transform computationally

efficient. Finally, when I compare inversions using a sparse representation (RBFs)

versus a dense representation, I find that the sparse model inversion provides a better

outcome and a faster convergence rate.



Chapter 4

Interpreter guidance for inclusion

discovery

In this chapter I explain how one can modify the implementation of the level set

inversion so that outside input can elegantly guide the inversion by means of expand-

ing the footprint of the gradient update and by intelligently initializing the implicit

surface. This improves the overall convergence rate, which is important because the

operators used to find the search direction are computationally expensive. I finish

by comparing inversion examples that showcase how these types of guidance can im-

prove the convergence rate and allow for model updating that the unmodified level

set algorithm is unable to replicate.

MOTIVATION

An advantage of the level set framework is that the implicit surface can be deformed at

positions that are not on the current boundary, even to the extent that it ‘punctures’

the zero level set and creates a ‘donut hole’ or other topology. This can be useful

for modifying salt bodies, since we may begin with a solid salt body, and then later

deform the implicit surface such that the salt has inclusions inside it.

However, an underlying assumption of the gradient derived earlier is that the salt

model only changes at the boundary of the original shape. This is because the salt is

defined using a Heaviside function approximation, and so the gradient contains a δ(φ0)

term that (in a practical sense) updates at the boundary only. If we only update along

57



58 CHAPTER 4. INTERPRETER GUIDANCE FOR INCLUSION DISCOVERY

the current boundary in this manner, we stifle the possibility of topology changes,

such as the discovery of inclusions that exist away from the current boundary. This

is an inherent limitation of the theory I have derived thus far.

Furthermore, I have yet to discuss any methodology for initializing the implicit

surface prior to inversion other than stipulating that the zero crossing position corre-

lates to the boundary of the salt body with which we wish to begin. As long as the

interior salt region is greater than zero, the Heaviside function indicates it as salt.

This means that beyond the requirement of having the proper sign, there is flexibil-

ity in how one initializes that surface. I leverage this flexibility to create regions of

preferential updating sensitivity.

MODIFICATIONS TO GRADIENT

Because the support of the gradient I previously derived is a subset of the actual

objective function support (which is the entire model domain), I can expand the

support of the masking term to preserve regions inside the current salt boundaries

(possible inclusion regions) without affecting our ability to minimize our objective

function. This means I can modify the masking term in our D operator to allow for

updating outside of the boundary in regions selected by seismic interpreter guidance.

I represent this modification with a new term δ̂(φ0,G), which takes into account the

interpreter guidance G:

D =
[
δ̂(φ0, G)(csalt − b0) I − Ĥ(φ0)

]
.

The G term defines additional regions of our model where one wishes to allow up-

dating to occur, for example, areas where an interpreter suspects inclusions to exist.

INITIALIZING THE IMPLICIT SURFACE USING

INTERPRETER GUIDANCE

However, even if I expand the footprint of the region where updating is allowed, I

can only discover an inclusion if the update perturbs the implicit surface below the

zero-level set. This means the initial height of the implicit surface affects sensitivity
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to updating in different regions. For example, in Figures 4.1(a) and 4.1(b), we can see

how an unguided implicit surface can receive an update that suggests an inclusion,

but not realize that change in the resulting salt model.

However, I can initialize φ as shown in Figure 4.2(a) in order to increase sensitivity

in that area of the salt model. This time, the same update is able to create the

inclusion in the same iteration (4.2(b)). This is especially important when there are

other model regions being updated that have a high impact on the data residual.

In the case of Figure 4.1(a), the linesearch that chooses how strongly to apply the

update will be most influenced by regions (like the top of salt) to which the objective

function is inherently more sensitive, and may never allow for an inclusion update

deeper in the model, even after many iterations.

The opportunity here is to set the height of the implicit surface according to how

likely we believe that an inclusion is present at that position. This allows us to input

a probabilistic mapping of inclusion likelihood into our initialization of φ. The same

interpreter input G from before can be scaled and used to modify the implicit surface

height appropriately. For the Sigsbee model example, Figure 4.3 shows the implicit

surface with interpreter guidance applied, and Figure 4.4 shows it without. In Figure

4.3, we can see light-colored regions of the implicit surface that are not present in

Figure 4.4, and have a lower value than the rest of the interior salt region. This means

updates in this area will be more likely to break past the zero-level set contour and

change the value of Ĥ(φo) to create an inclusion in the model (if the data suggests

that). In the case of erroneous interpreter guidance, the gradient may not create an

inclusion, or if it does, it may fill it back in during later iterations.

