
58 THE LEADING EDGE January 2018 Special Section: Advancements in 3D seismic processing

Deep-learning tomography

Abstract
Velocity-model building is a key step in hydrocarbon explo-

ration. The main product of velocity-model building is an initial
model of the subsurface that is subsequently used in seismic
imaging and interpretation workflows. Reflection or refraction
tomography and full-waveform inversion (FWI) are the most
commonly used techniques in velocity-model building. On one
hand, tomography is a time-consuming activity that relies on
successive updates of highly human-curated analysis of gathers.
On the other hand, FWI is very computationally demanding
with no guarantees of global convergence. We propose and
implement a novel concept that bypasses these demanding
steps, directly producing an accurate gridding or layered velocity
model from shot gathers. Our approach relies on training deep
neural networks. The resulting predictive model maps relation-
ships between the data space and the final output (particularly
the presence of high-velocity segments that might indicate salt
formations). The training task takes a few hours for 2D data,
but the inference step (predicting a model from previously
unseen data) takes only seconds. The promising results shown
here for synthetic 2D data demonstrate a new way of using
seismic data and suggest fast turnaround of workflows that
now make use of machine-learning approaches to identify key
structures in the subsurface.

Introduction
Exploration workflows are under great pressure due to such

factors as the need to improve performance at lower costs and
the ongoing avalanche of data coming from new generations
of sensors and modern acquisition systems. Some of the key
steps in exploration workflows depend on domain experts.
Their time is precious and limited, but the amount of data that
needs to be thoroughly analyzed is increasing. In addition, the
complexity of some exploration areas requires extra attention.
The problem can be summarized as an explosion of increasingly
complex data.

Geoscientists need to be empowered with new tools that digest
as much data as possible before a human expert intervenes. The
high-performance-computing revolution (BizTech, 2014) shares
the same purpose but essentially targets processing speed rather
than any other specific step of the exploration workflow. Advanced
data-oriented algorithms look to improve every step of the work-
flow through a deeper understanding of the data, from extracting
the relevant information to having a better awareness of the rest
of the steps in a more integrated fashion rather than through silos
of knowledge.

What we propose in this work goes beyond what is becoming
the new norm, which is machine-learning techniques being
applied to specific well-known steps of the workflow. This same

Mauricio Araya-Polo1, Joseph Jennings1,2, Amir Adler3, and Taylor Dahlke2

magazine carried a special section on how analytics and machine
learning (TLE, March 2017) are paving inroads in different
aspects of the exploration workflow, but most work is still
focused on identifying features or attributes in migrated images
(Hale, 2012; Hale, 2013; Guillen, 2015; Addison, 2016;
Bougher and Herrmann, 2016), therefore helping to tackle the
interpretation step. Very little has been proposed to help directly
with processing or velocity-model building. In general, the
literature is abundant with refinements to this workflow, but
it remains largely untouched.

Our method produces velocity models directly from raw
seismic data in a way that is alternative to classic tomography.
It is also automatic and without the need for human intervention.
The machine-learning technique employed follows recent work
(Zhang et al., 2014; Frogner et al., 2015; Dahlke et al., 2016;
Araya-Polo et al., 2017) that demonstrates this new approach,
which uses a deep neural network (DNN) statistical model to
transform raw-input seismic data directly to the final mapping
in 2D or 3D. The computational costs come mostly from training,
which happens only once up front. After training, velocity-model
reconstruction costs are negligible, thus making the overall
computing costs a fraction of that needed for traditional tech-
niques, in particular those involving partial-differential-equa-
tion-based simulation. One key element of our method is the
use of a feature based on semblance that predigests velocity
information for the training process. This feature extraction step
is automated and not subject to human bias.

In terms of deployment modes, we foresee models being
trained with specific data belonging to different major forma-
tions, such as unconventional, presalt, or subsalt. The main
concerns relate to the generalization error, which basically sets
the limits on how much a predicting model can accurately
predict for unseen data. Finally, regarding exploration work-
flows, one can imagine this technique being used just after
data acquisition. Then, trained models can be loaded up to the
cloud from which interpreters can pull realizations, thus per-
forming online scenario testing when feeding back their model
modifications to applications such as the one proposed in
Araya-Polo et al. (2017). This imagined workflow is fully
machine learning based, flexible, and with the domain experts
at the center of the critical decision-making process. If it is
accompanied by the proper resourcing, this workflow approaches
a real-time ubiquitous experience.

