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SUMMARY

Interpretation of sharp salt boundaries can be achieved by us-
ing level sets to define the boundary as an isocontour of a
higher dimensional implicit surface. Using shape optimiza-
tion, we can evolve this surface and the boundary it represents.
We derive an update for the implicit surface that uses second-
order information in the Hessian of the FWI objective func-
tion, taking into account the effects of the acquisition, as well
as scattering and transmission energy. This approach helps us
avoid local minima and more effectively converges on the true
model, both in terms of the data and model residual norms. We
demonstrate this idea using a Gauss-Newton approximation of
the Hessian on synthetic examples.

INTRODUCTION

Because salt has a higher velocity compared to the surrounding
sediments, it is quite reflective. Salt often has complex shapes
and high reflectivity, so the energy that strikes it is scattered be-
fore it reaches the targets of interest nearby (Etgen et al., 2009).
Additionally, this energy may not be properly captured by the
acquisition geometry, even with long offsets. If the boundaries
of the salt are placed improperly, it becomes especially hard to
identify targets along the flanks and base of salt. Furthermore,
if a well is inadvertently placed through salt, this could com-
plicate drilling, or the well could fail. For these reasons, it is
important to correctly identify the boundaries of salt bodies in
our earth models.

Tomographic approaches for interpreting salt bodies can be
less than effective, because the results tend to be too smooth
to provide significantly accurate placement of the salt bound-
aries. Manual and semi-automatic picking of salt boundaries
are common approaches for interpreting the desired sharp de-
lineations, but these methods can be time-consuming and te-
dious since expert input is necessary for either the actual pick-
ing, or the oversight and correction. Models are usually re-
fined iteratively, which means manual adjustment of the salt
bodies must be continuously revisited, causing a bottleneck in
the overall work flow. A robust method for further automating
the salt interpretation procedure during inversion would prove
to be very useful in practice.

Some previous approaches to segmenting salt bodies use a
shape optimization approach for evolving the boundaries (Guo
and de Hoop, 2013; Lewis et al., 2012). These boundaries can
be represented as the zero-isocontour of a higher dimensional
surface (for example, a 2D boundary as a contour of a 3D sur-
face). An updating step can be derived to evolve this shape
/ isosurface according to the Full Waveform Inversion (FWI)
objective function. Unlike the smooth boundaries produced by
tomographic approaches, the isocontour resulting from shape
optimization provides a sharp boundary, which is a more ap-

propriate way to classify many salt-sediment interfaces. Guo
and de Hoop (2013) utilize this approach using a frequency
domain forward wave operator to evolve a salt boundary and
velocity model. Their approach creates and applies a steepest-
descent update, which can create problems updating the base-
of-salt (BOS) once the top-of-salt (TOS) has gotten close to
convergence. This issue has been observed in recent work
(Guo and de Hoop, 2013), and is an inherent problem with
the steepest-descent update approach. In (Dahlke, 2015), we
decomposed the domain of the model so that a line search
was performed for both TOS and BOS gradient, allowing the
BOS to continue updating after the TOS converged. However,
splitting the domain into more regions in order to get better
resolution of updating conflicts with the added cost from the
line search that each new domain requires. Further, this ap-
proach can never take into account the relationships between
model points; its application is ultimately a diagonal matrix
constrained to n unique values (in the case of n domain re-
gions).

To address the problem with steepest-descent updating, we uti-
lize the second-order information provided by the Hessian of
the objective function, in order to choose better search direc-
tions in our inversion and avoid local minima. We use a Gauss-
Newton approximation to the Hessian in our inversion. Fur-
ther, we suggest the potential of using the scattering and trans-
mission components of the Hessian in order to further improve
our updating.

In this paper we will begin by discussing the fundamentals of
the level set method, followed by the derivation of the second-
order boundary update. Next we will describe and demonstrate
the algorithm used, and discuss the assumptions and funda-
mental limitations of this approach. Last, we will compare the
first order updating provided by a steepest-descent approach to
second order updating, and demonstrate the improved results
that this approach offers.

THEORY

While it may seem counter-intuitive to add an extra dimension
to our problem, by doing so, we gain the advantage of easily
merging/separating bodies as the evolution proceeds, as well
as the ability to handle sharp corners and cusps in the lower-
dimensional (2D) plane on which the boundary exists.

