
EARTH SOUNDINGS ANALYSIS:
Processing versus Inversion

Jon F. Clærbout
Cecil and Ida Green Professor of Geophysics

Stanford University

c©March 23, 2004

Contents

0.1 References . viii

1 Convolution and Spectra 1

1.1 SAMPLED DATA AND Z-TRANSFORMS 1

1.2 FOURIER SUMS . 6

1.3 FOURIER AND Z-TRANSFORM . 8

1.4 CORRELATION AND SPECTRA . 14

2 Discrete Fourier transform 21

2.1 FT AS AN INVERTIBLE MATRIX . 21

2.2 INVERTIBLE SLOW FT PROGRAM . 25

2.3 SYMMETRIES . 32

2.4 SETTING UP THE FAST FOURIER TRANSFORM 34

2.5 TWO-DIMENSIONAL FT . 38

2.6 HOW FAST FOURIER TRANSFORM WORKS 43

2.7 References . 45

3 Z-plane, causality, and feedback 47

3.1 LEAKY INTEGRATION . 48

3.2 SMOOTHING WITH BOX AND TRIANGLE 51

3.3 CAUSAL INTEGRATION FILTER . 54

3.4 DAMPED OSCILLATION . 58

3.5 INSTABILITY . 64

3.6 MINIMUM-PHASE FILTERS . 68

CONTENTS

3.7 INTRODUCTION TO ALL-PASS FILTERS 69

3.8 PRECISION EXHAUSTION . 72

3.9 MY FAVORITE WAVELET . 73

3.10 IMPEDANCE FILTERS . 74

4 Univariate problems 77

4.1 INSIDE AN ABSTRACT VECTOR . 77

4.2 SEGREGATING P AND S CROSSTALK 77

4.3 References . 85

4.4 HOW TO DIVIDE NOISY SIGNALS . 85

4.5 NONSTATIONARITY . 91

4.6 DIP PICKING WITHOUT DIP SCANNING 94

5 Adjoint operators 101

5.1 FAMILIAR OPERATORS . 102

5.2 ADJOINT DEFINED: DOT-PRODUCT TEST 109

5.3 NORMAL MOVEOUT AND OTHER MAPPINGS 111

5.4 DERIVATIVE AND INTEGRAL . 122

5.5 CAUSAL INTEGRATION RECURSION 123

5.6 UNITARY OPERATORS . 125

5.7 VELOCITY SPECTRA . 126

5.8 INTRODUCTION TO TOMOGRAPHY . 127

5.9 STOLT MIGRATION . 128

5.10 References . 129

6 Model fitting by least squares 131

6.1 MULTIVARIATE LEAST SQUARES . 131

6.2 ITERATIVE METHODS . 137

6.3 INVERSE NMO STACK . 144

6.4 MARINE DEGHOSTING . 146

6.5 CG METHODOLOGY . 150

CONTENTS

6.6 References . 153

7 Time-series analysis 155

7.1 SHAPING FILTER . 156

7.2 SYNTHETIC DATA FROM FILTERED NOISE 161

7.3 THE ERROR FILTER FAMILY . 164

7.4 BLIND DECONVOLUTION . 171

7.5 WEIGHTED ERROR FILTERS . 172

7.6 CALCULATING ERROR FILTERS . 175

7.7 INTERPOLATION ERROR . 178

8 Missing-data restoration 181

8.1 INTRODUCTION TO ALIASING . 181

8.2 MISSING DATA IN ONE DIMENSION . 183

8.3 MISSING DATA AND UNKNOWN FILTER 187

8.4 2-D INTERPOLATION BEYOND ALIASING 193

8.5 A FULLY TWO-DIMENSIONAL PE FILTER 204

8.6 TOMOGRAPHY AND OTHER APPLICATIONS 208

8.7 References . 211

9 Hyperbola tricks 213

9.1 PIXEL-PRECISE VELOCITY SCANNING 213

9.2 GEOMETRY-BASED DECON . 219

9.3 References . 226

10 Spectrum and phase 227

10.1 HILBERT TRANSFORM . 227

10.2 SPECTRAL FACTORIZATION . 234

10.3 A BUTTERWORTH-FILTER COOKBOOK 241

10.4 PHASE DELAY AND GROUP DELAY . 245

10.5 PHASE OF A MINIMUM-PHASE FILTER 248

CONTENTS

10.6 ROBINSON’S ENERGY-DELAY THEOREM 250

10.7 FILTERS IN PARALLEL . 252

11 Resolution and random signals 255

11.1 TIME-FREQUENCY RESOLUTION . 256

11.2 FT OF RANDOM NUMBERS . 261

11.3 TIME-STATISTICAL RESOLUTION . 263

11.4 SPECTRAL FLUCTUATIONS . 268

11.5 CROSSCORRELATION AND COHERENCY 273

11.6 SMOOTHING IN TWO DIMENSIONS . 275

11.7 PROBABILITY AND CONVOLUTION . 277

11.8 THE CENTRAL-LIMIT THEOREM . 278

12 Entropy and Jensen inequality 281

12.1 THE JENSEN INEQUALITY . 281

12.2 RELATED CONCEPTS . 283

13 RATional FORtran == Ratfor 287

14 Seplib and SEP software 291

14.1 THE DATA CUBE . 292

14.2 THE HISTORY FILE . 293

14.3 MEMORY ALLOCATION . 294

14.4 References . 295

14.5 Acknowledgments . 296

15 Notation 297

15.1 OPERATORS . 297

15.2 SCALARS . 297

15.3 FILTERS, SIGNALS, AND THEIR TRANSFORMS 298

15.4 MATRICES AND VECTORS . 299

15.5 CHANGES FROM FGDP . 299

CONTENTS

16 Interactive, 1-D, seismology program ed1D 301

16.1 References . 302

17 The Zplane program 303

17.1 THE SCREEN . 303

17.2 References . 305

Index 307

CONTENTS

CONTENTS

FREEWARE, COPYRIGHT, LICENSE, AND CREDITS

This disk contains freeware from many authors. Freeware is software you can copy and give
away. But it is restricted in other ways. Please see author’s copyrights and “public licenses”
along with their programs.

As you saw on the copyright page and will find in the electronic files, my electronic book is
copyrighted. However, the programs I wrote that display the book and its figures are available
to you under the GNU public license (see below). I have signed over copyright of the book text
to a traditional book publisher1; however, I did not grant them the electronic rights. I license
you, the general public, to make electronic copies of the entire book provided that you do not
remove or alter this licensing statement. Please respect the publisher’s legal rights and do not
make paper copies from your copy of the electronic book.

We (you and I) are indebted to many people who have generously contributed software to
the public good. I’ll mention here only those outside the Stanford University research group
whose contributions are widely used and on which we deeply depend:

TEX Don Knuth, Stanford University
LATEX Leslie Lamport, Stanford Research Institute
ratfor77 Ozan Yigit, Arizona, and Wes Bauske, IBM
ratfor90 Bob Clapp
dvips Tomas Rokicki, Stanford University

I feel sure the list of valuable contributors is much longer. I am afraid I may have overlooked
the names of some, and others have modestly omitted leaving their name and copyright.

My electronic book is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

My electronic book is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this pro-
gram; if not, write to the Free Software Foundation, Inc., 675 Massachusetts Ave., Cambridge,
MA 02139, USA.

1Blackwell Scientific Publications, 3 Cambridge Center, Cambridge, MA 02142

CONTENTS

PREFACE TO THE ELECTRONIC BOOK

Reproducibility

Each figure caption is followed by an [R] or an [NR] which denotes Reproducible or Not
Reproducible. To actually burn and rebuild the illustrations you will need to have “seplib”
installed at your site.

SEP software

Contained on the CD-ROM distribution are two interactive programs, ed1D and Zplane. I
originally wrote these programs in Sunview, an interactive software development platform
from Sun Microsystems. Fortunately, Steve Cole converted them to the X Window system,
using the X toolkit and Xlib graphics, so they are now available on machines from many
manufacturers. Unfortunately, in 1998, we do not have them compiled for our main machines
at SEP, linux PC’s and SGI.

Acknowledgement

This textbook itself was updated in minor ways since the 1991 CD-ROM was produced. The
electronic document, however, is greatly enhanced through systems improvements made by
Martin Karrenbach, Steve Cole, and Dave Nichols. Most of the features described in this
preface were absent or incomplete in 1991.

A note to the reader

In many branches of engineering and science there is a substantial computational element.
Earth-imaging seismology is one of these. In taking up computational problems we should
abandon books, journals, and reports and replace them with electronic documents that can be
used to recreate any print document, including its figures, from its underlying data and com-
putations. Today, few published results are reproducible in any practical sense. To verify them
requires almost as much effort as it took to create them originally. After a time, authors are
often unable to reproduce their own results! For these reasons, many people ignore most of the
literature. In the past this scandalous waste of time and energy may have been justified by the
high cost and incompatibility of data-processing machines. But with standards for Fortran, C,
UNIX,2 LATEX, Postscript,3 Xwindow,4 CD-ROM, and shirt-pocket-sized two-gigabyte tapes,
there is no longer any excuse for nonreproducible research. It is time to plunge into this new
era.

This paper book of 300 pages presents theory implemented by sixty subroutines, all in-
cluded in the book, which in turn made the book’s 150 figures. Behind the paper book are
about seventy figure-making directories, a large volume of Stanford Exploration Project utility
software, and some real datasets you can experiment with if you have access to the electronic
form of the book. I made nearly all of the figures myself. Even without the electronic book,
from the printed subroutines only, you should be able to produce results similar to mine and,
beyond this, use the subroutines in your own work.

If you have access to the electronic form of this book, you can read it from a computer
screen and press the buttons in the figure captions to rebuild and redisplay the figures. Some
of the figures are in color, some are interactive, and some are movies. But this is not the goal
of the electronic book. Its goal is to enable you to reproduce all my figures with reasonable
ease, to change parameters, to try other datasets, to modify the programs, and to experiment
with the theoretical concepts.

I could have written the programs in this book in vanilla Fortran or C and suffered the
verbosity and blemishes of these languages. Instead I chose to write the programs in a Fortran
dialect that, like mathematics, is especially suited to the exposition of technical concepts. At
Stanford we translate these programs to Fortran automatically by passing them first through
a home-made processor named sat, which overcomes Fortran’s inability to create temporary

2AT&T
3Adobe Systems, Inc.
4Massachusetts Institute of Technology

i

ii CONTENTS

arrays of arbitrary dimension, and second through AT&T’s Ratfor (Rational Fortran) pre-
processor. If you wish, a program called f2c, freely available from AT&T, will translate the
Fortran to C.

My goal in writing the programs in this book was not to write the best possible code with
the clearest possible definitions of inputs and outputs. That would be a laudable goal for a
reference work such as Numerical Recipes (Press et al.). Instead, I present a full mathematical
analysis with simple and concise code along with meaningful examples of its use. I use the
code as others might use pseudocode—to exemplify and clarify the concepts. These programs,
which also made the book’s figures, are not guaranteed to be free of errors. Since the word
processor and the compiler got the programs from the same place, however, there can be no
errors of transcription.

Why another book?

I decided to write this book for five reasons. First, seismologists and explorationists, as well
as many others in science and engineering, share the ability to synthesize the data implied
by any physical model. They have much to learn, however, about “inverse modeling,” that
is, given the data, the process of finding the most appropriate model. This task is also called
“model fitting,” words that hardly hint at the ingenuity that can be brought to bear. There is no
shortage of books about least-squares regression, also called “inversion.” These books provide
a wide range of mathematical concepts—often too many, and often with no real examples. In
my teaching and research I have found that people are mostly limited, not by lack of theory,
but by failure to recognize where elementary theory is applicable. To cite an example, “zero
padding” is a tiny bit of technology used nearly everywhere, but few people seem to recognize
its mathematical adjoint and so are ill prepared to invoke (A′A)−1A′d or set up a conjugate-
gradient optimization. Therefore, a keystone chapter of this book shows how adjoint operators
can be a simple byproduct of any modeling operator. In summary, the first reason I am writing
this book is to illuminate the concept of “adjoint operator” by examining many examples.

The second reason for writing the book is to present the conjugate-gradient optimization
algorithm in the framework of many examples. The inversion theory found in most textbooks,
while appearing generally applicable, really is not. Matrix inversions and singular-value de-
compositions are limited in practice to matrices of dimension less than about one thousand.
But practical problems come in all dimensions, from one to many millions (when the operator
is a multidimensional wave equation). Conjugate-gradient methods—only beginning to find
routine use in geophysics—point the way to overcoming this dimensionality problem. As in
the case of inversion, many books describe the conjugate-gradient method, but the method
is not an end in itself. The heart of this book is the many examples that are set up in the
conjugate-gradient framework. Setting up the problems is where ingenuity is required. Solv-
ing them is almost routine—especially using the subroutine library in this book.

My third reason for writing the book is much narrower. Seismogram deconvolution—by
far the largest use of geophysical inversion theory—is in a state of disarray. I see serious
discrepancies between theory and practice (as do others). I believe the disarray stems from a

CONTENTS iii

tendency to cling to a large body of old quasi-analytic theory. This theory had a place in my
first book, Fundamentals of Geophysical Data Processing, but I have omitted it here. It can
be replaced by a simpler and less restrictive numerical approach.

My fourth reason for writing the book is to illuminate the place of missing seismograms.
Much data is analyzed assuming that missing data is equivalent to zero-valued data. I show
how to handle the problem in a better way.

Finally, I am writing this book to illuminate the subtitle, Processing versus Inversion, by
which I mean the conflicting approaches of practitioners and academics to earth soundings
analysis.

This book should be readable by anyone with a bachelor’s degree in engineering or phys-
ical science. It is easier for students to use than my first book, Fundamentals of Geophysical
Data Processing. It is written at about the level of my second book, Imaging the Earth’s
Interior.

Organization

Page numbers impose a one-dimensional organization on any book. I placed basic things early
in the book, important things in the middle of the book, and theoretical, less frequently used
things at the end. Within chapters and sections, this book answers the questions what and
how before it answers why. I chose to avoid a strictly logical organization because that would
result in too much math at the beginning and too long a delay before the reader encountered
applications. Thus, you may read about a single subject at different points in the book. It is
not organized like an encyclopedia but is ordered for learning. For reference, please make use
of the index.

Dedication

I am especially indebted to all those students who complained that I did not give enough
examples in my classes. (Even with access to the book in its present form, they still complain
about this, so there is work left to do.)

Acknowledgements

In this book, as in my previous book, Imaging the Earth’s Interior, I owe a great deal to the
many students at the Stanford Exploration Project. The local computing environment from
my previous book is still a benefit, and for this I thank Stew Levin, Dave Hale, and Richard
Ottolini. In preparing this book I am specially indebted to Joe Dellinger for his development
of the intermediate graphics language vplot that I used for all the figures. I am also very
grateful to Kamal Al-Yahya for converting my thinking from the troff typesetting language

iv CONTENTS

to LATEX, for setting up the initial structure of the book in LATEX, and for the conversion program
tr2tex (which he made publicly available and which is already widely used) that I needed to
salvage my older materials. I have benefited from helpful suggestions by Bill Harlan and Gilles
Darche. Biondo Biondi, Dave Nichols, and I developed the saw and sat Fortran preprocessors.
Dave Nichols found the cake document maintenance system, adapted it to our local needs, and
taught us all how to use it, thereby giving us a machine-independent software environment.
Martin Karrenbach implemented the caption pushbuttons and had many ideas for integrating
the paper book with the interactive book. Steve Cole adapted vplot to Postscript and X,
redesigned xtex for Sun computers, and generously offered assistance in all areas. Mark
Chackerian prepared the first CD-ROM of the electronic book and gave assistance with LATEX.
I am thankful to my editor, JoAnn Heydron, for careful work, to Joe Stefani for detecting
typographical errors in mathematics, and to Diane Lau for office assistance.

Jon Claerbout
Stanford University
most final revisions in 1992
(electronic media keep changing)

Introduction

Prospecting for petroleum is a four-step process: (1) echo soundings are recorded; (2) they
are analyzed for reflections; (3) the reflections are interpreted as a geological model; and (4)
the prospect is tested by drilling. The first two stages, data acquisition and analysis, are on
a worldwide basis a multibillion-dollar-per-year activity. This book describes only the echo
soundings analysis. Together with my 1985 book, Imaging the Earth’s Interior, it provides a
complete introduction to echo soundings analysis.

The subtitle of this book, Processing versus Inversion, places the book equidistant from
two approaches, one generally practical and industrial and the other generally theoretical and
academic. This book shows how the two approaches are related and contribute to each other.

Adjoint processing defined

“Data processing” in earth soundings analysis could mean anything anybody does to seismic
data. A narrower definition is those processes that are routinely applied in industry, such as
those described in Oz Yilmaz’s book, Seismic Data Processing. As we will see in chapter 5 of
this book, much of echo soundings analysis can be interpreted as the adjoint of seismogram
modeling. Here we use the word “adjoint” in the mathematical sense to mean the complex
conjugate of the matrix transpose. Not all processes can be accurately characterized as the
adjoint to seismogram modeling, but many can, including normal moveout, stacking, migra-
tion, dip moveout, and more. Since these are the heavyweights of the industry, the simple
word “processing” can almost be understood to stand for “processing by adjoint modeling.”
As we will see, such processing applied to perfect data generally gives an imperfect result.
This imperfection leads thoughtful people to the concept of inversion.

Inversion defined

Principles of physics allow us to calculate synthetic data from earth models. Such calcula-
tions are said to solve “forward” problems. In real life we are generally interested in the
reverse calculation, i.e., computing earth models from data. This reverse calculation is called
“inversion.” The word “inversion” is derived from “matrix inversion.” Despite its association
with the well-known and well-defined mathematical task of matrix inversion, echo sounding
inversion is not simple and is often ill defined. Inversion promises to give us an earth model

v

vi CONTENTS

from our data despite the likelihood that our data is inaccurate and incomplete. This promise
goes too far. Inversion applied to perfect data, however, can give a perfect result, which makes
inversion more appealing academically than processing by adjoint modeling.

Processing versus inversion

Practical people often regard inversion theorists with suspicion, much as one might regard
those gripped by an exotic religion. There is not one theory of inversion of seismic data,
but many—maybe more theories than theoreticians. The inventors of these theories are all
ingenious, and some are illustrious, but many ignore the others’ work. How can this be science
or engineering? The diversity of viewpoint arises from the many practical problems that need
to be solved, from the various ways that noise can be modeled, from the incompleteness of
data, and above all, from the many approaches to simplifying the underlying model.

Practitioners too are a diverse group of shrewd and talented people, many illustrious in
their highly competitive industry. As a group they have the advantage of the “real world” as a
helpful arbitrator. Why do they prefer a adjoint operator when the correct answer, almost by
definition, stems from the inverse? Adjoint processing requires no more than the data one has
actually collected. It requires no noise model, never uses divisions so cannot divide by zero,
and often uses only additions (no subtractions) so cannot amplify small differences. Anyone
taking the first step beyond adjoint processing loses these supports. Unfortunately, adjoint
operators handle missing data as if it were zero-valued data. This is obviously wrong and is
known to limit resolution.

I hope to illuminate the gaps between theory and practice which are the heart and soul of
exploration seismology, as they are of any living science.

Fortunately there is a middle way between adjoint processing and inversion, and this book
is a guide to it. Adjoint processing and inversion stand at opposite ends of the spectrum of
philosophies of data processing, but, as we will see in chapter 6, adjoint processing is also the
first step of inversion. Whether the second and any subsequent steps are worthwhile depends
on circumstances.

The theme of this book is not developed in an abstract way but instead is drawn from
the details of many examples: normal moveout, stacking, velocity analysis, several kinds of
migration, missing data, tomography, deconvolution, and weighted deconvolution. Knowing
how processing relates to inversion suggests different opportunities in each case.

Linear inverse theory

In mathematical statistics is a well-established theory called “linear inverse theory.” “Geophysical
inverse theory” is similar, with the additions that (1) variables can be sample points from a
continuum, and (2) physical problems are often intractable without linearization. Once I imag-
ined a book that would derive techniques used in industry from general geophysical inverse

CONTENTS vii

theory. After thirty years of experience I can report to you that very few techniques in routine
practical use arise directly from the general theory! There are many reasons for this, and I
have chosen to sprinkle them throughout discussion of the applications themselves rather than
attempt a revision to the general theory. I summarize here as follows: the computing require-
ments of the general theory are typically unrealistic since they are proportional to the cube
of a huge number of variables, which are sample values representing a continuum. Equally
important, the great diversity of spatial and temporal aspects of data and residuals (statistical
nonstationarity) is impractical to characterize in general terms.

Our route

Centrally, this book teaches how to recognize adjoint operators in physical processes (chapter
5), and how to use those adjoints in model fitting (inversion) using least-squares optimization
and the technique of conjugate gradients (chapter 6).

First, however, we review convolution and spectra (chapter 1) discrete Fourier transforms
(chapter 9), and causality and the complex Z = eiω plane (chapter 3), where poles are the
mathematically forbidden points of zero division. In chapter 3 we travel widely, from the
heaven of theoretically perfect results through a life of practical results including poor results,
sinking to the purgatory of instability, and finally arriving at the “big bang” of zero division.
Chapter 4 is a collection of solved problems with a single unknown that illustrates the pitfalls
and opportunities that arise from weighting functions, zero division, and nonstationarity. Thus
we are prepared for the keystone chapter, chapter 5, where we learn to recognize the relation
of the linear operators we studied in chapters 1–3 to their adjoints, and to see how computation
of these adjoints is a straightforward adjunct to direct computation. Also included in chapter 5
are interpolation, smoothing, and most of the many operators that populate the world of ex-
ploration seismology. Thus further prepared, we pass easily through the central theoretical
concepts of least-squares optimization, basic NMO stack, and deconvolution applications in
chapter 6.

In chapter 7 we see the formulation and solution of many problems in time-series analysis,
prediction, and interpolation and learn more about mathematical formulations that control
stability. Chapter 8 shows how missing data can be estimated. Of particular interest is a
nonstationary world model where, locally in time and space, the wave field fits the model
of a small number of plane waves. Here we find “magical” results: data that is apparently
undersampled (spatially aliased) is recovered.

