
Special Section: Data analytics and machine learning208 THE LEADING EDGE March 2017

Automated fault detection without seismic processing

Abstract
For hydrocarbon exploration, large volumes of data are

acquired and used in physical modeling-based workflows to
identify geologic features of interest such as fault networks, salt
bodies, or, in general, elements of petroleum systems. The adjoint
modeling step, which transforms the data into the model space,
and subsequent interpretation can be very expensive, both in
terms of computing resources and domain-expert time. We
propose and implement a unique approach that bypasses these
demanding steps, directly assisting interpretation. We do this
by training a deep neural network to learn a mapping relationship
between the data space and the final output (particularly, spatial
points indicating fault presence). The key to obtaining accurate
predictions is the use of the Wasserstein loss function, which
properly handles the structured output — in our case, by exploit-
ing fault surface continuity. The promising results shown here
for synthetic data demonstrate a new way of using seismic data
and suggest more direct methods to identify key elements in
the subsurface.

Introduction
Acquisition technology advances and exploration of complex

areas are pushing the amount of data to be analyzed into the
“big data” category. Current exploration workflows consist of
many partially automated steps in which domain experts (geolo-
gists, geophysicists, rock physicists, etc.) command highly
tuned applications and then curate the resulting data in search
of valuable information. The data explosion is stressing these
workflows to a point at which every year more of the data
remains unused. Generally, the exploration process can be
broken down into two main elements: advanced tools and
manpower. Tools have progressed, and the addition of high-
performance computing has helped to reduce turnaround times
for seismic imaging (Rubio et al., 2009; Rastogi, 2011). Even
in the extreme case in which execution time for processing
tools would take nearly zero time, the problem of manpower
remains; there is no sensible way in which domain experts can
analyze and interpret all incoming data. The best solution must
trade domain-expert time for computing time. Therefore, some
of that domain knowledge needs to be formalized and imple-
mented within existing and future tools. One way to achieve
this is by taking advantage of algorithms that learn, for instance,
from legacy data that have been properly vetted. Using machine
learning, we can take advantage of new algorithms and software
ecosystems, as well as specialized hardware. In this contribu-
tion, we will focus our attention on one such application of
machine learning.

Seismic imaging is the primary tool used to build high-res-
olution models of the subsurface. In practice, it is typically part

Mauricio Araya-Polo1, Taylor Dahlke1,2, Charlie Frogner3, Chiyuan Zhang3, Tomaso Poggio3, and Detlef Hohl1

of an iterative workflow that alternates between imaging steps
and model update steps. This iterative refinement is expensive in
terms of human costs (picking out features/adjusting the velocity
model) and computational costs (many repeated wave propagations
and attributes computations). Most prior work focused on identify-
ing features in already migrated images (Hale, 2012; Hale, 2013;
Guillen, 2015; Addison, 2016; Bougher and Hermann, 2016).
The literature is filled with refinements to this workflow, but
ultimately, it remains largely the same.

Recent work (Zhang et al., 2014; Frogner et al., 2015;
Dahlke et al., 2016) demonstrates a new approach that builds
and uses a deep neural network (DNN) statistical model to
transform raw-input seismic data directly to the final mapping
of faults in 2D. In this case, fault locations were chosen as the
output because of their relevance to optimizing production in
existing fields. DNNs are built on the premise that they can
be used to replicate any function (in theory, even a nonlinear
one like acoustic wave propagation). We show that DNNs can
be used to identify fault structure in 3D volumes with reasonable
accuracy. The greater promise is that as computational tools
improve, we can use even more complex neural networks to
improve accuracy. The costs are all computational, mostly in
the form of training incurred only once up front. Once the
neural network is trained, predictions can be produced in a
fraction of the training time and of the time needed for tradi-
tional physics modeling with partial differential equations.
This means that nearly instantaneous earth models could be
created as acquisition progresses. An interpreter aboard an
acquisition vessel could identify hot spots as they travel over
them and then modify acquisition to improve imaging over
that same area on another pass. This is more cost effective than
initiating a new acquisition campaign.

In this paper, we start by explaining the basics of the problem
followed by discussions of DNNs and the Wasserstein loss func-
tion. Next, we introduce the general workflow used to train our
DNN. After that, we discuss our performance results and some
of our findings regarding network architectural parameters. Last,
we will explain the directions for future work.