In this paper, we start by explaining the basics of the problem
followed by discussions on deep learning. Next, we introduce the
general workflow used by our machine-learning system, which
we termed GeoDNN. Then, we discuss our results and experiments
with 2D synthetic data. Finally, conclusions with directions for
future work are presented.

1Shell International Exploration & Production Inc.
2Stanford University.
3MIT.

https://doi.org/10.1190/tle37010058.1.

D
ow

nl
oa

de
d

12
/1

4/
18

 to
 1

04
.2

20
.4

5.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://crossmark.crossref.org/dialog/?doi=10.1190%2Ftle37010058.1&domain=pdf&date_stamp=2017-12-29

January 2018 THE LEADING EDGE 59Special Section: Advancements in 3D seismic processing

Problem formulation
Formally, the traditional tomography problem can be expressed

as the minimization of the following objective function:

J m() = dm m() -dobs 2

2 , (1)

where m is the optimal velocity model that minimizes J(m), dm is
a data vector modeled from a nonlinear modeling operator f (m),
and dobs is the recorded data vector. While it is common to minimize
the sum of the squares (represented here by the square of the L2
norm), other objective functions may be used. Note that in the
case of traveltime tomography, the data vectors contain traveltimes
that are modeled via the solution of the eikonal equation. Alter-
natively, in the full-waveform inversion (FWI) case, the data
contain the seismic traces that are modeled via the numeric solution
of the wave equation.

As is apparent by the nonlinear relationship between dm
and m, this inversion is nonlinear. Additionally, since for
reflection seismic surveys dobs contains surface seismic data, it
does not contain all of the necessary information to define a
velocity model that varies arbitrarily with depth and along the
horizontal directions (Biondi, 2006). This means that, in
general, minimizing the above equation is an ill-posed problem.
While in using a deep-learning approach to tomography we
do not rely on numerical solutions of the eikonal or wave
equations, we still need to consider the nonlinearity and ill-
posedness of this inverse problem.

The application of neural networks for velocity estimation
and for geophysical applications in general is not new (van der
Baan and Jutten, 2000). The first use of neural networks for
velocity estimation was proposed by Röth and Tarantola (1994)
in which neural networks are used to estimate 1D velocity
functions from shot gathers. Nath et al. (1999) use neural
networks for traveltime crosswell tomography. After training
their network using traveltime maps and synthetic velocity
models as training data, the network was then used to tomo-
graphically estimate velocities for crosswell data acquired in
West Bengal, India. Although the problem we attempt to solve
is similar, our work is novel in that it makes use of the recent
development of more advanced DNN architectures; moreover,
we use all of the data (not only selected traveltimes) to train
our DNN and perform tomography.

Machine learning of tomography operators via DNNs
Using machine-learning algorithms is an appealing alternative

to classic seismic processing, and among this class of algorithms,
we have implemented the tomography operator using a DNN.
The tomography operator is learned from seismic training data
using statistical-learning (Hastie et al., 2001) principles. The
tomography process is depicted in Figure 1. It performs reconstruc-
tion of the velocity model from raw seismic traces or from features
computed from raw seismic traces (as part of the tomography
operator). In a real-life application, the ground-truth model is
unavailable, and the tomography operator is designed to minimize
the difference between the reconstructed velocity model and the
(unavailable) ground-truth one.

In the statistical learning framework, the tomography operator
is learned using a collection of N training examples Xi ,Vi{ }i=1

N , where
Xi denotes the seismic traces (or features of seismic traces) generated
from the i-th velocity model Vi. Specifically, the tomography operator
is learned by solving the following optimization problem:

α̂ = argmin
α

1
N

L Vi ,T Xi ,α()
Vi

! "# $#

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟i=1

N

∑ , (2)

where T(Xi, α) is the tomography operator parameterized by the
coefficients vector α, and its output is the reconstructed velocity
model V̂i. The loss function L Vi ,V̂i() = Vi −V̂i()2 measures the difference
between the ground-truth velocity model Vi and its reconstructed
version V̂i . The loss function we employed is the squared error4
L Vi ,V̂i() = Vi −V̂i()2, which is frequently used in regression prob-
lems, and leads to the following optimization problem:

α̂ = argmin
α

1
N

Vi −T Xi ,α()()2
i=1

N

∑ . (3)

A frequently used minimization approach is the gradient descent,
which iteratively updates the coefficients vector as follows:

α t+1 =α t − µ
∂LE

∂α
, (4)

4 Note that in the case of two images, the squared error loss is com-
puted pixel-based; namely, it is the sum of all squared pixels differences.