Osher and Sethian (1988) and Burger (2003) describe the level
set of an implicit surface f that represents the salt body bound-
ary as f(xG,t) = 0, where xG is the set of points along a bound-
ary G, and t is the iteration count. By taking the derivative of
this equation with respect to t (to find the df between itera-
tions), applying the chain rule, and re-arranging terms we can
get:
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Second-order shape optimization

∂f
∂t

=�V (xG,t) |—f | . (1)

The scalar speed term V (xG,t) describes the magnitude of the
variation of f that is normal to the boundary G. It determines
the evolution of the implicit surface, and ultimately the bound-
ary implied by it. We derive this normal velocity such that the
FWI objective function is minimized

y = minkF(m)�dk2
2 , (2)

where F(·) is the forward wavefield modeling operator, m is
the velocity model, and d is the observed data.

Calculus of variations

The shape derivative we use is based on a formal calculus of
variations outlined in Santosa (1996). The objective is to de-
fine the variation of the model m with respect to the boundary
variation (represented implicitly by the surface, f ).

Figure 1: The geometry of the curve {xG : f = 0} for a varia-
tion df(x) for an evolution step t . dW is the perturbation of
the salt body W.

Figure 1 illustrates that dm(xt ) will be ±(mint�mext), depend-
ing on the relative values of mint and mext or the sign (direction)
of the normal vector ~n. We only care about the component of
dxG that occurs in the normal direction, because a tangential
variation of xG does not affect m or f . Because of this, we can
express dm(x) as

dm(x) = (mint�mext) ~dxG ·~n |x2∂W . (3)

which can be considered a measure over ∂W.

We consider an inner product of velocity model perturbation
dm with a test function f (x). Formally, this can be written as,

hdm, f (x)i=
Z

R2
dm(x) f (x)dx =

Z

∂W
dm(x) f (x)dx. (4)

Because the dm(x) term equals zero in R2 \ ∂W, it does not
contribute to the overall inner product when integrating over

that domain; therefore, we only integrate over ∂W where
dm(x) is non-zero.

We want to decrease our objective function (2), so we choose a
second-order Newton step such that4m =�H�1g. In the case
of the FWI objective function, we can use the Gauss-Newton
approximation of the Hessian such that

4m =�[BT (m0)B(m0)]�1g, (5)

where B(m0) is the linearized Born operator at m = m0, and
g = BT (m0)r is the adjoint Born operator applied to the data
space residuals, as described in Plessix (2006). Since this is
the best search direction to decrease our objective function (2)
in the quadratic sense, we substitute it into f (x) from (4) to get

hdm, f (x)i=
Z

∂W
dm

„h
BT (m0)B(m0)

i�1
B(m0)r

«
dx. (6)

Because we are interested in the projection of this search di-
rection on the constraining equation for dm that we outline in
equation (3), we make our substitution for dm yielding to:

hdm, f (x)i=
Z

∂W
(mint�mext) ~dxG ·~n

„h
BT (m0)B(m0)

i�1
B(m0)r

«
ds(x).

(7)

Because dxG is infinitesimal, we replace dx with ~dxG ·~n when
we substitute into (7). We call ds(x) the incremental arc length
along the boundary G. We can think of ~dxG ·~nds(x) as roughly
the incremental area over which m varies at x.

We remember that in the previous section we stated the goal of
this derivation as being a solution of the scalar velocity func-
tion V (xG,t), such that the objective function is minimized.
We recognize that the normal component of the variation dxG
satisfies:

~dxG ·~n = V (xG,t). (8)

In order for the inner product that we have defined in (7) to
represent a decrease in the objective function (2), we need to
choose a V (xG,t) such that hdm, f (x)i < 0. The choice of
V (xG,t) that give us the most negative value is opposite to the
other terms, i.e;

V (xG,t)=�
Z

∂W
(mint�mext)

„h
BT (m0)B(m0)

i�1
B(m0)r

«
ds(x)

(9)

When we substitute (9) into (1) we get our final update equa-
tion for our implicit surface

∂f
∂t

= (mint�mext)
„h

BT (m0)B(m0)
i�1

B(m0)r
«˛̨

˛~—f
˛̨
˛ .

