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Deep-learning tomography

Abstract
Velocity-model building is a key step in hydrocarbon explo-

ration. The main product of velocity-model building is an initial 
model of the subsurface that is subsequently used in seismic 
imaging and interpretation workflows. Reflection or refraction 
tomography and full-waveform inversion (FWI) are the most 
commonly used techniques in velocity-model building. On one 
hand, tomography is a time-consuming activity that relies on 
successive updates of highly human-curated analysis of gathers. 
On the other hand, FWI is very computationally demanding 
with no guarantees of global convergence. We propose and 
implement a novel concept that bypasses these demanding 
steps, directly producing an accurate gridding or layered velocity 
model from shot gathers. Our approach relies on training deep 
neural networks. The resulting predictive model maps relation-
ships between the data space and the final output (particularly 
the presence of high-velocity segments that might indicate salt 
formations). The training task takes a few hours for 2D data, 
but the inference step (predicting a model from previously 
unseen data) takes only seconds. The promising results shown 
here for synthetic 2D data demonstrate a new way of using 
seismic data and suggest fast turnaround of workflows that 
now make use of machine-learning approaches to identify key 
structures in the subsurface.

Introduction
Exploration workflows are under great pressure due to such 

factors as the need to improve performance at lower costs and 
the ongoing avalanche of data coming from new generations 
of sensors and modern acquisition systems. Some of the key 
steps in exploration workflows depend on domain experts. 
Their time is precious and limited, but the amount of data that 
needs to be thoroughly analyzed is increasing. In addition, the 
complexity of some exploration areas requires extra attention. 
The problem can be summarized as an explosion of increasingly 
complex data.

Geoscientists need to be empowered with new tools that digest 
as much data as possible before a human expert intervenes. The 
high-performance-computing revolution (BizTech, 2014) shares 
the same purpose but essentially targets processing speed rather 
than any other specific step of the exploration workflow. Advanced 
data-oriented algorithms look to improve every step of the work-
flow through a deeper understanding of the data, from extracting 
the relevant information to having a better awareness of the rest 
of the steps in a more integrated fashion rather than through silos 
of knowledge.

What we propose in this work goes beyond what is becoming 
the new norm, which is machine-learning techniques being 
applied to specific well-known steps of the workflow. This same 
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magazine carried a special section on how analytics and machine 
learning (TLE, March 2017) are paving inroads in different 
aspects of the exploration workflow, but most work is still 
focused on identifying features or attributes in migrated images 
(Hale, 2012; Hale, 2013; Guillen, 2015; Addison, 2016; 
Bougher and Herrmann, 2016), therefore helping to tackle the 
interpretation step. Very little has been proposed to help directly 
with processing or velocity-model building. In general, the 
literature is abundant with refinements to this workflow, but 
it remains largely untouched.

Our method produces velocity models directly from raw 
seismic data in a way that is alternative to classic tomography. 
It is also automatic and without the need for human intervention. 
The machine-learning technique employed follows recent work 
(Zhang et al., 2014; Frogner et al., 2015; Dahlke et al., 2016; 
Araya-Polo et al., 2017) that demonstrates this new approach, 
which uses a deep neural network (DNN) statistical model to 
transform raw-input seismic data directly to the final mapping 
in 2D or 3D. The computational costs come mostly from training, 
which happens only once up front. After training, velocity-model 
reconstruction costs are negligible, thus making the overall 
computing costs a fraction of that needed for traditional tech-
niques, in particular those involving partial-differential-equa-
tion-based simulation. One key element of our method is the 
use of a feature based on semblance that predigests velocity 
information for the training process. This feature extraction step 
is automated and not subject to human bias.