DEMONSTRATION ON A GULF OF MEXICO MODEL

In this 2D synthetic example, I use a model where the inclusion is close enough to the

boundary (Figure 4.5(a)) that there is a reasonable chance of the unmodified level

set approach finding the inclusion without any of the interpreter guidance methods

already described. Beginning with a model that has no inclusion (Figure 4.5(b)),

I compare the unmodified method against the partially guided inversion (expanded

gradient only) and the fully guided inversion (expanded gradient and implicit surface

initialization). For both of the guided approaches, I expand the gradient by modifying
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Z [m]

X [m]

Applied update

(a)

Z [m]

X [m]

(b)

Figure 4.1: a) Example of salt model before update applied, and b) after up-
date applied to simple φ surface with no sensitivity preferences. Note that
the update applied in Figure 4.1(a) does not decrease the implicit surface be-
low zero in Figure 4.1(b), resulting in no salt boundary change. [NR]

chapter4/. inclusion-discovery1a,inclusion-discovery1b
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Z [m]

X [m]

Applied update

(a)

Z [m]

X [m]

(b)

Figure 4.2: a) Example of salt model before update applied, and b) after update
applied to φ surface with sensitivity preferences already incorporated into initial
φ surface. Note that the update applied in Figure 4.2(a) decreases the implicit
surface below zero in Figure 4.2(b), resulting in a salt boundary change. [NR]

chapter4/. inclusion-discovery2a,inclusion-discovery2b
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Figure 4.3: Initial implicit surface (guided). Note the three light col-
ored regions where the implicit surface value has been reduced. [ER]

chapter4/. initialphi-fullyGuided-sigsbee

Figure 4.4: Initial implicit surface (unguided). Note the lack of the three light colored

regions that are present in Figure 4.3. [ER] chapter4/. initialphi-unguided-sigsbee
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the masking to allow for updating in the zone where I anticipate that an inclusion

exists (Figure 4.6(a)). The unguided approach has no expanded gradient (Figure

4.6(b)). In the fully guided example, I also initialize the implicit surface using the

same interpreter guidance so that it has a lower value where I anticipate an inclusion

(Figure 4.7(a)), while the unguided and partially guided approaches do not use this

guidance for initialization of the implicit surface (Figure 4.7(b)).

As expected, I find that the guided inversion approaches perform much better

(Figures 4.8 and 4.9) in terms of reducing both the model residual and data residual

norms. In the partially guided approach, the data guides the inversion to the correct

inclusion shape regardless by means of the expanded gradient (see Figure 4.10(b).

However, the implicit surface initialization used in the fully guided approach (Figure

4.10(c)) further improves the convergence rate. Meanwhile, the unmodified method

begins to approach the true answer only after 65 iterations (Figure 4.11). In a case

where the true inclusion position is further from the starting salt boundary, I would

likely have an even worse result using the unmodified approach.

CONCLUSIONS

I discuss the limitations of the standard level set formulation and how it constrains

our ability to create salt models with inclusions. I then introduce the idea of using a

likelihood map generated by interpreters as guidance for the inversion. This guidance

is used to expand the level set gradient footprint, as well as initialize the implicit

surface to create areas of higher sensitivity to updating. Using 2D synthetic exam-

ples, I show how the expanded gradient and the implicit surface initialization both

contribute to speeding up the convergence.
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(a)

(b)

Figure 4.5: True model a) and starting model b) and used for all tests. [ER]

chapter4/. truemodel-gom,startingmodel-gom
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(a)

(b)

Figure 4.6: Implicit surface with interpreter guidance initialization a) and without it

b). [ER] chapter4/. initialphi-fullyGuided-gom,initialphi-unguided-gom
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(a)

(b)

Figure 4.7: Masking term (δ̂(φ0, G)) for guided gradient methods (a),
and masking term (δ(φ0)) for the unguided approach (b). [ER]

chapter4/. guidedMask-gom,unguidedMask-gom
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Figure 4.8: Data residual norm for level set inversion with unmodified approach (dark
blue), partially guided approach (light blue), and fully guided approach (yellow).

[CR] chapter4/. gom-guidanceVsnoguidance-dataNorm

Figure 4.9: Model residual norm for level set inversion with unmodified approach
(dark blue), partially guided approach (light blue), and fully guided approach (yel-

low). [CR] chapter4/. gom-guidanceVsnoguidance-modelNorm
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(a)

(b)

(c)

Figure 4.10: Inverted model after 15 steepest descent iterations using unguided ap-
proach a), partially guided approach b), and fully guided approach c). [CR]

chapter4/. model-15-unguided,model-15-partiallyGuided,model-15-fullyGuided
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Figure 4.11: Inverted model after 65 steepest descent iterations using unmodified
approach. [CR] chapter4/. model-65-unguided
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Chapter 5

Application to 3D Gulf of Mexico

field data

In order to demonstrate the theory and algorithms introduced in previous chapters on

a convincing example, I apply level set inversion to a 3D Gulf of Mexico ocean bottom

node (OBN) data set provided by Shell. I begin this chapter by describing the dataset

and its context, and explore the RTM imagery provided to me for clues related to the

actual earth model. Next, I demonstrate how I identify a subset of nodes to use for my

inversion (based on my own RTM images) to improve computation turnaround. After,

I discuss the necessity of matching amplitudes with the observed data, and discuss

how I modify the objective function by weighting the residuals and incorporate a

kinematic virtual source operator into the gradient calculation. Following, I discuss

the inversion workflow used and the resulting inverted model. To conclude, I show

the improvements in the migrated image that was created using the new (inverted)

velocity model.

