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Automated fault detection without seismic processing

Abstract
For hydrocarbon exploration, large volumes of data are 

acquired and used in physical modeling-based workflows to 
identify geologic features of interest such as fault networks, salt 
bodies, or, in general, elements of petroleum systems. The adjoint 
modeling step, which transforms the data into the model space, 
and subsequent interpretation can be very expensive, both in 
terms of computing resources and domain-expert time. We 
propose and implement a unique approach that bypasses these 
demanding steps, directly assisting interpretation. We do this 
by training a deep neural network to learn a mapping relationship 
between the data space and the final output (particularly, spatial 
points indicating fault presence). The key to obtaining accurate 
predictions is the use of the Wasserstein loss function, which 
properly handles the structured output — in our case, by exploit-
ing fault surface continuity. The promising results shown here 
for synthetic data demonstrate a new way of using seismic data 
and suggest more direct methods to identify key elements in 
the subsurface.

Introduction
Acquisition technology advances and exploration of complex 

areas are pushing the amount of data to be analyzed into the 
“big data” category. Current exploration workflows consist of 
many partially automated steps in which domain experts (geolo-
gists, geophysicists, rock physicists, etc.) command highly 
tuned applications and then curate the resulting data in search 
of valuable information. The data explosion is stressing these 
workflows to a point at which every year more of the data 
remains unused. Generally, the exploration process can be 
broken down into two main elements: advanced tools and 
manpower. Tools have progressed, and the addition of high-
performance computing has helped to reduce turnaround times 
for seismic imaging (Rubio et al., 2009; Rastogi, 2011). Even 
in the extreme case in which execution time for processing 
tools would take nearly zero time, the problem of manpower 
remains; there is no sensible way in which domain experts can 
analyze and interpret all incoming data. The best solution must 
trade domain-expert time for computing time. Therefore, some 
of that domain knowledge needs to be formalized and imple-
mented within existing and future tools. One way to achieve 
this is by taking advantage of algorithms that learn, for instance, 
from legacy data that have been properly vetted. Using machine 
learning, we can take advantage of new algorithms and software 
ecosystems, as well as specialized hardware. In this contribu-
tion, we will focus our attention on one such application of 
machine learning.

Seismic imaging is the primary tool used to build high-res-
olution models of the subsurface. In practice, it is typically part 
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of an iterative workflow that alternates between imaging steps 
and model update steps. This iterative refinement is expensive in 
terms of human costs (picking out features/adjusting the velocity 
model) and computational costs (many repeated wave propagations 
and attributes computations). Most prior work focused on identify-
ing features in already migrated images (Hale, 2012; Hale, 2013; 
Guillen, 2015; Addison, 2016; Bougher and Hermann, 2016). 
The literature is filled with refinements to this workflow, but 
ultimately, it remains largely the same.

Recent work (Zhang et al., 2014; Frogner et al., 2015; 
Dahlke et al., 2016) demonstrates a new approach that builds 
and uses a deep neural network (DNN) statistical model to 
transform raw-input seismic data directly to the final mapping 
of faults in 2D. In this case, fault locations were chosen as the 
output because of their relevance to optimizing production in 
existing fields. DNNs are built on the premise that they can 
be used to replicate any function (in theory, even a nonlinear 
one like acoustic wave propagation). We show that DNNs can 
be used to identify fault structure in 3D volumes with reasonable 
accuracy. The greater promise is that as computational tools 
improve, we can use even more complex neural networks to 
improve accuracy. The costs are all computational, mostly in 
the form of training incurred only once up front. Once the 
neural network is trained, predictions can be produced in a 
fraction of the training time and of the time needed for tradi-
tional physics modeling with partial differential equations. 
This means that nearly instantaneous earth models could be 
created as acquisition progresses. An interpreter aboard an 
acquisition vessel could identify hot spots as they travel over 
them and then modify acquisition to improve imaging over 
that same area on another pass. This is more cost effective than 
initiating a new acquisition campaign.

