Velocity model building using shape optimization applied to level sets

Thesis defense Taylor Dahlke, 4/1/2019

Initial model

Initial seismic image

Refined model

Refined seismic image

Velocity model

Before Full-Waveform Inversion (FWI)

Figure: Xukai Shen, "Salt model building at Atlantis with Full Waveform Inversion", SEG 2017

After Full-Waveform Inversion (FWI)

Figure: Xukai Shen, "Salt model building at Atlantis with Full Waveform Inversion", SEG 2017

After Full-Waveform Inversion (FWI)

Figure: Xukai Shen, "Salt model building at Atlantis with Full Waveform Inversion", SEG 2017

Sharp interfaces require more high frequencies

Sharp interfaces require more high frequencies

Field data has limited bandwidth

Field data has limited bandwidth

Field data has limited bandwidth

Relative FWI cost

Relative FWI cost

Instead of treating all areas the same ...

Figure: Xukai Shen, "Salt model building at Atlantis with Full Waveform Inversion", SEG 2017

Treat salt as a cohesive body

Figure: Xukai Shen, "Salt model building at Atlantis with Full Waveform Inversion", SEG 2017

How do we keep track of these sharp boundaries?
Track every point on the salt boundary?

Figure: Xukai Shen, "Salt model building at Atlantis with Full Waveform Inversion", SEG 2017

Drawback: Distributing points is not intuitive

Drawback: Sharp corners become tricky

Drawback: Merging/separating bodies is difficult

I am going to use level sets

I am going to use level sets

What are level sets?

Implicit surface

Level set

Level set

Implicit surface

Level set

Low frequency update

Implicit surface

How do we update the level set so that it becomes like the **real salt** ?

How do we update the level set so that it becomes like the real salt ?

Typical FWI:

$$||F(m) - d_{obs}||_{2}^{2}$$

Typical FWI:

 $\|F(m)-d_{obs}\|_2^2$ L2 Norm

Typical FWI:

 $\|F(m) - d_{obs}\|_{2}^{2}$

Acoustic wavespeed model

Typical FWI:

Synthetic data modeling

Typical FWI:

Observed acoustic data

Typical FWI:

Data residual

Typical FWI:

$$\|F(m)-d_{obs}\|_2^2$$

First derivative = Gradient

Typical FWI:

$$\|F(m)-d_{obs}\|_2^2$$

First derivative = Gradient

Second derivative = Hessian

Typical FWI:

$$\|F(m)-d_{obs}\|_2^2$$

First derivative = Gradient

Second derivative = Hessian

Level set FWI:

$$\|F(m(\phi,b)) - d_{obs}\|_{2}^{2}$$

$m(\phi,b)=H(\phi)(c_s-b)+b$

$m(\phi,b)=H(\phi)(c_s-b)+b$ **Implicit surface**

(Approximate) Heaviside function $m(\phi,b)=H(\phi)(c_s-b)+b$ Salt body overlay **Background velocity**
Derivation: New model space

 $m(\phi,b)=H(\phi)(c_s-b)+b$ **Background velocity** Full acoustic velocity Salt body overlay

Isn't this new model space **twice as big** now?

Yes, more model parameters

Yes, more model parameters But we can use less!

Build implicit surface with Radial Basis Functions (RBFs)

Build implicit surface with Radial Basis Functions (RBFs)

value surface Implicit

Do RBFs help improve the inversion outcome?

First-order descent is okay sometimes

$\triangle m = -g$

...But Newton's method allows us to converge faster

...But Newton's method allows us to converge faster

...But Newton's method allows us to converge faster

Smaller system solves faster!

INITIAL MODEL

98

TRUE MODEL

DATA RESIDUAL NORM

MODEL RESIDUAL NORM

Search direction inversion is better! $\triangle m = -H^{-1}g$

Is there any way we can include human input into our inversion?

Wait can we make changes inside the salt, or only along the boundaries?

 $\delta(\phi)(c_s-b)$

 $\hat{\delta}(\phi, G)(c_s - b)$

Expand the gradient footprint

Expand the gradient footprint

Expand the gradient footprint

How much do expanded gradients and expert guidance **actually help**?

Fully guided inversion

Partially guided inversion

Unguided inversion

INITIAL MODEL

TRUE MODEL

DATA NORM

MODEL NORM

How well does any of this work on **real data**?