Hyperbolas are the reflection seismologist’s delight. My book Imaging the Earth’s In-
terior could almost have been named Hyperbolas and the Earth. That book includes many
techniques for representing and deforming hyperbolas, especially using various representa-
tions of the wave equation. Here I repeat a minimal part of that lore in chapter ??. My goal is
now to marry hyperbolas to the conjugate-gradient model-fitting theme of this book.

Having covered a wide range of practical problems, we turn at last to more theoretical ones:
spectra and phase (chapter 10), and sample spectra of random numbers (chapter 11). I have
begun revising three theoretical chapters from my first book, Fundamentals of Geophysical

viii CONTENTS

Data Processing (hereinafter referred to as FGDP), which is still in print. Since these revisions
are not yet very extensive, I am excluding the revised chapters from the current copy of this
book. (My 1985 book, Imaging the Earth’s Interior (hereinafter referred to as IEI), deserves
revision in the light of the conjugacy methods developed here, but that too lies in the future.)

Finally, every academic is entitled to some idiosyncrasies, and I find Jensen inequalities
fascinating. These have an unproved relationship to practical echo analysis, but I include them
anyway in a brief concluding chapter.

0.1 References

Claerbout, J.F., 1985, Fundamentals of geophysical data processing: Blackwell Scientific Pub-
lications.

Claerbout, J.F., 1985, Imaging the earth’s interior: Blackwell Scientific Publications.

Press, W.H. et al., 1989, Numerical recipes: the art of scientific computing: Cambridge Uni-
versity Press.

Yilmaz, O., 1987, Seismic data processing: Society of Exploration Geophysicists.

Chapter 1

Convolution and Spectra

In human events, the word “convoluted” implies complexity. In science and engineering,
“convolution” refers to a combining equation for signals, waves, or images. Although the
combination may be complex, the convolution equation is an elementary one, ideally suited
to be presented at the beginning of my long book on dissecting observations. Intimately con-
nected to convolution are the concepts of pure tones and Fourier analysis.

Time and space are ordinarily thought of as continuous, but for the purposes of computer
analysis we must discretize these axes. This is also called “sampling” or “digitizing.” You
might worry that discretization is a practical evil that muddies all later theoretical analysis.
Actually, physical concepts have representations that are exact in the world of discrete math-
ematics. In the first part of this book I will review basic concepts of convolution, spectra,
and causality, while using and teaching techniques of discrete mathematics. By the time we
finish with chapter 3, I think you will agree with me that many subtle concepts are easier in
the discrete world than in the continuum.

1.1 SAMPLED DATA AND Z-TRANSFORMS

Consider the idealized and simplified signal in Figure 1.1. To analyze such an observed signal

Figure 1.1: A continuous signal sam-
pled at uniform time intervals. (Press
button for trivial interaction with
plot.) cs-triv1 [ER]

in a computer, it is necessary to approximate it in some way by a list of numbers. The usual
way to do this is to evaluate or observe b(t) at a uniform spacing of points in time, call this
discretized signal bt . For Figure 1.1, such a discrete approximation to the continuous function
could be denoted by the vector

bt = (. . . 0, 0, 1, 2, 0,−1,−1, 0, 0, . . .) (1.1)

1

2 CHAPTER 1. CONVOLUTION AND SPECTRA

Naturally, if time points were closer together, the approximation would be more accurate.
What we have done, then, is represent a signal by an abstract n-dimensional vector.

Another way to represent a signal is as a polynomial, where the coefficients of the polyno-
mial represent the value of bt at successive times. For example,

B(Z) = 1+2Z +0Z 2− Z 3− Z 4 (1.2)

This polynomial is called a “Z -transform.” What is the meaning of Z here? Z should not take
on some numerical value; it is instead the unit-delay operator. For example, the coefficients
of Z B(Z)= Z+2Z 2−Z 4−Z 5 are plotted in Figure 1.2. Figure 1.2 shows the same waveform

Figure 1.2: The coefficients of
Z B(Z) are the shifted version of the
coefficients of B(Z). cs-triv2 [ER]

as Figure 1.1, but now the waveform has been delayed. So the signal bt is delayed n time units
by multiplying B(Z) by Z n. The delay operator Z is important in analyzing waves simply
because waves take a certain amount of time to move from place to place.

Another value of the delay operator is that it may be used to build up more complicated
signals from simpler ones. Suppose bt represents the acoustic pressure function or the seis-
mogram observed after a distant explosion. Then bt is called the “impulse response.” If
another explosion occurred at t = 10 time units after the first, we would expect the pressure
function y(t) depicted in Figure 1.3. In terms of Z -transforms, this pressure function would
be expressed as Y (Z)= B(Z)+ Z 10B(Z).

Figure 1.3: Response to two explo-
sions. cs-triv3 [ER]

1.1.1 Linear superposition

If the first explosion were followed by an implosion of half-strength, we would have B(Z)−
1
2 Z 10B(Z). If pulses overlapped one another in time (as would be the case if B(Z) had de-
gree greater than 10), the waveforms would simply add together in the region of overlap. The
supposition that they would just add together without any interaction is called the “linearity”
property. In seismology we find that—although the earth is a heterogeneous conglomeration
of rocks of different shapes and types—when seismic waves travel through the earth, they do
not interfere with one another. They satisfy linear superposition. The plague of nonlinearity

1.1. SAMPLED DATA AND Z-TRANSFORMS 3

arises from large amplitude disturbances. Nonlinearity is a dominating feature in hydrody-
namics, where flow velocities are a noticeable fraction of the wave velocity. Nonlinearity is
absent from reflection seismology except within a few meters from the source. Nonlinearity
does not arise from geometrical complications in the propagation path. An example of two
plane waves superposing is shown in Figure 1.4.

Figure 1.4: Crossing plane waves su-
perposing viewed on the left as “wig-
gle traces” and on the right as “raster.”
cs-super [ER]

1.1.2 Convolution with Z-transform

Now suppose there was an explosion at t = 0, a half-strength implosion at t = 1, and another,
quarter-strength explosion at t = 3. This sequence of events determines a “source” time series,
xt = (1,−1

2 ,0, 1
4). The Z -transform of the source is X (Z) = 1− 1

2 Z + 1
4 Z 3. The observed yt

for this sequence of explosions and implosions through the seismometer has a Z -transform
Y (Z), given by

Y (Z) = B(Z)− Z

2
B(Z)+ Z 3

4
B(Z)

=
(

1− Z

2
+ Z 3

4

)
B(Z)

= X (Z) B(Z) (1.3)

The last equation shows polynomial multiplication as the underlying basis of time-invariant
linear-system theory, namely that the output Y (Z) can be expressed as the input X (Z) times
the impulse-response filter B(Z). When signal values are insignificant except in a “small”
region on the time axis, the signals are called “wavelets.”

There are many examples of linear systems. The one of most interest to us is wave prop-
agation in the earth. A simpler example, around which a vast literature exists, is electronic
filters. A cascade of filters is formed by taking the output of one filter and plugging it into
the input of another. Suppose we have two linear filters characterized by B(Z) and C(Z).
Then the question arises, illustrated in Figure 1.5, as to whether the two combined filters are
equivalent.

4 CHAPTER 1. CONVOLUTION AND SPECTRA

Figure 1.5: Two equivalent filtering
systems. cs-commute [NR]

The use of Z -transforms makes it obvious that these two systems are equivalent, since
products of polynomials commute, i.e.,

Y1(Z) = [X (Z)B(Z)]C(Z) = X BC

Y2(Z) = [X (Z)C(Z)] B(Z) = XC B = X BC (1.4)

1.1.3 Dissecting systems by factoring

Consider a system with an impulse response (2,−1,−1). Its Z -transform is B(Z)= 2− Z −
Z 2. This polynomial can be factored into 2−Z−Z 2= (2+Z) (1−Z). Thus our original filter
could be thought of as a cascade of two filters, (2,1) and (1,−1). Either of the two filters could
be applied first and the other second: the output would be the same. Since any polynomial can
be factored, any impulse response can be simulated by a cascade of two-term filters (impulse
responses whose Z -transforms are linear in Z).

1.1.4 Convolution equation and program

What do we actually do in a computer when we multiply two Z -transforms together? The filter
2+ Z would be represented in a computer by the storage in memory of the coefficients (2,1).
Likewise, for 1− Z , the numbers (1,−1) would be stored. The polynomial multiplication
program should take these inputs and produce the sequence (2,−1,−1). Let us see how the
computation proceeds in a general case, say

X (Z) B(Z) = Y (Z) (1.5)

(x0+ x1 Z + x2 Z 2+·· ·) (b0+b1 Z +b2 Z 2) = y0+ y1Z + y2 Z 2+·· · (1.6)

Identifying coefficients of successive powers of Z , we get

y0 = x0b0

y1 = x1b0+ x0b1

y2 = x2b0+ x1b1+ x0b2 (1.7)

y3 = x3b0+ x2b1+ x1b2

y4 = x4b0+ x3b1+ x2b2

= ·· · · · · · · · · · · · · · · · ·

1.1. SAMPLED DATA AND Z-TRANSFORMS 5

In matrix form this looks like

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

y6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 0 0
x1 x0 0
x2 x1 x0

x3 x2 x1

x4 x3 x2

0 x4 x3

0 0 x4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ b0

b1

b2

⎤
⎦ (1.8)

The following equation, called the “convolution equation,” carries the spirit of the group shown
in (1.7):

yk =
Nb∑

i=0

xk−i bi (1.9)

To be correct in detail when we associate equation (1.9) with the group (1.7), we should also
assert that either the input xk vanishes before k = 0 or Nb must be adjusted so that the sum
does not extend before x0. These end conditions are expressed more conveniently by defining
j = k− i in equation (1.9) and eliminating k getting

yj+i =
Nb∑

i=0

xj bi (1.10)

A convolution program based on equation (1.10) including end effects on both ends, is con-

volve().

convolution: Y(Z) = X(Z) * B(Z)

#

subroutine convolve(nb, bb, nx, xx, yy)

integer nb # number of coefficients in filter

integer nx # number of coefficients in input

number of coefficients in output will be nx+nb-1

real bb(nb) # filter coefficients

real xx(nx) # input trace

real yy(1) # output trace

integer ib, ix, iy, ny

ny = nx + nb -1

call null(yy, ny)

do ib= 1, nb

do ix= 1, nx

yy(ix+ib-1) = yy(ix+ib-1) + xx(ix) * bb(ib)

return; end

Some details of the Ratfor programming language are given in an appendix, along with the
subroutine zero() on page 288, which erases the space for the output.

6 CHAPTER 1. CONVOLUTION AND SPECTRA

1.1.5 Negative time

Notice that X (Z) and Y (Z) need not strictly be polynomials; they may contain both positive
and negative powers of Z , such as

X (Z) = ·· ·+ x−2

Z 2
+ x−1

Z
+ x0+ x1 Z +·· · (1.11)

Y (Z) = ·· ·+ y−2

Z 2
+ y−1

Z
+ y0+ y1 Z +·· · (1.12)

The negative powers of Z in X (Z) and Y (Z) show that the data is defined before t = 0. The
effect of using negative powers of Z in the filter is different. Inspection of (1.9) shows that the
output yk that occurs at time k is a linear combination of current and previous inputs; that is,
(xi , i ≤ k). If the filter B(Z) had included a term like b−1/Z , then the output yk at time k would
be a linear combination of current and previous inputs and xk+1, an input that really has not
arrived at time k. Such a filter is called a “nonrealizable” filter, because it could not operate
in the real world where nothing can respond now to an excitation that has not yet occurred.
However, nonrealizable filters are occasionally useful in computer simulations where all the
data is prerecorded.

1.2 FOURIER SUMS

The world is filled with sines and cosines. The coordinates of a point on a spinning wheel
are (x , y)= (cos(ωt +φ), sin(ωt +φ)), where ω is the angular frequency of revolution and φ

is the phase angle. The purest tones and the purest colors are sinusoidal. The movement of
a pendulum is nearly sinusoidal, the approximation going to perfection in the limit of small
amplitude motions. The sum of all the tones in any signal is its “spectrum.”

Small amplitude signals are widespread in nature, from the vibrations of atoms to the
sound vibrations we create and observe in the earth. Sound typically compresses air by a
volume fraction of 10−3 to 10−6. In water or solid, the compression is typically 10−6 to
10−9. A mathematical reason why sinusoids are so common in nature is that laws of nature
are typically expressible as partial differential equations. Whenever the coefficients of the
differentials (which are functions of material properties) are constant in time and space, the
equations have exponential and sinusoidal solutions that correspond to waves propagating in
all directions.

1.2.1 Superposition of sinusoids

Fourier analysis is built from the complex exponential

e−iωt = cosωt− i sinωt (1.13)

A Fourier component of a time signal is a complex number, a sum of real and imaginary parts,
say

B = �B+ i�B (1.14)

1.2. FOURIER SUMS 7

which is attached to some frequency. Let j be an integer and ωj be a set of frequencies. A
signal b(t) can be manufactured by adding a collection of complex exponential signals, each
complex exponential being scaled by a complex coefficient Bj , namely,

b(t) =
∑

j

Bj e−iωj t (1.15)

This manufactures a complex-valued signal. How do we arrange for b(t) to be real? We can
throw away the imaginary part, which is like adding b(t) to its complex conjugate b(t), and
then dividing by two:

�b(t) = 1

2

∑
j

(Bj e−iωj t + B̄j eiωj t) (1.16)

In other words, for each positive ωj with amplitude Bj , we add a negative−ωj with amplitude
B̄j (likewise, for every negative ωj ...). The Bj are called the “frequency function,” or the
“Fourier transform.” Loosely, the Bj are called the “spectrum,” though technically, and in this
book, the word “spectrum” should be reserved for the product B̄j Bj . The words “amplitude

spectrum” universally mean
√

B̄j Bj .

In practice, the collection of frequencies is almost always evenly spaced. Let j be an
integer ω = j �ω so that

b(t) =
∑

j

Bj e−i(j �ω)t (1.17)

Representing a signal by a sum of sinusoids is technically known as “inverse Fourier transfor-
mation.” An example of this is shown in Figure 1.6.

1.2.2 Sampled time and Nyquist frequency

In the world of computers, time is generally mapped into integers too, say t = n�t . This is
called “discretizing” or “sampling.” The highest possible frequency expressible on a mesh is
(· · · , 1,−1,+1,−1,+1,−1, · · ·), which is the same as eiπn . Setting eiωmaxt = eiπn, we see that
the maximum frequency is

ωmax = π

�t
(1.18)

Time is commonly given in either seconds or sample units, which are the same when �t = 1.
In applications, frequency is usually expressed in cycles per second, which is the same as
Hertz, abbreviated Hz. In computer work, frequency is usually specified in cycles per sample.
In theoretical work, frequency is usually expressed in radians where the relation between
radians and cycles is ω = 2π f . We use radians because, otherwise, equations are filled with
2π ’s. When time is given in sample units, the maximum frequency has a name: it is the
“Nyquist frequency,” which is π radians or 1/2 cycle per sample.

8 CHAPTER 1. CONVOLUTION AND SPECTRA

Figure 1.6: Superposition of two sinusoids. (Press button to activate program ed1D. See ap-
pendix for details.) cs-cosines [NR]

1.2.3 Fourier sum

In the previous section we superposed uniformly spaced frequencies. Now we will super-
pose delayed impulses. The frequency function of a delayed impulse at time delay t0 is eiωt0 .
Adding some pulses yields the “Fourier sum”:

B(ω) =
∑

n

bn eiωtn =
∑

n

bn eiωn�t (1.19)

The Fourier sum transforms the signal bt to the frequency function B(ω). Time will often be
denoted by t , even though its units are sample units instead of physical units. Thus we often
see bt in equations like (1.19) instead of bn, resulting in an implied �t = 1.

1.3 FOURIER AND Z-TRANSFORM

The frequency function of a pulse at time tn = n�t is eiωn�t = (eiω�t)n. The factor eiω�t

occurs so often in applied work that it has a name:

Z = eiω�t (1.20)

With this Z , the pulse at time tn is compactly represented as Z n. The variable Z makes
Fourier transforms look like polynomials, the subject of a literature called “Z -transforms.”

1.3. FOURIER AND Z-TRANSFORM 9

The Z -transform is a variant form of the Fourier transform that is particularly useful for time-
discretized (sampled) functions.

From the definition (1.20), we have Z 2 = eiω2�t , Z3 = eiω3�t , etc. Using these equivalen-
cies, equation (1.19) becomes

B(ω) = B(ω(Z)) =
∑

n

bn Z n (1.21)

1.3.1 Unit circle

In this chapter, ω is a real variable, so Z = eiω�t = cosω�t+ i sinω�t is a complex variable.
It has unit magnitude because sin2+cos2 = 1. As ω ranges on the real axis, Z ranges on the
unit circle |Z | = 1. In chapter 3 we will see how the definition (1.20) also applies for complex
values of ω.

1.3.2 Differentiator

A particularly interesting factor is (1− Z), because the filter (1,−1) is like a time derivative.
The time-derivative filter destroys zero frequency in the input signal. The zero frequency is
(· · · , 1,1,1, · · ·) with a Z -transform (· · ·+ Z 2+ Z 3+ Z 4+ ·· ·). To see that the filter (1− Z)
destroys zero frequency, notice that (1− Z)(· · ·+ Z 2+ Z 3+ Z 4+ ·· ·) = 0. More formally,
consider output Y (Z)= (1− Z)X (Z) made from the filter (1− Z) and any input X (Z). Since
(1− Z) vanishes at Z = 1, then likewise Y (Z) must vanish at Z = 1. Vanishing at Z = 1 is
vanishing at frequency ω = 0 because Z = exp(iω�t) from (1.20). Now we can recognize
that multiplication of two functions of Z or of ω is the equivalent of convolving the associated
time functions.

Multiplication in the frequency domain is convolution in the time domain.

A popular mathematical abbreviation for the convolution operator is an asterisk: equation (1.9),
for example, could be denoted by yt = xt∗bt . I do not disagree with asterisk notation, but I
prefer the equivalent expression Y (Z) = X (Z)B(Z), which simultaneously exhibits the time
domain and the frequency domain.

The filter (1− Z) is often called a “differentiator.” It is displayed in Figure 1.7.

The letter “z” plotted at the origin in Figure 1.7 denotes the root of 1− Z at Z = 1, where
ω = 0. Another interesting filter is 1+ Z , which destroys the highest possible frequency
(1,−1,1,−1, · · ·), where ω = π .

A root is a numerical value for which a polynomial vanishes. For example, 2− Z − Z 2 =
(2+ Z) (1− Z) vanishes whenever Z =−2 or Z = 1. Such a root is also called a “zero.” The
fundamental theorem of algebra says that if the highest power of Z in a polynomial is Z N ,
then the polynomial has exactly N roots, not necessarily distinct. As N gets large, finding
these roots requires a sophisticated computer program. Another complication is that complex

10 CHAPTER 1. CONVOLUTION AND SPECTRA

Figure 1.7: A discrete representation of the first-derivative operator. The filter (1,−1) is plotted
on the left, and on the right is an amplitude response, i.e., |1− Z | versus ω. (Press button to
activate program Zplane. See appendix for details.) cs-ddt [NR]

numbers can arise. We will soon see that complex roots are exactly what we need to design
filters that destroy any frequency.

1.3.3 Gaussian examples

The filter (1+ Z)/2 is a running average of two adjacent time points. Applying this filter N
times yields the filter (1+ Z)N /2N . The coefficients of the filter (1+ Z)N are generally known
as Pascal’s triangle. For large N the coefficients tend to a mathematical limit known as a
Gaussian function, exp(−α(t − t0)2), where α and t0 are constants that we will determine in
chapter 11. We will not prove it here, but this Gaussian-shaped signal has a Fourier transform
that also has a Gaussian shape, exp(−βω2). The Gaussian shape is often called a “bell shape.”
Figure 1.8 shows an example for N ≈ 15. Note that, except for the rounded ends, the bell
shape seems a good fit to a triangle function. Curiously, the filter (.75+ .25Z)N also tends to

Figure 1.8: A Gaussian approximated by many powers of (1+ Z). cs-gauss [NR]

the same Gaussian but with a different t0. A mathematical theorem (discussed in chapter 11)
says that almost any polynomial raised to the N -th power yields a Gaussian.

In seismology we generally fail to observe the zero frequency. Thus the idealized seismic

1.3. FOURIER AND Z-TRANSFORM 11

pulse cannot be a Gaussian. An analytic waveform of longstanding popularity in seismology
is the second derivative of a Gaussian, also known as a “Ricker wavelet.” Starting from the
Gaussian and putting two more zeros at the origin with (1− Z)2 = 1−2Z + Z 2 produces this
old, favorite wavelet, shown in Figure 1.9.

Figure 1.9: Ricker wavelet. cs-ricker [NR]

1.3.4 Complex roots

We have seen how a simple two-term filter can destroy the zero frequency or the Nyquist
frequency. When we try to destroy any other frequency, we run into a new difficulty—we
will see complex-valued signals. Let Z0 take the complex value Z0 = eiω0, where ω0 is real.
Further, choose ω0 = π/2 and as a result Z0 = i . So the filter (1− Z/Z0) = (1+ i Z) has
the complex coefficients (1, i), and its output is a complex-valued signal. Naturally this is
annoying, because we usually prefer a real output signal.

The way to avoid complex-valued signals is to handle negative frequency −ω0 the same
way we handle ω0. To do this we use a filter with two roots, one at ω0 and one at−ω0. The fil-
ter (1+ i Z)(1− i Z)= 1+ Z 2 has real-valued time-domain coefficients, namely, (1,0,1). The
factor (1+ i Z) vanishes when Z = i or ω = π/2, and (1− i Z) vanishes at ω =−π/2. Notice
what happens when the filter (1,0,1) is convolved with the time series bt = (· · ·1,0,−1,0,1,0,−1, · · ·):
the output is zero at all times. This is because bt is a sinusoid at the half-Nyquist frequency
π/2, and the filter (1,0,1) has zeros at plus and minus half-Nyquist.