In this paper, we start by explaining the basics of the problem 
followed by discussions of DNNs and the Wasserstein loss func-
tion. Next, we introduce the general workflow used to train our 
DNN. After that, we discuss our performance results and some 
of our findings regarding network architectural parameters. Last, 
we will explain the directions for future work.

Problem overview
The key geologic feature we target in this work is a fault 

network. Shifted rock layers can trap liquid hydrocarbons, which 
will form reservoirs (Figure 1). The 3D structure of a fault network 
can be highly complex (Figure 2), representing a challenge for 
structured output methods of prediction.

Deep neural networks (DNN)
Using learning algorithms is an appealing alternative to classic 

seismic processing. Among that class of algorithms, we have 
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selected DNN for our experiments since there is increasing com-
munity agreement (Grzeszczuk et al., 1998; De et al., 2011; Lin 
and Tegmark, 2016) in favor of this kind of algorithm as a good 
surrogate for physics-based processes.

DNNs consist of “layers” of weighted nodes that are activated 
by inputs from previous layers. These networks are trained with 
examples in which the correct/true output (label) is known for a 
given input; the weight parameters in the nodes of the network 
evolve due to the minimization of the error between prediction 
and true value. This causes the network to become an increasingly 
better predictor of the training examples and, ultimately, of any 
example (assuming proper training) of a data class that is similar 
in nature to the training data.

This topology of information flow between nodes is inspired 
by the structure of neurons in the brain (Figure 3). The universal 
approximation theorem shows that neural networks can be used 
to approximate an arbitrary continuous function up to our 
desired accuracy (Hornik et al., 1989). For this reason, there is 
much promise in using this approach to make predictions of 
functions that are very nonlinear (like fault probability from 
time-series data). While the theoretical limits of this approach 
are generous, to find the neural network that best approximates 
our function is not trivial. Our ability to build effective neural 
networks is limited by computing constraints. More complex 
networks are more expensive to train, and the generation of 
accurate training examples can be computationally expensive 
due to large-scale forward modeling. Ultimately, our predictions 
are only as good as the complexity and refinement of our neural 
network coupled with the relevance and quality of the features 
we choose as inputs.

Workflow
The first step in our workflow (Figure 4) is to collect the training 

examples. Real data examples are impractical and limiting since 
the labels are assigned to fault locations by few domain experts. 
This means that the neural network’s best result would be bound 
by human performance and data quality. Instead, we generate 
realistic 3D velocity models synthetically, with the fault labeling 
generated concurrently for an unbiased ground truth. Next, we 
use an acoustic approximation to the wave equation to generate 
wavefields and record them as time-series signals with predefined 
acquisition geometry. This step is conducted on thousands of 
random velocity-model realizations, giving us many instances of 
labeled fault locations and the corresponding seismic traces for the 
entire data set. We reserve a portion of this data set unseen from 
the algorithm (holdout set) so that we can test it after we have 
trained our predictor. We set ranges on a relatively small number 
of parameters as bounds on the random model generator. These 
parameters include the number of layers in a model, the number 
of faults, the range of velocity, and the dip and strike angles for 
each possible fault. We believe that the randomized models pro-
duced in this manner are realistic enough to demonstrate the efficacy 
of neural network predictions (see Figure 5).

Labeling
Since the positions of the faults are known a priori, the labeling 

process is straightforward. However, complexity is added to this 
process when the labeling targets a subsampled grid for compu-
tational efficiency. Addition of a threshold parameter to define 
the labeling of the coarse grid is needed. This threshold value sets 
how many fine-sampled voxels inside a coarse voxel must be 
fault-labeled for that coarse voxel to be considered as having a 
fault or not. There are a variety of ways to choose that threshold 

Figure 1. Diagram of a fault trap (Creative Commons).

Figure 2. Example of complex faulting (from Mira Geoscience).

Figure 3: Topology of a simple neural network.

Figure 4. Depiction of the workflow’s main tasks.
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so that the subsampled labeling appropriately 
matches the underlying fine-sampled labeling, 
with ours being chosen on a trial-and-error basis 
prior to any training.