DATA SET OVERVIEW

The 3D dataset that I use was acquired in the Gulf of Mexico and provided by

Shell Exploration Inc. using Fairfield Z3000 ocean-bottom nodes (Figure 5.1). The

data was collected in 2010 to improve imaging around the salt by leveraging wide-

azimuth acquisition with ocean bottom node technology. I was provided with the

pressure, horizontal, and vertical components of the data. The field sits in the Garden
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Banks region about 362km south-west of New Orleans, Louisiana (Figure 5.2) in

approximately 830 m of water, with an airgun shooting footprint covering an area of

about 48x48km. The reservoir itself sits beneath thick layers of salt more than 6 km

below the sea floor, and production began on the field in 2014. In the region near the

salt diapir, the node footprint coverage is just enough to cover the salt (see Figure

5.5). The area of production is centered around a salt protrusion that nearly reaches

the water bottom (Figure 5.3).

Figure 5.1: Fairfield Z3000 ocean
bottom node used to record data.
[NR] chapter5/. Z3000-node

Figure 5.2: Map showing approximate project location in the Garden Banks region
of the Gulf of Mexico. [NR] chapter5/. overview-map

Along with the data, Shell provided a Reverse Time Migration (RTM) image

cube produced from the downgoing pressure data. The approach they used is called

mirror imaging, since all downgoing data recorded on the OBN units (besides the

direct arrival) is a result of the mirror-like reflection of subsurface events off the

ocean surface (Grion et al., 2007). When looking at this mirror-image, one can see

an inclusion in the salt at about 1,700m deep, with an inline position of 214,800m
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Figure 5.3: Oblique view of the salt body that is most prominent in the dataset I
investigate. [NR] chapter5/. cardamom-salt-diagram

and crossline position of 49,600m (see Figures 5.6, 5.7, 5.8). When comparing against

the velocity model provided (Figures 5.9(a), 5.9(b)), one can see that the inclusion

observed was not included in the velocity model. I intend to show that my level set

FWI inversion workflow can help recover a velocity model that takes this inclusion

into account, and correspondingly produces a more accurate RTM image.

OPTIMIZING INCLUSION ILLUMINATION

Because of limited computational resources, I am interested in minimizing the num-

ber of wavefield propagations needed to perform inversion. By taking advantage of

reciprocity between the nodes and sources for the hydrophone component, one can

change the modeling to use node positions for the sources, and shot positions at the

ocean surface as recording locations (Knopoff and Gangi, 1959). While this does

assume the signature of shots in the field experiment are consistent with each other,

I find that this assumption is valid, and exploit the advantages of reciprocity in this
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Figure 5.4: Map showing the boundary of the extent of the airgun shooting (green

line) and the OBN positions (black points). [NR] chapter5/. full-acquisition-map
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Crossline [m]
46000 48000 50000 52000 54000

218000
216000

214000
212000

210000

Inline [m
]

Figure 5.5: Map showing acquisition geometry in the greater region surrounding the
zone where inversion and imaging were performed (depth slice at 1,800m). Red is the
salt body with approximate inclusion location, black dots are node positions, and grey
dots are shot positions. One easily can see where the boats divert around a production
platform at 211,700m inline position. [NR] chapter5/. salt-acquisition-mapT
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Figure 5.6: Original mirror image RTM provided by Shell; front view. [NR]

chapter5/. original-shell-rtm-FRONT

Figure 5.7: Original mirror image RTM provided by Shell; side view. [NR]

chapter5/. original-shell-rtm-SIDE
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Figure 5.8: Original mirror image RTM provided by Shell; top view. [NR]

chapter5/. original-shell-rtm-TOP

(a) (b)

Figure 5.9: Velocity model used for migration with 10m grid spac-
ing. Figure (b) at 1,700m deep; Figure (a) at inline position 214,800m.

chapter5/. migvel-top,migvel-side
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dataset.

While I limit the propagation domain to a ∼7.5x7.5km region centered around

the inclusion, I ignore nodes that do not readily contribute to illumination in the

inclusion area of interest (AOI) (Figures 5.10 and 5.11). I do this by performing

RTM with all the nodes and shots in my model domain, and use the downgoing

component of the hydrophone data. Next, I select with a masking function the AOI

(in our case, immediately around the salt inclusion). After, I cross-correlate the RTM

image produced by each node-gather with the area of interest from the full-stack RTM

image. This gives me information about which nodes correlate most strongly with

the full-stack image. I then sort the RTM node-gather images by this correlation

statistic, and select those that have the highest correlation while ignoring those that

do not.

Figure 5.10: Area of interest (cyan) used in cross-correlation overlaid on full-stack

mirror RTM image. Slice at depth 1,770m. chapter5/. ideal-aoi-top

By comparing the RTM images using higher numbers of nodes (Figures 5.12,
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Figure 5.11: Area of interest (cyan) used in cross-correlation overlaid on full-stack

mirror RTM image. Slice at inline position 214,800m. chapter5/. ideal-aoi-side
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5.13, 5.16, 5.17) with those using fewer nodes (Figures 5.14, 5.18, 5.15, 5.19), it

is easy to see how image quality decreases as nodes are removed. The goal is to

choose the lowest number of nodes that still correspond to a reasonably good RTM

image. I ultimately chose to use the node subset that comprises the top 35 percent of

(positively correlated) illumination contribution to the region around the inclusion,

which amounts to 78 of the 288 original nodes being used.

