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Domain decomposition of level set updates for salt segmentation

Taylor Dahlke, Biondo Biondi and Robert Clapp
SUMMARY

Level set methods can provide a sharp interpretation of the salt
body by defining the boundary as an isocontour of a higher
dimensional implicit surface. We can use shape optimization
to derive a gradient update that evolves the implicit surface to
minimize the Full-Waveform Inversion (FWI) objective func-
tion. We can decompose the update gradient into separate par-
titions with individual scaling parameters to better avoid local
minima, and more effectively converge on the true model. Us-
ing our approach on synthetic examples, we can achieve rea-
sonable convergence of the residual L2 norm, as well as the
evolution of the velocity toward the true model, demonstrat-
ing the feasibility of this approach. Ultimately, this method
could be integrated into processing work-flows to improve the
building and refining of the velocity models used for imaging.

INTRODUCTION

Some previous approaches to performing salt body segmen-
tation use a shape optimization approach for identifying salt
body boundaries (Guo and de Hoop (2013); Lewis et al. (2012)),
by applying a global step parameter to the update gradient.

However, the back-propagation of the residuals can create bound-

ary updates that lead to a local minima when applied this way.
We show how decomposing the update gradient can help avoid
this problem. I will discuss the general derivation, the funda-
mental problem that we address, the algorithm we apply, and
the results we obtain.

The boundaries of a salt body can be represented as the zero
isocontour of a higher dimensional surface ¢ (for example, a
2D boundary as a contour of a 3D surface). A gradient can be
derived to evolve the surface ¢ according to the FWI objective
function:

F(m) = > A(m) —d|3.

5 (M

Unlike the smooth boundaries produced by tomographic ap-
proaches, the isocontour resulting from the shape optimization
provides a sharp boundary, which is a more appropriate way to
classify most salt-sediment interfaces.

Derivation of the evolution equation

While it may seem counter-intuitive to add an extra dimension
to our problem, by doing so, we gain the advantage of easily
merging/separating bodies as the evolution proceeds, as well
as the ability to handle sharp corners and cusps in the lower-
dimensional (2D) plane on which the boundary exists.

Osher and Sethian (1988) and Burger (2003) describe the level
set of ¢ that represents the salt body boundary as:
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¢(xr,7) =0.

By taking the derivative of this equation, applying the chain
rule, and re-arranging terms we can get:

9¢

P — v vel.

@)
The scalar speed term V (xr, 7) describes the magnitude of the
variation of ¢ that is normal to the boundary I'. It determines
the evolution of the implicit surface, and ultimately the bound-
ary implied by it. We derive this normal velocity such that the
FWI objective function is minimized.

Calculus of variations

The shape derivative we use is based on a formal calculus of
variations outlined in Santosa (1996). The objective is to de-
fine the variation of the model m with respect to the boundary
variation (represented implicitly by the surface, ¢).

Mext

Figure 1: The geometry of the curve {xr: ¢ =0} for a varia-
tion ¢ (x) for an evolution step 7.

We begin by considering an inner product of §m with a test
function f(x). Formally, this can be written as,

(om, f(x)) = /R2 om(x)f(x)dx = /(99 om(x)f(x)dx. (3)

Because the Sm(x) term equals zero in R?\ 99, it does not
contribute to the overall inner product when integrating over
that domain; therefore, we only integrate over dQ where §m(x)
is non-zero. We know that dm(x) will be +(mjp — mey ), de-
pending on the relative values of m;;,, and m,y; or the direction
of the normal vector 7i. We only care about the component of
Oxr that occurs in the normal direction, because a tangential
variation of xr does not affect m or ¢. Furthermore, because
Oxr is infinitesimal, we can replace dx with Sxr -7t and sim-
plify Equation 3 into
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(8m, f(x)) = /a Q(m,-m—mm)5;r‘ﬁf(x)ds(x)7 )

where ds(x) is the incremental arc length along the boundary

I'. We can think of Sx- 7ids(x) as roughly the incremental area
over which m varies at x.