Structured output learning and the 
Wasserstein loss

Our problem is naturally formulated as pre-
dicting a (subsampled) 3D “voxel map” of binary 
fault/nonfault indicators. This is similar to image 
segmentation problems in computer vision. A 
common way of handling this is to introduce a 
Markov random field (MRF) on the output voxels 
that captures the interactions and run an inference 
algorithm to get the jointly optimal predictions. 
More generally, the inference step can be incor-
porated into the objective function for learning. 
Commonly used formulations include structured 
support vector machines and conditional random 
fields (Nowozin and Lampert, 2011).

However, while the couplings for pixel labels 
in an image can be modeled naturally via neigh-
borhood similarity or input-pixel-based similarity, the prior 
structure in our model is of much higher complexity. More specifi-
cally, the faults usually extend as smooth surfaces. This property 
cannot be characterized via factors that involve only a few nearby 
output variables. On the other hand, inference on MRFs with 
general high-order factors is computationally expensive. As a 
result, we choose to perform independent predictions for each 
output region and incorporate our prior knowledge via a novel 
loss function called the Wasserstein loss (Frogner et al., 2015).

Formally, let K = D × D × D be the number of output voxels. 
We normalize the ground-truth binary output vector y ∈ 0,1{ }K

to y = y / y
1

 so that it represents a probability distribution 
over the 3D grid. Moreover, we model our predictor as a DNN 
with a softmax layer at the top so that it also produces a probability 
distribution hθ x( ) ∈ ΔK, where ∆K  is the K-dimensional simplex, 
and θ are all the parameters of the DNN.

The cross-entropy loss is commonly used to measure the 
difference between two distributions. It is derived from the Kull-
back–Leibler divergence between the prediction ŷ and the  
 
ground-truth y : ℓCE ŷ, y( ) = k=1

K∑ ŷk log yk  for ŷ, y ∈ ΔK .

When the ground-truth y is a “one-hot” vector for a single 
class, this reduces to the cross-entropy loss typically used in 
multiclass logistic regression. Unfortunately, this loss does not 
consider the structural information for the fault-prediction prob-
lems. Specifically, the spatial relationship among the K output 
voxels could enforce strong smoothness information. Consider a 
prediction that is slightly off the ground truth and another that 
is completely wrong; the cross-entropy loss cannot effectively 
distinguish the two different cases.

Alternatively, consider the following Wasserstein loss (Frogner 
et al., 2015), which is inspired by optimal transport literature and 
related to other applications on geosciences (Engquist and Froese, 
2014; Metivier et al., 2016):

ℓW ŷ, y( ) = min
T∈Π ŷ , y( )

T ,M ,

Π ŷ, y( ) = T ∈ !+
K×K :T1= ŷ,T T1= y{ } ,               (1) 

where T ,M = tr T TM( )  is the inner product, for a given ground  
metric matrix Mk ,k ' = d k,k '( )  for some ground metric d ⋅,⋅( ) on 
the output space. For our application, the output space is the 3D 
grid of voxels, and the natural ground metric is the Euclidean 
distance between the voxels. T in the loss term is a joint probability 
distribution that marginalizes to the ground truth and the predic-
tion. Intuitively, T defines a transportation plan that maps prob-
ability mass from the prediction to the ground-truth, and T ,M  
measures the cost of this plan according to the ground metric. 
The loss is then defined by the cost of the optimal feasible transport 
plan. For the cases of Figure 7, the Wasserstein loss for the left 
plot will be smaller than the central plot due to the larger cost of 
this plan according to the ground metric.

Feature generation and extraction
Raw seismic data is far too unrefined and redundant to be 

immediately useful as inputs to our neural network. We im-
proved prediction performance by extracting input features 
carefully, taking advantage of techniques from signal processing. 
The amount of collected features is large and grows by orders 
of magnitude when more realistic models are used. For instance, 
for all cases used in this work, the acquisition configuration 
is: nine shots per model, with 400 receivers in a 20 × 20 grid, 
and 1500 time samples per receiver. This configuration (smaller 
than realistic acquisitions) produces 5,400,000 raw features in 
total per model. If we were to use a more realistic acquisition, 
such as 100 shots with 1600 receivers and 2000 time samples, 
we would end up with up to 320,000,000 input attributes. 
These numbers only grow with denser acquisition geometries. 