Figure 5.12: RTM image from stacking top 50 percent of pos-
itively correlated node-gather images (214,800m inline position).

chapter5/. selective-RTMdown-side-stack-50

PHASE ONLY OBJECTIVE FUNCTION AND ITS

IMPLICATIONS

Convergence using the level set objective function as I have formulated it will be

partly determined by the ability of the modeling operator to match the phase and

amplitudes in the observed data. The Green’s function of the earth produces an elastic

response, but the modeling operator I use assumes an acoustic response. I chose to

model acoustically to avoid the added computational expense of modeling elastic

waves. This means that my operator will have difficulty matching the amplitudes
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Figure 5.13: RTM image from stacking top 35 percent of pos-
itively correlated node-gather images (214,800m inline position).

chapter5/. selective-RTMdown-side-stack-35

Figure 5.14: RTM image from stacking top 25 percent of pos-
itively correlated node-gather images (214,800m inline position).

chapter5/. selective-RTMdown-side-stack-25
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Figure 5.15: RTM image from stacking top 15 percent of pos-
itively correlated node-gather images (214,800m inline position).

chapter5/. selective-RTMdown-side-stack-15

Figure 5.16: RTM image from stacking top 50 percent of positively correlated node-
gather images (1,770m inline position). chapter5/. selective-RTMdown-top-stack-50
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Figure 5.17: RTM image from stacking top 35 percent of positively correlated node-
gather images (1,770m inline position). chapter5/. selective-RTMdown-top-stack-35

Figure 5.18: RTM image from stacking top 25 percent of positively correlated node-
gather images (1,770m inline position). chapter5/. selective-RTMdown-top-stack-25
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Figure 5.19: RTM image from stacking top 15 percent of positively correlated node-
gather images (1,770m inline position). chapter5/. selective-RTMdown-top-stack-15

found in the observed data, even if I have the exact earth model.

For this reason, I modify the objective function to make it agnostic to amplitude

information and become primarily based on minimizing kinematic errors. I follow

the work done in Shen (2010) and adopt an objective function (ψ) that includes

trace-by-trace normalization of the data:

ψ(m) =
1

2

∑
s,g

‖rd(s, g)‖2 (5.1)

ψ(m) =
1

2

∑
s,g

∥∥∥∥∥ F (m, s, g)√
F (m, s, g)TF (m, s, g)

− dobs(s, g)

dobs(s, g)Tdobs(s, g)

∥∥∥∥∥
2

, (5.2)

where rd is the normalized residual, m is the velocity model, dobs is the field data,

F (m, s, g) is the acoustic modeling operator, and s and r are the shot and receiver

indices respectively. I take the derivative of this new objective function to find a new

gradient calculation:
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Jf (m) = rTd (s, g)

∂

(
F (m,s,g)√

F (m,s,g)TF (m,s,g)

)
∂m

(5.3)

Jf (m) = rTd (s, g)

∂

(
F (m,s,g)√

F (m,s,g)TF (m,s,g)

)
∂F (m, s, g)

∂F (m, s, g)

∂m
. (5.4)

I represent this as a series of operators:

JTf (m) = BTP T rd(s, g), (5.5)

where B is the born operator, and P is a new operator to account for the modifi-

cations made to the objective function. For this reason, the Gauss-Newton Hessian

computation is also altered to account for P :

HGN = PBBTP T . (5.6)

INVERSION IMPLEMENTATION

Using the nodes selected as described in the previous section, I ran an inversion

using a starting velocity model very similar to the smooth one used in migration

(Figures 5.20(a), 5.20(b)). This model extends into negative depth (above the water

surface) since mirror wave propagation was used in the inversion. The algorithm

used alternates between updating the salt boundary (level set) and the background

velocity for each non-linear (outer-loop) iteration. Within each outer-loop iteration is

an iterative inversion to find the search direction in either the level set or background

velocity space using the Gauss-Newton Hessian. After this, a line search finds the

optimal scaling parameter to apply to the search direction and then update the model.

The full workflow used is described in Algorithm 2. For the data itself, I performed

designature of the hydrophone and vertical components, PZ-summation to create

the downgoing separated data, and a shaping filter to remove the bubble. These

pre-processing steps are described in detail in Appendix A and B.

Since the RTM images I created (Figures 5.10, 5.11) and those from Shell (Figures
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(a)

(b)

Figure 5.20: Inversion starting velocity model side view (a) and top view (b).

chapter5/. initvel-side,initvel-top
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5.6, 5.7,5.8) agree on the presence of some kind of inclusion in the salt, I begin the

inversion by preferentially initializing the implicit surface in the region where I believe

it to be (Figures 5.21, 5.23). For the first non-linear iteration, I also use guidance to

extend the gradient footprint as described in chapter 4 (see Figure 5.24(a)). Because

of this guidance, the first inversion iteration is capable of pushing the implicit surface

value below zero to create a level set marking the inclusion. However, for following

iterations, I do not use interpreter guidance to extend the gradient. In the case where

an inclusion takes shape because of the first update, then the standard level set

gradient is active around the inclusion edge and is sufficient to adjust it. In following

iterations, the gradient can close or open the inclusion further without the need for

an extended gradient (see Figure 5.24(b)). It is only the first iteration where that

extension is necessary. In the case where the first update does not begin an inclusion,

I assume that the data does not support the existence of one after all.