Problem overview
The key geologic feature we target in this work is a fault

network. Shifted rock layers can trap liquid hydrocarbons, which
will form reservoirs (Figure 1). The 3D structure of a fault network
can be highly complex (Figure 2), representing a challenge for
structured output methods of prediction.

Deep neural networks (DNN)
Using learning algorithms is an appealing alternative to classic

seismic processing. Among that class of algorithms, we have

1Shell International Exploration and Production Inc.
2Stanford University.
3Massachusetts Institute of Technology.

http://dx.doi.org/10.1190/tle36030208.1.

D
ow

nl
oa

de
d

12
/1

4/
18

 to
 1

04
.2

20
.4

5.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://crossmark.crossref.org/dialog/?doi=10.1190%2Ftle36030208.1&domain=pdf&date_stamp=2017-03-02

Special Section: Data analytics and machine learning March 2017 THE LEADING EDGE 209

selected DNN for our experiments since there is increasing com-
munity agreement (Grzeszczuk et al., 1998; De et al., 2011; Lin
and Tegmark, 2016) in favor of this kind of algorithm as a good
surrogate for physics-based processes.

DNNs consist of “layers” of weighted nodes that are activated
by inputs from previous layers. These networks are trained with
examples in which the correct/true output (label) is known for a
given input; the weight parameters in the nodes of the network
evolve due to the minimization of the error between prediction
and true value. This causes the network to become an increasingly
better predictor of the training examples and, ultimately, of any
example (assuming proper training) of a data class that is similar
in nature to the training data.

This topology of information flow between nodes is inspired
by the structure of neurons in the brain (Figure 3). The universal
approximation theorem shows that neural networks can be used
to approximate an arbitrary continuous function up to our
desired accuracy (Hornik et al., 1989). For this reason, there is
much promise in using this approach to make predictions of
functions that are very nonlinear (like fault probability from
time-series data). While the theoretical limits of this approach
are generous, to find the neural network that best approximates
our function is not trivial. Our ability to build effective neural
networks is limited by computing constraints. More complex
networks are more expensive to train, and the generation of
accurate training examples can be computationally expensive
due to large-scale forward modeling. Ultimately, our predictions
are only as good as the complexity and refinement of our neural
network coupled with the relevance and quality of the features
we choose as inputs.

Workflow
The first step in our workflow (Figure 4) is to collect the training

examples. Real data examples are impractical and limiting since
the labels are assigned to fault locations by few domain experts.
This means that the neural network’s best result would be bound
by human performance and data quality. Instead, we generate
realistic 3D velocity models synthetically, with the fault labeling
generated concurrently for an unbiased ground truth. Next, we
use an acoustic approximation to the wave equation to generate
wavefields and record them as time-series signals with predefined
acquisition geometry. This step is conducted on thousands of
random velocity-model realizations, giving us many instances of
labeled fault locations and the corresponding seismic traces for the
entire data set. We reserve a portion of this data set unseen from
the algorithm (holdout set) so that we can test it after we have
trained our predictor. We set ranges on a relatively small number
of parameters as bounds on the random model generator. These
parameters include the number of layers in a model, the number
of faults, the range of velocity, and the dip and strike angles for
each possible fault. We believe that the randomized models pro-
duced in this manner are realistic enough to demonstrate the efficacy
of neural network predictions (see Figure 5).

Labeling
Since the positions of the faults are known a priori, the labeling

process is straightforward. However, complexity is added to this
process when the labeling targets a subsampled grid for compu-
tational efficiency. Addition of a threshold parameter to define
the labeling of the coarse grid is needed. This threshold value sets
how many fine-sampled voxels inside a coarse voxel must be
fault-labeled for that coarse voxel to be considered as having a
fault or not. There are a variety of ways to choose that threshold

Figure 1. Diagram of a fault trap (Creative Commons).

Figure 2. Example of complex faulting (from Mira Geoscience).

Figure 3: Topology of a simple neural network.

Figure 4. Depiction of the workflow’s main tasks.

D
ow

nl
oa

de
d

12
/1

4/
18

 to
 1

04
.2

20
.4

5.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

Special Section: Data analytics and machine learning210 THE LEADING EDGE March 2017

so that the subsampled labeling appropriately
matches the underlying fine-sampled labeling,
with ours being chosen on a trial-and-error basis
prior to any training.