Let us work out the general case for a root anywhere in the complex plane. Let the root
Z0 be decomposed into its real and imaginary parts:

Z0 = x+ iy = �Z0+ i�Z0 (1.22)

and let the root be written in a polar form:

Z0 = eiω0

ρ
(1.23)

12 CHAPTER 1. CONVOLUTION AND SPECTRA

where ω0 and ρ are constants that can be derived from the constants �Z0 and �Z0 and vice
versa. The conjugate root is Z 0 = e−iω0/ρ. The combined filter is(

1− Z

Z0

) (
1− Z

Z0

)
= 1−

(
1

Z 0
+ 1

Z 0

)
Z + Z 2

Z0 Z0
(1.24)

= 1 − 2ρ cosω0 Z + ρ2 Z 2 (1.25)

So the convolutional coefficients of this filter are the real values (1,−2ρ cosω0,ρ2). Taking
ρ = 1, the filter completely destroys energy at frequency ω0. Other values of ρ near unity
suppress nearby frequencies without completely destroying them.

Recall that to keep the filter response real, any root on the positive ω-axis must have a twin
on the negative ω-axis. In the figures I show here, the negative axis is not plotted, so we must
remember the twin. Figure 1.10 shows a discrete approximation to the second derivative. It

Figure 1.10: Approximation to the second difference operator (1,−2,1). cs-ddt2 [NR]

is like (1− Z)2, but since both its roots are in the same place at Z = 1, I pushed them a little
distance apart, one going to positive frequencies and one to negative.

1.3.5 Inverse Z-transform

Fourier analysis is widely used in mathematics, physics, and engineering as a Fourier integral
transformation pair:

B(ω) =
∫ +∞
−∞

b(t)eiωt dt (1.26)

b̄(t) =
∫ +∞
−∞

B(ω)e−iωt dω (1.27)

These integrals correspond to the sums we are working with here except for some minor
details. Books in electrical engineering redefine eiωt as e−iωt . That is like switching ω to −ω.
Instead, we have chosen the sign convention of physics, which is better for wave-propagation
studies (as explained in IEI). The infinite limits on the integrals result from expressing the
Nyquist frequency in radians/second as π/�t . Thus, as �t tends to zero, the Fourier sum

1.3. FOURIER AND Z-TRANSFORM 13

tends to the integral. When we reach equation (1.31) we will see that if a scaling divisor of 2π

is introduced into either (1.26) or (1.27), then b(t) will equal b̄(t).

The Z -transform is always easy to make, but the Fourier integral could be difficult to
perform, which is paradoxical, because the transforms are really the same. To make a Z -
transform, we merely attach powers of Z to successive data points. When we have B(Z), we
can refer to it either as a time function or a frequency function. If we graph the polynomial
coefficients, then it is a time function. It is a frequency function if we evaluate and graph the
polynomial B(Z = eiω) for various frequencies ω.

If the Z -transform amounts to attaching powers of Z to successive points of a time func-
tion, then the inverse Z -transform must be merely identifying coefficients of various powers
of Z with different points in time. How can this mere “identification of coefficients” be the
same as the apparently more complicated operation of inverse Fourier integration? Let us see.
The inverse Fourier integral (1.27) for integer values of time is

bt = 1

2π

∫ +π

−π

B(ω)e−iωt dω (1.28)

Substituting (1.21) into (1.28), we get

bt = 1

2π

∫ π

−π

(· · ·+b−1e−iω+b0+b1e+iω+·· ·)e−iωt dω (1.29)

Since sinusoids have as much area above the axis as below, the integration of einω over −π ≤
ω <+π gives zero unless n = 0, that is,

1

2π

∫ π

−π

einω dω = 1

2π

∫ π

−π

(cosnω+ i sinnω)dω

=
{

1 if n = 0
0 if n = non-zero integer

(1.30)

Of all the terms in the integrand (1.29), we see from (1.30) that only the term with bt will con-
tribute to the integral; all the rest oscillate and cancel. In other words, it is only the coefficient
of Z to the zero power that contributes to the integral, so (1.29) reduces to

bt = 1

2π

∫ +π

−π

bt e−i0 dω (1.31)

This shows how inverse Fourier transformation is just like identifying coefficients of powers
of Z . It also shows why the scale factor in equation (1.28) is 2π .

EXERCISES:

1 Let B(Z) = 1+ Z + Z 2+ Z 3+ Z 4. Graph the coefficients of B(Z) as a function of the
powers of Z . Graph the coefficients of [B(Z)]2.

2 As ω moves from zero to positive frequencies, where is Z and which way does it rotate
around the unit circle, clockwise or counterclockwise?

14 CHAPTER 1. CONVOLUTION AND SPECTRA

3 Identify locations on the unit circle of the following frequencies: (1) the zero frequency,
(2) the Nyquist frequency, (3) negative frequencies, and (4) a frequency sampled at 10
points per wavelength.

4 Given numerical constants �Z0 and �Z0, derive ω0 and ρ.

5 Sketch the amplitude spectrum of Figure 1.9 from 0 to 4π .

1.4 CORRELATION AND SPECTRA

The spectrum of a signal is a positive function of frequency that says how much of each
tone is present. The Fourier transform of a spectrum yields an interesting function called an
“autocorrelation,” which measures the similarity of a signal to itself shifted.

1.4.1 Spectra in terms of Z-transforms

Let us look at spectra in terms of Z -transforms. Let a spectrum be denoted S(ω), where

S(ω) = |B(ω)|2 = B(ω)B(ω) (1.32)

Expressing this in terms of a three-point Z -transform, we have

S(ω) = (b̄0+ b̄1e−iω+ b̄2e−i2ω)(b0+b1eiω+b2ei2ω) (1.33)

S(Z) =
(

b̄0+ b̄1

Z
+ b̄2

Z 2

)
(b0+b1 Z +b2 Z 2) (1.34)

S(Z) = B

(
1

Z

)
B(Z) (1.35)

It is interesting to multiply out the polynomial B̄(1/Z) with B(Z) in order to examine the
coefficients of S(Z):

S(Z) = b̄2b0

Z 2
+ (b̄1b0+ b̄2b1)

Z
+ (b̄0b0+ b̄1b1+ b̄2b2)+ (b̄0b1+ b̄1b2)Z + b̄0b2 Z 2

S(Z) = s−2

Z 2
+ s−1

Z
+ s0+ s1 Z + s2 Z 2 (1.36)

The coefficient sk of Zk is given by

sk =
∑

i

b̄i bi+k (1.37)

Equation (1.37) is the autocorrelation formula. The autocorrelation value sk at lag 10 is s10.
It is a measure of the similarity of bi with itself shifted 10 units in time. In the most fre-
quently occurring case, bi is real; then, by inspection of (1.37), we see that the autocorrelation
coefficients are real, and sk = s−k .

1.4. CORRELATION AND SPECTRA 15

Specializing to a real time series gives

S(Z) = s0+ s1

(
Z + 1

Z

)
+ s2

(
Z 2+ 1

Z 2

)
(1.38)

S(Z (ω)) = s0+ s1(eiω+ e−iω)+ s2(ei2ω+ e−i2ω) (1.39)

S(ω) = s0+2s1 cosω+2s2 cos2ω (1.40)

S(ω) =
∑

k

sk coskω (1.41)

S(ω) = cosine transform of sk (1.42)

This proves a classic theorem that for real-valued signals can be simply stated as follows:

For any real signal, the cosine transform of the autocorrelation equals the magnitude
squared of the Fourier transform.

1.4.2 Two ways to compute a spectrum

There are two computationally distinct methods by which we can compute a spectrum: (1)
compute all the sk coefficients from (1.37) and then form the cosine sum (1.41) for each ω;
and alternately, (2) evaluate B(Z) for some value of Z on the unit circle, and multiply the
resulting number by its complex conjugate. Repeat for many values of Z on the unit circle.
When there are more than about twenty lags, method (2) is cheaper, because the fast Fourier
transform discussed in chapter 9 can be used.

1.4.3 Common signals

Figure 1.11 shows some common signals and their autocorrelations. Figure 1.12 shows the
cosine transforms of the autocorrelations. Cosine transform takes us from time to frequency
and it also takes us from frequency to time. Thus, transform pairs in Figure 1.12 are sometimes
more comprehensible if you interchange time and frequency. The various signals are given
names in the figures, and a description of each follows:

cos The theoretical spectrum of a sinusoid is an impulse, but the sinusoid was truncated (mul-
tiplied by a rectangle function). The autocorrelation is a sinusoid under a triangle, and
its spectrum is a broadened impulse (which can be shown to be a narrow sinc-squared
function).

sinc The sinc function is sin(ω0t)/(ω0t). Its autocorrelation is another sinc function, and its
spectrum is a rectangle function. Here the rectangle is corrupted slightly by “Gibbs
sidelobes,” which result from the time truncation of the original sinc.

wide box A wide rectangle function has a wide triangle function for an autocorrelation and
a narrow sinc-squared spectrum.

16 CHAPTER 1. CONVOLUTION AND SPECTRA

Figure 1.11: Common signals and one side of their autocorrelations. cs-autocor [ER]

Figure 1.12: Autocorrelations and their cosine transforms, i.e., the (energy) spectra of the
common signals. cs-spectra [ER]

1.4. CORRELATION AND SPECTRA 17

narrow box A narrow rectangle has a wide sinc-squared spectrum.

twin Two pulses.

2 boxes Two separated narrow boxes have the spectrum of one of them, but this spectrum
is modulated (multiplied) by a sinusoidal function of frequency, where the modulation
frequency measures the time separation of the narrow boxes. (An oscillation seen in the
frequency domain is sometimes called a “quefrency.”)

comb Fine-toothed-comb functions are like rectangle functions with a lower Nyquist fre-
quency. Coarse-toothed-comb functions have a spectrum which is a fine-toothed comb.

exponential The autocorrelation of a transient exponential function is a double-sided expo-
nential function. The spectrum (energy) is a Cauchy function, 1/(ω2+ω2

0). The curious
thing about the Cauchy function is that the amplitude spectrum diminishes inversely
with frequency to the first power; hence, over an infinite frequency axis, the function
has infinite integral. The sharp edge at the onset of the transient exponential has much
high-frequency energy.

Gauss The autocorrelation of a Gaussian function is another Gaussian, and the spectrum is
also a Gaussian.

random Random numbers have an autocorrelation that is an impulse surrounded by some
short grass. The spectrum is positive random numbers. For more about random signals,
see chapter 11.

smoothed random Smoothed random numbers are much the same as random numbers, but
their spectral bandwidth is limited.

1.4.4 Spectra of complex-valued signals

The spectrum of a signal is the magnitude squared of the Fourier transform of the function.
Consider the real signal that is a delayed impulse. Its Z -transform is simply Z ; so the real part
is cosω, and the imaginary part is sinω. The real part is thus an even function of frequency
and the imaginary part an odd function of frequency. This is also true of Z 2 and any sum
of powers (weighted by real numbers), and thus it is true of any time function. For any real
signal, therefore, the Fourier transform has an even real part RE and an imaginary odd part IO.
Taking the squared magnitude gives (RE+i IO)(RE−i IO)= (RE)2 + (IO)2. The square of an
even function is obviously even, and the square of an odd function is also even. Thus, because
the spectrum of a real-time function is even, its values at plus frequencies are the same as its
values at minus frequencies. In other words, no special meaning should be attached to negative
frequencies. This is not so of complex-valued signals.

Although most signals which arise in applications are real signals, a discussion of cor-
relation and spectra is not mathematically complete without considering complex-valued
signals. Furthermore, complex-valued signals arise in many different contexts. In seismol-
ogy, they arise in imaging studies when the space axis is Fourier transformed, i.e., when a

18 CHAPTER 1. CONVOLUTION AND SPECTRA

two-dimensional function p(t , x) is Fourier transformed over space to P(t ,kx). More gener-
ally, complex-valued signals arise where rotation occurs. For example, consider two vector-
component wind-speed indicators: one pointing north, recording nt , and the other pointing
west, recording wt . Now, if we make a complex-valued time series vt = nt + iwt , the magni-
tude and phase angle of the complex numbers have an obvious physical interpretation: +ω cor-
responds to rotation in one direction (counterclockwise), and (−ω) to rotation in the other di-
rection. To see why, suppose nt = cos(ω0t+φ) and wt =−sin(ω0t+φ). Then vt = e−i(ω0t+φ).
The Fourier transform is

V (ω) =
∫ +∞
−∞

e−i(ω0t+φ)eiωt dt (1.43)

The integrand oscillates and averages out to zero, except for the frequency ω = ω0. So the
frequency function is a pulse at ω = ω0:

V (ω) = δ(ω−ω0)e−iφ (1.44)

Conversely, if wt were sin(ω0t +φ), then the frequency function would be a pulse at −ω0,
meaning that the wind velocity vector is rotating the other way.

1.4.5 Time-domain conjugate

A complex-valued signal such as eiω0t can be imagined as a corkscrew, where the real and
imaginary parts are plotted on the x- and y-axes, and time t runs down the axis of the screw.
The complex conjugate of this signal reverses the y-axis and gives the screw an opposite
handedness. In Z -transform notation, the time-domain conjugate is written

B(Z) = b0+b1eiω+b2ei2ω+·· · (1.45)

Now consider the complex conjugate of a frequency function. In Z -transform notation this is
written

B(ω) = B

(
1

Z

)
= b0+b1e−iω+b2e−i2ω+·· · (1.46)

To see that it makes a difference in which domain we take a conjugate, contrast the two equa-
tions (1.45) and (1.46). The function B(1

Z)B(Z) is a spectrum, whereas the function bt bt is
called an “envelope function.”

For example, given complex-valued bt vanishing for t < 0, the composite filter B(Z)B̄(Z)
is a causal filter with a real time function, whereas the filter B(Z) B̄(1/Z) is noncausal and
also a real-valued function of time. (The latter filter would turn out to be symmetric in time
only if all bt were real.)

You might be tempted to think that Z = 1/Z , but that is true only if ω is real, and often it
is not. Chapter 3 is largely devoted to exploring the meaning of complex frequency.

1.4. CORRELATION AND SPECTRA 19

1.4.6 Spectral transfer function

Filters are often used to change the spectra of given data. With input X (Z), filters B(Z), and
output Y (Z), we have Y (Z)= B(Z)X (Z) and the Fourier conjugate Y (1/Z)= B(1/Z)X (1/Z).
Multiplying these two relations together, we get

Y Y = (B B)(X X) (1.47)

which says that the spectrum of the input times the spectrum of the filter equals the spectrum
of the output. Filters are often characterized by the shape of their spectra; this shape is the
same as the spectral ratio of the output over the input:

B B = Y Y

X X
(1.48)

1.4.7 Crosscorrelation

The concept of autocorrelation and spectra is easily generalized to crosscorrelation and
cross-spectra. Consider two Z -transforms X (Z) and Y (Z). The cross-spectrum C(Z) is
defined by

C(Z) = X

(
1

Z

)
Y (Z) (1.49)

The crosscorrelation function is the coefficients ck . If some particular coefficient ck in C(Z) is
greater than any of the others, then it is said that the waveform xt most resembles the waveform
yt if either xt or yt is delayed k time units with respect to the other.

1.4.8 Matched filtering

Figure 1.13 shows a deep-water seismogram where the bottom is unusually hard. The sec-
ond signal is the wavelet that results from windowing about the first water-bottom reflection.
Notice that the wavelet has a comparatively simple spectrum, its principal feature being that it
vanishes at low frequencies and high frequencies. The input has a spectrum that is like that of
the wavelet, but multiplied by a fine-toothed comb reminiscent of “cmb5” in Figure 1.12.

“Matched filtering” is crosscorrelating with a wavelet. Equivalently, it is convolving with
the time-reversed wavelet. Matched filtering uses Y (Z) = F(1/Z)X (Z) instead of Y (Z) =
F(Z)X (Z). The third signal in Figure 1.13 shows the data crosscorrelated with the sea-floor
reflection. Notice that the output sea-floor reflection is symmetric like an autocorrelation
function. Later bounces are crosscorrelations, but they resemble the autocorrelation. Ideally,
alternate water-bottom reflections have alternating polarities. From the figure you can see that
matched filtering makes this idealization more apparent. An annoying feature of the matched
filter is that it is noncausal, i.e., there is an output before there is an input. You can see this in
Figure 1.13 just before the water-bottom reflection.

20 CHAPTER 1. CONVOLUTION AND SPECTRA

Figure 1.13: Example of matched filtering with water-bottom reflection. Top shows signals
and bottom shows corresponding spectra. The result was time shifted to best align with the
input. cs-match [ER]

EXERCISES:

1 Suppose a wavelet is made up of complex numbers. Is the autocorrelation relation sk = s−k

true? Is sk real or complex? Is S(ω) real or complex?

2 If concepts of time and frequency are interchanged, what does the meaning of spectrum
become?

3 Suggest a reason why the spectrum of the wavelet in Figure 1.13 contains more low-
frequency energy than the whole seismogram.

4 Suggest a reason why the spectrum of the wavelet in Figure 1.13 contains more high-
frequency energy than the whole seismogram.

Chapter 2

Discrete Fourier transform

Happily, Fourier sums are exactly invertible: given the output, the input can be quickly found.
Because signals can be transformed to the frequency domain, manipulated there, and then
returned to the time domain, convolution and correlation can be done faster. Time derivatives
can also be computed with more accuracy in the frequency domain than in the time domain.
Signals can be shifted a fraction of the time sample, and they can be shifted back again exactly.
In this chapter we will see how many operations we associate with the time domain can often
be done better in the frequency domain. We will also examine some two-dimensional Fourier
transforms.

2.1 FT AS AN INVERTIBLE MATRIX

A Fourier sum may be written

B(ω) =
∑

t

bt eiωt =
∑

t

bt Z t (2.1)

where the complex value Z is related to the real frequency ω by Z = eiω. This Fourier sum is a
way of building a continuous function of ω from discrete signal values bt in the time domain.
In this chapter we will study the computational tricks associated with specifying both time and
frequency domains by a set of points. Begin with an example of a signal that is nonzero at
four successive instants, (b0,b1,b2,b3). The transform is

B(ω) = b0+b1 Z +b2 Z 2+b3 Z 3 (2.2)

The evaluation of this polynomial can be organized as a matrix times a vector, such as⎡
⎢⎢⎣

B0

B1

B2

B3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
1 W W 2 W 3

1 W 2 W 4 W 6

1 W 3 W 6 W 9

⎤
⎥⎥⎦

⎡
⎢⎢⎣

b0

b1

b2

b3

⎤
⎥⎥⎦ (2.3)

21

22 CHAPTER 2. DISCRETE FOURIER TRANSFORM

Observe that the top row of the matrix evaluates the polynomial at Z = 1, a point where also
ω = 0. The second row evaluates B1 = B(Z = W = eiω0), where ω0 is some base frequency.
The third row evaluates the Fourier transform for 2ω0, and the bottom row for 3ω0. The matrix
could have more than four rows for more frequencies and more columns for more time points.
I have made the matrix square in order to show you next how we can find the inverse matrix.
The size of the matrix in (2.3) is N = 4. If we choose the base frequency ω0 and hence W
correctly, the inverse matrix will be⎡

⎢⎢⎣
b0

b1

b2

b3

⎤
⎥⎥⎦ = 1/N

⎡
⎢⎢⎣

1 1 1 1
1 1/W 1/W 2 1/W 3

1 1/W 2 1/W 4 1/W 6

1 1/W 3 1/W 6 1/W 9

⎤
⎥⎥⎦

⎡
⎢⎢⎣

B0

B1

B2

B3

⎤
⎥⎥⎦ (2.4)

Multiplying the matrix of (2.4) with that of (2.3), we first see that the diagonals are +1 as
desired. To have the off diagonals vanish, we need various sums, such as 1+W +W2+W 3

and 1+W 2+W 4+W 6, to vanish. Every element (W 6, for example, or 1/W 9) is a unit vector
in the complex plane. In order for the sums of the unit vectors to vanish, we must ensure
that the vectors pull symmetrically away from the origin. A uniform distribution of directions
meets this requirement. In other words, W should be the N -th root of unity, i.e.,

W = N
√

1 = e2π i/N (2.5)

The lowest frequency is zero, corresponding to the top row of (2.3). The next-to-the-lowest
frequency we find by setting W in (2.5) to Z = eiω0 . So ω0= 2π/N ; and for (2.4) to be inverse
to (2.3), the frequencies required are

ωk = (0,1,2, . . . , N −1)2π

N
(2.6)

2.1.1 The Nyquist frequency

The highest frequency in equation (2.6), ω = 2π (N − 1)/N , is almost 2π . This frequency is
twice as high as the Nyquist frequency ω= π . The Nyquist frequency is normally thought of
as the “highest possible” frequency, because eiπ t , for integer t , plots as (· · · , 1,−1,1,−1,1,−1, · · ·).
The double Nyquist frequency function, ei2π t , for integer t , plots as (· · · , 1,1,1,1,1, · · ·). So
this frequency above the highest frequency is really zero frequency! We need to recall that
B(ω) = B(ω− 2π). Thus, all the frequencies near the upper end of the range (2.6) are re-
ally small negative frequencies. Negative frequencies on the interval (−π , 0) were moved to
interval (π , 2π) by the matrix form of Fourier summation.

Figure 2.1 shows possible arrangements for distributing points uniformly around the unit
circle. Those circles labeled “even” and “odd” have even and odd numbers of points on their
perimeters. Zero frequency is the right edge of the circles, and Nyquist frequency is the left
edge. Those circles labeled “nyq=1” have a point at the Nyquist frequency, and those labeled
“nyq=0” do not.

2.1. FT AS AN INVERTIBLE MATRIX 23

Figure 2.1: Possible arrangements
of uniformly spaced frequencies.
Nyquist frequency is at the left edge
of the circles and zero frequency at
the right edge. dft-circles [ER]

Rewriting equations (2.3) and (2.4) with different even values of N leads to arrangements
like the upper left circle in Figure 2.1. Rewriting with odd values of N leads to arrangements
like the lower right circle. Although the “industry standard” is the upper-left arrangement, the
two right-side arrangements are appealing for two reasons: the Nyquist frequency is absent,
and its time-domain equivalent, the jump from large positive time to large negative time (a
philosophical absurdity), is also absent. We will be testing and evaluating all four arrange-
ments in Figure 2.5.