Figure 1. Tomography reconstruction of velocity models from recorded seismic data.

D
ow

nl
oa

de
d

12
/1

4/
18

 to
 1

04
.2

20
.4

5.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

60 THE LEADING EDGE January 2018 Special Section: Advancements in 3D seismic processing

where μ is a positive learning rate, LE is the empirical loss

LE = 1
N

L Vi ,T Xi ,α()()
i=1

N

∑ , (5)

and the gradient of LE, with respect to α, is given by

∂LE

∂α
= 1
N

∂L
∂α

Vi ,T Xi ,α()()
i=1

N

∑ . (6)

The tomography operator T(Xi, α) was implemented using a DNN,
as detailed in the following.

DNNs
DNNs are powerful machine-learning algorithms (LeCun

et al., 2015; Goodfellow et al., 2016) that provide state-of-the-art
results in numerous computer vision, speech processing, and
artificial intelligence problems. In particular, DNNs provide
excellent results for imaging inverse problems such as denoising
(Burger et al., 2012; Xie et al., 2012), super-resolution (Dong et
al., 2016), compressed sensing (Adler et al., 2017), and X-ray
computed tomography (Wang, 2016; Würfl et al., 2016). In
addition, according to the universal approximation theorem
(Hornik et al., 1989), DNNs can be used to approximate any
arbitrary continuous function up to a specified accuracy. For these
reasons, there is great promise in using this approach to approxi-
mate complex functions that are highly nonlinear.

DNNs are composed of “layers” of weighted nodes as depicted
in Figure 2. The input to the network is connected to the input

layer, which is followed by a varying number of hidden layers,
and eventually the output of the network is computed at the
output layer. Each hidden layer’s inputs are activated by the
outputs of the previous layer. These networks are trained with
examples per the statistical-learning approach in which the
correct output (label) is known for a given input, and the weight
parameters in the nodes of the network evolve due to the mini-
mization of the error between the prediction and true value.
This causes the network to increasingly become a better predictor
of the training examples and ultimately of any example (assuming
proper training) of a class of data that is similar in nature to the
training data.

The proposed tomography operator is therefore described as
follows, assuming for example three hidden layers:

T(X, α) = fout(f3(f2(f1(X, α1), α2), α3), αout), (7)

where fout is the output layer function, parameterized by αout, and
the hidden layer functions are f1, f2, and f3, each parameterized
by α1, α2, and α3, respectively (the vector α is composed by α1, α2,
α3, and αout). Our DNN has been highly tuned using hyper-
parametrical optimization. It also incorporates current techniques
such as batch normalization and dropout. It is implemented in
Google’s Tensorflow open-source library.

Our ability to design effective neural networks is limited by
constraints in computing resources. More complex networks are
more computationally demanding to train, and generating accurate
training examples can be computationally expensive due to large-
scale forward modeling. Ultimately, our predictions are only as good
as the complexity and refinement of our neural network coupled
with the relevance and quality of the features we choose as inputs.

Workflow
Since we lacked abundant labeled data, we risked the neural

network’s result being bound by the limited number of examples,
which often leads to overfitting of the learning model to the
training data. Also, because control of the main parameters
involved (data generation) is key when proving a new concept, in
this work we focus on results for 2D synthetic only, where our
model generator produced large enough models for training and
testing. Therefore, we introduce two workflows, one for training
and one for inference (a.k.a. testing), as explained below.

In the training workflow (Figure 3), the first step is the
pseudorandom generation of thousands of unbiased velocity models Figure 2. Topology of a DNN with three hidden layers.

Figure 3. Training workflow.

D
ow

nl
oa

de
d

12
/1

4/
18

 to
 1

04
.2

20
.4

5.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

January 2018 THE LEADING EDGE 61Special Section: Advancements in 3D seismic processing

and, from them, the labels that represent the experiment — for
instance, models with faults or salt bodies. In the second step, a
modeling step produces the seismic data. For the sake of simplicity
and brevity, only acoustic approximation of the wave equation is
used. The third step extracts features from the seismic data. The
purpose of this step is twofold: it reduces the amount of data used
for training, which therefore alleviates stress on the computing
resources, and it helps the training to focus on certain aspects
within the data that are relevant for the experiment. This also
helps with the accuracy and convergence of the training task.
Once we have extracted the features, the actual deep-learning
process starts. Our workflow is fully parametrical, from the velocity
generation to the feature extraction; therefore, the richness of the
experiments is comprehensive in terms of variety of velocity
models, acquisition geometries, etc.