Structured output learning and the
Wasserstein loss

Our problem is naturally formulated as pre-
dicting a (subsampled) 3D “voxel map” of binary
fault/nonfault indicators. This is similar to image
segmentation problems in computer vision. A
common way of handling this is to introduce a
Markov random field (MRF) on the output voxels
that captures the interactions and run an inference
algorithm to get the jointly optimal predictions.
More generally, the inference step can be incor-
porated into the objective function for learning.
Commonly used formulations include structured
support vector machines and conditional random
fields (Nowozin and Lampert, 2011).

However, while the couplings for pixel labels
in an image can be modeled naturally via neigh-
borhood similarity or input-pixel-based similarity, the prior
structure in our model is of much higher complexity. More specifi-
cally, the faults usually extend as smooth surfaces. This property
cannot be characterized via factors that involve only a few nearby
output variables. On the other hand, inference on MRFs with
general high-order factors is computationally expensive. As a
result, we choose to perform independent predictions for each
output region and incorporate our prior knowledge via a novel
loss function called the Wasserstein loss (Frogner et al., 2015).

Formally, let K = D × D × D be the number of output voxels.
We normalize the ground-truth binary output vector y ∈ 0,1{ }K

to y = y / y
1

 so that it represents a probability distribution
over the 3D grid. Moreover, we model our predictor as a DNN
with a softmax layer at the top so that it also produces a probability
distribution hθ x() ∈ ΔK, where ∆K is the K-dimensional simplex,
and θ are all the parameters of the DNN.

The cross-entropy loss is commonly used to measure the
difference between two distributions. It is derived from the Kull-
back–Leibler divergence between the prediction ŷ and the

ground-truth y : ℓCE ŷ, y() = k=1

K∑ ŷk log yk for ŷ, y ∈ ΔK .

When the ground-truth y is a “one-hot” vector for a single
class, this reduces to the cross-entropy loss typically used in
multiclass logistic regression. Unfortunately, this loss does not
consider the structural information for the fault-prediction prob-
lems. Specifically, the spatial relationship among the K output
voxels could enforce strong smoothness information. Consider a
prediction that is slightly off the ground truth and another that
is completely wrong; the cross-entropy loss cannot effectively
distinguish the two different cases.

Alternatively, consider the following Wasserstein loss (Frogner
et al., 2015), which is inspired by optimal transport literature and
related to other applications on geosciences (Engquist and Froese,
2014; Metivier et al., 2016):

ℓW ŷ, y() = min
T∈Π ŷ , y()

T ,M ,

Π ŷ, y() = T ∈ !+
K×K :T1= ŷ,T T1= y{ } , (1)

where T ,M = tr T TM() is the inner product, for a given ground
metric matrix Mk ,k ' = d k,k '() for some ground metric d ⋅,⋅() on
the output space. For our application, the output space is the 3D
grid of voxels, and the natural ground metric is the Euclidean
distance between the voxels. T in the loss term is a joint probability
distribution that marginalizes to the ground truth and the predic-
tion. Intuitively, T defines a transportation plan that maps prob-
ability mass from the prediction to the ground-truth, and T ,M
measures the cost of this plan according to the ground metric.
The loss is then defined by the cost of the optimal feasible transport
plan. For the cases of Figure 7, the Wasserstein loss for the left
plot will be smaller than the central plot due to the larger cost of
this plan according to the ground metric.

Feature generation and extraction
Raw seismic data is far too unrefined and redundant to be

immediately useful as inputs to our neural network. We im-
proved prediction performance by extracting input features
carefully, taking advantage of techniques from signal processing.
The amount of collected features is large and grows by orders
of magnitude when more realistic models are used. For instance,
for all cases used in this work, the acquisition configuration
is: nine shots per model, with 400 receivers in a 20 × 20 grid,
and 1500 time samples per receiver. This configuration (smaller
than realistic acquisitions) produces 5,400,000 raw features in
total per model. If we were to use a more realistic acquisition,
such as 100 shots with 1600 receivers and 2000 time samples,
we would end up with up to 320,000,000 input attributes.
These numbers only grow with denser acquisition geometries.

Figure 5. Example of a randomly generated velocity model with a multiple faults.