2.1.2 Laying out a mesh

In theoretical work and in programs, the definition Z = eiω�t is often simplified to �t = 1,
leaving us with Z = eiω. How do we know whether ω is given in radians per second or radians
per sample? We may not invoke a cosine or an exponential unless the argument has no physical
dimensions. So where we see ω without �t , we know it is in units of radians per sample.

In practical work, frequency is typically given in cycles or Hertz, f , rather than radians,
ω (where ω = 2π f). Here we will now switch to f . We will design a computer mesh on
a physical object (such as a waveform or a function of space). We often take the mesh to
begin at t = 0, and continue till the end tmax of the object, so the time range trange = tmax.
Then we decide how many points we want to use. This will be the N used in the discrete
Fourier-transform program. Dividing the range by the number gives a mesh interval �t .

Now let us see what this choice implies in the frequency domain. We customarily take the
maximum frequency to be the Nyquist, either fmax = .5/�t Hz or ωmax = π/�t radians/sec.
The frequency range frange goes from −.5/�t to .5/�t . In summary:

• �t = trange/N is time resolution.

• frange = 1/�t = N/trange is frequency range.

• � f = frange/N = 1/trange is frequency resolution.

24 CHAPTER 2. DISCRETE FOURIER TRANSFORM

In principle, we can always increase N to refine the calculation. Notice that increasing N
sharpens the time resolution (makes �t smaller) but does not sharpen the frequency resolution
� f , which remains fixed. Increasing N increases the frequency range, but not the frequency
resolution.

What if we want to increase the frequency resolution? Then we need to choose trange larger
than required to cover our object of interest. Thus we either record data over a larger range, or
we assert that such measurements would be zero. Three equations summarize the facts:

�t frange = 1 (2.7)

� f trange = 1 (2.8)

� f �t = 1

N
(2.9)

Increasing range in the time domain increases resolution in the frequency domain and
vice versa. Increasing resolution in one domain does not increase resolution in the other.

2.1.3 The comb function

Consider a constant function of time. In the frequency domain, it is an impulse at zero fre-
quency. The comb function is defined to be zero at alternate time points. Multiply this constant
function by the comb function. The resulting signal contains equal amounts of two frequen-
cies; half is zero frequency, and half is Nyquist frequency. We see this in the second row in
Figure 2.2, where the Nyquist energy is in the middle of the frequency axis. In the third row,
3 out of 4 points are zeroed by another comb. We now see something like a new Nyquist
frequency at half the Nyquist frequency visible on the second row.

Figure 2.2: A zero-frequency func-
tion and its cosine transform. Succes-
sive rows show increasingly sparse
sampling of the zero-frequency func-
tion. dft-comb [NR]

2.1.4 Undersampled field data

Figure 2.3 shows a recording of an airgun along with its spectrum. The original data is
sampled at an interval of 4 milliseconds, which is 250 times per second. Thus, the Nyquist

2.2. INVERTIBLE SLOW FT PROGRAM 25

Figure 2.3: Raw data is shown on the top left, of about a half-second duration. Right shows
amplitude spectra (magnitude of FT). In successive rows the data is sampled less densely.
dft-undersample [ER]

frequency 1/(2�t) is 125 Hz. Negative frequencies are not shown, since the amplitude spec-
trum at negative frequency is identical with that at positive frequency. Think of extending the
top row of spectra in Figure 2.3 to range from minus 125 Hz to plus 125 Hz. Imagine the even
function of frequency centered at zero frequency—we will soon see it. In the second row of
the plot, I decimated the data to 8 ms. This drops the Nyquist frequency to 62.5 Hz. Energy
that was at −10 Hz appears at 125− 10 Hz in the second row spectrum. The appearance of
what were formerly small negative frequencies near the Nyquist frequency is called “folding”
of the spectrum. In the next row the data is sampled at 16 ms intervals, and in the last row at
32 ms intervals. The 8 ms sampling seems OK, whereas the 32 ms sampling looks poor. Study
how the spectrum changes from one row to the next.

The spectrum suffers no visible harm in the drop from 4 ms to 8 ms. The 8 ms data could be
used to construct the original 4 ms data by transforming the 8 ms data to the frequency domain,
replacing values at frequencies above 125/2 Hz by zero, and then inverse transforming to the
time domain.

(Airguns usually have a higher frequency content than we see here. Some high-frequency
energy was removed by the recording geometry, and I also removed some when preparing the
data.)

2.2 INVERTIBLE SLOW FT PROGRAM

Because Fourier sums are exactly invertible, some other things we often require can be done
exactly by doing them in the frequency domain.

Typically, signals are real valued. But the programs in this chapter are for complex-valued
signals. In order to use these programs, copy the real-valued signal into a complex array,

26 CHAPTER 2. DISCRETE FOURIER TRANSFORM

where the signal goes into the real part of the complex numbers; the imaginary parts are then
automatically set to zero.

There is no universally correct choice of scale factor in Fourier transform: choice of scale
is a matter of convenience. Equations (2.3) and (2.4) mimic the Z -transform, so their scaling
factors are convenient for the convolution theorem—that a product in the frequency domain
is a convolution in the time domain. Obviously, the scaling factors of equations (2.3) and
(2.4) will need to be interchanged for the complementary theorem that a convolution in the
frequency domain is a product in the time domain. I like to use a scale factor that keeps the
sums of squares the same in the time domain as in the frequency domain. Since I almost never
need the scale factor, it simplifies life to omit it from the subroutine argument list. When a
scaling program is desired, we can use a simple one like scale() on page ??. Complex-valued
data can be scaled with scale() merely by doubling the value of n.

Fourier transform is just one of many transforms discussed in this book. In the case of
most other transforms, the number of output values is different than the number of inputs.
In addition, inverse transforms (and conjugate transforms), which will also be represented in
code included in this book, transform in reverse, outputs to inputs. Finally, we will eventually
combine transformations by addition or concatenation (one occurring after the other). All
these considerations are expressed in the simple program adjnull(), which erases output
before we begin. adjnull() may seem like too trivial a function to put in a library routine, but
at last count, 15 other routines in this book use it.

subroutine adjnull(adj, add, x, nx, y, ny)

integer ix, iy, adj, add, nx, ny

real x(nx), y(ny)

if(add == 0)

if(adj == 0)

do iy= 1, ny

y(iy) = 0.

else

do ix= 1, nx

x(ix) = 0.

return; end

2.2.1 The slow FT code

The slowft() routine exhibits features found in many physics and engineering programs. For
example, the time-domain signal (which I call “tt()"), has nt values subscripted, from tt(1)

to tt(nt). The first value of this signal tt(1) is located in real physical time at t0. The time
interval between values is dt. The value of tt(it) is at time t0+(it-1)*dt. I do not use “if”
as a pointer on the frequency axis because if is a keyword in most programming languages.
Instead, I count along the frequency axis with a variable named ie.

subroutine slowft(adj, add, nyq, t0,dt,nt,tt, f0,df, nf,ff)

integer it,ie, adj, add, nyq, nt, nf

complex cexp, cmplx, tt(nt), ff(nf)

real pi2, freq, time, scale, t0,dt, f0,df

2.2. INVERTIBLE SLOW FT PROGRAM 27

call adjnull(adj, add, tt,2*nt, ff,2*nf)

pi2= 2. * 3.14159265; scale = 1./sqrt(1.*nt)

df = (1./dt) / nf

if(nyq>0)

f0 = - .5/dt

else

f0 = - .5/dt + df/2.

do ie = 1, nf { freq= f0 + df*(ie-1)

do it = 1, nt { time= t0 + dt*(it-1)

if(adj == 0)

ff(ie)= ff(ie) + tt(it) * cexp(cmplx(0., pi2*freq*time)) * scale

else

tt(it)= tt(it) + ff(ie) * cexp(cmplx(0.,-pi2*freq*time)) * scale

}}

return; end

The total frequency band is 2π radians per sample unit or 1/�t Hz. Dividing the total interval
by the number of points nf gives � f . We could choose the frequencies to run from 0 to 2π

radians/sample. That would work well for many applications, but it would be a nuisance for
applications such as differentiation in the frequency domain, which require multiplication by
−iω including the negative frequencies as well as the positive. So it seems more natural to
begin at the most negative frequency and step forward to the most positive frequency. Next,
we must make a confusing choice.

Refer to Figure 2.1. We could begin the frequency axis at the negative Nyquist, −.5/�t
Hz; then we would finish one point short of the positive Nyquist. This is shown on the left
two circles in Figure 2.1. Alternately, for the right two circles we could shift by half a mesh
interval, so the points would straddle the Nyquist frequency. To do this, the most negative
frequency would have to be −.5/�t +� f/2 Hz. In routine slowft() and in the test results,
“nyq=1” is a logical statement that the Nyquist frequency is in the dataset. Oppositely, if the
Nyquist frequency is interlaced by the given frequencies, then nyq=0. Finally, the heart of the
program is to compute either a Fourier sum, or its inverse, which uses the complex conjugate.

The routine ftlagslow() below simply transforms a signal to the Fourier domain, multi-
plies by exp(iωt0), where t0 is some desired time lag, and then inverse transforms to the time
domain. Notice that if the negative Nyquist frequency is present, it is treated as the average of
the negative and positive Nyquist frequencies. If we do not take special care to do this, we will
be disappointed to find that the time derivative of a real-time function develops an imaginary
part.

subroutine ftlagslow(nyq, lag, t0,dt, n1, ctt)

integer nyq, n1, ie

real lag, t0, dt, f0, df, freq

complex ctt(n1), cexp, cmplx

temporary complex cff(n1)

call slowft(0, 0, nyq, t0, dt, n1, ctt, f0, df, n1, cff)

do ie= 1, n1 { freq= f0 + (ie-1)*df

if(ie==1 && nyq > 0)

cff(1) = cff(1) * cos(2.*3.14159265 * freq * lag)

28 CHAPTER 2. DISCRETE FOURIER TRANSFORM

else

cff(ie) = cff(ie) * cexp(cmplx(0., 2.*3.14159265 * freq * lag))

}

call slowft(1, 0, nyq, t0, dt, n1, ctt, f0, df, n1, cff)

return; end

Figure 2.4 shows what happens when an impulse is shifted by various fractions of a sam-
ple unit with subroutine ftlagslow(). Notice that during the delay, the edges of the signals
ripple—this is sometimes called the “Gibbs ripple.” You might find these ripples annoying,
but it is not easy to try to represent an impulse halfway between two mesh points. You might
think of doing so with (.5, .5), but that lacks the high frequencies of an ideal impulse.

Figure 2.4: An impulse function de-
layed various fractions of a mesh
point. Pushbutton for interaction (ex-
perimental). dft-delay [ER]

The routine ftderivslow() below is the Fourier-domain routine for computing a time
derivative by multiplying in the frequency domain by −iω.

subroutine ftderivslow(nyq, t0,dt, ntf, ctt, cdd)

integer nyq, ntf, ie

real t0,dt,f0,df, freq

complex ctt(ntf), cdd(ntf), cmplx

temporary complex cff(ntf)

call slowft(0, 0, nyq, t0, dt, ntf, ctt, f0, df, ntf, cff)

do ie= 1, ntf { freq= f0+(ie-1)*df

cff(ie) = cff(ie) * cmplx(0., - 2. * 3.141549265 * freq)

}

if(nyq > 0) # if(omega0 == -pi/dt)

cff(1) = 0.

call slowft(1, 0, nyq, t0, dt, ntf, cdd, f0, df, ntf, cff)

return; end

2.2.2 Truncation problems

When real signals are transformed to the frequency domain, manipulated there, and then trans-
formed back to the time domain, they will no longer be completely real. There will be a tiny

2.2. INVERTIBLE SLOW FT PROGRAM 29

noise in the imaginary part due to numerical roundoff. The size of the imaginary part, theo-
retically zero, is typically about 10−6 of the real part. This is also about the size of the error
on the real part of a signal after inverse transform. It is almost always much smaller than ex-
perimental errors and is of little consequence. As a check, I viewed these near-zero imaginary
parts, but I do not show them here.

A more serious error is a relative one of about 1/N on an N -point signal. This arises
from insufficient care in numerical analysis, especially associated with the ends of the time
or frequency axis. To show end effects, I will print some numbers resulting from processing
very short signals with slowft() on page 26. Below I show first the result that a transform
followed by an inverse transform gives the original signal. I display this for both even and odd
lengths of data, and for the two Nyquist arrangements as well.

Inversion: You should see (2,1,0,0)

nyq=0 2.00 1.00 0.00 0.00

nyq=1 2.00 1.00 0.00 0.00

nyq=0 2.00 1.00 0.00 0.00 0.00

nyq=1 2.00 1.00 0.00 0.00 0.00

Second, I display the result of a test of the convolution theorem by convolving (2,1) with
(1,−1). We see that the scale factor varies with the data size because we are using the energy-
conserving FT, instead of equations (2.3) and (2.4). No problems yet.

Convolution theorem: Proportional to (0,2,-1,-1,0,0,0,0)

nyq=0 0.00 0.89 -0.45 -0.45 0.00

nyq=1 0.00 0.89 -0.45 -0.45 0.00

nyq=0 0.00 0.82 -0.41 -0.41 0.00 0.00

nyq=1 0.00 0.82 -0.41 -0.41 0.00 0.00

The third test is delaying a signal by two samples using ftlagslow() on page 27. Here
the interesting question is what will happen at the ends of the data sample. Sometimes what
shifts off one end shifts back in the other end: then the signal space is like the perimeter
of a circle. Surprisingly, another aggravating possibility exists. What shifts off one end can
return in the other end with opposite polarity. When this happens, a figure like 2.4 looks much
rougher because of the discontinuity at the ends. Even if there is no physical signal at the ends,
the ripple we see in Figure 2.4 reaches the ends and worsens. (Recall that nyq=1 means the
Nyquist frequency is included in the spectrum, and that nyq=0 means it is interlaced.)

Delay tests:

In 11.0 12.0 13.0 14.0 15.0 16.0 17.0

Out n=7 nyq=0 16.0 17.0 11.0 12.0 13.0 14.0 15.0

Out n=7 nyq=1 -16.0 -17.0 11.0 12.0 13.0 14.0 15.0

Out n=6 nyq=0 -15.0 -16.0 11.0 12.0 13.0 14.0

Out n=6 nyq=1 15.0 16.0 11.0 12.0 13.0 14.0

The fourth test is to do a time derivative in the frequency domain with subroutine ft-

derivslow() on the facing page. Here we do not have quite so clear an idea of what to

30 CHAPTER 2. DISCRETE FOURIER TRANSFORM

expect. The natural position for a time derivative is to interlace the original data points. When
we make the time derivative by multiplying in the frequency domain by −iω, however, the
derivative does not interlace the original mesh, but is on the same mesh. The time derivative
of the small pulse we see here is the expected doublet aligned on the original mesh, and it
has some unexpected high-frequency ripple that drops off slowly. The ripple resembles that
on a pulse shifted half a mesh point, as in Figure 2.4. It happens that this rippling signal is
an accurate representation of the derivative in many examples where such mesh alignment is
needed, so (as with time shift) the ripple is worth having. Here again, we notice that there is
an unfortunate transient on the ends of the data on two of the tests. But in two of the four
tests below, the transient is so huge that it overwhelms the derivative of the small pulse in the
middle of the signal.

Derivative tests:

In 10.0 10.0 10.0 10.0 12.0 10.0 10.0 10.0 10.0

Out n=9 nyq=0 -0.7 0.8 -1.1 2.0 0.0 -2.0 1.1 -0.8 0.7

Out n=9 nyq=1 13.5 -5.1 2.0 0.7 0.0 -0.7 -2.0 5.1 -13.5

Out n=8 nyq=0 13.2 -5.7 3.5 -1.9 3.9 -6.6 7.6 -14.8

Out n=8 nyq=1 0.0 0.3 -0.8 1.9 0.0 -1.9 0.8 -0.3

Examining all the tests, we conclude that if the data has an even number of points, it is best
to include the Nyquist frequency in the frequency-domain representation. If the data has an
odd number of points, it is better to exclude the Nyquist frequency by interlacing it. A more
positive way of summarizing our results is that the zero frequency should always be present.
Given this conclusion, the next question is whether we should choose to use an even or an odd
number of points.

The disadvantage of an even number of data values is that the programs that do frequency-
domain manipulations will always need to handle Nyquist as a special case. The value at
the Nyquist frequency must be handled as if half of it were at plus Nyquist and the other
half at minus Nyquist. The Nyquist aggravation will get worse in two dimensions, where
we have corners as well as edges. Figure 2.5 reproduces the four arrangements in Figure 2.1

Figure 2.5: Evaluation of var-
ious arrangements of frequencies.
dft-circeval [ER]

along with a one-word summary of the suitability of each arrangement: “standard" for the
standard arrangement, “risky" for arrangements that have end effects that are likely to be

2.2. INVERTIBLE SLOW FT PROGRAM 31

undesirable, and “best" for the arrangement that involves no risky end effects and no pesky
Nyquist frequency.

Later in this chapter we will see the importance of using a fast FT program—one which is
orders of magnitude faster than slowft() on page 26. Unfortunately, among fast FT programs,
I could not find one for an odd-length transform that is suitable for printing here, since odd-
length FT programs seem to be many pages in length. So further applications in this book
will use the even-length program. As a result, we will always need to fuss with the Nyquist
frequency, making use of the frequency arrangement labeled “standard" and not that labeled
“best."

A discrete Fourier-transform program designed for an odd number of points would make
applications somewhat simpler. Alas, there seems to be no program for odd-length trans-
forms that is both simple and fast.

2.2.3 FT by Z-transform

The program slowft() is unnecessarily slow, requiring us to compute a complex exponential
at each step. By reorganizing easily using the Z -transform, the computational load can be
reduced by about a factor of five (from a complex exponential to a complex multiply) at every
step.

For simplicity we consider a signal that is only four points long:

B(ω) = b0+b1 Z +b2 Z 2+b3 Z 3 (2.10)

Reorganizing the polynomial (2.10) by nesting gives

B(ω) = b0+ Z (b1+ Z (b2+ Z (b3))) (2.11)

A subroutine for evaluating B(ω) in this way is polyft().

Fourier transform by polynomial evaluation.

subroutine polyft(nt,tt, nw,cww)

integer nt # number of points in the time domain

integer nw # number of points in the fourier transform

real tt(nt) # sampled function of time

complex cww(nw) # sampled fourier transform

integer it, iw

real omega

complex cz, cw

do iw= 1, nw {

omega = 3.14159265 * (iw-1.) / (nw-1.)

cz = cexp(cmplx(0., omega))

cw = tt(nt)

do it= nt-1, 1, -1 # loop runs backwards

cw = cw * cz + tt(it)

cww(iw) = cw

}

return; end

32 CHAPTER 2. DISCRETE FOURIER TRANSFORM

2.3 SYMMETRIES

Next we examine odd/even symmetries to see how they are affected in Fourier transform. The
even part et of a signal bt is defined as

et = bt +b−t

2
(2.12)

The odd part is

ot = bt −b−t

2
(2.13)

By adding (2.12) and (2.13), we see that a function is the sum of its even and odd parts:

bt = et +ot (2.14)

Consider a simple, real, even signal such as (b−1,b0,b1) = (1,0,1). Its transform Z +
1/Z = eiω+ e−iω = 2cosω is an even function of ω, since cosω = cos(−ω).

Consider the real, odd signal (b−1,b0,b1)= (−1,0,1). Its transform Z −1/Z = 2i sinω is
imaginary and odd, since sinω =−sin(−ω).

Likewise, the transform of the imaginary even function (i , 0, i) is the imaginary even func-
tion i2cosω. Finally, the transform of the imaginary odd function (−i , 0, i) is real and odd.

Let r and i refer to real and imaginary, e and o to even and odd, and lower-case and
upper-case letters to time and frequency functions. A summary of the symmetries of Fourier
transform is shown in Figure 2.6.

Figure 2.6: Odd functions swap real
and imaginary. Even functions do not
get mixed up with complex numbers.
dft-reRE [NR]

More elaborate signals can be made by adding together the three-point functions we have
considered. Since sums of even functions are even, and so on, the diagram in Figure 2.6
applies to all signals. An arbitrary signal is made from these four parts only, i.e., the function
has the form bt = (re+ ro)t + i (ie+ io)t . On transformation of bt , each of the four individual
parts transforms according to the table.

Most “industry standard” methods of Fourier transform set the zero frequency as the first
element in the vector array holding the transformed signal, as implied by equation (2.3). This is
a little inconvenient, as we saw a few pages back. The Nyquist frequency is then the first point
past the middle of the even-length array, and the negative frequencies lie beyond. Figure 2.7
shows an example of an even function as it is customarily stored.

2.3. SYMMETRIES 33

Figure 2.7: Even functions as customarily stored by “industry standard” FT programs.
dft-even [NR]

2.3.1 Plot interpretation

Now we will get away from the ends and think about what is in the middle of signals. Fig-
ure 2.7 shows even functions in both time and frequency domains. This figure was computed
with the matrix equations (2.3) and (2.4). Displaying both the left and right halves of each
function wastes half the paper; equivalently, for a fixed amount of paper, it wastes half the
resolution. Typically, only the left half of each function is displayed. Accepting this form of
display, we receive a bonus: each figure can be interpreted in two more ways.

Since imaginary parts are not shown, they are arbitrary. If you see only half of an axis,
you cannot tell whether the function is even or odd or neither. A frequently occurring function
is the “causal” function, i.e., the function that vanishes for t < 0. Its even part cancels its odd
part on t < 0. The ro transforms to an IO, which, being imaginary, is not shown.

The third interpretation of these displays is that the frequency function is one-sided, and
the time signal is complex. Such signals are called “analytic signals.” For analytic signals,
RE extinguishes RO at negative ω, and the imaginary even part, ie, is not displayed.