Because the nodes chosen for inversion are focused on illuminating the inclusion

area, I limit the extent of the level set updating to the inclusion area of interest

(see Figure 5.22). By doing this, I reduce spurious updating of the salt boundary

in regions that receive poor illumination by the chosen acquisition geometry, which

would likely be driven by artifacts in the gradient.

After running this alternating inversion algorithm for 35 iterations, I find that an

inclusion was created in the model, and that the background velocity model (which

includes the inclusion velocity) has been updated in a manner that is more geologically

consistent (Figures 5.25, 5.26). Taking the difference between the beginning and

final models gives a better view of the updates made, highlighting a shift in the

ocean bottom interface, and adding some higher velocity zones near the top of salt

(Figures 5.27, 5.28). By looking at the difference between the starting and final

background velocity model, we can see that the inclusion velocity has decreased about

130[m/s] (from a starting guess velocity of 4250[m/s]) (Figures 5.29, 5.30). The

objective function value shows a steady decrease over non-linear iterations, with the

predominant decreases occurring from updates in the background velocity, which have

a more significant impact on events in the data space (compare Figure 5.31 and 5.32).

In order to validate an actual improvement in the velocity model, I perform RTM

on both the initial model (unsmoothed) and the final model after inversion and com-

pare the two images. The area where one would expect to see the inclusion make the
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Figure 5.21: Initial implicit surface (214,800m inline position).

chapter5/. phi-side-it-0

Figure 5.22: Implicit surface after 35 iterations of inversion (214,800m inline position).

chapter5/. phi-side-it-35
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Figure 5.23: Initial implicit surface (1,700m depth position). chapter5/. phi-top-it-0
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(a)

(b)

Figure 5.24: Masking used for first level set iteration (a) and for second level set
iteration (b). Masking in (a) is based off of δ(φ), while masking in (b) is based off of

δ(φ,G). chapter5/. saltmask-side-it-0,saltmask-side-it-2
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Algorithm 2 Alternating Gauss-Newton Hessian updating algorithm

1: procedure LevelSetInversion-order2( dobs,φ0,b0 )
2: for i in (1,N) do
3: dsyn(i) = F(φi, bi−1)
4: 4di = dobs − dsyn(i)
5: gi = DTBT4di
6: if EvenNumberedIteration then
7: 4λi = CGGNHessianInvSalt(gi)
8: 4φi = D(4λi)
9: 4bi = 0

10: α = linesearch(4φi)
11: β = 0
12: else
13: 4φi = 0
14: 4bi = CGGNHessianInvBack(gi)
15: α = 0
16: β = linesearch(4bi)
17: end if
18: φi = φi−1 − α · 4φi
19: bi = bi−1 − β · 4bi
20: end for
21: Return m(λN, bN)
22: end procedure
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Figure 5.25: Velocity model after 35 iterations (214,800m inline position).

chapter5/. velmodel-side-it-35
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Figure 5.26: Velocity model after 35 iterations (1,700m depth position).

chapter5/. velmodel-top-it-35
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Figure 5.27: Full velocity model difference between model at 35 iterations and starting
model (214,800m inline position). chapter5/. velmodel-diff-side-35
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Figure 5.28: Full velocity model difference between model at 35 iterations and starting
model (1,700m depth position). chapter5/. velmodel-diff-top-35
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Figure 5.29: Background velocity model difference between model at 35 iterations
and starting model (1,700m depth position). chapter5/. velback-diff-top-35
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Figure 5.30: Background velocity model difference between model at 35 iterations
and starting model (214,800m inline position). chapter5/. velback-diff-side-35
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Figure 5.31: Objective function over non-linear (outer-loop) iterations.

chapter5/. inv-full-objfunc

Figure 5.32: Contribution of level set updating to the objective function decrease over
non-linear (outer-loop) iterations. chapter5/. inv-salt-objfunc
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most difference would be the area directly below it. I find that coherency of some of

the sediment layers is improved in the region where they meet the salt flank (compare

Figures 5.34(a) and 5.34(b)). In order to determine how much influence the inclusion

alone has on the image, I performed RTM with a model using the salt and inclusion

updates, but with the original background velocity for areas outside the salt (Figure

5.35). I find that the image coherency is still improved on a number of reflectors

below the inclusion. None of this level of detail is present in the original Shell RTM

image (Figure 5.36). Similar improvements in the RTM image can be found below the

inclusion at inline position 214,950m (compare Figures 5.38(a), 5.38(b), and 5.39).

Figure 5.33: Difference between final velocity model and starting velocity model
(214,800m inline position). chapter5/. inc-zone-vel-diff-214800
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(a)

(b)

Figure 5.34: Migrated RTM image in inclusion zone at 214,800m inline position
using starting velocity model (a) and with velocity model after 35 iterations (b).

chapter5/. inc-zone-before-214800,inc-zone-after-214800
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Figure 5.35: Migrated RTM image in inclusion zone using final salt model after
35 iterations (214,800m inline position), but using the original background velocity.

chapter5/. inc-zone-after2-214800
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Figure 5.36: Migrated RTM image in inclusion zone provided by Shell (214,800m

inline position). chapter5/. inc-zone-shell-214800
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Figure 5.37: Difference between final velocity model and starting velocity model
(214,950m inline position). chapter5/. inc-zone-vel-diff-214950

The area above the salt diapir is mostly improved by the background velocity

model updating, but also seems to show a fault feature (see Figure 5.42(b)) that is

not evident in the Shell RTM (Figure 5.41) or in the initial RTM image that I created

(Figure 5.42(a)). A fault at this position could be produced from the upward stresses

created by the salt diapir below.