In terms of deployment modes, we foresee models being 
trained with specific data belonging to different major forma-
tions, such as unconventional, presalt, or subsalt. The main 
concerns relate to the generalization error, which basically sets 
the limits on how much a predicting model can accurately 
predict for unseen data. Finally, regarding exploration work-
flows, one can imagine this technique being used just after 
data acquisition. Then, trained models can be loaded up to the 
cloud from which interpreters can pull realizations, thus per-
forming online scenario testing when feeding back their model 
modifications to applications such as the one proposed in 
Araya-Polo et al. (2017). This imagined workflow is fully 
machine learning based, flexible, and with the domain experts 
at the center of the critical decision-making process. If it is 
accompanied by the proper resourcing, this workflow approaches 
a real-time ubiquitous experience.

In this paper, we start by explaining the basics of the problem 
followed by discussions on deep learning. Next, we introduce the 
general workflow used by our machine-learning system, which 
we termed GeoDNN. Then, we discuss our results and experiments 
with 2D synthetic data. Finally, conclusions with directions for 
future work are presented.
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Problem formulation
Formally, the traditional tomography problem can be expressed 

as the minimization of the following objective function:

J m( ) = dm m( ) -dobs 2

2 ,                          (1)

where m is the optimal velocity model that minimizes J(m), dm is 
a data vector modeled from a nonlinear modeling operator f (m), 
and dobs is the recorded data vector. While it is common to minimize 
the sum of the squares (represented here by the square of the L2 
norm), other objective functions may be used. Note that in the 
case of traveltime tomography, the data vectors contain traveltimes 
that are modeled via the solution of the eikonal equation. Alter-
natively, in the full-waveform inversion (FWI) case, the data 
contain the seismic traces that are modeled via the numeric solution 
of the wave equation.

As is apparent by the nonlinear relationship between dm 
and m, this inversion is nonlinear. Additionally, since for 
reflection seismic surveys dobs contains surface seismic data, it 
does not contain all of the necessary information to define a 
velocity model that varies arbitrarily with depth and along the 
horizontal directions (Biondi, 2006). This means that, in 
general, minimizing the above equation is an ill-posed problem. 
While in using a deep-learning approach to tomography we 
do not rely on numerical solutions of the eikonal or wave 
equations, we still need to consider the nonlinearity and ill-
posedness of this inverse problem.

The application of neural networks for velocity estimation 
and for geophysical applications in general is not new (van der 
Baan and Jutten, 2000). The first use of neural networks for 
velocity estimation was proposed by Röth and Tarantola (1994) 
in which neural networks are used to estimate 1D velocity 
functions from shot gathers. Nath et al. (1999) use neural 
networks for traveltime crosswell tomography. After training 
their network using traveltime maps and synthetic velocity 
models as training data, the network was then used to tomo-
graphically estimate velocities for crosswell data acquired in 
West Bengal, India. Although the problem we attempt to solve 
is similar, our work is novel in that it makes use of the recent 
development of more advanced DNN architectures; moreover, 
we use all of the data (not only selected traveltimes) to train 
our DNN and perform tomography.

Machine learning of tomography operators via DNNs
Using machine-learning algorithms is an appealing alternative 

to classic seismic processing, and among this class of algorithms, 
we have implemented the tomography operator using a DNN. 
The tomography operator is learned from seismic training data 
using statistical-learning (Hastie et al., 2001) principles. The 
tomography process is depicted in Figure 1. It performs reconstruc-
tion of the velocity model from raw seismic traces or from features 
computed from raw seismic traces (as part of the tomography 
operator). In a real-life application, the ground-truth model is 
unavailable, and the tomography operator is designed to minimize 
the difference between the reconstructed velocity model and the 
(unavailable) ground-truth one.