In summary, plots that show only half the axes can be correctly interpreted in three ways:

left side right side
even[� f (t)] even[�F(ω)]
� causal(t) �F(ω)
� f (t) � OneSided(ω)

How can we compute these invisible imaginary parts? Their computation is called “Hilbert
transform.” Briefly, the Hilbert transform takes a cosinusoidal signal (like the real part of the
FT of a delayed impulse, i.e., �eiωt0) and converts it to a sinusoidal signal of the same ampli-
tude (like the imaginary part of a delayed impulse, �eiωt0).

34 CHAPTER 2. DISCRETE FOURIER TRANSFORM

2.3.2 Convolution in the frequency domain

Let Y (Z) = X (Z) B(Z). The coefficients yt can be found from the coefficients xt and bt by
convolution in the time domain or by multiplication in the frequency domain. For the latter, we
would evaluate both X (Z) and B(Z) at uniform locations around the unit circle, i.e., compute
Fourier sums Xk and Bk from xt and bt . Then we would form Ck = Xk Bk for all k, and inverse
Fourier transform to yt . The values yt come out the same as by the time-domain convolution
method, roughly that of our calculation precision (typically four-byte arithmetic or about one
part in 10−6). The only way in which you need to be cautious is to use zero padding greater
than the combined lengths of xt and bt .

An example is shown in Figure 2.8. It is the result of a Fourier-domain computation which
shows that the convolution of a rectangle function with itself gives a triangle. Notice that the
triangle is clean—there are no unexpected end effects.

Figure 2.8: Top shows a rectangle
transformed to a sinc. Bottom shows
the sinc squared, back transformed to
a triangle. dft-box2triangle [NR]

Because of the fast method of Fourier transform described next, the frequency-domain
calculation is quicker when both X (Z) and B(Z) have more than roughly 20 coefficients. If
either X (Z) or B(Z) has less than roughly 20 coefficients, then the time-domain calculation is
quicker.

2.4 SETTING UP THE FAST FOURIER TRANSFORM

Typically we Fourier transform seismograms about a thousand points long. Under these
conditions another Fourier summation method works about a hundred times faster than those
already given. Unfortunately, the faster Fourier transform program is not so transparently clear
as the programs given earlier. Also, it is slightly less flexible. The speedup is so overwhelming,
however, that the fast program is always used in routine work.

Flexibility may be lost because the basic fast program works with complex-valued signals,
so we ordinarily convert our real signals to complex ones (by adding a zero imaginary part).
More flexibility is lost because typical fast FT programs require the data length to be an inte-
gral power of 2. Thus geophysical datasets often have zeros appended (a process called “zero
padding") until the data length is a power of 2. From time to time I notice clumsy computer
code written to deduce a number that is a power of 2 and is larger than the length of a dataset.
An answer is found by rounding up the logarithm to base 2. The more obvious and the quicker
way to get the desired value, however, is with the simple Fortran function pad2().

integer function pad2(n)

integer n

2.4. SETTING UP THE FAST FOURIER TRANSFORM 35

pad2 = 1

while(pad2 < n)

pad2 = pad2 * 2

return; end

How fast is the fast Fourier transform method? The answer depends on the size of the
data. The matrix times vector operation in (2.3) requires N 2 multiplications and additions.
That determines the speed of the slow transform. For the fast method the number of adds and
multiplies is proportional to N log2 N . Since 210 = 1024, the speed ratio is typically 1024/10
or about 100. In reality, the fast method is not quite that fast, depending on certain details of
overhead and implementation. In 1987 I tested the three programs on a 1024-point real signal
and found times

slowft 153s
polyft 36s
ftu .7s

Below is ftu(), a version of the fast Fourier transform program. There are many ver-
sions of the program—I have chosen this one for its simplicity. Considering the complexity
of the task, it is remarkable that no auxiliary memory vectors are required; indeed, the output
vector lies on top of the input vector. To run this program, your first step might be to copy
your real-valued signal into a complex-valued array. Then append enough zeros to fill in the
remaining space.

subroutine ftu(signi, nx, cx)

complex fourier transform with unitary scaling

#

1 nx signi*2*pi*i*(j-1)*(k-1)/nx

cx(k) = -------- * sum cx(j) * e

sqrt(nx) j=1 for k=1,2,...,nx=2**integer

#

integer nx, i, j, k, m, istep, pad2

real signi, scale, arg

complex cx(nx), cmplx, cw, cdel, ct

if(nx != pad2(nx)) call erexit(’ftu: nx not a power of 2’)

scale = 1. / sqrt(1.*nx)

do i= 1, nx

cx(i) = cx(i) * scale

j = 1; k = 1

do i= 1, nx {

if (i<=j) { ct = cx(j); cx(j) = cx(i); cx(i) = ct }

m = nx/2

while (j>m && m>1) { j = j-m; m = m/2 } # "&&" means .AND.

j = j+m

}

repeat {

istep = 2*k; cw = 1.; arg = signi*3.14159265/k

cdel = cmplx(cos(arg), sin(arg))

do m= 1, k {

do i= m, nx, istep

36 CHAPTER 2. DISCRETE FOURIER TRANSFORM

{ ct=cw*cx(i+k); cx(i+k)=cx(i)-ct; cx(i)=cx(i)+ct }

cw = cw * cdel

}

k = istep

if(k>=nx) break

}

return; end

The following two lines serve to Fourier transform a vector of 1024 complex-valued points,
and then to inverse Fourier transform them back to the original data:

call ftu(1., 1024, cx)

call ftu(-1., 1024, cx)

An engineering reference given at the end of this chapter contains many other versions of
the FFT program. One version transforms real-valued signals to complex-valued frequency
functions in the interval 0 ≤ ω < π . Others that do not transform data on top of itself may be
faster with specialized computer architectures.

EXERCISES:

1 Consider an even time function that is constant for all frequencies less than ω0 and zero
for all frequencies above ω0. What is the rate of decay of amplitude with time for this
function?

2 Waves spreading from a point source decay in energy as the area on a sphere. The am-
plitude decays as the square root of energy. This implies a certain decay in time. The
time-decay rate is the same if the waves reflect from planar interfaces. To what power of
time t do the signal amplitudes decay? For waves backscattered to the source from point
reflectors, energy decays as distance to the minus fourth power. What is the associated
decay with time?

2.4.1 Shifted spectra

Customarily, FT programs store frequencies in the interval 0 ≤ ω < 2π . In some applications
the interval−π ≤ω < π is preferable, and here we will see how this shift in one domain can be
expressed as a product in the other domain. First we examine shifting by matrix multiplication.
A single unit shift, wrapping the end value around to the beginning, is⎡

⎢⎢⎣
B3

B0

B1

B2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

. . . 1
1 . . .
. 1 . .
. . 1 .

⎤
⎥⎥⎦

⎡
⎢⎢⎣

B0

B1

B2

B3

⎤
⎥⎥⎦ (2.15)

2.4. SETTING UP THE FAST FOURIER TRANSFORM 37

You might recognize that equation (2.15) convolves a wavelet with a delayed impulse, where
the bottom of the matrix is wrapped back in to the top to keep the output the same length as
the input. For this 4×4 matrix, shifting one more point does the job of switching the high and
low frequencies: ⎡

⎢⎢⎣
B2

B3

B0

B1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

. . 1 .

. . . 1
1 . . .
. 1 . .

⎤
⎥⎥⎦

⎡
⎢⎢⎣

B0

B1

B2

B3

⎤
⎥⎥⎦ (2.16)

We are motivated to seek an algebraic identity for the 4× 4 matrix which represents the fact
that convolution in the time domain is multiplication in the frequency domain. To this end we
will look at the converse theorem, that multiplication in the time domain does shifting in the
frequency domain. On the left of equation (2.17) is the operation that first transforms from
time to frequency and then swaps high and low frequencies. On the right is the operation that
weights in the time domain, and then Fourier transforms. To verify the equation, multiply the
matrices and simplify with W 4 = 1 to throw out all powers greater than 3.⎡
⎢⎢⎣

. . 1 .

. . . 1
1 . . .
. 1 . .

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 1 1 1
1 W W 2 W 3

1 W 2 W 4 W 6

1 W 3 W 6 W 9

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
1 W W 2 W 3

1 W 2 W 4 W 6

1 W 3 W 6 W 9

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 . . .
. W 2 . .
. . W 4 .
. . . W 6

⎤
⎥⎥⎦

(2.17)

For an FT matrix of arbitrary size N , the desired shift is N/2, so values at alternate points
in the time axis are multiplied by −1. A subroutine for that purpose is fth().

FT a vector in a matrix, with first omega = - pi

#

subroutine fth(adj,sign, m1, n12, cx)

integer i, adj, m1, n12

real sign

complex cx(m1,n12)

temporary complex temp(n12)

do i= 1, n12

temp(i) = cx(1,i)

if(adj == 0) { do i= 2, n12, 2

temp(i) = -temp(i)

call ftu(sign, n12, temp)

}

else { call ftu(-sign, n12, temp)

do i= 2, n12, 2

temp(i) = -temp(i)

}

do i= 1, n12

cx(1,i) = temp(i)

return; end

To Fourier transform a 1024-point complex vector cx(1024) and then inverse transform it, you
would

38 CHAPTER 2. DISCRETE FOURIER TRANSFORM

call fth(0, 1., 1, 1024, 1, cx)

call fth(1, 1., 1, 1024, 1, cx)

You might wonder about the apparent redundancy of using both the argument conj and the
argument sign. Having two arguments instead of one allows us to define the forward transform
for a time axis with the opposite sign as the forward transform for a space axis. The subroutine
fth() is somewhat cluttered by the inclusion of a frequently needed practical feature—namely,
the facility to extract vectors from a matrix, transform the vectors, and then restore them into
the matrix.

2.5 TWO-DIMENSIONAL FT

The program fth() is set up so that the vectors transformed can be either rows or columns of
a two-dimensional array. To see how this works, recall that in Fortran a matrix allocated as
(n1,n2) can be subscripted as a matrix (i1,i2) or as a long vector (i1 + n1*(i2-1),1), and
call sub(x(i1,i2)) passes the subroutine a pointer to the (i1,i2) element. To transform an
entire axis, the subroutines ft1axis() and ft2axis() are given. For a two-dimensional FT,
we simply call both ft1axis() and ft2axis() in either order.

1D Fourier transform on a 2D data set along the 1-axis

#

subroutine ft1axis(adj, sign1, n1,n2, cx)

integer i2, adj, n1,n2

complex cx(n1,n2)

real sign1

do i2= 1, n2

call fth(adj, sign1, 1,n1, cx(1,i2))

return; end

1D Fourier transform on a 2D data set along the 2-axis

#

subroutine ft2axis(adj, sign2, n1,n2, cx)

integer i1, adj, n1,n2

complex cx(n1,n2)

real sign2

do i1= 1, n1

call fth(adj, sign2, n1,n2, cx(i1,1))

return; end

I confess that there are faster ways to do things than those I have shown you above. When
we are doing many FTs, for example, the overhead calculations done the first time should
be saved for use on subsequent FTs, as in the subroutine rocca() included in IEI. Further,
manufacturers of computers for heavy numerical use generally design special FT codes for
their architecture. Although the basic fast FT used here ingeniously stores its output on top of
its input, that feature is not compatible with vectorizing architectures.

2.5. TWO-DIMENSIONAL FT 39

2.5.1 Basics of two-dimensional Fourier transform

Before going any further, let us review some basic facts about two-dimensional Fourier
transform. A two-dimensional function is represented in a computer as numerical values
in a matrix, whereas a one-dimensional Fourier transform in a computer is an operation on a
vector. A 2-D Fourier transform can be computed by a sequence of 1-D Fourier transforms.
We can first transform each column vector of the matrix and then each row vector of the ma-
trix. Alternately, we can first do the rows and later do the columns. This is diagrammed as
follows:

p(t , x) ←→ P(t , kx)
⏐�
⏐�
P(ω, x) ←→ P(ω, kx)

The diagram has the notational problem that we cannot maintain the usual convention
of using a lower-case letter for the domain of physical space and an upper-case letter for
the Fourier domain, because that convention cannot include the mixed objects P(t ,kx) and
P(ω, x). Rather than invent some new notation, it seems best to let the reader rely on the
context: the arguments of the function must help name the function.

An example of two-dimensional Fourier transforms on typical deep-ocean data is shown
in Figure 2.9. In the deep ocean, sediments are fine-grained and deposit slowly in flat, regular,
horizontal beds. The lack of permeable rocks such as sandstone severely reduces the potential
for petroleum production from the deep ocean. The fine-grained shales overlay irregular,
igneous, basement rocks. In the plot of P(t ,kx), the lateral continuity of the sediments is
shown by the strong spectrum at low kx . The igneous rocks show a kx spectrum extending to
such large kx that the deep data may be somewhat spatially aliased (sampled too coarsely).
The plot of P(ω, x) shows that the data contains no low-frequency energy. The dip of the sea
floor shows up in (ω,kx)-space as the energy crossing the origin at an angle.

Altogether, the two-dimensional Fourier transform of a collection of seismograms in-
volves only twice as much computation as the one-dimensional Fourier transform of each
seismogram. This is lucky. Let us write some equations to establish that the asserted proce-
dure does indeed do a 2-D Fourier transform. Say first that any function of x and t may be
expressed as a superposition of sinusoidal functions:

p(t , x) =
∫ ∫

e−iωt+ikx x P(ω,kx) dω dkx (2.18)

The double integration can be nested to show that the temporal transforms are done first (in-
side):

p(t , x) =
∫

ei kx x
[∫

e−iωt P(ω,kx) dω

]
dkx

=
∫

ei kx x P(t ,kx) dkx

40 CHAPTER 2. DISCRETE FOURIER TRANSFORM

Figure 2.9: A deep-marine dataset p(t , x) from Alaska (U.S. Geological Survey) and the real
part of various Fourier transforms of it. Because of the long traveltime through the water, the
time axis does not begin at t = 0. dft-plane4 [ER]

2.5. TWO-DIMENSIONAL FT 41

The quantity in brackets is a Fourier transform over ω done for each and every kx . Alternately,
the nesting could be done with the kx -integral on the inside. That would imply rows first
instead of columns (or vice versa). It is the separability of exp(−iωt + i kx x) into a product
of exponentials that makes the computation this easy and cheap.

2.5.2 Signs in Fourier transforms

In Fourier transforming t-, x-, and z-coordinates, we must choose a sign convention for each
coordinate. Of the two alternative sign conventions, electrical engineers have chosen one and
physicists another. While both have good reasons for their choices, our circumstances more
closely resemble those of physicists, so we will use their convention. For the inverse Fourier
transform, our choice is

p(t , x , z) =
∫ ∫ ∫

e−iωt+ ikx x+ ikz z P(ω,kx ,kz) dωdkx dkz (2.19)

For the forward Fourier transform, the space variables carry a negative sign, and time carries
a positive sign.

Let us see the reasons why electrical engineers have made the opposite choice, and why we
go with the physicists. Essentially, engineers transform only the time axis, whereas physicists
transform both time and space axes. Both are simplifying their lives by their choice of sign
convention, but physicists complicate their time axis in order to simplify their many space
axes. The engineering choice minimizes the number of minus signs associated with the time
axis, because for engineers, d/dt is associated with iω instead of, as is the case for us and for
physicists, with −iω. We confirm this with equation (2.19). Physicists and geophysicists deal
with many more independent variables than time. Besides the obvious three space axes are
their mutual combinations, such as midpoint and offset.

You might ask, why not make all the signs positive in equation (2.19)? The reason is that
in that case waves would not move in a positive direction along the space axes. This would
be especially unnatural when the space axis was a radius. Atoms, like geophysical sources,
always radiate from a point to infinity, not the other way around. Thus, in equation (2.19) the
sign of the spatial frequencies must be opposite that of the temporal frequency.

The only good reason I know to choose the engineering convention is that we might com-
pute with an array processor built and microcoded by engineers. Conflict of sign convention
is not a problem for the programs that transform complex-valued time functions to complex-
valued frequency functions, because there the sign convention is under the user’s control. But
sign conflict does make a difference when we use any program that converts real-time func-
tions to complex frequency functions. The way to live in both worlds is to imagine that the
frequencies produced by such a program do not range from 0 to +π as the program descrip-
tion says, but from 0 to −π . Alternately, we could always take the complex conjugate of the
transform, which would swap the sign of the ω-axis.

42 CHAPTER 2. DISCRETE FOURIER TRANSFORM

2.5.3 Examples of 2-D FT

An example of a two-dimensional Fourier transform of a pulse is shown in Figure 2.10.

Figure 2.10: A broadened pulse (left) and the real part of its FT (right). dft-ft2dofpulse [ER]

Notice the location of the pulse. It is closer to the time axis than the frequency axis. This will
affect the real part of the FT in a certain way (see exercises). Notice the broadening of the
pulse. It was an impulse smoothed over time (vertically) by convolution with (1,1) and over
space (horizontally) with (1,4,6,4,1). This will affect the real part of the FT in another way.

Another example of a two-dimensional Fourier transform is given in Figure 2.11. This
example simulates an impulsive air wave originating at a point on the x-axis. We see a wave
propagating in each direction from the location of the source of the wave. In Fourier space
there are also two lines, one for each wave. Notice that there are other lines which do not
go through the origin; these lines are called “spatial aliases.” Each actually goes through the
origin of another square plane that is not shown, but which we can imagine alongside the one
shown. These other planes are periodic replicas of the one shown.

EXERCISES:

1 Write ftlag() starting from ftlagslow() and fth().

2 Most time functions are real. Their imaginary part is zero. Show that this means that
F(ω,k) can be determined from F(−ω,−k).

3 What would change in Figure 2.10 if the pulse were moved (a) earlier on the t-axis, and
(b) further on the x-axis? What would change in Figure 2.10 if instead the time axis were
smoothed with (1,4,6,4,1) and the space axis with (1,1)?

4 What would Figure 2.11 look like on an earth with half the earth velocity?

2.6. HOW FAST FOURIER TRANSFORM WORKS 43

Figure 2.11: A simulated air wave (left) and the amplitude of its FT (right). dft-airwave
[ER]

5 Numerically (or theoretically) compute the two-dimensional spectrum of a plane wave
[δ(t − px)], where the plane wave has a randomly fluctuating amplitude: say, rand(x)
is a random number between ±1, and the randomly modulated plane wave is [(1 +
.2 rand(x))δ(t− px)].

6 Explain the horizontal “layering” in Figure 2.9 in the plot of P(ω, x). What determines
the “layer” separation? What determines the “layer” slope?

2.6 HOW FAST FOURIER TRANSFORM WORKS

A basic building block in the fast Fourier transform is called “doubling.” Given a series
(x0, x1, . . . , xN−1) and its sampled Fourier transform (X0, X1, . . . , X N−1), and another series
(y0, y1, . . . , yN−1) and its sampled Fourier transform (Y0,Y1, . . . ,YN−1), there is a trick to find
easily the transform of the interlaced double-length series

zt = (x0, y0, x1, y1, . . . , xN−1, yN−1) (2.20)

The process of doubling is used many times during the computing of a fast Fourier trans-
form. As the word “doubling" might suggest, it will be convenient to suppose that N is an
integer formed by raising 2 to some integer power. Suppose N = 8 = 23. We begin by divid-
ing our eight-point series into eight separate series, each of length one. The Fourier transform
of each of the one-point series is just the point. Next, we use doubling four times to get the
transforms of the four different two-point series (x0, x4), (x1, x5), (x2, x6), and (x3, x7). We use
doubling twice more to get the transforms of the two different four-point series (x0, x2, x4, x6)
and (x1, x3, x5, x7). Finally, we use doubling once more to get the transform of the original

44 CHAPTER 2. DISCRETE FOURIER TRANSFORM

eight-point series (x0, x1, x2, . . . , x7). It remains to look into the details of the doubling process.
Let

V = ei2π/2N =W 1/2 (2.21)

V N = eiπ =−1 (2.22)

By definition, the transforms of two N -point series are

Xk =
N−1∑
j=0

xj V
2 j k (k = 0,1, . . . , N −1) (2.23)

Yk =
N−1∑
j=0

yj V
2 j k (k = 0,1, . . . , N −1) (2.24)

Likewise, the transform of the interlaced series zj = (x0, y0, x1, y1, . . . , xN−1, yN−1) is

Zk =
2N−1∑

l=0

zl V
lk (k = 0,1, . . . , 2N −1) (2.25)

To make Zk from Xk and Yk , we require two separate formulas, one for k = 0, 1, . . ., N − 1,
and the other for k = N , N +1, . . ., 2N −1. Start from the sum

Zk =
2N−1∑

l=0

zl V
lk (k = 0,1, . . . , N −1) (2.26)

and then split the sum into two parts, noting that xj multiplies even powers of V , and yj

multiplies odd powers:

Zk =
N−1∑
j=0

xj V 2 j k+V k
N−1∑
j=0

yj V
2 j k (2.27)

= Xk+V kYk (2.28)

We obtain the last half of the Zk by

Zk =
2N−1∑

l=0

zl V
lk (k = N , N +1, . . . , 2N −1) (2.29)

=
2N−1∑

l=0

zl V
l(m+N) (k− N = m = 0,1, . . . , N −1) (2.30)

=
2N−1∑

l=0

zl V
lm(V N)

l
(2.31)

=
2N−1∑

l=0

zl V
lm(−1)l (2.32)

2.7. REFERENCES 45

=
N−1∑
j=0

xj V
2 jm−V m

N−1∑
j=0

yj V
2 jm (2.33)

= Xm−V mYm (2.34)

Zk = Xk−N −V k−N Yk−N (k = N , N +1, . . . , 2N −1) (2.35)

The subroutine ftu() on page 35 does not follow this analysis in detail.

If you would like some industrial grade FFT programs, search the web for "prime factor
FFT".

2.7 References

Special issue on fast Fourier transform, June 1969: IEEE Trans. on Audio and Electroacoustics
(now known as IEEE Trans. on Acoustics, Speech, and Signal Processing), AU-17, entire
issue (66-172).