D
ow

nl
oa

de
d

12
/1

4/
18

 to
 1

04
.2

20
.4

5.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

Special Section: Data analytics and machine learning March 2017 THE LEADING EDGE 211

Choosing the architectural parameters of a neural network is
not a deterministic process. A neural network that learns from
this amount of features requires a large number of training
epochs to train.

We use transformations of the data space coupled with feature-
reduction methods for removing the features that are the least
useful for prediction. These steps reduce the feature space to a
more reasonable magnitude (thousands of input features rather
than millions).

Implementation and results
In terms of computing, the training process takes a few

hours per data set and minutes for testing. Putting this in
perspective, the training process for one data set takes the same
time that the migration of a single shot takes for a dense acquisi-
tion with anisotropic assumption. Once the network is trained,
it can be reused many times with minimal cost, and given a
certain generalization level, it can be exposed to many new data
sets. This can be far less expensive than processing and interpret-
ing one complete seismic acquisition, which happens every time
the underlying model is changed. Our proprietary workflow is
almost completely implemented in the MIT Julia language in
which the heavy computing is offloaded to GPGPUs through
NVIDIA’s CuDNN.

We generate thousands of random velocity models with up
to four faults in them, of varying strike, dip angle, and position.
Our models had between three and six layers each, with velocities
varying from 2000 to 4000 [m/s], with layer velocity increasing
with depth. These models were 140 × 180 × 180 grid points at the
sampling used for wave propagation (using the acquisition geom-
etry described earlier) but were subsampled to 20 × 20 × 20 and
32 × 32 × 32 for labeling purposes. The raw data collected was
reduced aggressively to a feature set that can fit in an NVIDIA
K80 GPGPU memory.

With the generated features and labels, a variety of fully
connected deep neural networks are trained. The network
architecture main parameters varied from two to 20 hidden
layers and 256 to 2048 units per layer. For all cases presented
in Table 1, we used the Wasserstein loss function for training.
The output of the networks is a subsampled 3D voxel grid, with
each voxel’s value indicating the likelihood of a fault being
present within the voxel. Ground-truth labels on the same grid
were binary valued, indicating presence or not of a fault in each
voxel. The final predictions were generated by taking the
likelihood values map output and applying a threshold to it,
such that likelihood values above the threshold would be
considered having a fault, while those below would not. As a
result, a lower threshold will label more voxels as faults, while
a high threshold labels less.

We use two different quantitative metrics of performance in
this work: intersection over union (IoU) and area under the ROC
curve (AUC).

The IoU value is a ratio of the number of voxels that are in
the intersection of the ground truth and prediction, divided
by the number of voxels in the union of the ground truth and
prediction. This gives us an idea of how clustered or scattered
a prediction is; the values range from 0 to 1, where higher
values are better (example in Figure 6). Two predictions could
theoretically have the same AUC value (see Table 1) but

Figure 6. Comparison of (a) the Wasserstein- and (b) non-Wasserstein-based
predictions, IoU metric (described in the article). Red areas show false positives,
green shows true positives (correct predictions), and yellow shows false negative.
(c) 2D slice of a 3D model. The predictions have very different IoU, where green
means better.

Figure 7. ROC curves for representative DNN architectures. The closer to the top-
left corner the better.

Table 1. Results obtained on several representative sets of simulated test data.
The first two columns report performance metrics; the other columns describe
the parameter of the experiments. All results obtained using Wasserstein loss
function, with 16,000 training models and 4000 testing models, except for the
asterisked case, where only 10,000 training models and 2000 testing models
were used.

AUC IoU Hidden
layers

Nodes per
layer

Faults per
model

0.902 0.311 5 768 4
0.893 0.294 5 640 4
0.836 0.220 7 640 4
0.833 0.218 8 512 4
0.854 0.246 7 512 2
0.849 0.227 6 512 2
0.820 0.219 6 512 2*
0.718 0.130 4 1024 1
0.897 0.395 4 512 1
0.919 0.384 4 256 1

D
ow

nl
oa

de
d

12
/1

4/
18

 to
 1

04
.2

20
.4

5.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

Special Section: Data analytics and machine learning212 THE LEADING EDGE March 2017

different IoU values. We report the (IoU) value averaged for
the entire test set of predictions, with predicted likelihoods
thresholded at a value chosen to maximize the average IoU
over all the predictions.