In the statistical learning framework, the tomography operator 
is learned using a collection of N training examples Xi ,Vi{ }i=1

N , where 
Xi denotes the seismic traces (or features of seismic traces) generated 
from the i-th velocity model Vi. Specifically, the tomography operator 
is learned by solving the following optimization problem:

α̂ = argmin
α

1
N

L Vi ,T Xi ,α( )
Vi

! "# $#

⎛

⎝
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N

∑ ,                  (2)

where T(Xi, α) is the tomography operator parameterized by the 
coefficients vector α, and its output is the reconstructed velocity 
model V̂i. The loss function L Vi ,V̂i( ) = Vi −V̂i( )2 measures the difference 
between the ground-truth velocity model Vi and its reconstructed 
version V̂i . The loss function we employed is the squared error4 
L Vi ,V̂i( ) = Vi −V̂i( )2, which is frequently used in regression prob-
lems, and leads to the following optimization problem:

α̂ = argmin
α

1
N

Vi −T Xi ,α( )( )2
i=1

N

∑ .                 (3)

A frequently used minimization approach is the gradient descent, 
which iteratively updates the coefficients vector as follows:

α t+1 =α t − µ
∂LE

∂α
,                          (4)

4 Note that in the case of two images, the squared error loss is com-
puted pixel-based; namely, it is the sum of all squared pixels differences.

Figure 1. Tomography reconstruction of velocity models from recorded seismic data.
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where μ is a positive learning rate, LE is the empirical loss

LE = 1
N

L Vi ,T Xi ,α( )( )
i=1

N

∑ ,                     (5)

and the gradient of LE, with respect to α, is given by

∂LE

∂α
= 1
N

∂L
∂α

Vi ,T Xi ,α( )( )
i=1

N

∑ .                  (6)

The tomography operator T(Xi, α) was implemented using a DNN, 
as detailed in the following.

DNNs
DNNs are powerful machine-learning algorithms (LeCun 

et al., 2015; Goodfellow et al., 2016) that provide state-of-the-art 
results in numerous computer vision, speech processing, and 
artificial intelligence problems. In particular, DNNs provide 
excellent results for imaging inverse problems such as denoising 
(Burger et al., 2012; Xie et al., 2012), super-resolution (Dong et 
al., 2016), compressed sensing (Adler et al., 2017), and X-ray 
computed tomography (Wang, 2016; Würfl et al., 2016). In 
addition, according to the universal approximation theorem 
(Hornik et al., 1989), DNNs can be used to approximate any 
arbitrary continuous function up to a specified accuracy. For these 
reasons, there is great promise in using this approach to approxi-
mate complex functions that are highly nonlinear.

DNNs are composed of “layers” of weighted nodes as depicted 
in Figure 2. The input to the network is connected to the input 

layer, which is followed by a varying number of hidden layers, 
and eventually the output of the network is computed at the 
output layer. Each hidden layer’s inputs are activated by the 
outputs of the previous layer. These networks are trained with 
examples per the statistical-learning approach in which the 
correct output (label) is known for a given input, and the weight 
parameters in the nodes of the network evolve due to the mini-
mization of the error between the prediction and true value. 
This causes the network to increasingly become a better predictor 
of the training examples and ultimately of any example (assuming 
proper training) of a class of data that is similar in nature to the 
training data.

The proposed tomography operator is therefore described as 
follows, assuming for example three hidden layers:

T(X, α) = fout(f3(f2(f1(X, α1), α2), α3), αout),            (7)

where fout is the output layer function, parameterized by αout, and 
the hidden layer functions are f1, f2, and f3, each parameterized 
by α1, α2, and α3, respectively (the vector α is composed by α1, α2, 
α3, and αout). Our DNN has been highly tuned using hyper-
parametrical optimization. It also incorporates current techniques 
such as batch normalization and dropout. It is implemented in 
Google’s Tensorflow open-source library.

Our ability to design effective neural networks is limited by 
constraints in computing resources. More complex networks are 
more computationally demanding to train, and generating accurate 
training examples can be computationally expensive due to large-
scale forward modeling. Ultimately, our predictions are only as good 
as the complexity and refinement of our neural network coupled 
with the relevance and quality of the features we choose as inputs.