Application to 3D field data

Provided by Shell Exploration & Production Company

Application to 3D field data

Provided by Shell Exploration & Production Company

OBN (ocean bottom-node) survey (2010)

Application to 3D field data

Provided by Shell Exploration & Production Company

OBN (ocean bottom-node) survey (2010)

Gulf of Mexico, offshore Louisiana

Oblique view of survey area

Oblique view of survey area

Oblique view of survey area

STEP 1: Image the data

Reverse-Time Migration (RTM) (Stanford)

Reverse-Time Migration (RTM) (Shell)

Reverse-Time Migration (RTM) (Stanford)

Reverse-Time Migration (RTM) (Shell)

Reverse-Time Migration (RTM) (Stanford)

Reverse-Time Migration (RTM) (Shell)

Reverse-Time Migration (RTM) (**Stanford**)

Reverse-Time Migration (RTM) (Shell)

STEP 2: Run inversion

3D inversion results

- Parameterized salt boundary using radial basis functions.
- Inner-loop inversion used Gauss-Newton Hessian.
- Alternated updating between background velocity and level set (salt boundary).
- 77 nodes used.

Nodes used for RTM

Nodes used for inversion

for *i* in (1,*N*) do $d_{syn}(i) = F(\phi_i, \rho_{i-1})$ $\triangle d_i = d_{obs} - d_{syn}(i)$ $g_i = D^T B^T \triangle d_i$ if EvenNumberedIteration then $\triangle \lambda_i = \mathbf{CGHessianInv}(g_i)$ $\triangle \phi_i = D(\triangle \lambda_i)$ $\triangle b_i = 0$ $\alpha = \mathbf{linesearch}(\triangle \phi_i)$ $\beta = 0$

else

 $\Delta \phi_i = 0$ $\Delta b_i = \mathbf{CGHessianInv}(g_i)$ $\alpha = 0$ $\beta = \mathbf{linesearch}(\Delta b_i)$

end if

$$\phi_i = \phi_{i-1} - \alpha \cdot \bigtriangleup \phi_i$$

$$b_i = b_{i-1} - \beta \cdot \bigtriangleup b_i$$

end for
Return $m(\lambda N, b_N)$

Implicit surface

for *i* in (1,*N*) do $d_{syn}(i) = F(\phi_i, \rho_{i-1})$ $\Delta d_i = d_{obs} - d_{syn}(i)$ $g_i = D^T B^T \Delta d_i$ if EvenNumberedIteration then $\Delta \lambda_i = \mathbf{CGHessianInv}(g_i)$ $\Delta \phi_i = D(\Delta \lambda_i)$ $\Delta b_i = 0$ $\alpha = \mathbf{linesearch}(\Delta \phi_i)$ $\beta = 0$

else

 $\Delta \phi_i = 0$ $\Delta b_i = \mathbf{CGHessianInv}(g_i)$ $\alpha = 0$ $\beta = \mathbf{linesearch}(\Delta b_i)$

end if

$$\phi_i = \phi_{i-1} - \alpha \cdot \bigtriangleup \phi_i$$

$$b_i = b_{i-1} - \beta \cdot \bigtriangleup b_i$$

end for
Return $m(\lambda N, b_N)$

Implicit surface

for *i* in (1,*N*) do $d_{syn}(i) = F(\phi_i, b_{i-1})$ $\triangle d_i = d_{obs} - d_{syn}(i)$ $g_i = D^T B^T \triangle d_i$ if EvenNumberedIteration then $\triangle \lambda_i = CGHessianInv(g_i)$ $\triangle \phi_i = D(\triangle \lambda_i)$ $\triangle b_i = 0$ $\alpha = linesearch(\triangle \phi_i)$ $\beta = 0$

else

 $\Delta \phi_i = 0$ $\Delta b_i = \mathbf{CGHessianInv}(g_i)$ $\alpha = 0$ $\beta = \mathbf{linesearch}(\Delta b_i)$

end if

$$\phi_i = \phi_{i-1} - \alpha \cdot \bigtriangleup \phi_i$$

$$b_i = b_{i-1} - \beta \cdot \bigtriangleup b_i$$

end for
Return $m(\lambda N, b_N)$

Background velocity model

for i in (1,N) do $d_{syn}(i) = F(\phi_i, b_{i-1})$ $\Delta d_i = d_{obs} - d_{syn}(i)$ $g_i = D^T B^T \Delta d_i$ if EvenNumberedIteration then $\Delta \lambda_i = CGHessianInv(g_i)$ $\Delta \phi_i = D(\Delta \lambda_i)$ $\Delta b_i = 0$ $\alpha = linesearch(\Delta \phi_i)$ $\beta = 0$

else

 $\Delta \phi_i = 0$ $\Delta b_i = \mathbf{CGHessianInv}(g_i)$ $\alpha = 0$ $\beta = \mathbf{linesearch}(\Delta b_i)$

end if

$$\phi_i = \phi_{i-1} - \alpha \cdot \bigtriangleup \phi_i$$

$$b_i = b_{i-1} - \beta \cdot \bigtriangleup b_i$$

end for
Return $m(\lambda N, b_N)$

Synthetic modeled data

$$\Delta b_i = \mathbf{CGHessianInv}(g_i)$$

$$\alpha = 0$$

$$\beta = \mathbf{linesearch}(\Delta b_i)$$

end if

$\phi_i = \phi_{i-1} - \alpha \cdot \bigtriangleup \phi_i$ $b_i = b_{i-1} - \beta \cdot \bigtriangleup b_i$ end for Return $m(\lambda N, b_N)$