Each point of a receiver operating characteristics (ROC)
curve (see Figure 7) is based on the number of true positive
predictions (vertical axis) and the false positive predictions
(horizontal axis) for a particular threshold value. We report the
AUC for the predictions, which describes how strong our predic-
tor is. The value ranges from 0.5 to 1.0, where the higher the
value the better.

In Table 1, for all data sets (one, two, and four faults in model)
AUC exceeds 0.9, which approaches that needed for practical use.
Also, IoU surpasses 0.3 for many experiments, which implies that
the prediction can be improved in terms of spatial alignment with
respect to the ground truth.

The prediction grid size of experiments in Figure 9 and Figure
11 is 32 × 32 × 32, therefore each prediction represents a voxel of
4 × 5 × 5 in the model space. The predictions in Figure 9 follow
the expected results, plus some false positives in the bottom-right
area of the back slice.

The predictions in Figure 11b follow the expected structure
as can be seen in Figure 11a. However, false positives are present
in the area where the faults coincide. This is in line with expecta-
tions, since a cornucopia of signals and patterns are produced in
that area. This case exposes the current limit of our predicting
resolution for complex cases. In general, the resolution is limited
by the quality of the data.

Future work
To evaluate practical usability, we must address how this

approach can be scaled to actual production-level seismic data
sets. For instance, we have to analyze sensitivity of the predic-
tions to acquisition geometries. Current synthetic input data
is based on fixed acquisition geometry. If we use this fixed
geometry to train a predictor, one must bin and stack the ac-
quired data so that it matches the acquisition used for training
the model. For this reason, we believe that using a fixed dense
geometry permits us to accurately bin and stack real data to
match the predictor’s input parameters. Denser acquisition
means more features, and as a result, more dramatic reduction
of the feature space (and/or more complex neural networks)
is needed.

Another area where we can improve the prediction quality is
by increasing the number of voxels in our downsampled output
grid such that we have better resolution in our predictions. This
increase in voxel granularity means a more computationally de-
manding neural network and thus an increase in the cost of tuning
and training.

Our workflow is flexible with respect to what can be predicted.
The workflow can be repurposed to build one that predicts, for
instance, salt bodies instead of fault locations. We change our
labeling scheme so that salt bodies are labeled before training.
Since salt bodies often create strong signals (at least for the top-
of-salt events) we expect that this geologic feature could also be
identified using this method. Preliminary results along this line
are promising.

Figure 8. Example of 3D model with two 2D highlighted slices. In this top view,
two faults can be identified.

Figure 9. (a) Expected predictions for fault network in Figure 8 velocity model
slices. (b) Our DDN-based predictions.

D
ow

nl
oa

de
d

12
/1

4/
18

 to
 1

04
.2

20
.4

5.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

Special Section: Data analytics and machine learning March 2017 THE LEADING EDGE 213

Figure 11. (a) Expected predictions for fault network in Figure 10 velocity model,
overlaid on the top view of the model. (b) Our DNN-based predictions.

Figure 10. Random generated 3D velocity model. Top view. A network of four faults
can be observed.

Conclusions
We present a novel approach to the challenging multistep

seismic model-building problem. It uses a deep learning system
to map out a fault network in the subsurface, using raw seismic
recordings as input. A distinguishing aspect of the solution is the
use of the Wasserstein loss function, which is suited to problems
in which the outputs have spatial layout dependency. We dem-
onstrate the system’s performance on synthetic data sets with
simple fault networks. The primary challenge going forward will
be transitioning to fault networks with more complex 3D geometry.
This will lead to more tuned existing networks and/or extensions
to our workflows.

The application of machine learning approaches to seismic
imaging and interpretation shows great promise in hydrocarbon
exploration and can dramatically change how the vast amount of
seismic data is used in the future.

Acknowledgments
The authors thank Shell International Exploration & Produc-

tion Inc. and MIT for permission to publish this paper. Also, we
thank Jan Limbeck for his help improving the document.

Corresponding author: Mauricio.araya@shell.com

References
Addison, V., 2016, Artificial intelligence takes shape in oil and gas

sector: http://www.epmag.com/artificial-intelligence-takes-shape-
oil-gas-sector-846041, accessed 16 January 2017.

Bougher, B., and F. Hermann, 2016, AVA classification as an unsu-
pervised machine-learning problem: 86th Annual International
Meeting, SEG, Expanded Abstracts, 553–556, http://dx.doi.
org/10.1190/segam2016-13874419.1.