Workflow
Since we lacked abundant labeled data, we risked the neural 

network’s result being bound by the limited number of examples, 
which often leads to overfitting of the learning model to the 
training data. Also, because control of the main parameters 
involved (data generation) is key when proving a new concept, in 
this work we focus on results for 2D synthetic only, where our 
model generator produced large enough models for training and 
testing. Therefore, we introduce two workflows, one for training 
and one for inference (a.k.a. testing), as explained below.

In the training workflow (Figure 3), the first step is the 
pseudorandom generation of thousands of unbiased velocity models Figure 2. Topology of a DNN with three hidden layers.

Figure 3. Training workflow.
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and, from them, the labels that represent the experiment — for 
instance, models with faults or salt bodies. In the second step, a 
modeling step produces the seismic data. For the sake of simplicity 
and brevity, only acoustic approximation of the wave equation is 
used. The third step extracts features from the seismic data. The 
purpose of this step is twofold: it reduces the amount of data used 
for training, which therefore alleviates stress on the computing 
resources, and it helps the training to focus on certain aspects 
within the data that are relevant for the experiment. This also 
helps with the accuracy and convergence of the training task. 
Once we have extracted the features, the actual deep-learning 
process starts. Our workflow is fully parametrical, from the velocity 
generation to the feature extraction; therefore, the richness of the 
experiments is comprehensive in terms of variety of velocity 
models, acquisition geometries, etc.

The inference workflow (Figure 4) is where new models are 
predicted when exposed to unseen or new data. In our particular 
context of using synthetic data, it starts in the same fashion as 
the training workflow: models and data are generated, then those 
data — that have not been used for training — are presented to 
the predicting model that reconstructs a velocity model. Since we 
generate the testing data following the mentioned steps, calcula-
tions of accuracy of the model are straightforward.

Semblance as a feature for machine learning
Feature extraction is a key step in our workflow because it 

can greatly improve the training of the DNN by providing it 
with the most relevant data for learning. Our machine-learning 
platform, GeoDNN, is capable of handling diverse network 
architectures and data, but given that we desire to learn a 
velocity tomography operator from the data, we perform velocity 
analysis and provide semblance panels for different common-
midpoint (CMP) locations as the input feature. To calculate 
the semblance panel for a given midpoint, we first apply a 
normal moveout (NMO) correction to a CMP gather using 
the second-order traveltime equation:

tNMO
2 = t0

2 + x 2

VNMO
2 ,                                 (8)

where tNMO is the calculated NMO traveltime, t0 is the zero-offset 
travel time, x is the offset, and VNMO is the NMO velocity. By 
choosing a trial VNMO, we can then perform an NMO correction 
on the gather resulting in an NMO-corrected image q[ j, k], where 
j and k are the corrected NMO time and offset sample indices, 
respectively (following the notation of Luo and Hale, 2012). 

Semblance is then calculated by stacking along the offset index 
and smoothing along the time index of q[ j, k]. This can be 
expressed mathematically as

s i[ ]=
∑ j=i−M

i+M ∑k=0
N −1 q j ,k[ ]( )2

N ∑ j=i−M
i+M ∑k=0

N −1 q j ,k[ ]2
,                      (9)

where s[i] is the output semblance at the output time sample i, N 
is the total number of offset samples, and M is a parameter that 
defines the length of the time-smoothing window of length 2M + 1 
centered at i. Additionally, we calculate weighting functions that 
are applied to semblance panels that emphasize terms in the 
semblance calculation that are most sensitive to changes in velocity 
(Luo and Hale, 2012). While in the semblance calculation we 
assume for now only second-order moveout (i.e., the traditional 
NMO equation), we have the capability of using higher-order 
terms in the traveltime equation, allowing for greater accuracy at 
far offsets (Yilmaz, 2001).