CONCLUSIONS

In order to evaluate the effectiveness of shape optimization with level sets on a in-

dustry level data, I applied my method on a Gulf of Mexico OBN dataset from Shell.

The data suggests an inclusion in the salt model, which makes it an ideal example

for demonstrating the effectiveness of interpreter guidance as well. By intelligently

selecting nodes that most effectively illuminate the inclusion area, I can temper the

computational expense of the inversion. I explain how the phase-only objective func-

tion can alleviate the problems arising from amplitude differences between the field

data and acoustically modeled data. I then invert for the level set shape and back-

ground velocity model using a Gauss-Newton Hessian inversion algorithm, and find



104 CHAPTER 5. APPLICATION TO 3D GULF OF MEXICO FIELD DATA

(a)

(b)

Figure 5.38: Migrated RTM image in inclusion zone at 214,950m inline position
using starting velocity model (a) and with velocity model after 35 iterations (b).

chapter5/. inc-zone-before-214950,inc-zone-after-214950
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Figure 5.39: Migrated RTM image in inclusion zone using final salt model after
35 iterations (214,950m inline position), but using the original background velocity.

chapter5/. inc-zone-after2-214950
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Figure 5.40: Difference between final velocity model and starting velocity model
(214,820m inline position). chapter5/. top-zone-vel-diff-214820

Figure 5.41: Migrated RTM image in top of salt zone provided by Shell (214,820m

inline position). chapter5/. top-zone-shell-214820
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(a)

(b)

Figure 5.42: Migrated RTM image in top of salt zone at 214,820m inline position
using starting velocity model (a) and using velocity model after 35 iterations (b). (A)
is the position of an artifact visible in Figure 5.42(a). (B) is the position of a potential

fault, visible in (b). chapter5/. top-zone-before-214820,top-zone-after-214820
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that it recovers an inclusion shape consistent with the RTM images. When I repeat

the RTM images using the new velocity model, I find that I gain more coherency in

the sediment layers directly below the inclusion that terminate against the salt flank,

as well as other improvements near the top of salt and elsewhere. This demonstrates

the efficacy of the method for application to field datasets.



Appendix A

Designaturing

FROM CIRCUITS TO RESPONSE CURVES

Hydrophones

The basic circuitry of a hydrophone has a capacitor (the peizo crystal that deforms

under pressure) and the inherent resistance of the rest of the circuit that can be

considered as a single resistor.

V Vin
out

Capacitor

Resistor

Figure A.1: Basic circuit diagram of a hydrophone. [NR] appendix1/. hydro-circuit

We can represent figure (A.1) with several equations that balance the current:

109
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Vin − Vout = Q/C (A.1)

Vout = IR (A.2)

I =
dQ

dt
(A.3)

Equation A.1 is the voltage on the capacitor, equation (A.2) is the current in the

resistor, and equation (A.3) is the same current in the capacitor itself. What we are

interested in is the output voltage Vout and how it relates to the input voltage for

different frequencies:

Vout = f(ω,RC)Vin (A.4)

(A.5)

To derive this formulation, we begin by taking the time derivative of equation (A.1)

in order to eliminate Q:

(Vin − Vout) = Q/C

d

dt
(Vin − Vout) =

dQ

dt
/C,

and then combine with equation (A.3):

d

dt
(Vin − Vout) = I/C,

To eliminate I, we substitute in I = Vout/R from equation (A.2):

d

dt
(Vin − Vout) = Vout/RC
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To calculate Vin from Vout, move all Vout to the right side:

dVin
dt
− dVout

dt
= Vout/RC (A.6)

dVin
dt

=
dVout
dt

+ Vout/RC (A.7)

We can solve equation A.7 in the fourier space by making the substitution d
dt

= iω:

iωVin = iωVout + Vout/RC

Vin = Vout +
Vout
iωRC

Vin = Vout

(
1 +

1

iωRC

)
iωRCVin = Vout (iωRC + 1)

This means that in Fourier space we can define our transfer function as:

f(ω,RC) =
iωRC

(iωRC + 1)
(A.8)

from which we can find the original input data by solving equation (A.8) for Vin.

From this function, we can easily find the amplitude scaling and the phase shifting

that the instrument creates in the recorded data:

φ(ω) = tan−1

[
realf(ω,RC)

imagf(ω,RC)

]
(A.9)

(A.10)

Alternatively, if we aren’t interested in actually analyzing the transfer function,

but just want to deconvolve our instrument response from our recorded data, we can

solve for Vin from equation A.7 using a finite difference approach:
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Vin[i]− Vin[i− 1]

dt
=
Vout[i]− Vout[i− 1]

dt
+
Vout[i] + Vout[i− 1]

2RC

Vin[i] = Vin[i− 1] + Vout[i]− Vout[i− 1] +
(Vout[i] + Vout[i− 1])dt

2RC

Geophones

Vout

ResistorInduction 
coil

Figure A.2: Basic circuit diagram of a geophone. [NR]

appendix1/. geophone-circuit-0

For geophones, instead of having a piezo crystal modulate an input voltage, we

have a mechanical system that creates voltage by converting motion of a magnet

through a coil.