We can identify §m from Equation 4. It can be considered a
measure over dQ:

Om = (Mint — Mext )OXT - |9 - (5)
‘We remember that in the previous section we stated the goal of
this derivation as being a solution of the scalar velocity func-
tion V(xr,7), such that the objective function is minimized.
We recognize that the normal component of the variation dxr

satisfies:

Sxr-ii =V (xr, 7). ()

We can use the shape derivative formulation described in San-
tosa (1996) to find a V (xr, ) that minimizes the FWI objective
function (Equation 1) that we insert into Equation 2 to get a fi-
nal implicit surface update gradient of:

2 oF
% = (mmt 7mext)%

W] : @)

The adjoint state method as described in Plessix (20006) is used

to derive 371:, which can be shown to be equivalent to F (m)” (A(m) —

d). Because our case uses the FWI objective function (Equa-
tion 1), this term can be interpreted as least squares migration,
more specifically as reverse time migration (RTM). This result

is formulated as:

This term by itself is the velocity model perturbation, which
we can process and use to make tomographic updates as de-
scribed in the following section.

8 u;(

)dcrdt ®)

APPLICATION

Our algorithm is demonstrated on 2D velocity models, with the
implicit surface evolved being a 3D surface. For the forward
wave propagation, a wavelet with a 15.0 Hertz (Hz) central fre-
quency and 4 millisecond (ms) time sampling was propagated
using a time domain forward operator.

General evolution algorithm

‘We begin with an initial background velocity, and a binary val-
ued (-1, 1) function as the initial implicit surface ¢. We create
a full initial-guess velocity model (m,) assuming a constant
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salt velocity. Using m,, we forward model to get our dyy, and
subsequently find our residual. From the residual we calcu-
late both a tomographic and a boundary update gradient. Be-
cause the RTM image is based on a non-smoothed model, it
contains reflection and tomography information. We get our
tomography update by smoothing the RTM image to mitigate
reflection updates that are present. We then perform a non-
linear line search for o in a manner that minimizes the FWI
objective function; and then, apply an explicit forward Euler
scheme that updates the background velocity V.. Following
this step, we perform the same line search and update steps for
the implicit surface (¢):

¢/t =9/ + (ﬁ%’. + UGreg) )

dJ Vback

J+l_
Vbuck V back +o a]

(10)

where  and o are the step sizes, and j is the current iteration
point. G, is a distance-regularization term that maintains the
slope of the implicit surface, such that [V¢| = 0. By driving
the gradient of the implicit surface to equal one, we minimize
irregularities of the implicit surface during evolution. This reg-
ularization term is calculated according to the approach de-
scribed in Li et al. (2010). The full work flow is graphically

represented in Figure 2.
|:> E> D
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Figure 2: The general work flow used for shape optimization.
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Figure 3: Velocity model error for starting model (left), and
final model (right) after 200 iterations using general algorithm.
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Boundary update gradient domain decomposition

One notices in Figure 3 that the convergence of the general al-
gorithm just described appears to stall before convergence of
the base of salt occurs, even after a significant number of itera-
tions. We hypothesize that the top of salt reflection is dominat-
ing the line search for . To test this, we analyze the gradients
derived from a model with perfect top-of-salt (TOS) and back-
ground velocity model. Ideally, the gradients should have no
update for the TOS, because it is already correct. However,
Figure 4 shows that we still realize an update for the TOS.
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Figure 4: RTM gradient update (left) and ¢ update (right) for
model with perfect TOS and background velocity (as shown in
the left panel of Figure 3). Blue, decrease; red, increase in ve-
locity (left). Blue, inward boundary movement; red, outward
boundary movement (right).

The fundamental problem demonstrated in Figure 4 is that the
RTM gradient contains information from both reflector posi-
tion error, as well as background velocity error. These errors
can be difficult or impossible to separate. In this case, the
data residual could be correctly removed by changing the po-
sition of the bottom reflector, or by making a velocity change
above it. The RTM calculation always produces a gradient
that applies both these effects; and therefore, we get an incor-
rect update when illumination for a reflector (like the BOS) is
sourced from ray paths that must first travel through another
reflector edge of the same body being updated (like the TOS).
Because the first reflector event (the TOS) is a stronger event,
it converges first and ultimately dominates the line search. The
lack of BOS updating caused by this has been observed in re-
cent work (Guo and de Hoop (2013)), and is an inherent prob-
lem with the global gradient update approach. Figure 3 shows
that even after a significant number of iterations, this approach
cannot converge to the true model, and in fact, even becomes
worse for some sections of the boundary.