The inference workflow (Figure 4) is where new models are
predicted when exposed to unseen or new data. In our particular
context of using synthetic data, it starts in the same fashion as
the training workflow: models and data are generated, then those
data — that have not been used for training — are presented to
the predicting model that reconstructs a velocity model. Since we
generate the testing data following the mentioned steps, calcula-
tions of accuracy of the model are straightforward.

Semblance as a feature for machine learning
Feature extraction is a key step in our workflow because it

can greatly improve the training of the DNN by providing it
with the most relevant data for learning. Our machine-learning
platform, GeoDNN, is capable of handling diverse network
architectures and data, but given that we desire to learn a
velocity tomography operator from the data, we perform velocity
analysis and provide semblance panels for different common-
midpoint (CMP) locations as the input feature. To calculate
the semblance panel for a given midpoint, we first apply a
normal moveout (NMO) correction to a CMP gather using
the second-order traveltime equation:

tNMO
2 = t0

2 + x 2

VNMO
2 , (8)

where tNMO is the calculated NMO traveltime, t0 is the zero-offset
travel time, x is the offset, and VNMO is the NMO velocity. By
choosing a trial VNMO, we can then perform an NMO correction
on the gather resulting in an NMO-corrected image q[j, k], where
j and k are the corrected NMO time and offset sample indices,
respectively (following the notation of Luo and Hale, 2012).

Semblance is then calculated by stacking along the offset index
and smoothing along the time index of q[j, k]. This can be
expressed mathematically as

s i[]=
∑ j=i−M

i+M ∑k=0
N −1 q j ,k[]()2

N ∑ j=i−M
i+M ∑k=0

N −1 q j ,k[]2
, (9)

where s[i] is the output semblance at the output time sample i, N
is the total number of offset samples, and M is a parameter that
defines the length of the time-smoothing window of length 2M + 1
centered at i. Additionally, we calculate weighting functions that
are applied to semblance panels that emphasize terms in the
semblance calculation that are most sensitive to changes in velocity
(Luo and Hale, 2012). While in the semblance calculation we
assume for now only second-order moveout (i.e., the traditional
NMO equation), we have the capability of using higher-order
terms in the traveltime equation, allowing for greater accuracy at
far offsets (Yilmaz, 2001).

Given that we provide semblance panels for multiple CMP
locations, this input feature ends up having three dimensions,
making a cube. Figures 5 and 6 show us two things about this
feature space. First, for the particular model that the semblance
cube represents, we have a high percentage of zero-entry and
low-value parameters. This is true for many models on which
we perform semblance cubes, which means there is an oppor-
tunity to sparsify the parameter space. Second, the events in
the semblance cube space have patterns that relate to the
reflector position and velocity. Humans can interpret some of
these patterns (such as distinct energy spikes/clusters, which
correspond to sharp unpolluted reflection events). Other pat-
terns that are mixed or smeared across the semblance space
can imply nonuniqueness, which is much more difficult to
derive a model approximation from. The advantage of using
machine learning is that we are able to leverage the DNN’s
ability to learn from a multitude of examples to discover complex
patterns that would otherwise be very expensive and difficult
to learn and utilize. Using these patterns, we can learn a
mapping from the semblance space to the velocity-model space.
Alternative methods, such as inversion, can be very expensive
because the mapping between these spaces uses wave propaga-
tion (or some other approximation) as the forward operator.
Other methods would try to linearize the forward operator or
follow some more simplistic methodology, such as picking
velocities from peak amplitudes in the semblance cube. All of
these methods need to be repeated for each model of interest.
Using a DNN methodology, we need to train only once, after

Figure 4. Inference (testing) workflow.

D
ow

nl
oa

de
d

12
/1

4/
18

 to
 1

04
.2

20
.4

5.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

62 THE LEADING EDGE January 2018 Special Section: Advancements in 3D seismic processing

which subsequent model approximations can be found from
their corresponding semblance plots at negligible cost.