46 CHAPTER 2. DISCRETE FOURIER TRANSFORM

Chapter 3

Z-plane, causality, and feedback

All physical systems share the property that they do not respond before they are excited. Thus
the impulse response of any physical system is a one-sided time function (it vanishes before
t = 0). In system theory such a filter function is called “realizable" or “causal.” In wave
propagation this property is associated with causality in that no wave may begin to arrive
before it is transmitted. The lag-time point t = 0 plays a peculiar and an important role. Thus
many subtle matters can be more clearly understood with sampled time than with continuous
time. When a filter responds at and after lag time t = 0, we say the filter is realizable or causal.
The word “causal" is appropriate in physics, where stress causes instantaneous strain and vice
versa, but one should return to the less pretentious words “realizable" or “one-sided" when
using filter theory to describe economic or social systems where simultaneity is different from
cause and effect.

The other new concept in this chapter is “feedback." Ordinarily a filter produces its output
using only past inputs. A filter using feedback uses also its past outputs. After digesting the
feedback concept, we will look at a wide variety of filter types, at what they are used for, and
at how to implement them.

First a short review: the Z -transform of an arbitrary, time-discretized signal xt is defined
by

X (Z) = ·· · + x−2 Z−2 + x−1 Z−1 + x0 + x1 Z + x2 Z 2 + ·· · (3.1)

In chapter 1 we saw that (3.1) can be understood as a Fourier sum (where Z = eiω). It is not
necessary for Z to take on numerical values, however, in order for the ideas of convolution and
correlation to be useful. In chapter 1 we defined Z to be the unit delay operator. Defined thus,
Z 2 delays two time units. Expressions like X (Z) B(Z) and X (Z) B̄(1/Z) are useful because
they imply convolution and crosscorrelation of the time-domain coefficients. Here we will be
learning how to interpret 1/A(Z) as a feedback filter, i.e., as a filter that processes not only past
inputs, but past outputs. We will see that this approach brings with it interesting opportunities
as well as subtle pitfalls.

47

48 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

3.1 LEAKY INTEGRATION

The convolution equation (1.9)
yk =

∑
i=0

xk−i bi (3.2)

says that the present output is created entirely from present and past values of the input. Now
we will include past values of the output. The simplest example is numerical integration,
such as

yt = yt−1 + xt (3.3)

Notice that when xt = (0,0,0,1,0,0, · · ·), yt = (0,0,0,1,1,1,1, · · ·), which shows that the inte-
gral of an impulse is a step.

A kind of deliberately imperfect integration used in numerical work is called “leaky in-
tegration.” The name derives from the analogous situation of electrical circuits, where the
voltage on a capacitor is the integral of the current: in real life, some of the current leaks away.
An equation to model leaky integration is

yt = ρ yt−1 + xt (3.4)

where ρ is a constant that is slightly less than plus one. Notice that if ρ were greater than
unity, the output of (3.4) would grow with time instead of decaying. A program for this simple
operation is leak(). I use this program so frequently that I wrote it so the output could be
overlaid on the input. leak() uses a trivial subroutine, copy() on page 288, for copying.

subroutine leak(rho, n, xx, yy)

integer i, n; real xx(n), yy(n), rho

temporary real tt(n)

call null(tt, n)

tt(1) = xx(1)

do i= 2, n

tt(i) = rho * tt(i-1) + xx(i)

call copy(n, tt, yy)

return; end

Let us see what Z -transform equation is implied by (3.4). Move the y terms to the left:

yt − ρ yt−1 = xt (3.5)

Given the Z -transform equation

(1−ρZ) Y (Z) = X (Z) (3.6)

notice that (3.5) can be derived from (3.6) by finding the coefficient of Z t . Thus we can say
that the output Y (Z) is derived from the input X (Z) by the polynomial division

Y (Z) = X (Z)

1−ρZ
(3.7)

3.1. LEAKY INTEGRATION 49

Therefore, the effective filter B(Z) in Y (Z)= B(Z)X (Z) is

B(Z) = 1

1−ρZ
= 1+ρZ +ρ2 Z 2+ρ3 Z 3+·· · (3.8)

The left side of Figure 3.1 shows a damped exponential function that consists of the coeffi-
cients ρ t seen in equation (3.8). The spectrum of bt is defined by B̄(1/Z)B(Z). The amplitude

Figure 3.1: Left is the impulse response of leaky integration. Right is the amplitude 1/|1−ρZ |
in the Fourier domain. zp-leak [NR]

spectrum is the square root of the spectrum. It can be abbreviated by |B(Z)|. The amplitude
spectrum is plotted on the right side of Figure 3.1. Ordinary integration has a Fourier response
1/(−iω) that blows up at ω = 0. Leaky integration smooths off the infinite value at ω = 0.
Thus in the figure, the amplitude spectrum looks like |1/ω|, except that it is not∞ at ω = 0.

3.1.1 Plots

A pole is a place in the complex plane where a filter B(Z p) becomes infinity. This occurs
where a denominator vanishes. For example, in equation (3.8) we see that there is one pole
and it is located at Z p = 1/ρ. In plots like Figure 3.1, a pole location is denoted by a “p” and
a zero location by a “z." I chose to display the pole and zero locations in the ω0-plane instead
of in the Z0-plane. Thus real frequencies run along the horizontal axis instead of around the
circle of |Z | = 1. I further chose to superpose the complex ω0-plane on the graph of |F(ω)|
versus ω. This enables us to correlate the pole and zero locations to the spectrum. I plotted
(�ω0,−�ω0) in order that the ω and �ω0 axes would coincide. As we will see later, some
poles give stable filters and some poles give unstable filters. At the risk of some confusion,
I introduced the minus sign to put the stable poles atop the positive spectrum. Since we will
never see a negative spectrum and we will rarely see an unstable pole, this economizes on
paper (or maximizes resolution for a fixed amount of paper).

In Figure 3.1, moving the “p” down toward the horizontal axis would cause a slower time
decay and a sharper frequency function.

50 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

3.1.2 Two poles

Integration twice is an operation with two poles. Specifically,

1

(1− Z)2
= (1+Z+Z 2+Z 3+·· ·)(1+Z+Z 2+Z 3+·· ·) = 1+2Z+3Z2+4Z3+5Z4+·· ·

(3.9)
Notice that the signal is (1,2,3, · · ·), which is a discrete representation of the function f (t) =
t step(t). Figure 3.2 shows the result when the two integrations are leaky integrations. We see

Figure 3.2: A cascade of two leaky integrators. zp-leak2 [NR]

the signal begin as t but then drop off under some weight that looks exponential. A second
time-derivative filter (−iω)2 has an amplitude spectrum |ω2|. Likewise, a second integration
has an amplitude spectrum |1/ω2|, which is about what we see in Figure 3.2, except that at
ω = 0 leaky integration has rounded off the∞.

Instead of allowing two poles to sit on top of each other (which would look like just one
pole), I moved the pole slightly off �ω = 0 so that �ω > 0. As in Figure ??, another pole is
included (but not shown) at negative frequency. This extra pole is required to keep the signal
real. Of course the two poles are very close to each other. The reason I chose to split them this
way is to prepare you for filters where the poles are far apart.

EXERCISES:

1 Show that multiplication by (1− Z) in discretized time is analogous to time differentiation
in continuous time. Show that dividing by (1− Z) is analogous to integration. What are
the limits on the integral?

2 A simple feedback operation is yt = (1− ε)yt−1+ xt . Give a closed-form expression for
the output yt if xt is an impulse. Estimate the decay time τ of your solution (the time it
takes for yt to drop to e−1y0)? For small ε, say = 0.1, .001, or 0.0001, what is τ?

3 Find an analytic expression for the plot on the right side of Figure 3.1 as a function of ω.
Show that it is like 1/|ω|.

3.2. SMOOTHING WITH BOX AND TRIANGLE 51

4 In continuous time, the signal analogous to that in Figure 3.2 is te−t . What is the analo-
gous frequency function?

3.2 SMOOTHING WITH BOX AND TRIANGLE

Simple “smoothing” is a common application of filtering. A smoothing filter is one with
all positive coefficients. On the time axis, smoothing is often done with a single-pole damped
exponential function. On space axes, however, people generally prefer a symmetrical function.
We will begin with rectangle and triangle functions. When the function width is chosen to be
long, then the computation time can be large, but recursion can shorten it immensely.

3.2.1 Smoothing with a rectangle

The inverse of any polynomial reverberates forever, although it might drop off fast enough
for any practical need. On the other hand, a rational filter can suddenly drop to zero and stay
there. Let us look at a popular rational filter, the rectangle or “box car”:

1− Z5

1− Z
= 1+ Z + Z 2+ Z 3+ Z 4 (3.10)

The filter (3.10) gives a moving average under a rectangular window. This is a basic smooth-
ing filter. A clever way to apply it is to move the rectangle by adding a new value at one end
while dropping an old value from the other end. This approach is formalized by the polyno-
mial division algorithm, which can be simplified because so many coefficients are either one
or zero. To find the recursion associated with Y (Z)= X (Z)(1− Z 5)/(1− Z), we identify the
coefficient of Z t in (1− Z)Y (Z)= X (Z)(1− Z 5). The result is

yt = yt−1+ xt − xt−5 (3.11)

This approach boils down to the program boxconv() on this page, which is so fast it is almost
free!

subroutine boxconv(nb, nx, xx, yy)

inputs: nx, xx(i), i=1,nx the data

nb the box length

output: yy(i),i=1,nx+nb-1 smoothed data

integer nx, ny, nb, i

real xx(nx), yy(1)

temporary real bb(nx+nb)

if(nb < 1 || nb > nx) call erexit(’boxconv’) # "||" means .OR.

ny = nx+nb-1

do i= 1, ny

bb(i) = 0.

bb(1) = xx(1)

do i= 2, nx

bb(i) = bb(i-1) + xx(i) # make B(Z) = X(Z)/(1-Z)

do i= nx+1, ny

52 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

bb(i) = bb(i-1)

do i= 1, nb

yy(i) = bb(i)

do i= nb+1, ny

yy(i) = bb(i) - bb(i-nb) # make Y(Z) = B(Z)*(1-Z**nb)

do i= 1, ny

yy(i) = yy(i) / nb

return; end

Its last line scales the output by dividing by the rectangle length. With this scaling, the zero-
frequency component of the input is unchanged, while other frequencies are suppressed.

Let us examine the pole and zero locations in equation (3.10). The denominator vanishes
at Z = 1, so the filter has a pole at zero frequency. Smoothing something is like boosting
frequencies near the zero frequency. The numerator vanishes at the five roots of unity, i.e., Z =
ei2πn/5. These five locations are uniformly spaced around the unit circle. Any sinusoid at
exactly one of these frequencies is exactly destroyed by this filter, because such a sinusoid has
an integer number of wavelengths under the boxcar. An exception is the zero frequency, where
the root at Z = 1 is canceled by a pole at the same location. This cancellation is the reason the
right-hand side ends at the fourth power—there is no infinite series of higher powers.

3.2.2 Smoothing with a triangle

Triangle smoothing is rectangle smoothing done twice. For a mathematical description of the
triangle filter, we simply square equation (3.10). Convolving a rectangle function with itself
many times yields a result that mathematically tends towards a Gaussian function. Despite
the sharp corner on the top of the triangle function, it has a shape that is remarkably similar to
a Gaussian, as we can see by looking at Figure 11.2.

With filtering, end effects can be a nuisance. Filtering increases the length of the data, but
people generally want to keep input and output the same length (for various practical reasons).
This is particularly true when filtering a space axis. Suppose the five-point signal (1,1,1,1,1)
is smoothed using the boxconv() program with the three-point smoothing filter (1,1,1)/3.
The output is 5+3−1 points long, namely, (1,2,3,3,3,2,1)/3. We could simply abandon the
points off the ends, but I like to fold them back in, getting instead (1+ 2,3,3,3,1+ 2). An
advantage of the folding is that a constant-valued signal is unchanged by the smoothing. This
is desirable since a smoothing filter is a low-pass filter which naturally should pass the lowest
frequency ω = 0 without distortion. The result is like a wave reflected by a zero-slope end
condition. Impulses are smoothed into triangles except near the boundaries. What happens
near the boundaries is shown in Figure 3.3. Note that at the boundary, there is necessarily only
half a triangle, but it is twice as tall.

Figure 3.3 was derived from the routine triangle().

Convolve with triangle

#

subroutine triangle(nr, m1, n12, uu, vv)

3.2. SMOOTHING WITH BOX AND TRIANGLE 53

Figure 3.3: Edge effects when
smoothing an impulse with a triangle
function. Inputs are spikes at various
distances from the edge. zp-triend
[ER]

input: nr rectangle width (points) (Triangle base twice as wide.)

input: uu(m1,i2),i2=1,n12 is a vector of data.

output: vv(m1,i2),i2=1,n12 may be on top of uu

integer nr,m1,n12, i,np,nq

real uu(m1, n12), vv(m1, n12)

temporary real pp(n12+nr-1), qq(n12+nr+nr-2), tt(n12)

do i=1,n12 { qq(i) = uu(1,i) }

if(n12 == 1)

call copy(n12, qq, tt)

else {

call boxconv(nr, n12, qq, pp); np = nr+n12-1

call boxconv(nr, np , pp, qq); nq = nr+np-1

do i= 1, n12

tt(i) = qq(i+nr-1)

do i= 1, nr-1 # fold back near end

tt(i) = tt(i) + qq(nr-i)

do i= 1, nr-1 # fold back far end

tt(n12-i+1) = tt(n12-i+1) + qq(n12+(nr-1)+i)

}

do i=1,n12 { vv(1,i) = tt(i) }

return; end

I frequently use this program, so it is cluttered with extra features. For example, the output can
share the same location as the input. Further, since it is commonly necessary to smooth along
the 2-axis of a two-dimensional array, there are some Fortran-style pointer manipulations to
allow the user to smooth either the 1-axis or the 2-axis. For those of you unfamiliar with For-
tran matrix-handling tricks, I include below another routine, triangle2(), that teaches how a
two-dimensional array can be smoothed over both its 1-axis and its 2-axis. Some examples of
two-dimensional smoothing are given in chapter 11.

smooth by convolving with triangle in two dimensions.

#

subroutine triangle2(rect1, rect2, n1, n2, uu, vv)

integer i1,i2, rect1, rect2, n1, n2

real uu(n1,n2), vv(n1,n2)

temporary real ss(n1,n2)

54 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

do i1= 1, n1

call triangle(rect2, n1, n2, uu(i1,1), ss(i1,1))

do i2= 1, n2

call triangle(rect1, 1, n1, ss(1,i2), vv(1,i2))

return; end

EXERCISES:

1 The Fourier transform of a rectangle function is sin(αt)/αt , also known as a “sinc” func-
tion. In terms of α, how wide is the rectangle function?

2 Express Z−2+ Z−1+1+ Z + Z 2 in the ω-domain. This is a discrete representation of a
rectangle function. Identify the ways in which it is similar to and different from the sinc
function.

3 Explain the signal second from the bottom in Figure 3.3.

4 Sketch the spectral response of the subroutine triangle() on page 52.

3.3 CAUSAL INTEGRATION FILTER

Begin with a function in discretized time xt . The Fourier transform with the substitution
Z = eiω�t is the Z -transform

X (Z) = ·· ·+ x−2 Z−2 + x−1 Z−1 + x0 + x1 Z + x2 Z 2 + ·· · (3.12)

Define −i ω̂ (which will turn out to be an approximation to −iω) by

1

−i ω̂�t
= 1

2

1 + Z

1 − Z
(3.13)

Define another signal yt with Z -transform Y (Z) by applying the operator to X (Z):

Y (Z) = 1

2

1 + Z

1 − Z
X (Z) (3.14)

Multiply both sides by (1− Z):

(1 − Z) Y (Z) = 1

2
(1 + Z) X (Z) (3.15)

Equate the coefficient of Z t on each side:

yt − yt−1 = xt + xt−1

2
(3.16)

Taking xt to be an impulse function, we see that yt turns out to be a step function, that is,

xt = ·· ·0,0,0,0,0,1,0,0,0,0,0,0, · · · (3.17)

yt = ·· ·0,0,0,0,0,
1

2
,1,1,1,1,1,1, · · · (3.18)

So yt is the discrete-domain representation of the integral of xt from minus infinity to time t .
The operator (1+ Z)/(1− Z) is called the “bilinear transform."

3.3. CAUSAL INTEGRATION FILTER 55

3.3.1 The accuracy of causal integration

The accuracy of the approximation of ω̂ to ω can be seen by dividing the top and bottom of
equation (3.13) by

√
Z and substituting Z = eiω�t :

− i
ω̂�t

2
= 1 − Z

1 + Z
(3.19)

− i
ω̂�t

2
= 1/

√
Z − √Z

1/
√

Z + √Z
= − i

sin ω�t
2

cos ω�t
2

= − i tan
ω�t

2
(3.20)

ω̂�t

2
= tan

ω�t

2
(3.21)

ω̂ ≈ ω (3.22)

This is a valid approximation at low frequencies.

3.3.2 Examples of causal integration

The integration operator has a pole at Z = 1, which is exactly on the unit circle |Z | = 1.
The implied zero division has paradoxical implications (page 67) that are easy to avoid by
introducing a small positive number ε and defining ρ = 1 − ε. The integration operator
becomes

I (Z) = 1

2

1 + ρZ

1 − ρZ
(3.23)

I (Z) = 1

2
(1 + ρZ)

[
1 + ρZ + (ρZ)2 + (ρZ)3 + ·· ·]

I (Z) = 1

2
+ ρZ + (ρZ)2 + (ρZ)3 + ·· · (3.24)

Because ρ is less than one, this series converges for any value of Z on the unit circle. If ε had
been slightly negative instead of positive, a converging expansion could have been carried out
in negative powers of Z . A plot of I (Z) is found in Figure 3.4.

Figure 3.4: A leaky causal-integration operator I . zp-cint [NR]

56 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

Just for fun I put random noise into an integrator to see an economic simulation, shown
in Figure 3.5. With ρ = 1, the difference between today’s price and tomorrow’s price is a
random number. Thus the future price cannot be predicted from the past. This curve is called
a “random walk."

Figure 3.5: Random numbers into an integrator. zp-price [NR]

3.3.3 Symmetrical double integral

The two-sided leaky integral commonly arises as an even function, which is an ordinary
leaky integral in one direction followed by another in the opposite direction. We will see also
that the single leaky integral need not be causal; it could be an odd function.

The causal-integration operator flows one direction in time. Anticausal integration flows
the other. Causal integration followed by anticausal integration makes a symmetrical smooth-
ing operation, frequently used on the horizontal space axis. Since the idea of integration is
generally associated with a long decay constant, and since data is generally limited in space,
particular attention is usually given to the side boundaries. The simplest side boundaries are
zero values, but these are generally rejected because people do not wish to assume data is
zero beyond where it is measured. The most popular side conditions are not much more com-
plicated, however. These are zero-slope side boundaries like those shown in Figure 3.6. I
habitually smoothed with damped exponentials, but I switched to triangles after I encountered
several examples where the exponential tails decreased too slowly.

The analysis for double-sided damped leaky integration with zero-slope boundaries is
found in my previous books and elsewhere, so here I will simply state the result and leave
you with a working program. This kind of integration arises in the numerical solution of wave
equations. Mathematically, it means solving (δxx −α)V (x) = U (x) for V (x) given U (x). In
the limit of small α, the operation is simply double integration. Nonzero α makes it leaky
integration. The operation looks like the Helmholtz equation of physics but is not, because
we take α > 0 for damped solutions, whereas the Helmholtz equation typically takes α < 0
for oscillating wave solutions. Figure 3.6 was created with leaky(), which performs the
smoothing task using a double-sided exponential response with a decay to amplitude e−1 in a

3.3. CAUSAL INTEGRATION FILTER 57

Figure 3.6: Pulses at various
distances from a side boundary
smoothed with two-sided leaky
integration and zero-slope side con-
ditions. Beyond the last value at the
edge is a theoretical value that is the
same as the edge value. zp-leakend
[ER]

given distance. It invokes the routine tris(), a solver of tridiagonal simultaneous equations,
which is explained in FGDP.

keyword: tridiagonal smoothing on 1-axis or 2-axis

subroutine leaky(distance, m1, n12, uu, vv)

integer i, m1, n12

real distance # input: 1. < distance < infinity

real uu(m1,n12) # data in is the vector (uu(1, i), i=1,n12)

real vv(m1,n12) # data out is the vector (vv(1, i), i=1,n12)

real a, b, dc, side

temporary real vecin(n12), vecout(n12)

a = - (1.-1./distance); b = 1.+a*a; dc = b+a+a

a = a/dc; b = b/dc; side = a + b

do i= 1,n12 { vecin(i) = uu(1,i)}

if(distance<=1.|| n12==1) {call copy(n12, vecin, vecout)}

else {call tris(n12, side, a, b, a, side, vecin, vecout)}

do i= 1,n12 { vv(1,i) = vecout(i) }

return; end

tridiagonal simultaneous equations as in FGDP and IEI

#

subroutine tris(n, endl, a, b, c, endr, d, t)

integer i, n

real endl, a, b, c, endr, d(n), t(n)

temporary real e(n), f(n), deni(n)

if(n == 1) { t(1) = d(1) / b; return }

e(1) = - a / endl

do i= 2, n-1 {

deni(i) = 1. / (b + c * e(i-1))

e(i) = - a * deni(i)

}

f(1) = d(1) / endl

do i= 2, n-1

f(i) = (d(i) - c * f(i-1)) * deni(i)

t(n) = (d(n) - c * f(n-1)) / (endr + c * e(n-1))

do i= n-1, 1, -1

t(i) = e(i) * t(i+1) + f(i)

return; end

58 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

It is convenient to refer to the symmetrical double integration operator as δxx , where the
superscripts denote integration, in contrast to the usual subscripts, which denote differentia-
tion. Since differentiation is widely regarded as an odd operator, it is natural also to define the
odd integration operator δx = δxx

x .

3.3.4 Nonuniqueness of the integration operator

Integration can be thought of as 1/(−iω). The implied division by zero at ω= 0 warns us that
this filter is not quite normal. For example, 1/(−iω) appears to be an imaginary, antisymmetric
function of ω. This implies that the time function is the real antisymmetric signum function,
namely, sgn(t) = t/|t |. The signum is not usually thought of as an integration operator, but
by adding a constant we have a step function, and that is causal integration. By subtracting a
constant we have anticausal integration. We can play games with the constant because it is at
zero frequency that the definition contains zero division.