Figure 5. Example of a randomly generated velocity model with a multiple faults.
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Choosing the architectural parameters of a neural network is 
not a deterministic process. A neural network that learns from 
this amount of features requires a large number of training 
epochs to train.

We use transformations of the data space coupled with feature-
reduction methods for removing the features that are the least 
useful for prediction. These steps reduce the feature space to a 
more reasonable magnitude (thousands of input features rather 
than millions).

Implementation and results
In terms of computing, the training process takes a few 

hours per data set and minutes for testing. Putting this in 
perspective, the training process for one data set takes the same 
time that the migration of a single shot takes for a dense acquisi-
tion with anisotropic assumption. Once the network is trained, 
it can be reused many times with minimal cost, and given a 
certain generalization level, it can be exposed to many new data 
sets. This can be far less expensive than processing and interpret-
ing one complete seismic acquisition, which happens every time 
the underlying model is changed. Our proprietary workflow is 
almost completely implemented in the MIT Julia language in 
which the heavy computing is offloaded to GPGPUs through 
NVIDIA’s CuDNN.

We generate thousands of random velocity models with up 
to four faults in them, of varying strike, dip angle, and position. 
Our models had between three and six layers each, with velocities 
varying from 2000 to 4000 [m/s], with layer velocity increasing 
with depth. These models were 140 × 180 × 180 grid points at the 
sampling used for wave propagation (using the acquisition geom-
etry described earlier) but were subsampled to 20 × 20 × 20 and 
32 × 32 × 32 for labeling purposes. The raw data collected was 
reduced aggressively to a feature set that can fit in an NVIDIA 
K80 GPGPU memory.

With the generated features and labels, a variety of fully 
connected deep neural networks are trained. The network 
architecture main parameters varied from two to 20 hidden 
layers and 256 to 2048 units per layer. For all cases presented 
in Table 1, we used the Wasserstein loss function for training. 
The output of the networks is a subsampled 3D voxel grid, with 
each voxel’s value indicating the likelihood of a fault being 
present within the voxel. Ground-truth labels on the same grid 
were binary valued, indicating presence or not of a fault in each 
voxel. The final predictions were generated by taking the 
likelihood values map output and applying a threshold to it, 
such that likelihood values above the threshold would be 
considered having a fault, while those below would not. As a 
result, a lower threshold will label more voxels as faults, while 
a high threshold labels less.

We use two different quantitative metrics of performance in 
this work: intersection over union (IoU) and area under the ROC 
curve (AUC).

The IoU value is a ratio of the number of voxels that are in 
the intersection of the ground truth and prediction, divided 
by the number of voxels in the union of the ground truth and 
prediction. This gives us an idea of how clustered or scattered 
a prediction is; the values range from 0 to 1, where higher 
values are better (example in Figure 6). Two predictions could 
theoretically have the same AUC value (see Table 1) but 

Figure 6. Comparison of (a) the Wasserstein- and (b) non-Wasserstein-based 
predictions, IoU metric (described in the article). Red areas show false positives, 
green shows true positives (correct predictions), and yellow shows false negative. 
(c) 2D slice of a 3D model. The predictions have very different IoU, where green 
means better.

Figure 7. ROC curves for representative DNN architectures. The closer to the top-
left corner the better.

Table 1. Results obtained on several representative sets of simulated test data. 
The first two columns report performance metrics; the other columns describe 
the parameter of the experiments. All results obtained using Wasserstein loss 
function, with 16,000 training models and 4000 testing models, except for the 
asterisked case, where only 10,000 training models and 2000 testing models 
were used.