Partitioning approach

A method to de-couple the updating of the TOS and BOS is
necessary so that the BOS can continue to be updated even
when the TOS converges.

To decompose the ¢ update gradient into “top” and “bottom”
components for the general case, we take a dot product of the
straight rays from each shot and the boundary-normal vector

SEG New Orleans Annual Meeting

x [km] x [km]

—600 —400 200 0
| I I

200 400 600 —600 —400 -200 0
I I I I I I I

200 400 600
I I I I

08
4e+03

007

] =
3e+03

)

o0zt
2e+03

Weighting map

Velocity model

Figure 5: Example of weighting used for the BOS gradient
partition (left), and velocity model that weighting is based on
(right).

fields, thereby generating a map that approximates the straight
ray illumination of the body. We perform these steps for each
shot, and sum the dot-product fields. Next, we set all posi-
tive values to 1.0 and all negative values to 0.0 (for the TOS
weighting map; opposite case for the BOS). Figure 5 gives an
example of what this boundary partitioning looks like. This
“splitting” has the advantage of decomposing the boundary
into sections that generally face away from or toward the ac-
quisition line. Further partitioning of the boundary update can
be done by setting thresholding to selectively partition the fac-
ing, steep, and shadowed reflecting edges.

Examples

We perform an experiment in which the algorithm does no to-
mography updating and begins with a perfect background ve-
locity model. Figure 6 shows the results from both the gen-
eral and decomposed-domain algorithms, demonstrating that
the difference between the two approaches is clear. After 50
iterations, the partitioning algorithm has converged on the true
model, while the global gradient approach has trouble, partic-
ularly on the base of salt.
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Figure 6: % velocity error at 50 iterations using domain de-
composition algorithm (left) and general algorithm (right).
Perfect background velocity model.
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Our next test uses the same salt model with a perturbed back-
ground velocity model that we perform tomography updates
on. Figure 7 shows that when we apply the decomposed do-
main approach, we get close convergence with the true model
on both the top and base of salt.
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Figure 7: Initial model perturbation (left), and after 110 itera-
tions (right) using split ¢ algorithm.

We compare the decomposed-domain approach results shown
in Figure 7 with those from an identical experiment using the
general algorithm by plotting the differential error, as shown in
Figure 8. From this comparison, we observe that the conver-
gence on the salt model is significantly improved, especially
for the base of salt and salt flanks. This further demonstrates
that the domain decomposition approach can yield more accu-
rate convergence, even when tomography is also concurrently
being updated.
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Figure 8: The differential error between the gradient partition-
ing approach and the general algorithms after 110 iterations,
as expressed as a percentage error from the true model. Blue
regions are where the domain partitioning approach performs
better; red, more poorly.

Figures 9 and 10 show more complex models with generally
improved results, with the main exception being the very base
of salt in Figure 9. We believe this is caused by the same fun-
damental problem described previously, because the ray paths
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illuminating the bottom enter/exit multiple reflectors, and are
much weaker events overall, thereby exasperating the problem
of coupling this reflector with stronger reflector updates. By
partitioning into three domains (top, flanks, and bottom), we
may be able to resolve this problem.
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Figure 9: Velocity model difference between general and split
¢ methods, shown as a percentage error from the true model.
Blue regions are where the domain partitioning approach per-
forms better; red, more poorly.
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Figure 10: Velocity model difference between general and split
¢ methods, shown as a percentage error from the true model.
Blue regions are where the domain partitioning approach per-
forms better; red, more poorly.

Conclusions

Our examples (Figures 8, 9 and 10) show that we get generally
better convergence on the base and flanks of salt with the do-
main decomposition approach. While the very bottom of the
salt in Figure 9 has done poorly, we believe that further parti-
tioning of the model (into top, sides, bottom) could allow for
better updating on this region. A simple two part split may
be insufficient since there are multiple entry/exit points on the
ray paths that illuminate this lowest region of the body, which
exasperates the problem of coupling this reflector with other
reflector updates.
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