Dahlke, T., M. Araya-Polo, C. Zhang, and C. Frogner, 2016, Pre-
dicting geological features in 3D Seismic Data: Presented at Ad-
vances in Neural Information Processing Systems (NIPS) 29, 3D
Deep Learning Workshop.

De, S., D. Deo, G. Sankaranarayanan, and V. S. Arikatla, 2011, A
Physics-driven Neural Networks-based Simulation System (PhyN-
NeSS) for multimodal interactive virtual environments involv-
ing nonlinear deformable objects: Presence, 20, no. 4, 289–308,
http://dx.doi.org/10.1162/PRES_a_00054.

Engquist, B., and B. D. Froese, 2014, Application of the Wasser-
stein metric to seismic signals: Communications in Mathemati-
cal Sciences, 12, no. 5, 979–988, http://dx.doi.org/10.4310/
CMS.2014.v12.n5.a7.

Frogner, C., C. Zhang, H. Mobahi, M. Araya-Polo, and T. A. Pog-
gio, 2015, Learning with a Wasserstein loss: Presented at Ad-
vances in Neural Information Processing Systems (NIPS) 28.

Grzeszczuk, R., D. Terzopoulos, and G. Hinton, 1998, NeuroAn-
imator: fast neural network emulation and control of physics-
based models: Presented at 25th annual conference on Computer
graphics and interactive techniques (SIGGRAPH ‘98), http://
dx.doi.org/10.1145/280814.280816.

Guillen, P., 2015, Supervised learning to detect salt body: 85th An-
nual International Meeting, SEG, Expanded Abstracts, 1826–
1829, http://dx.doi.org/10.1190/segam2015-5931401.1.

Hale, D., 2012, Fault surfaces and fault throws from 3d seismic im-
ages: 82nd Annual International Meeting, SEG, Expanded Ab-
stracts, http://dx.doi.org/10.1190/segam2012-0734.1.

D
ow

nl
oa

de
d

12
/1

4/
18

 to
 1

04
.2

20
.4

5.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

Special Section: Data analytics and machine learning214 THE LEADING EDGE March 2017

Hale, D., 2013, Methods to compute fault images, extract fault sur-
faces, and estimate fault throws from 3d seismic images: Geophys-
ics, 78, no. 2, O33–O43, http://dx.doi.org/10.1190/geo2012-0331.1.

Hornik, K., M. Stinchcombe, and H. White, 1989, Multilayer feedforward
networks are universal approximators: Neural Networks, 2, no. 5, 359–
366, http://dx.doi.org/10.1016/0893-6080(89)90020-8.

Lin, H., and M. Tegmark, 2016, Why does deep and cheap learn-
ing work so well?: arXiv:1608.08225.

Métivier, L., R. Brossier, Q. Merigot, E. Oudet, and J. Virieux, 2016,
Increasing the robustness and applicability of full-waveform in-
version: An optimal transport distance strategy: The Leading
Edge, 35, no. 12, 1060–1067, http://dx.doi.org/10.1190/
tle35121060.1.

Nowozin, S., and C. H. Lampert, 2011, Structured learning and
prediction in computer vision: Foundations and Trends in Com-
puter Graphics and Vision, 6, no. 3–4, 185–365, http://dx.doi.
org/10.1561/0600000033.

Rastogi, R., 2011, High performance computing in seismic data pro-
cessing: Promises and challenges: Presented at HPC Advisory
Council Switzerland Workshop 2011, http://www.hpcadvisory-
council.com/events/2011/switzerland_workshop/pdf/Presenta-
tions/Day%203/2_CDAC.pdf, accessed 16 January 2017.

Rubio, F., M. Araya-Polo, M. Hanzich, and J. M. Cela, 2009, 3D
RTM problems and promises on HPC platforms: Presented at
79th Annual Meeting, SEG.

Zhang, C., C. Frogner, M. Araya-Polo, and D. Hohl, 2014, Ma-
chine-learning based automated fault detection in seismic traces:
76th Conference and Exhibition, EAGE, Extended Abstracts,
http://dx.doi.org/10.3997/2214-4609.20141500.

D
ow

nl
oa

de
d

12
/1

4/
18

 to
 1

04
.2

20
.4

5.
16

7.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