EXERCISES:

1 Show that the mean of the input of leaky() is the mean of the output, which demonstrates
that the gain of the filter is unity at zero frequency.

3.4 DAMPED OSCILLATION

In polynomial multiplication, zeros of filters indicate frequencies where outputs will be small.
Likewise, in polynomial division, zeros indicate frequencies where outputs will be large.

3.4.1 Narrow-band filters

It seems we can represent a sinusoid by Z -transforms by setting a pole on the unit circle.
Taking Z p = eiω0 , we have the filter

B(Z) = 1

1− Z/Z0
= 1

1− Ze−iω0
= 1+ Ze−iω0 + Z 2e−i2ω0+·· · (3.25)

The signal bt seems to be the complex exponential e−iω0t , but it is not quite that because bt is
“turned on” at t = 0, whereas e−iω0t is nonzero at negative time.

Now, how can we make a real-valued sinusoid starting at t = 0? Just as with zeros, we
need to complement the pole at +ωp by one at −ωp. The resulting signal bt is shown on the
left in Figure 3.7. On the right is a graphical attempt to plot the impulse function of dividing
by zero at ω = ω0.

3.4. DAMPED OSCILLATION 59

Figure 3.7: A pole on the real axis (and its mate at negative frequency) gives an impulse
function at that frequency and a sinusoidal function in time. zp-sinus [NR]

Next, let us look at a damped case like leaky integration. Let Z p = eiω0/ρ and |ρ| < 1.
Then 1/Z p = ρe−iω0 . Define

B(Z) = 1

A(Z)
= 1

1− Z/Z p
= 1+ Z

Z p
+

(
Z

Z p

)2

+ ·· · (3.26)

B(Z) = 1+ Zρe−iω0 + Z 2ρ2e−i2ω0 +·· · (3.27)

The signal bt is zero before t = 0 and is ρt e−iω0t after t = 0. It is a damped sinusoidal function
with amplitude decreasing with time as ρ t . We can readily recognize this as an exponential
decay

ρt = et logρ ≈ e−t(1−ρ) (3.28)

where the approximation is best for values of ρ near unity.

The wavelet bt is complex. To have a real-valued time signal, we need another pole at the
negative frequency, say Z p. So the composite denominator is

A(Z) =
(

1− Z

Z p

) (
1− Z

Z p

)
= 1− Zρ2cosω0+ρ2 Z 2 (3.29)

Multiplying the two poles together as we did for roots results in the plots of 1/A(Z) in
Figure 3.8. Notice the “p” in the figure. It indicates the location of the pole Z p but is shown in
the ω0-plane, where Z p = eiω0. Pushing the “p” left and right will lower and raise the resonant
frequency. Pushing it down and up will raise and lower the duration of the resonance.

EXERCISES:

1 How far from the unit circle are the poles of 1/(1− .1Z + .9Z 2)? What is the decay time
of the filter and its resonant frequency?

60 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

Figure 3.8: A damped sinusoidal function of time transforms to a pole near the real ω-axis,
i.e., just outside the unit circle in the Z -plane. zp-dsinus [NR]

3.4.2 Polynomial division

Convolution with the coefficients bt of B(Z)= 1/A(Z) is a narrow-banded filtering operation.
If the pole is chosen very close to the unit circle, the filter bandpass becomes very narrow, and
the coefficients of B(Z) drop off very slowly. A method exists of narrow-band filtering that is
much quicker than convolution with bt . This is polynomial division by A(Z). We have for
the output Y (Z):

Y (Z) = B(Z) X (Z) = X (Z)

A(Z)
(3.30)

Multiply both sides of (3.30) by A(Z):

X (Z) = Y (Z) A(Z) (3.31)

For definiteness, let us suppose that the xt and yt vanish before t = 0. Now identify coefficients
of successive powers of Z to get

x0 = y0a0

x1 = y1a0+ y0a1

x2 = y2a0+ y1a1+ y0a2 (3.32)

x3 = y3a0+ y2a1+ y1a2

x4 = y4a0+ y3a1+ y2a2

= ·· · · · · · · · · · · · · · · · ·
Let Na be the highest power of Z in A(Z). The k-th equation (where k > Na) is

yka0 +
Na∑

i=1

yk−i ai = xk (3.33)

Solving for yk , we get

yk =
xk−

Na∑
i=1

yk−i ai

a0
(3.34)

3.4. DAMPED OSCILLATION 61

Equation (3.34) may be used to solve for yk once yk−1, yk−2, · · · are known. Thus the solution is
recursive. The value of Na is only 2, whereas Nb is technically infinite and would in practice
need to be approximated by a large value. So the feedback operation (3.34) is much quicker
than convolving with the filter B(Z)= 1/A(Z). A program for the task is given below. Data
lengths such as na in the program polydiv() include coefficients of all Na powers of Z as
well as 1= Z 0, so na = Na+1.

polynomial division feedback filter: Y(Z) = X(Z) / A(Z)

#

subroutine polydiv(na, aa, nx, xx, ny, yy)

integer na # number of coefficients of denominator

integer nx # length of the input function

integer ny # length of the output function

real aa(na) # denominator recursive filter

real xx(nx) # input trace

real yy(ny) # output trace, as long as input trace.

integer ia, iy

do iy= 1, ny

if(iy <= nx)

yy(iy) = xx(iy)

else

yy(iy) = 0.

do iy= 1, na-1 { # lead-in terms

do ia= 2, iy

yy(iy) = yy(iy) - aa(ia) * yy(iy-ia+1)

yy(iy) = yy(iy) / aa(1)

}

do iy= na, ny { # steady state

do ia= 2, na

yy(iy) = yy(iy) - aa(ia) * yy(iy-ia+1)

yy(iy) = yy(iy) / aa(1)

}

return; end

3.4.3 Spectrum of a pole

Now that we have seen the single-pole filter and the pole-pair filter in both the time domain
and the frequency domain, let us find their analytical expressions. Taking the pole to be
Z p = eiω0/ρ, we have

A(Z) = 1− Z

Z p
= 1− ρ

eiω0
eiω = 1−ρei(ω−ω0) (3.35)

The complex conjugate is

A

(
1

Z

)
= 1−ρe−i(ω−ω0) (3.36)

The spectrum of a pole filter is the inverse of

A

(
1

Z

)
A(Z) = (1−ρe−i(ω−ω0)) (1−ρei(ω−ω0))

62 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

= 1+ρ2−ρ(e−i(ω−ω0)+ ei(ω−ω0))

= 1+ρ2−2ρ cos(ω−ω0)

= 1+ρ2−2ρ+2ρ[1− cos (ω−ω0)]

= (1−ρ)2+4ρ sin2 ω−ω0

2
(3.37)

With the definition of a small ε = 1−ρ > 0, inverting gives

B

(
1

Z

)
B(Z) ≈ 1

ε2+4sin2 ω−ω0
2

(3.38)

Specializing to frequencies close to ω0, where the denominator is small and the function is
large, gives

B

(
1

Z

)
B(Z) ≈ 1

ε2+ (ω−ω0)2
(3.39)

This is called a “narrow-band filter" because in the Fourier domain the function is large
only in a narrow band of frequencies. Setting B B to half its peak value of 1/ε2, we find a half-
bandwidth of �ω/2 = |ω−ω0| = ε. The damping time constant �t of the damped sinusoid
bt is shown in the exercises following this section to be �t = 1/ε.

Naturally we want a real-time function, so we multiply the filter 1/(1−Z/Z p) times 1/(1−
Z/Z̄ p). The resulting time function is real because conjugate poles are like the conjugate roots.
The spectrum of the conjugate factor 1/(1− Z/ Z̄ p) is like (3.38), except that ω0 is replaced
by −ω0. Multiplying the response (3.38) by itself with −ω0 yields the symmetric function of
ω displayed on the right in Figure 3.9.

Figure 3.9: A pole near the real axis gives a damped sinusoid in time on the left. On the right
is 1/|A(ω)| for ω real. zp-disappoint [NR]

You might be disappointed if you intend to apply the filter of Figure 3.9 as a narrow-
band filter. Notice that the passband is asymmetric and that it passes the zero frequency.
Equation (3.38) is symmetric about ω0, but taking the product with its image about −ω0 has
spoiled the symmetry. Should we be concerned about this “edge effect”? The answer is
yes, whenever we handle real data. For real data, �t is usually small enough. Recall that
ωradians/sample=ωradians/sec�t . Consider a pole at a particular ωradians/sec: decreasing �t pushes

3.4. DAMPED OSCILLATION 63

ωradians/sample towards zero, which is where a pole and its mate at negative frequency create the
asymmetrical response shown in Figure 3.9.

So in practice we might like to add a zero at zero frequency and at the Nyquist frequency,
i.e., (1− Z)(1+ Z), as shown in Figure 3.10. Compare Figure 3.10 and 3.9. If the time

Figure 3.10: Poles at ±ω0; a root at ω = 0 and another root at ω = π . zp-symdsin [NR]

functions were interchanged, could you tell the difference between the figures? There are two
ways to distinguish them. The most obvious is that the zero-frequency component is made
evident in the time domain by the sum of the filter coefficients (theoretically, F(Z = 1)).
A more subtle clue is that the first half-cycle of the wave in Figure 3.10 is shorter than in
Figure 3.9; hence, it contains extra high frequency energy, which we can see in the spectrum.

EXERCISES:

1 Sketch the function in equation (3.38) over the range −π <= ω <= π , taking care to
distinguish it from Figure 3.9.

2 Figure 3.9 shows a bump around ω0 that does not look symmetric because it is the product
of equation (3.38) with a frequency-reversed copy. Consider the sum [1/(1− Z/Zp)]+
[1/(1− Z/Z̄ p)]. Is the time filter real? Where are its poles and zeros? How will its
amplitude as a function of frequency compare with the amplitude of Figure 3.9? Will the
bump look more symmetric?

3.4.4 Rational filters

A general model for filtering includes both convolution (numerator Z -transforms) and feed-
back filtering (denominator Z -transforms):

Y (Z) = B(Z)

A(Z)
X (Z) (3.40)

There are a variety of ways to implement equation (3.40) in a computer. We could do the
polynomial division X (Z)/A(Z) first and then multiply (convolve) with B(Z), or we could do

64 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

the multiplication first and the division later. Alternately, we could do them simultaneously
if we identified coefficients of A(Z)Y (Z) = B(Z)X (Z) and solved for recursive equations, as
we did for (3.34).

The rational filter is more powerful than either a purely numerator filter or a purely de-
nominator filter because, like its numerator part, the rational filter can easily destroy any fre-
quency totally, and, like its denominator part, it can easily enhance any frequency without
limit. Finite-difference solutions of differential equations often appear as rational filters.

EXERCISES:

1 Consider equation (3.40). What time-domain recurrence (analogous to equation (3.34)) is
implied?

3.5 INSTABILITY

Consider the example B(Z)= 1− Z/2. The inverse

A(Z) = 1

1− Z
2

= 1+ Z

2
+ Z 2

4
+ Z 3

8
+·· · (3.41)

can be found by a variety of familiar techniques, such as (1) polynomial division, (2) Taylor’s
power-series formula, or (3) the binomial theorem. In equation (3.41) we see that there are
an infinite number of filter coefficients, but because they drop off rapidly, approximation in a
computer presents no difficulty.

We are not so lucky with the filter B(Z)= 1−2Z . Here we have

A(Z) = 1

1−2Z
= 1+2Z +4Z 2+8Z3+16Z4+32Z5+·· · (3.42)

The coefficients of this series increase without bound. This is called “instability.” The outputs
of the filter A(Z) depend infinitely on inputs of the infinitely distant past. (Recall that the
present output of A(Z) is a0 times the present input x1, plus a1 times the previous input xt−1,
etc., so an represents memory of n time units earlier.) This example shows that some filters
B(Z) will not have useful inverses A(Z) determined by polynomial division. Two sample
plots of divergence are given in Figure 3.11.

For the filter 1− Z/Z0 with a single zero, the inverse filter has a single pole at the same
location. We have seen a stable inverse filter when the pole |Z p| > 1 exceeds unity and in-
stability when the pole |Z p| < 1 is less than unity. Occasionally we see complex-valued
signals. Stability for wavelets with complex coefficients is as follows: if the solution value Z 0

of B(Z0) = 0 lies inside the unit circle in the complex plane, then 1/B(Z) will have coeffi-
cients that blow up; and if the root lies outside the unit circle, then the inverse 1/B(Z) will be
bounded.

3.5. INSTABILITY 65

Figure 3.11: Top: the growing time function of a pole inside the unit circle at zero frequency.
Bottom: at a nonzero frequency. Where the time axis is truncated, the signals are growing,
and they will increase indefinitely. zp-diverge [NR]

3.5.1 Anticausality

Luckily, unstable filters can be made stable as follows:

1

1−2Z
= − 1

2Z

1

1− 1
2Z

= − 1

2Z

(
1+ 1

2Z
+ 1

(2Z)2
+·· ·

)
(3.43)

Equation (3.43) is a series expansion in 1/Z—in other words, a series about infinity. It con-
verges from |Z | =∞ all the way in to a circle of radius |Z | = 1/2. This means that the inverse
converges on the unit circle where it must, if the coefficients are to be bounded. In terms of
filters, it means that the inverse filter must be one of those filters that responds to future inputs.
Hence, although it is not physically realizable, it may be used in computer simulation.

Examining equations (3.42) and (3.43), we see that the filter 1/(1−2Z) can be expanded
into powers of Z in (at least) two different ways. Which one is correct? The theory of complex
variables shows that, given a particular numerical value of Z , only one of the sums (3.42)
or (3.43) will be finite. We must use the finite one, and since we are interested in Fourier
series, we want the numerical value |Z | = 1 for which the first series diverges and the second
converges. Thus the only acceptable filter is anticausal.

The spectra plotted in Figure 3.11 apply to the anticausal expansion. Obviously the causal
expansion, which is unbounded, has an infinite spectrum.

We saw that a polynomial B(Z) of degree N may be factored into N subsystems, and that
the ordering of subsystems is unimportant. Suppose we have factored B(Z) and found that
some of its roots lie outside the unit circle and some lie inside. We first invert the outside roots
with equation (3.41) and then invert the inside roots with equation (3.43). If there are any
roots exactly on the unit circle, then we have a special case in which we can try either inverse,

66 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

but neither may give a satisfactory result in practice. Implied zero division is nature’s way of
telling us that what we are trying to do cannot be done that way (if at all).

3.5.2 Inverse filters

Let bt denote a filter. Then at is its “inverse filter” if the convolution of at with bt is an
impulse function. Filters are said to be inverse to one another if their Fourier transforms are
inverse to one another. So in terms of Z -transforms, the filter A(Z) is said to be inverse to
the signal of B(Z) if A(Z)B(Z) = 1. What we have seen so far is that the inverse filter can
be stable or unstable depending on the location of its poles. Likewise, if B(Z) is a filter, then
A(Z) is a usable filter inverse to B(Z), if A(Z)B(Z)= 1 and if A(Z) does not have coefficients
that tend to infinity.

Another approach to inverse filters lies in the Fourier domain. There a filter inverse to bt

is the at made by taking the inverse Fourier transform of 1/B(Z (ω)). If B(Z) has its zeros
outside the unit circle, then at will be causal; otherwise not. In the Fourier domain the only
danger is dividing by a zero, which would be a pole on the unit circle. In the case of Z -
transforms, zeros should not only be off the circle but also outside it. So the ω-domain seems
safer than the Z -domain. Why not always use the Fourier domain? The reasons we do not
always inverse filter in the ω-domain, along with many illustrations, are given in chapter 7.

3.5.3 The unit circle

What is the meaning of a pole? We will see that the location of poles determines whether
filters are stable (have finite output) or unstable (have unbounded output). Considering both
positive and negative values of ρ, we find that stability is associated with |ρ| < 1. The pole
|ρ| < 1 happens to be real, but we will soon see that poles are complex more often than not.
In the case of complex poles, the condition of stability is that they all should satisfy |Z p|> 1.
In the complex Z -plane, this means that all the poles should be outside a circle of unit radius,
the so-called unit circle.

3.5.4 The mapping between Z and complex frequency

We are familiar with the fact that real values of ω correspond to complex values of Z = eiω.
Now let us look at complex values of ω:

Z = �Z + i�Z = ei(�ω+i�ω) = e−�ω ei�ω = amplitude eiphase (3.44)

Thus, when �ω > 0, |Z | < 1. In words, we transform the upper half of the ω-plane to the
interior of the unit circle in the Z -plane. Likewise, the stable region for poles is the lower half
of the ω-plane, which is the exterior of the unit circle. Figure 3.12 shows the transformation.
Some engineering books choose a different sign convention (Z = e−iω), but I selected the sign
convention of physics.

3.5. INSTABILITY 67

Figure 3.12: Left is the complex ω-plane with axes (x , y)= (�ω0,�ω0). Right is the Z -plane
with axes (x , y)= (�Z0,�Z0). The words “Convergent” and “Divergent” are transformed by
Z = eiω. zp-Z [ER]

3.5.5 The meaning of divergence

To prove that one equals zero, take an infinite series such as 1, −1, +1, −1, +1, . . ., group the
terms in two different ways, and add them as follows:

(1−1) + (1−1) + (1−1) + ·· · = 1 + (−1+1) + (−1+1) + ·· ·
0 + 0 + 0 + ·· · = 1 + 0 + 0 + ·· ·

0 = 1

Of course this does not prove that one equals zero: it proves that care must be taken with
infinite series. Next, take another infinite series in which the terms may be regrouped into any
order without fear of paradoxical results. For example, let a pie be divided into halves. Let
one of the halves be divided in two, giving two quarters. Then let one of the two quarters be
divided into two eighths. Continue likewise. The infinite series is 1/2, 1/4, 1/8, 1/16, No
matter how the pieces are rearranged, they should all fit back into the pie plate and exactly fill
it.

The danger of infinite series is not that they have an infinite number of terms but that they
may sum to infinity. Safety is assured if the sum of the absolute values of the terms is finite.
Such a series is called “absolutely convergent."

3.5.6 Boundedness

Given different numerical values for Z , we can ask whether X (Z) is finite or infinite. Numer-
ical values of Z of particular interest are Z = +1, Z = −1, and all those complex values of
Z which are unit magnitude, say |Z | = 1 or Z = eiω, where ω is the real Fourier transform
variable. When ω is the variable, the Z -transform is a Fourier sum.

We can restrict our attention to those signals ut that have a finite amount of energy by
demanding that U (Z) be finite for all values of Z on the unit circle |Z | = 1. Filter functions
always have finite energy.

68 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

3.5.7 Causality and the unit circle

The most straightforward way to say that a filter is causal is to say that its time-domain co-
efficients vanish before zero lag, that is, ut = 0 for t < 0. Another way to say this is U (Z) is
finite for Z = 0. At Z = 0, the Z -transform would be infinite if the coefficients u−1, u−2, etc.,
were not zero.

For a causal function, each term in U (Z) will be smaller if Z is taken to be inside the
circle |Z | < 1 rather than on the rim |Z | = 1. Thus, convergence at Z = 0 and on the circle
|Z | = 1 implies convergence everywhere inside the unit circle. So boundedness combined
with causality means convergence in the unit circle.

Convergence at Z = 0 but not on the circle |Z | = 1 would refer to a causal function
with infinite energy, a case of no practical interest. What function converges on the circle, at
Z = ∞, but not at Z = 0? What function converges at all three places, Z = 0, Z = ∞, and
|Z | = 1 ?

3.6 MINIMUM-PHASE FILTERS

Let bt denote a filter. Then at is its inverse filter if the convolution of at with bt is an impulse
function. In terms of Z -transforms, an inverse is simply defined by A(Z)= 1/B(Z). Whether
the filter A(Z) is causal depends on whether it is finite everywhere inside the unit circle, or
really on whether B(Z) vanishes anywhere inside the circle. For example, B(Z) = 1− 2Z
vanishes at Z = 1/2. There A(Z) = 1/B(Z) must be infinite, that is to say, the series A(Z)
must be nonconvergent at Z = 1/2. Thus, as we have just seen, at is noncausal. A most
interesting case, called “minimum phase," occurs when both a filter B(Z) and its inverse are
causal. In summary,

causal: |B(Z)|<∞ for |Z | ≤ 1
causal inverse: |1/B(Z)|<∞ for |Z | ≤ 1
minimum phase: both above conditions

The reason the interesting words “minimum phase” are used is given in chapter 10.

3.6.1 Mechanical interpretation

Because of the stringent conditions on minimum-phase wavelets, you might wonder whether
they can exist in nature. A simple mechanical example should convince you that minimum-
phase wavelets are plentiful: denote the stress (pressure) in a material by xt , and denote the
strain (volume change) by yt . Physically, we can specify either the stress or the strain, and
nature gives us the other. So obviously the stress in a material may be expressed as a linear
combination of present and past strains. Likewise, the strain may be deduced from present
and past stresses. Mathematically, this means that the filter that relates stress to strain and vice

3.7. INTRODUCTION TO ALL-PASS FILTERS 69

versa has all poles and zeros outside the unit circle. Of the minimum-phase filters that model
the physical world, many conserve energy too. Such filters are called “impedances” and are
described further in FGDP and IEI, especially IEI.

3.6.2 Laurent expansion

Given an unknown filter B(Z), to understand its inverse, we need to factor B(Z) into two
parts: B(Z)= Bout(Z)Bin(Z), where Bout contains all the roots outside the unit circle and Bin

contains all the roots inside. Then the inverse of Bout is expressed as a Taylor series about the
origin, and the inverse of Bin is expressed as a Taylor series about infinity. The final expression
for 1/B(Z) is called a “Laurent expansion” for 1/B(Z), and it converges on a ring including
the unit circle. Cases with zeros exactly on the unit circle present special problems. For
example, the differentiation filter (1− Z) is the inverse of integration, but the converse is not
true, because of the additive constant of integration.