Given that we provide semblance panels for multiple CMP 
locations, this input feature ends up having three dimensions, 
making a cube. Figures 5 and 6 show us two things about this 
feature space. First, for the particular model that the semblance 
cube represents, we have a high percentage of zero-entry and 
low-value parameters. This is true for many models on which 
we perform semblance cubes, which means there is an oppor-
tunity to sparsify the parameter space. Second, the events in 
the semblance cube space have patterns that relate to the 
reflector position and velocity. Humans can interpret some of 
these patterns (such as distinct energy spikes/clusters, which 
correspond to sharp unpolluted reflection events). Other pat-
terns that are mixed or smeared across the semblance space 
can imply nonuniqueness, which is much more difficult to 
derive a model approximation from. The advantage of using 
machine learning is that we are able to leverage the DNN’s 
ability to learn from a multitude of examples to discover complex 
patterns that would otherwise be very expensive and difficult 
to learn and utilize. Using these patterns, we can learn a 
mapping from the semblance space to the velocity-model space. 
Alternative methods, such as inversion, can be very expensive 
because the mapping between these spaces uses wave propaga-
tion (or some other approximation) as the forward operator. 
Other methods would try to linearize the forward operator or 
follow some more simplistic methodology, such as picking 
velocities from peak amplitudes in the semblance cube. All of 
these methods need to be repeated for each model of interest. 
Using a DNN methodology, we need to train only once, after 

Figure 4. Inference (testing) workflow.
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which subsequent model approximations can be found from 
their corresponding semblance plots at negligible cost.

As stated, the nature of using semblance as a feature input is 
that there are patterns that have meaning in relation to the velocity 
model, some of which are trivial to explain while others are more 
complex. DNN architectures fundamentally learn patterns in the 
feature space using stencils whose dimensions are predetermined. 
We believe that the geophysics-based transformation that the 
semblance cube represents makes it a good choice as an input 
feature for deep learning for tomographic velocity estimation, 
especially for DNN architectures that can leverage the patterns 
that are found in that space.

Implementation and results
We generated thousands of random 2D velocity models with 

up to four faults in them, dip angle, and position. Our models 
had between three and eight layers each, with velocities varying 
from 2000 to 4000 [m/s], with layer velocity increasing with 
depth. These models were 140 × 180 grid points at the sampling 
used for wave equation solving. The raw data collected was reduced 
to a semblance feature set that can fit in multiple NVIDIA K80 
GPGPU memory.

Figure 5. A calculated semblance cube used as an input feature for deep learning. 
The front face of the cube (with axes of zero-offset time and velocity) shows the 
semblance panel for a particular CMP location used in traditional velocity analysis. 
The side face of the cube (with axes of CMP location and zero-offset time) shows the 
calculated semblance for a particular velocity for all CMP locations and time. Note 
the spatially coherent structure of the semblance in the cube.

Figure 6. An example of a calculated semblance cube for a seven-layer model. Note that the traditional velocity analysis panel of the semblance cube shown in (b) captures 
each of the layer interfaces. Also, note that the right panel (axes of CMP location and zero-offset time) of the semblance cube qualitatively gives the approximate structure of 
the velocity model shown in (a).
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We trained the proposed DNN using a training set composed 
of tens of thousands of velocity models and tested the tomography 
results with a testing set of thousands of velocity models.

Experiments type I. The output of the DNN is a continuous-
valued image, whereas the ground-truth velocity-model images 
are composed from a discrete number of values, each correspond-
ing to a unique velocity value. Therefore, we have applied a 
postprocessing image segmentation (Szeliski, 2010) stage to 
each reconstructed velocity model using two methods: (1) 
k-means segmentation, which uses the ground-truth number of 
layers to cluster all pixels into the correct number of segments, 
and (2) k-means segmentation with eight segments (layers) for 
all velocity models. (In a real application, the number of segments 
are unknown but can be controlled by the domain expert.) The 
visual quality of each segmented image was compared against 
the ground-truth velocity model (i.e., test example label) using 
the structural similarity image metric (SSIM) developed by 
Wang et al. (2004). The SSIM metric is computed using three 
image features that mostly influence the human visual system: 