As stated, the nature of using semblance as a feature input is
that there are patterns that have meaning in relation to the velocity
model, some of which are trivial to explain while others are more
complex. DNN architectures fundamentally learn patterns in the
feature space using stencils whose dimensions are predetermined.
We believe that the geophysics-based transformation that the
semblance cube represents makes it a good choice as an input
feature for deep learning for tomographic velocity estimation,
especially for DNN architectures that can leverage the patterns
that are found in that space.

Implementation and results
We generated thousands of random 2D velocity models with

up to four faults in them, dip angle, and position. Our models
had between three and eight layers each, with velocities varying
from 2000 to 4000 [m/s], with layer velocity increasing with
depth. These models were 140 × 180 grid points at the sampling
used for wave equation solving. The raw data collected was reduced
to a semblance feature set that can fit in multiple NVIDIA K80
GPGPU memory.

Figure 5. A calculated semblance cube used as an input feature for deep learning.
The front face of the cube (with axes of zero-offset time and velocity) shows the
semblance panel for a particular CMP location used in traditional velocity analysis.
The side face of the cube (with axes of CMP location and zero-offset time) shows the
calculated semblance for a particular velocity for all CMP locations and time. Note
the spatially coherent structure of the semblance in the cube.

Figure 6. An example of a calculated semblance cube for a seven-layer model. Note that the traditional velocity analysis panel of the semblance cube shown in (b) captures
each of the layer interfaces. Also, note that the right panel (axes of CMP location and zero-offset time) of the semblance cube qualitatively gives the approximate structure of
the velocity model shown in (a).

D
ow

nl
oa

de
d

12
/1

4/
18

 to
 1

04
.2

20
.4

5.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

January 2018 THE LEADING EDGE 63Special Section: Advancements in 3D seismic processing

We trained the proposed DNN using a training set composed
of tens of thousands of velocity models and tested the tomography
results with a testing set of thousands of velocity models.

Experiments type I. The output of the DNN is a continuous-
valued image, whereas the ground-truth velocity-model images
are composed from a discrete number of values, each correspond-
ing to a unique velocity value. Therefore, we have applied a
postprocessing image segmentation (Szeliski, 2010) stage to
each reconstructed velocity model using two methods: (1)
k-means segmentation, which uses the ground-truth number of
layers to cluster all pixels into the correct number of segments,
and (2) k-means segmentation with eight segments (layers) for
all velocity models. (In a real application, the number of segments
are unknown but can be controlled by the domain expert.) The
visual quality of each segmented image was compared against
the ground-truth velocity model (i.e., test example label) using
the structural similarity image metric (SSIM) developed by
Wang et al. (2004). The SSIM metric is computed using three
image features that mostly influence the human visual system:

structure, contrast, and luminance. Given two images, the SSIM
formula computes a continuous number between 0.0 and 1.0,
where 1.0 corresponds to identical images and 0.0 corresponds
to complete visually dissimilar images. The SSIM metric is
considered more coherent to human judgment than the mean
squared error (MSE) metric for image comparisons. The averaged
SSIM over thousands of test velocity models is 0.8717 for k-means
with the correct number of segments and 0.8603 for k-means
with eight segments for all images, which clearly indicates very
high similarity to the ground-truth velocity models. In Figure 7,
we provide examples of the reconstructed velocity models with
varying numbers of layers, which demonstrates the high visual
quality of the reconstructed images. We have observed that the
reconstruction network tends to smooth faults (third row of
Figure 7). Further improvements for accurate fault reconstruction
are left for future research.

Experiments type II. In this set of experiments, the labels and
reconstructed models are of a continuous value (not a binary or
multiclass classification process) that represents velocity. Some

Figure 7. Tomography with four- to seven-layered velocity models. Each row represents a different experiment with unique number of layers. Column (a) is ground truth;
column (b) is DNN output (prediction), column (c) us segmented prediction (from column b) image using k-means and the correct number of layers; and column (d) is
segmented prediction (from column b) image using k-means and eight layers.

D
ow

nl
oa

de
d

12
/1

4/
18

 to
 1

04
.2

20
.4

5.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

64 THE LEADING EDGE January 2018 Special Section: Advancements in 3D seismic processing

Figure 8. In panel (a), a layered model is presented as ground truth (label). Panel (b) shows the prediction generated with the trained model. That model was training
with data that only contains layered models with different number of layers and velocity per layer. The predicted model closely resembles the label in structure and actual
velocity. Panels (c–f) are results for a different trained model. This one has been trained with a data set that also contains salt bodies, which has been handcrafted.