Data residual

for
$$i$$
 in $(1,N)$ do
 $d_{syn}(i) = F(\phi_i, b_{i-1})$
 $\Delta d_i = d_{obs} - d_{syn}(i)$
 $g_i = D^T B^T \Delta d_i$
if EvenNumberedIteration then
 $\Delta \lambda_i = CGHessianInv(g_i)$
 $\Delta \phi_i = D(\Delta \lambda_i)$
 $\Delta b_i = 0$
 $\alpha = linesearch(\Delta \phi_i)$
 $\beta = 0$

else

$$\Delta \phi_i = 0$$

$$\Delta b_i = \mathbf{CGHessianInv}(g_i)$$

$$\alpha = 0$$

$$\beta = \mathbf{linesearch}(\Delta b_i)$$

end if

$$\phi_i = \phi_{i-1} - \alpha \cdot \bigtriangleup \phi_i$$

$$b_i = b_{i-1} - \beta \cdot \bigtriangleup b_i$$

end for
Return $m(\lambda N, b_N)$

Gradient

for *i* in (1,*N*) do $d_{syn}(i) = F(\phi_i, b_{i-1})$ $\triangle d_i = d_{obs} - d_{syn}(i)$ $g_i = D^T B^T \triangle d_i$ if EvenNumberedIteration then $\Delta \lambda_i = CGHessianInv(g_i)$ $\Delta \phi_i = D(\Delta \lambda_i)$ $\Delta b_i = 0$ $\alpha = linesearch(\Delta \phi_i)$ $\beta = 0$

else

$$\Delta \phi_i = 0$$

$$\Delta b_i = \mathbf{CGHessianInv}(g_i)$$

$$\alpha = 0$$

$$\beta = \mathbf{linesearch}(\Delta b_i)$$

end if

$$\phi_i = \phi_{i-1} - \alpha \cdot \bigtriangleup \phi_i$$

$$b_i = b_{i-1} - \beta \cdot \bigtriangleup b_i$$

end for
Return $m(\lambda N, b_N)$

Search direction: Implicit surface

for i in (1,N) do $d_{\rm syn}(i) = \mathcal{F}(\phi_i, b_{i-1})$ $\triangle d_i = d_{\rm obs} - d_{\rm syn}(i)$ $q_i = D^T B^T \triangle d_i$ if EvenNumberedIteration then $\Delta \lambda_i = \mathbf{CGHessianInv}(q_i)$ $\triangle \phi_i = \mathcal{D}(\triangle \lambda_i)$ $\Delta b_i = 0$ $\alpha =$ **linesearch** $(\triangle \phi_i)$ $\beta = 0$ else

 $\Delta \phi_i = 0$ $\Delta b_i = \mathbf{CGHessianInv}(g_i)$ $\alpha = 0$ $\beta = \mathbf{linesearch}(\Delta b_i)$ and if

end if

$$\phi_i = \phi_{i-1} - \alpha \cdot \bigtriangleup \phi_i$$

$$b_i = b_{i-1} - \beta \cdot \bigtriangleup b_i$$

end for

Return $m(\lambda N, b_N)$

Search direction: Background velocity

Implicit surface iteration=0 X [m] 0.8 Magnitude Z [m] 0.8

Implicit surface iteration=1

Implicit surface iteration=5 X [m] 48800 49200 49600 50000 50400

Implicit surface iteration=30

Implicit surface iteration=35

Velocity model iteration=1

Velocity model iteration=5

Velocity model iteration=20 X [m] Velocity[km/s] Z [m] က

Velocity model iteration=30 X [m] Velocity[km/s] Z [m] က

Velocity model iteration=35 X [m] Velocity[km/s] Z [m] က

TOTAL OBJECTIVE FUNCTION

Normalized objective function

TOTAL OBJECTIVE FUNCTION

SALT COMPONENT OF OBJECTIVE FUNCTION

SALT COMPONENT OF OBJECTIVE FUNCTION

STEP 3: Compare new & old RTM images

AFTER SALT + BACKGROUND UPDATES

Conclusions

- Level sets can be used to track sharp salt boundaries in a velocity model inversion context.
- The implicit surface can be sparsely represented, making inversion of the Hessian more computationally feasible.
- The implicit surface offers an elegant means of including expert guidance into the inversion workflow, and can hasten convergence.
- The full method can be used on 3D datasets to find improved salt models, even with inclusions.
STANDARD FWI

SHAPE OPTIMIZATION