(10)
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Second-order shape optimization

General evolution algorithm

Our algorithm takes the following form:

Initialize f , mext , yold
r calculate residual
for it = 1,niter do

ynew 
‚‚r2‚‚

if ynew < yold then
gvel  BT r
gf  K(gvel)
bmax find max step size
gDRLSE  calculate DRLSE
fit+1 = fit +bmax ·gf +gDRLSE
r calculate residual

else
b  line search
fit+1 = fit +b ·gf +gDRLSE
r calculate residual

end if
end for

First we initialize our implicit surface, background velocity,
and subsequently our full velocity model. Next, we compute
synthetic data based on that full velocity model. After this op-
eration we find our data residual and calculate our objective
function value. We check to make sure the objective func-
tion value is decreasing for following iterations, but not the
first. If so, then we compute a gradient using the adjoint Born
operator. We use the conjugate gradient method to compute
the application of the inverse of the Gauss-Newton Hessian
on the FWI gradient calculated previously. Next we compute
the search direction of the implicit surface (the K operator de-
scribed in the algorithm above), as well as the maximum step
size for our line search in a manner that satisfies the Courant-
Friedrichs-Lewy (CFL) condition. By default, we take a step
using the maximum stable b step size. If that step size low-
ers our objective function value, we proceed to calculate a new
residual and gradient. But if it fails, then we undo our update
and perform a line search to find an optimal b value instead
of using the maximum b . We then use the optimal b to scale
the implicit surface search direction. We also add a DRLSE
(Distance Regularized Level Set Evolution) term in order to
stabilize the evolution of the implicit surface. The functional-
ity of this term is described at length in (Li et al., 2010). The
b value is already calculated in a way that accounts for this
DLRSE term. Last, the update is applied to the model, new
synthetic data and residuals are made, and a new gradient is
calculated for the next iteration.

APPLICATION

We begin by using a perturbed starting model, and then use a
fixed step-size steepest descent approach to get a reasonably
close convergence to the true model. It is the result of this
step that is the starting model used for the following examples.
This initial attempt at convergence gives us a model where the
more difficult features (like overhangs, or steep salt flanks) are
still in need of correction (see Figure 2), and where the top of

salt regions are established, as is often the case an exploration
imaging project.

We use a trailing line acquisition with 59 shots, each with 240
receivers. The receiver spacing is 25 [m], and the shot spacing
is 100 [m], giving us 6100 [m] of offset. We use a shallow
water bottom at 100 [m], making our model similar to a North
Sea marine environment.

(a)

(b)

Figure 2: (a) True model (zoomed in); (b) Difference between
full true model and initial guess.

We can see the specific areas where the two methods differ by
looking at the differences between the updates that have been
made to the model using either method. This is shown in 3.
These changes are actually quite small, but show that the Hes-
sian updating method does a better job at model convergence
on some of the areas that are otherwise poorly illuminated, par-
ticularly at the base of the left salt body, as well as under the
overhang.

When we look at the decrease in the objective function over
iteration, we can see that the Gauss-Newton method correctly
decreases faster than our steepest descent approach, for both
the model residual norm (4) and the data residual norm (5).
We used the same line search algorithm (quadratic interpola-
tion) for both cases. However, in this comparison, the steepest
descent norm curves make a notable jump at iteration 11. This
jump occurs for a case where the alogithm reaches a local min-
ima, such that the line search chooses a step size of zero. Since
making this step size is pointless, we design the algorithm to
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Second-order shape optimization

Figure 3: The difference between the absolute value of the
changes made by each method, i.e: (ABS(Hessian result
- true model) - ABS(Steepest descent result - true model)).
This plot can be interpreted as red areas being regions where
the Gauss-Newton method performs best, and blue being
where steepest descent performs best.

instead choose a small step size that will attempt to get us out
of the local minima and continue descent. In this case the ap-
proach is mostly successful, and we continue to decrease the
model norm accordingly. We choose to use the largest stable
step size for each iteration, and then check to see if a reduc-
tion in the objective function is achieved. When it is not, we
discard that update and redo it using a line search for the opti-
mal step size. This is done for efficiency, as a line search for
many of the iterations would otherwise choose the maximum
step size anyway.

By utilizing a full implementation of the Hessian rather than a
Gauss-Newton approximation, we would expect to be able to
account for interaction between model parameters, which will
further improve updating in areas where second-order scatter-
ing dominates, such as salt canyons, or other more complex
geometries.
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Figure 4: Comparison between the norm of the model residual
for each method. Red is steepest descent method, while blue
is the Gauss-Newton Hessian method.
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Figure 5: Comparison between the norm of the data residual
for each method. Red is steepest descent method, while blue
is the Gauss-Newton Hessian method.

CONCLUSIONS

In conclusion, we find that by using second order information
in our updating of the implicit surface, we gain improved con-
vergence of our model, both in terms of the model residual
norm and the data residual norm. However, one aspect that we
must contend with is the increased cost of inverting the Hes-
sian, and whether that cost is worth the improvement that we
see.
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