D
ow

nl
oa

de
d

12
/1

4/
18

 to
 1

04
.2

20
.4

5.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

January 2018 THE LEADING EDGE 65Special Section: Advancements in 3D seismic processing

of the labels and models include salt bodies along with three to
seven layers. The evaluation metrics are R2 score (coefficient of
determination) and SSIM as described above. R2 score measures
the total variation of the outcomes provided by the model. It is
interpreted as the goodness of the model fitting. The values can
be negative, and the optimal value is 1.

In terms of prediction accuracy, for experiments that only
contain layers (Figure 8 top), the R2 score is 0.8124 and SSIM
is 0.8939, which is comparable to the results obtained for the
set of experiments of type I. For the experiments with and
without salt bodies (Figure 8, mid and bottom), the R2 score is
0.5536 and the SSIM is 0.8101. As expected, the task of predict-
ing a model with salt bodies is more difficult, and therefore the
performance is lower than the task of predicting plain velocity
models. Also, the variability of the salt body shape and location
is more difficult to learn with the size of training data set that
was used. This explains why the R2 score is more affected
(Figure 9) than the SSIM for this case. In any case, the overall
performance trend is positive; the salt bodies are located properly;
and the surrounding structure resembles the labels in direction
and velocity value.

Conclusions
The concept introduced here has enormous potential. Just

from the computing perspective, the results were computed in a
single computing node, not in a cluster. Further, the input to the
machine-learning system has only one type of feature, and the
number of training samples is tens of thousands, which barely
falls in the big-data category. All these elements, when scaled up,
can contribute to improve the accuracy and generalization of the
predicting models.

In terms of performance, the results clearly show that most
major elements of the expected models are identified and placed
in their corresponding location. The results are stable and reliable,
as the R2 score informs. They are also accurate, as the SSIM metric
computed for all the experiments is above 0.8 (out of 1.0).

Future work will take three main directions. The first is to
extend the method to 3D data, which from the machine-
learning perspective is mainly a scalability problem rather than
a fundamental one. The second line of work must deal with
testing our method with real data. To that end, the most sensi-
tive part is the feature extraction step. Finally, our method can
be combined with FWI, where our models can play the role
of an accelerator.

Acknowledgments
The authors thank Shell International Exploration & Produc-

tion Inc. and MIT for permission to publish this paper.

Corresponding author: mauricio.araya@shell.com

References
Addison, V., 2016, Artificial intelligence takes shape in oil and gas

sector: EPmag, https://www.epmag.com/artificial-intelligence-
takes-shape-oil-gas-sector-846041, accessed 5 December 2017.

Adler, A., D. Boublil, and M. Zibulevsky, 2017, Block-based com-
pressed sensing of images via deep learning: Presented at the 19th
IEEE International Workshop on Multimedia Signal Processing.

Araya-Polo, M., T. Dahlke, C. Frogner, C. Zhang, T. Poggio, and
D. Hohl, 2017, Automated fault detection without seismic pro-
cessing: The Leading Edge, 36, no. 3, 208–214, https://doi.
org/10.1190/tle36030208.1.

Biondi, B., 2006, 3D seismic imaging: SEG, https://doi.
org/10.1190/1.9781560801689.

BizTech, 2014, High performance computing’s role in energy explo-
ration, https://biztechmagazine.com/article/2014/07/
hpc%E2%80%99s-role-energy-exploration, accessed 5 Decem-
ber 2017.

Bougher, B., and F. Herrmann, 2016, AVA classification as an unsu-
pervised machine-learning problem: 86th Annual International
Meeting, SEG, Expanded Abstracts, 553–556, https://doi.
org/10.1190/segam2016-13874419.1.

Burger, H. C., C. J. Schuler, and S. Harmeling, 2012, Image denois-
ing: Can plain neural networks compete with BM3D?: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
https://doi.org/10.1109/CVPR.2012.6247952.

Dahlke, T., M. Araya-Polo, C. Zhang, and C. Frogner, 2016, Pre-
dicting geological features in 3D seismic data: Presented at 3D
Deep Learning Workshop.

Dong, C., C. C. Loy, K. He, and X. Tang, 2016, Image super-res-
olution using deep convolutional networks: IEEE Transactions
on Pattern Analysis and Machine Intelligence, 38, no. 2, 295–
307, https://doi.org/10.1109/TPAMI.2015.2439281.