The motion x(t) that occurs in the coil produces a voltage, and of course the

circuit has some general resistance to account for. However, the most significant part

of the geophone response curve comes from the equations of motion for the magnet

relative to the coil.

Figure A.3 shows the internal and external forces at play in a vertical component

geophone, and Figure A.4 shows the movement of the magnet relative to the instru-

ment frame. We can begin our derivation of the instrument response by writing a

force balance equation to balance the external (left hand side) and internal forces

(right hand side).
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Geophone casing

Magnet

Coil spring

Figure A.3: Diagram of internal and external static forces. [NR]

appendix1/. geophone-physics
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Figure A.4: Diagram of vertical component geophone responding to ground motion.
u is the motion of the earth, and x is the motion of the magnet relative to the coil.
[NR] appendix1/. geophone-physics2

m
∂2

∂t2
(u+ x) = −kx (A.11)

Where m is the mass of the magnet, and k is the spring constant. We can re-define

k according the natural frequency of the spring and mass system:

k = ω2
0m,

which gives us the equation of harmonic motion:

∂2x

∂t2
+ ω2

0x = −∂
2u

∂t2
(A.12)

Equation A.12 defines an undamped system, which means it would be overcome by

frequencies close to the natural frequency of the system (ω0). In order to allow for

the recording of other frequencies, we add a dampening term that is proportional to

the velocity of the magnet:

∂2x

∂t2
+ ω2

0x+ 2ω0λ
∂x

∂t
= −∂

2u

∂t2
, (A.13)

where λ is the dampening ratio. A simple way to solve equation A.13 is to use

the Fourier transform, which allows us to subsitute iω with ∂
∂t

. Since the actual
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measurement that we record is voltage, and voltage is a function of the velocity of

the magnet, we ultimately would like to solve for ∂x
∂t

:

∂

∂t

∂x

∂t
+ ω2

0x+ 2ω0λ
∂x

∂t
= −∂

2u

∂t2

iω
∂x

∂t
− ω2

0

iω

∂x

∂t
+ 2ω0λ

∂x

∂t
= ω2u

This means we can relate the output voltage (∂x
∂t

) with the input acceleration of the

earth (∂
2u
∂t2

):

∂x
∂t
∂2u
∂t2

=
−iω

−ω2 + ω2
0 + i2ωω0λ

(A.14)

DE-SIGNATURING DATA

Application to Cardamom data

In order to implement equations A.9 and A.14, we perform the division in the Fourier

domain. Our algorithm works according to the following workflow:

Algorithm 3 Remove instrument response from data

1: procedure ResponseRemoval(data,response)
2: for each trace i in data do
3: temp(i) = FFT(data(i))

4: temp(i).amp =
√

(temp(i).imag)2 + (temp(i).real)2

5: temp(i).phase = tan−1
(
temp(i).imag
temp(i).real

)
6: temp2(i).phase = temp(i).phase− response.phase
7: temp2(i).amp = temp(i).amp

response.amp

8: output(i) = FFT−1(temp2(i))
9: end for

10: Return output
11: end procedure

We perform the actual instrument response removal in the Fourier domain, and

then convert back to the time domain. The response curves are functions of frequency
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as we describe in equations A.13 and A.14. We can see the impact of the response

removal in Figure A.5 and Figure A.6. Further, the difference in the spectra can

be seen clearly in Figures A.7 and A.8, where the lower frequencies are noticably

boosted.

Figure A.5: Hydrophone data original (left), designatured (mid-
dle) and difference (right). Clipped to emphasize differences. [ER]

appendix1/. hydro-response-removal-comp
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Figure A.6: Geophone data original (left), designatured (middle)
and difference (right). Clipped to emphasize differences. [ER]

appendix1/. geophone-response-removal-comp

Figure A.7: Geophone data spectra before response removal (left), and after (right)

for each trace. [ER] appendix1/. spectra-vert-compare
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Figure A.8: Hydrophone data spectra before response removal (left), and after (right)

for each trace. [ER] appendix1/. spectra-hydr-compare



Appendix B

Data Pre-processing

In order to successfully perform an FWI style of inversion with our dataset, we first

need to apply a standard processing flow. An important goal to keep in mind is that

we ultimately want to calculate a ‘good’ residual for use in our inversion. To do

this, we need to have some similarity between our synthetically modeled data and the

observed data. One feature in our observed data that can be difficult to accurately

recreate in our synthetic data is the bubble that follows the initial source injection.

For this reason, we choose to remove it from the observed data.

This appendix intends to show that a straight-forward way to simultaneously

remove the bubble and increase similarity between our observed and synthetic data

is to shape the observed data to the source wavelet we use in our synthetic modeling.

To do this, we first perform separation of the up and downgoing components from

the hydrophone data using PZ-summation. Next, we extract a representative wavelet

from the observed data first-arrival, and then estimate a filter that shapes it to the

synthetic data source wavelet. We then apply this filter to the entire dataset, resulting

in a debubbled dataset that has a high degree of phase similarity with our synthetic

data.