structure, contrast, and luminance. Given two images, the SSIM 
formula computes a continuous number between 0.0 and 1.0, 
where 1.0 corresponds to identical images and 0.0 corresponds 
to complete visually dissimilar images. The SSIM metric is 
considered more coherent to human judgment than the mean 
squared error (MSE) metric for image comparisons. The averaged 
SSIM over thousands of test velocity models is 0.8717 for k-means 
with the correct number of segments and 0.8603 for k-means 
with eight segments for all images, which clearly indicates very 
high similarity to the ground-truth velocity models. In Figure 7, 
we provide examples of the reconstructed velocity models with 
varying numbers of layers, which demonstrates the high visual 
quality of the reconstructed images. We have observed that the 
reconstruction network tends to smooth faults (third row of 
Figure 7). Further improvements for accurate fault reconstruction 
are left for future research.

Experiments type II. In this set of experiments, the labels and 
reconstructed models are of a continuous value (not a binary or 
multiclass classification process) that represents velocity. Some 

Figure 7. Tomography with four- to seven-layered velocity models. Each row represents a different experiment with unique number of layers. Column (a) is ground truth; 
column (b) is DNN output (prediction), column (c) us segmented prediction (from column b) image using k-means and the correct number of layers; and column (d) is 
segmented prediction (from column b) image using k-means and eight layers.
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Figure 8. In panel (a), a layered model is presented as ground truth (label). Panel (b) shows the prediction generated with the trained model. That model was training 
with data that only contains layered models with different number of layers and velocity per layer. The predicted model closely resembles the label in structure and actual 
velocity. Panels (c–f) are results for a different trained model. This one has been trained with a data set that also contains salt bodies, which has been handcrafted.
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of the labels and models include salt bodies along with three to 
seven layers. The evaluation metrics are R2 score (coefficient of 
determination) and SSIM as described above. R2 score measures 
the total variation of the outcomes provided by the model. It is 
interpreted as the goodness of the model fitting. The values can 
be negative, and the optimal value is 1.

In terms of prediction accuracy, for experiments that only 
contain layers (Figure 8 top), the R2 score is 0.8124 and SSIM 
is 0.8939, which is comparable to the results obtained for the 
set of experiments of type I. For the experiments with and 
without salt bodies (Figure 8, mid and bottom), the R2 score is 
0.5536 and the SSIM is 0.8101. As expected, the task of predict-
ing a model with salt bodies is more difficult, and therefore the 
performance is lower than the task of predicting plain velocity 
models. Also, the variability of the salt body shape and location 
is more difficult to learn with the size of training data set that 
was used. This explains why the R2 score is more affected 
(Figure 9) than the SSIM for this case. In any case, the overall 
performance trend is positive; the salt bodies are located properly; 
and the surrounding structure resembles the labels in direction 
and velocity value.

Conclusions
The concept introduced here has enormous potential. Just 

from the computing perspective, the results were computed in a 
single computing node, not in a cluster. Further, the input to the 
machine-learning system has only one type of feature, and the 
number of training samples is tens of thousands, which barely 
falls in the big-data category. All these elements, when scaled up, 
can contribute to improve the accuracy and generalization of the 
predicting models.

In terms of performance, the results clearly show that most 
major elements of the expected models are identified and placed 
in their corresponding location. The results are stable and reliable, 
as the R2 score informs. They are also accurate, as the SSIM metric 
computed for all the experiments is above 0.8 (out of 1.0).

Future work will take three main directions. The first is to 
extend the method to 3D data, which from the machine-
learning perspective is mainly a scalability problem rather than 
a fundamental one. The second line of work must deal with 
testing our method with real data. To that end, the most sensi-
tive part is the feature extraction step. Finally, our method can 
be combined with FWI, where our models can play the role 
of an accelerator. 
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