Frogner, C., C. Zhang, H. Mobahi, M. Araya-Polo, and T. A. Pog-
gio, 2015, Learning with a Wasserstein loss, in C. Cortes, D. D.
Lee, M. Sugiyama, and R. Garnett, eds., Proceedings of the 28th
International Conference on Neural Information Processing Sys-
tems — Volume 2: MIT Press.

Goodfellow, I., Y. Bengio, and A. Courville, 2016, Deep learning:
MIT Press.

Guillen, P., 2015, Supervised learning to detect salt body: 85th Annual
International Meeting, SEG, 1826–1829, https://doi.org/10.1190/
segam2015-5931401.1.

Figure 9. Validation loss function value (red curve related to left Y axis) informs
about the effectiveness of the training process. Green and blue curves (related to
the right Y axis) represent the evolution of the accuracy metrics during training
with salt bodies. The horizontal axis represents training epochs.

D
ow

nl
oa

de
d

12
/1

4/
18

 to
 1

04
.2

20
.4

5.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

66 THE LEADING EDGE January 2018 Special Section: Advancements in 3D seismic processing

Hale, D., 2013, Methods to compute fault images, extract fault sur-
faces, and estimate fault throws from 3d seismic images: Geophys-
ics, 78, no. 2, O33–O43, https://doi.org/10.1190/geo2012-0331.1.

Hale, D., 2012, Fault surfaces and fault throws from 3d seismic
images: 82nd Annual International Meeting, SEG, 1–6, https://
doi.org/10.1190/segam2012-0734.1.

Hastie, T., R. Tibshirani, and J. Friedman, 2001, The elements of
statistical learning: Springer New York Inc.

Hornik, K., M. Stinchcombe, and H. White, 1989, Multilayer feedfor-
ward networks are universal approximators: Neural Networks, 2, no.
5, 359–366, https://doi.org/10.1016/0893-6080(89)90020-8.

LeCun, Y., Y. Bengio, and G. Hinton, 2015, Deep learning: Nature,
521, no. 7553, 436–444, https://doi.org/10.1038/nature14539.

Luo, S., and D. Hale, 2012, Velocity analysis using weighted sem-
blance: Geophysics, 77, no. 2, U15–U22, https://doi.org/10.1190/
geo2011-0034.1.

Nath, S. K., S. Chakroborty, S. K. Singh, and N. Ganguly, 1999,
Velocity inversion in cross-hole seismic tomography by counter-
propagation neural network, genetic algorithm and evolutionary
programming techniques: Geophysical Journal International, 138,
no. 1, 108–124, https://doi.org/10.1046/j.1365-246x.1999.00835.x.

Röth, G., and A. Tarantola, 1994, Neural networks and inversion of
seismic data: Journal of Geophysical Research, 99, no. B4, 6753–
6768, https://doi.org/10.1029/93JB01563.

Szeliski, R., 2010, Computer vision: Algorithms and applications:
Springer Science & Business Media.

van der Baan, M., and C. Jutten, 2000, Neural networks in geophys-
ical applications: Geophysics, 65, no. 4, 1032–1047, https://doi.
org/10.1190/1.1444797.

Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, 2004,
Image quality assessment: From error visibility to structural sim-
ilarity: IEEE Transactions on Image Processing, 13, no. 4, 600–
612, https://doi.org/10.1109/TIP.2003.819861.

Wang, G., 2016, A perspective on deep imaging: IEEE Access, 4,
8914–8924, https://doi.org/10.1109/ACCESS.2016.2624938.

Würfl, T., F. C. Ghesu, V. Christlein, and A. Maier, 2016, Deep
learning computed tomography: Medical Image Computing and
Computer-Assisted Intervention, 432-440, https://doi.
org/10.1007/978-3-319-46726-9_50.

Xie, J., L. Xu, and E. Chen, 2012, Image denoising and inpainting
with deep neural networks: Proceedings of the 25th International
Conference on Neural Information Processing Systems — Vol-
ume 1, 341–349.

Yilmaz, Ö., 2001, Seismic data analysis: SEG.
Zhang, C., C. Frogner, M. Araya-Polo, and D. Hohl, 2014, Machine-

learning based automated fault detection in seismic traces: 76th
Conference and Exhibition, EAGE, Extended Abstracts, https://
doi.org/10.3997/2214-4609.20141500.

D
ow

nl
oa

de
d

12
/1

4/
18

 to
 1

04
.2

20
.4

5.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