PZ-summation

Since the dataset was recorded on ocean bottom nodes (OBN), the first arrival in

the hydrophone component contains an up-going ocean bottom reflection that nearly

coincides with the downgoing direct arrival event. This means the wavelet we extract

119
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from the first arrival event will have an ocean bottom event mixed into it. To get an

accurate estimated source wavelet, we need to isolate the downgoing direct arrival.

For this reason, we first need to perform PZ-summation before we do any source

wavelet estimation.

PZ-summation is a technique used to separate the up and down going components

of hydrophone data (figure B.1) using the complimentary information found in the

vertical component data (figure B.2). We base our application of this processing

step on the approach and assumptions used by Biondi and Levin (2014) (originally

based on Melbo et al. (2002)), which represents the up and downgoing data with the

following equations:

Pup(f, k) =
1

2
P (f, k) + a(f)

ρ

2q(f, k)
Z(f, k), (B.1)

Pdown(f, k) =
1

2
P (f, k)− a(f)

ρ

2q(f, k)
Z(f, k), (B.2)

where P is the designatured pressure data, Z is the designatured vertical data, a(f)

is the calibration filter, ρ is the water density, and q is the vertical slowness of the

water layer defined as:

q(f, k) =
√
c−2 − p2(f, k). (B.3)

In this case, c is the water velocity at the receiver position and p is the ray parameter.

One event in the data we can leverage is the refraction event, which by definition

is an upgoing event. Furthermore, the refraction event is naturally separated in the

time domain at far offsets, making it easy to isolate (see figures B.3 and B.4).

We can estimate a filter â(f) to apply to the windowed refraction event such that it

minimizes its energy. However, the inverted â(f) contains the effect of the vertical

slowness and water density. We can represent this with equation B.4:

â(f) = a(f)
ρ

2q(f, k)
. (B.4)

However, we assume the water velocity and density are constant throughout, and
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Figure B.1: 2D line receiver gather example from designatured and bandpassed hy-
drophone data. [CR] appendix2/. inputHydro
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Figure B.2: 2D line receiver gather example from designatured and bandpassed geo-
phone data. [CR] appendix2/. inputGeo
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Figure B.3: Hydrophone data window (isolating the refraction events) used for esti-

mating PZ-summation filter. [CR] appendix2/. Pwindow
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Figure B.4: Geophone data window (isolating the refraction events) used for estimat-

ing PZ-summation filter. [CR] appendix2/. Zwindow
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that the ray parameter is constant in the window we minimize. We can then remove

this effect from â(f) to get a(f). We can estimate the ray parameter p in the rest

of the data which allows us to reuse a(f) to separate the upgoing (figure B.5) and

downgoing (figure B.6) components using equations B.1 and B.2.

Figure B.5: Upgoing component output from PZ-summation. [CR]

appendix2/. upgoing

Debubble and wavelet shaping

Picking the data wavelet

Once we have the downgoing component of the hydrophone data separated, we can

estimate a source wavelet from a near-offset subset of it (figure B.7). First, we perform

hyperbolic moveout (HMO) for each node gather to align the first arrival event across

all offsets (figure B.8). We can then stack across all offsets to find a single wavelet
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Figure B.6: Downgoing component output from PZ-summation. [CR]

appendix2/. downgoing
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representative of that node gather (figure B.10). To increase our averaging further,

we can stack across all node gathers (figure B.11). To do this however, we need to

align the first arrival event in each node gather to a common time position (t0 = 0

for example). This means shifting based on the relative depth of each of the nodes

respectively. We perform this shifting and stacking across nodes to find a final wavelet

representative of the average of the sources actually used. In this wavelet we notice

the bubble signature as periodic, fading pulses.

Figure B.7: Near offset ( < 1000m) subset of figure B.6 chosen for estimating observed

source wavelet. [CR] appendix2/. UncorrectedNear

Finding the shaping filter

In our synthetic data, we model using a simple 8[Hz] central frequency Ricker wavelet

(see figure B.9). When we compare against the averaged observed data wavelet (figure

B.11), we can see that there are some significant differences that warrant the use of a
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Figure B.8: 1500 m/s HMO correction applied to data in figure B.7. [CR]

appendix2/. HMOcorrected

Figure B.9: Wavelet used in synthetic data modeling. [CR] appendix2/. synWavelet



129

Figure B.10: Wavelet produced from stacking across traces in figure B.8. [CR]

appendix2/. Node3StackedWavelet

Figure B.11: Observed source wavelet built from average of wavelets ex-
tracted from 381 node gathers (just as in figure B.10). [CR]

appendix2/. AverageStackedWavelet
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Figure B.12: Example trace before (red) and after (blue) shaping filter applied. [CR]

appendix2/. ShapedTraceCompare



131

shaping filter. We estimate the filter that shapes the averaged observed data wavelet

to the synthetic wavelet (see Yilmaz (1987)), and then apply to the full dataset (figures

B.13 and B.14). When we compare figure B.6 with figure B.13, we can see that the

bubble removal is effective, and that the frequency and phase content has become

more similar to what we would expect given the lower frequency Ricker wavelet to

which we match.

Figure B.13: Downgoing hydrophone data after shaping filter applied. [CR]

appendix2/. ShapedDOWNData
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Figure B.14: Upgoing hydrophone data after shaping filter applied. [CR]

appendix2/. ShapedUPData
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