AUC IoU Hidden 
layers

Nodes per 
layer

Faults per 
model

0.902 0.311 5 768 4
0.893 0.294 5 640 4
0.836 0.220 7 640 4
0.833 0.218 8 512 4
0.854 0.246 7 512 2
0.849 0.227 6 512 2
0.820 0.219 6 512 2*
0.718 0.130 4 1024 1
0.897 0.395 4 512 1
0.919 0.384 4 256 1
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different IoU values. We report the (IoU) value averaged for 
the entire test set of predictions, with predicted likelihoods 
thresholded at a value chosen to maximize the average IoU 
over all the predictions.

Each point of a receiver operating characteristics (ROC) 
curve (see Figure 7) is based on the number of true positive 
predictions (vertical axis) and the false positive predictions 
(horizontal axis) for a particular threshold value. We report the 
AUC for the predictions, which describes how strong our predic-
tor is. The value ranges from 0.5 to 1.0, where the higher the 
value the better.

In Table 1, for all data sets (one, two, and four faults in model) 
AUC exceeds 0.9, which approaches that needed for practical use. 
Also, IoU surpasses 0.3 for many experiments, which implies that 
the prediction can be improved in terms of spatial alignment with 
respect to the ground truth.

The prediction grid size of experiments in Figure 9 and Figure 
11 is 32 × 32 × 32, therefore each prediction represents a voxel of 
4 × 5 × 5 in the model space. The predictions in Figure 9 follow 
the expected results, plus some false positives in the bottom-right 
area of the back slice.

The predictions in Figure 11b follow the expected structure 
as can be seen in Figure 11a. However, false positives are present 
in the area where the faults coincide. This is in line with expecta-
tions, since a cornucopia of signals and patterns are produced in 
that area. This case exposes the current limit of our predicting 
resolution for complex cases. In general, the resolution is limited 
by the quality of the data.

Future work
To evaluate practical usability, we must address how this 

approach can be scaled to actual production-level seismic data 
sets. For instance, we have to analyze sensitivity of the predic-
tions to acquisition geometries. Current synthetic input data 
is based on fixed acquisition geometry. If we use this fixed 
geometry to train a predictor, one must bin and stack the ac-
quired data so that it matches the acquisition used for training 
the model. For this reason, we believe that using a fixed dense 
geometry permits us to accurately bin and stack real data to 
match the predictor’s input parameters. Denser acquisition 
means more features, and as a result, more dramatic reduction 
of the feature space (and/or more complex neural networks) 
is needed.

Another area where we can improve the prediction quality is 
by increasing the number of voxels in our downsampled output 
grid such that we have better resolution in our predictions. This 
increase in voxel granularity means a more computationally de-
manding neural network and thus an increase in the cost of tuning 
and training.

Our workflow is flexible with respect to what can be predicted. 
The workflow can be repurposed to build one that predicts, for 
instance, salt bodies instead of fault locations. We change our 
labeling scheme so that salt bodies are labeled before training. 
Since salt bodies often create strong signals (at least for the top-
of-salt events) we expect that this geologic feature could also be 
identified using this method. Preliminary results along this line 
are promising.

Figure 8. Example of 3D model with two 2D highlighted slices. In this top view, 
two faults can be identified.

Figure 9. (a) Expected predictions for fault network in Figure 8 velocity model 
slices. (b) Our DDN-based predictions.
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Figure 11. (a) Expected predictions for fault network in Figure 10 velocity model, 
overlaid on the top view of the model. (b) Our DNN-based predictions.

Figure 10. Random generated 3D velocity model. Top view. A network of four faults 
can be observed.

Conclusions
We present a novel approach to the challenging multistep 

seismic model-building problem. It uses a deep learning system 
to map out a fault network in the subsurface, using raw seismic 
recordings as input. A distinguishing aspect of the solution is the 
use of the Wasserstein loss function, which is suited to problems 
in which the outputs have spatial layout dependency. We dem-
onstrate the system’s performance on synthetic data sets with 
simple fault networks. The primary challenge going forward will 
be transitioning to fault networks with more complex 3D geometry. 
This will lead to more tuned existing networks and/or extensions 
to our workflows.

The application of machine learning approaches to seismic 
imaging and interpretation shows great promise in hydrocarbon 
exploration and can dramatically change how the vast amount of 
seismic data is used in the future. 
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