EXERCISES:

1 Find the filter that is inverse to (2− 5Z + 2Z 2). You may just drop higher-order powers
of Z , but an exact expression for the coefficients of any power of Z is preferable. (Partial
fractions is a useful, though not a necessary, technique.) Sketch the impulse response.

2 Describe a general method for determining A(Z) and B(Z) from a Taylor series of B(Z)/A(Z)=
C0+C1 Z+C2 Z 2+·· ·+C∞Z∞, where B(Z) and A(Z) are polynomials of unknown de-
gree n and m, respectively. Work out the case C(Z)= 1

2− 3
4 Z− 3

8 Z 2− 3
16 Z 3− 3

32 Z 4−·· ·.
Do not try this problem unless you are familiar with determinants. (HINT: identify coeffi-
cients of B(Z)= A(Z)C(Z).)

3.7 INTRODUCTION TO ALL-PASS FILTERS

An “all-pass filter” is a filter whose spectral magnitude is unity. Given an input X (Z) and
an output Y (Z), we know that the spectra of the two are the same, i.e., X̄ (1/Z)X (Z) =
Ȳ (1/Z)Y (Z). The existence of an infinitude of all-pass filters tells us that an infinitude of
wavelets can have the same spectrum. Wave propagation without absorption is modeled by
all-pass filters. All-pass filters yield a waveform distortion that can be corrected by methods
discussed in chapter 10.

The simplest example of an all-pass filter is the delay operator Z = eiω itself. Its phase as
a function of ω is simply ω.

A less trivial example of phase distortion can be constructed from a single root Zr , where
Zr is an arbitrary complex number. The ratio of any complex number to its complex conjugate,
say (x+ iy)/(x− iy), is of unit magnitude, because, taking x+ iy = ρeiφ and x− iy = ρe−iφ ,

70 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

the ratio is |ei2φ|. Thus, given a minimum-phase filter B(ω), we can take its conjugate and
make an all-pass filter P(Z) from the ratio P(Z)= B(ω)/B(ω). A simple case is

B(ω) = 1− Z

Zr
(3.45)

B(ω) = 1− 1

Z Zr
(3.46)

The all-pass filter B/B is not causal because of the presence of 1/Z in B. We can repair that
by multiplying by another all-pass operator, namely, Z . The resulting causal all-pass filter is

P(Z) = Z B(1/Z)

B(Z)
=

Z − 1
Zr

1− Z
Zr

(3.47)

Equation (3.47) can be raised to higher powers to achieve a stronger frequency-dispersion
effect. Examples of time-domain responses of various all-pass filters are shown in Figure 3.13.

Figure 3.13: Examples of causal all-
pass filters with real poles and zeros.
These have high frequencies at the
beginning and low frequencies at the
end. zp-disper [ER]

The denominator of equation (3.47) tells us that we have a pole at Zr . Let this location be
Zr = eiω0/ρ. The numerator vanishes at

Z = Z0 = 1

Zr
= ρ eiω0 (3.48)

In conclusion, the pole is outside the unit circle, and the zero is inside. They face one another
across the circle at the phase angle ω0.

The all-pass filter (3.47) outputs a complex-valued signal, however. To see real outputs,
we must handle the negative frequencies in the same way as the positive ones. The filter (3.47)
should be multiplied by another like itself but with ω0 replaced by −ω0; i.e., with Zr replaced
by Zr . The result of this procedure is shown in Figure 3.14.

A general form for an all-pass filter is P(Z) = Z N A(1/Z)/A(Z), where A(Z) is an arbi-
trary minimum-phase filter. That this form is valid can be verified by checking that P(1/Z)P(Z)=
1.

3.7. INTRODUCTION TO ALL-PASS FILTERS 71

Figure 3.14: All-pass filter with a complex pole-zero pair. The pole and zero are at equal
logarithmic distances from the unit circle. zp-allpass [NR]

EXERCISES:

1 Verify that P(1/Z)P(Z)= 1 for the general form of an all-pass filter P(Z)= Z N A(1/Z)/A(Z).

2 Given an all-pass filter

P(Z) = d+ eZ + f Z 2

1+bZ + cZ 2

with poles at Z p = 2 and Zp = 3, what are b, c, d, e, and f ?

3.7.1 Notch filter

A “notch filter” rejects a narrow frequency band and leaves the rest of the spectrum little
changed. The most common example is 60-Hz noise from power lines. Another is low-
frequency ground roll. Such filters can easily be made using a slight variation on the all-pass
filter. In the all-pass filter, the pole and zero have equal (logarithmic) relative distances from
the unit circle. All we need to do is put the zero closer to the circle. Indeed, there is no
reason why we should not put the zero right on the circle: then the frequency at which the
zero is located is exactly canceled from the spectrum of input data. Narrow-band filters and
sharp cutoff filters should be used with caution. An ever-present penalty for using such filters
is that they do not decay rapidly in time. Although this may not present problems in some
applications, it will certainly do so in others. Obviously, if the data-collection duration is
shorter than or comparable to the impulse response of the narrow-band filter, then the transient
effects of starting up the experiment will not have time to die out. Likewise, the notch should
not be too narrow in a 60-Hz rejection filter. Even a bandpass filter (an example of which, a
Butterworth filter, is implemented in chapter 10) has a certain decay rate in the time domain
which may be too slow for some experiments. In radar and in reflection seismology, the
importance of a signal is not related to its strength. Late arriving echoes may be very weak,
but they contain information not found in earlier echoes. If too sharp a frequency characteristic
is used, then filter resonance from early strong arrivals may not have decayed enough by the
time the weak late echoes arrive.

72 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

A curious thing about narrow-band reject filters is that when we look at their impulse
responses, we always see the frequency being rejected! For example, look at Figure 3.15. The
filter consists of a large spike (which contains all frequencies) and then a sinusoidal tail of
polarity opposite to that of the frequency being rejected.

Figure 3.15: Top: a zero on the real frequency axis and a pole just above it give a notch filter;
i.e., the zeroed frequency is rejected while other frequencies are little changed. Bottom: the
notch has been broadened by moving the pole further away from the zero. (This notch is at 60
Hz, assuming �t = .002 s.) zp-notch2 [NR]

The vertical axis in the complex frequency plane in Figure 3.15 is not exactly �ω0. Instead
it is something like the logarithm of �ω0. The logarithm is not precisely appropriate either
because zeros may be exactly on the unit circle. I could not devise an ideal theory for scaling
�ω0, so after some experimentation, I chose �ω0 =−(1+ y2)/(1− y2), where y is the vertical
position in a window of vertical range 0 < y < 1. Because of the minus sign, the outside of
the unit circle is above the �ω0 axis, and the inside of the unit circle is below it.

EXERCISES:

1 Find a three-term real feedback filter to reject 59-61 Hz on data that is sampled at 500
points/s. (Try for about 50% rejection at 59 and 61.) Where are the poles? What is the
decay time of the filter?

3.8 PRECISION EXHAUSTION

As we reach the end of this chapter on poles and feedback filtering, we might be inclined to
conclude that all is well if poles are outside the unit circle and that they may even come close
to the circle. Further, if we accept anticausal filtering, poles can be inside the unit circle as
well.

Reality is more difficult. Big trouble can arise from just a modest clustering of poles at a
moderate distance from the unit circle. This is shown in Figure 3.16, where the result is com-

3.9. MY FAVORITE WAVELET 73

pletely wrong. The spectrum should look like the spectrum in Figure 3.8 multiplied by itself

Figure 3.16: A pathological failure when poles cluster too much. This situation requires more
than single-word precision. zp-path [NR]

about six or seven times, once for each pole. The effect of such repetitive multiplication is to
make the small spectral values become very small. When I added the last pole to Figure 3.16,
however, the spectrum suddenly became rough. The time response now looks almost diver-
gent. Moving poles slightly creates very different plots. I once had a computer that crashed
whenever I included one too many poles.

To understand this, notice that the peak spectral values in Figure 3.16 come from the min-
imum values of the denominator. The denominator will not go to a properly small value if
the precision of its terms is not adequate to allow them to extinguish one another. Repeti-
tive multiplication has caused the dynamic range (the range between the largest and smallest
amplitudes as a function of frequency) of single-precision arithmetic, about 106.

When single-word precision becomes a noticeable problem, the obvious path is to choose
double precision. But considering that most geophysical data has a precision of less than
one part in a hundred, and only rarely do we see precision of one part in a thousand, we can
conclude that the failure of single-word precision arithmetic, about one part in 10−6, is more
a sign of conceptual failure than of numerical precision inadequacy.

If an application arises for which you really need an operator that raises a polynomial to a
high degree, you may be able to accomplish your goal by applying the operator in stages. Say,
for example, you need the all-pass filter (.2− Z)100/(1− .2Z)100. You should be able to apply
this filter in a hundred stages of (.2− Z)/(1− .2Z), or maybe in ten stages of (.2− Z)10/(1−
.2Z)10.

Other ways around this precision problem are suggested by reflection-coefficient modeling
in a layered earth, described in FGDP.

3.9 MY FAVORITE WAVELET

I will describe my favorite wavelet for seismic modeling, shown in Figure 3.17. Of course
the ideal wavelet is an impulse, but the wavelet I describe is intended to mimic real life. I use

74 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

Figure 3.17: My favorite wavelet for seismic modeling. zp-favorite [NR]

some zeros at high frequency to force continuity in the time domain and a zero at the origin
to suppress zero frequency. I like to simulate the suppression of low-frequency ground roll,
so I put another zero not at the origin, but at a low frequency. Theory demands a conjugate
pair for this zero; effectively, then, there are three roots that suppress low frequencies. I use
some poles to skew the passband toward low frequencies. These poles also remove some of
the oscillation caused by the three zeros. (Each zero is like a derivative and causes another
lobe in the wavelet.) There is a trade-off between having a long low-frequency tail and having
a rapid spectral rise just above the ground roll. The trade-off is adjustable by repositioning the
lower pole. The time-domain wavelet shows its high frequencies first and its low frequencies
only later. I like this wavelet better than the Ricker wavelet (second derivative of a Gaussian).
My wavelet does not introduce as much signal delay. It looks like an impulse response from
the physical world.

3.10 IMPEDANCE FILTERS

Impedance filters are a special class of minimum-phase filters that model energy-conserving
devices and media. The real part of the Fourier transform of an impedance filter is positive.
Impedances play a basic role in mathematical physics. There are simple ways of making
complicated mechanical systems from simple ones, and corresponding mathematical rules
allow construction of complicated impedances from simple ones. Also, impedances can be
helpful in stabilizing numerical calculations. Logically, a chapter on impedance filters belongs
here, but I have little to add to what is already found in FGDP and IEI. FGDP describes
the impedance concept in sampled time and its relation to special matrices called “Toeplitz”

3.10. IMPEDANCE FILTERS 75

matrices. IEI describes impedances in general as well as their role in physical modeling and
imaging with the wave equation.

76 CHAPTER 3. Z-PLANE, CAUSALITY, AND FEEDBACK

Chapter 4

Univariate problems

This chapter looks at problems in which there is just one unknown. These “univariate” prob-
lems illustrate some of the pitfalls, alternatives, and opportunities in data analysis. Following
our study of univariate problems we move on, in the next five chapters, to problems with
multiple unknowns (which obscure the pitfalls, alternatives, and opportunities).

4.1 INSIDE AN ABSTRACT VECTOR

In engineering, a vector has three scalar components which correspond to the three dimensions
of the space in which we live. In least-squares data analysis, a vector is a one-dimensional
array that can contain many different things. Such an array is an “abstract vector.” For
example, in earthquake studies, the vector might contain the time an earthquake began as well
as its latitude, longitude, and depth. Alternately, the abstract vector might contain as many
components as there are seismometers, and each component might be the onset time of an
earthquake. In signal analysis, the vector might contain the values of a signal at successive
instants in time or, alternately, a collection of signals. These signals might be “multiplexed”
(interlaced) or “demultiplexed” (all of each signal preceding the next). In image analysis, the
one-dimensional array might contain an image, which could itself be thought of as an array of
signals. Vectors, including abstract vectors, are usually denoted by boldface letters such as p
and s. Like physical vectors, abstract vectors are orthogonal when their dot product vanishes:
p · s = 0. Orthogonal vectors are well known in physical space; we will also encounter them
in abstract vector space.

4.2 SEGREGATING P AND S CROSSTALK

Signals can be contaminated by other signals, and images can be contaminated by other im-
ages. This contamination is called “crosstalk." An everyday example in seismology is the
mixing of pressure waves and shear waves. When waves come straight up, vertical detec-
tors record their pressure-wave component, and horizontal detectors record their shear-wave

77

78 CHAPTER 4. UNIVARIATE PROBLEMS

component. Often, however, waves do not come exactly straight up. In these cases, the simple
idealization is contaminated and there is crosstalk. Here we study a simplified form of this
signal-corruption problem, as given by the equations

v = p+αs+n (4.1)

h = s+α′p+n′ (4.2)

where v and h represent vertical and horizontal observations of earth motion, p and s represent
theoretical pressure and shear waves, n and n′ represent noises, and α and α′ are the cross-
coupling parameters. You can think of v, h, p, s, n and n′ as collections of numbers that can
be arranged into a signal or into an image. Mathematically, they are abstract vectors. In
our notation, boldface v represents the vector as a whole, and italic v represents any single
component in it. (Traditionally, a component is denoted by vi .)

Two univariate problems

Communication channels tend to mix information in the way equations (4.1) and (4.2) do.
This is “crosstalk.” Everything on the right sides of equations (4.1) and (4.2) is unknown.
This problem can be formulated in an elaborate way with estimation theory. Here we will
postpone the general theory and leap to guess that the pressure-wave field p will be some
linear combination of v and h, and the shear-wave component s will be something similar:

p = v − αh (4.3)

s = h − α′v (4.4)

We will understand the crosstalk question to ask us to find the constant value of α and of α′.
Although I will describe only the mathematics of finding α, each figure will show you the
results of both estimations, by including one part for α and one part for α′. The results for α

and α′ differ, as you will see, because of differences in p and s.

The physics of crosstalk

Physically, the value of α depends on the angle of incidence, which in turn depends critically
on the soil layer. The soil layer is generally ill defined, which is why it is natural to take α as
an unknown. In real life α should be time-dependent, but we will ignore this complication.

4.2.1 Failure of straightforward methods

The conventional answer to the crosstalk question is to choose α so that p = v− αh has
minimum power. The idea is that since adding one signal p to an independent signal s is likely
to increase the power of p, removing as much power as possible may be a way to separate the
independent components. The theory proceeds as follows. Minimize the dot product

Energy = p ·p = (v−αh) · (v−αh) (4.5)

4.2. SEGREGATING P AND S CROSSTALK 79

by differentiating the energy with respect to α, and set the derivative to zero. This gives

α = v ·h
h ·h (4.6)

Likewise, minimizing (s · s) yields α′ = (h ·v)/(v ·v).

In equation (4.5) the “fitting function” is h, because various amounts of h can be sub-
tracted to minimize the power in the residual (v−αh). Let us verify the well-known fact that
after the energy is minimized, the residual is orthogonal to the fitting function. Take the dot
product of the fitting function h and the residual (v−αh), and insert the optimum value of α

from equation (4.6):

h · (v−αh) = h ·v−αh ·h
= 0

Results for both p and s are shown in Figure 4.1. At first it is hard to believe the result: the

Figure 4.1: Left shows two panels, a “Pressure Wave” contaminated by crosstalk from “Shear”
and vice versa. Right shows a least-squares attempt to remove the crosstalk. It is disappointing
to see that the crosstalk has become worse. uni-uniform [ER]

crosstalk is worse on the output than on the input. Our eyes are drawn to the weak signals in the
open spaces, which are obviously unwanted new crosstalk. We do not immediately notice that
the new crosstalk has a negative polarity. Negative polarity results when we try to extinguish
the strong positive polarity of the main signal. Since the residual misfit is squared, our method
tends to ignore small residuals and focus attention on big ones: hence the wide-scale growth
of small residuals.

The least-squares method is easy to oversimplify, and it is not unusual to see it give disap-
pointing results. Real-life data are generally more complicated than artificial data like the data
used in these examples. It is always a good idea to test programs on such synthetic data since
the success or failure of a least-squares method may not be apparent if the method is applied
to real data without prior testing.

80 CHAPTER 4. UNIVARIATE PROBLEMS

Failure of independence assumption

The example in Figure 4.1 illustrates a pitfall of classical inversion theory. Had p not over-
lapped s, the crosstalk would have been removed perfectly. We were not interested in destroy-
ing p with s, and vice versa. This result was just an accidental consequence of their overlap,
which came to dominate the analysis because of the squaring in least squares. Our failure
could be attributed to a tacit assumption that since p and s are somehow “independent,” they
can be regarded as orthogonal, i.e., that p · s= 0. But the (potential) physical independence of
p and s does nothing to make a short sample of p and s orthogonal. Even vectors containing
random numbers are unlikely to be orthogonal unless the vectors have an infinite number of
components. Perhaps if the text were as long as the works of Shakespeare

4.2.2 Solution by weighting functions

Examining Figure 4.1, we realize that our goals were really centered in the quiet regions.
We need to boost the importance of those quiet regions in the analysis. What we need is a
weighting function. Denote the i -th component of a vector with the subscript i , say vi . When
we minimize the sums of squares of vi −αhi , the weighting function for the i -th component
is

wi = 1

v2
i + σ 2

(4.7)

and the minimization itself is

min
α

[∑
i

wi (vi −αhi)2

]
(4.8)

To find α′, the weighting function would be w = 1/(h2+σ 2).

The detailed form of these weighting functions is not important here. The form I chose is
somewhat arbitrary and may be far from optimal. The choice of the constant σ is discussed
on page 82. What is more important is the idea that instead of minimizing the sum of er-
rors themselves, we are minimizing something like the sum of relative errors. Weighting
makes any region of the data plane as important as any other region, regardless of whether a
letter (big signal) is present or absent (small signal). It is like saying a zero-valued signal is
just as important as a signal with any other value. A zero-valued signal carries information.

When signal strength varies over a large range, a nonuniform weighting function should
give better regressions. The task of weighting-function design may require some experi-
mentation and judgment.

A nonlinear-estimation method

What I have described above represents my first iteration. It can be called a “linear-estimation
method." Next we will try a “nonlinear-estimation method" and see that it works better. If

4.2. SEGREGATING P AND S CROSSTALK 81

we think of minimizing the relative error in the residual, then in linear estimation we used the
wrong divisor—that is, we used the squared data v2 where we should have used the squared
residual (v−αh)2. Using the wrong divisor is roughly justified when the crosstalk α is small
because then v2 and (v−αh)2 are about the same. Also, at the outset the residual was un-
known, so we had no apparent alternative to v2, at least until we found α. Having found the
residual, we can now use it in a second iteration. A second iteration causes α to change a bit,
so we can try again. I found that, using the same data as in Figure 4.1, the sequence of itera-
tions converged in about two iterations. Figure 4.2 shows the results of the various weighting

Figure 4.2: Comparison of weighting methods. Left shows crosstalk as badly removed by
uniformly weighted least squares. Middle shows crosstalk removed by deriving a weighting
function from the input data. Right shows crosstalk removed by deriving a weighting function
from the fitting residual. Press button for movie over iterations. uni-reswait [ER,M]

methods. Mathematical equations summarizing the bottom row of this figure are:

left : min
α

∑
i

(vi −αhi)
2 (4.9)

middle : min
α0

∑
i

1

v2
i +σ 2

(vi −α0hi)2 (4.10)

right : limn→∞ min
αn

∑
i

1

(vi −αn−1hi)2+σ 2
(vi −αnhi)

2 (4.11)

For the top row of the figure, these equations also apply, but v and h should be swapped.

Clarity of nonlinear picture

You should not have any difficulty seeing on the figure that the uniform weight leaves the most
crosstalk, the nonuniform weights of the linear-estimation method leave less crosstalk, and the
nonlinear-estimation method leaves no visible crosstalk. If you cannot see this, then I must
blame the method of reproduction of the figures, because the result is clear on the originals,
and even clearer on the video screen from which the figure is derived. On the video screen the
first iteration is clearly inferior to the result of a few more iterations, but on the printed page
these different results are not so easy to distinguish.

82 CHAPTER 4. UNIVARIATE PROBLEMS

Nonuniqueness and instability

We cannot avoid defining σ 2, because without it, any region of zero signal would get an
infinite weight. This is likely to lead to undesirable performance: in other words, although
with the data of Figure 4.2 I found rapid convergence to a satisfactory answer, there is no
reason that this had to happen. The result could also have failed to converge, or it could have
converged to a nonunique answer. This unreliable performance is why academic expositions
rarely mention estimating weights from the data, and certainly do not promote the nonlinear-
estimation procedure. We have seen here how important these are, however.

I do not want to leave you with the misleading impression that convergence in a simple
problem always goes to the desired answer. With the program that made these figures, I
could easily have converged to the wrong answer merely by choosing data that contained too
much crosstalk. In that case both images would have converged to s. Such instability is not
surprising, because when α exceeds unity, the meanings of v and h are reversed.

Estimating the noise variance

Choosing σ 2 is a subjective matter; or at least how we choose σ 2 could be the subject of
a lengthy philosophical analysis. Perhaps that is why so much of the literature ignores this
question. Without any firm theoretical basis, I chose |σ | to be approximately the noise level. I
estimated this as follows.

The simplest method of choosing σ 2 is to find the average v2 in the plane and then choose
some arbitrary fraction of it, say 10% of the average. Although this method worked in Fig-
ure 4.2, I prefer another. I chose σ 2 to be the median value of v2. (In other words, we
conceptually prepare a list of the numbers v2; then we sort the list from smallest to largest;
and finally we choose the value in the middle. In reality, median calculation is quicker than
sorting.)

Notice that Figure 4.2 uses more initial crosstalk than Figure 4.1. Without the extra
crosstalk I found that the first iteration worked so well, the second one was not needed. Thus
I could not illustrate the utility of nonlinear estimation without more crosstalk.

Colored noise

I made the noise in Figure 4.2 and 4.3 from random numbers that I filtered spatially to give a
lateral coherence on a scale something like the size of a letter—which is somewhat larger than
a line (which makes up the letter) width. The noise looks like paper mottling. The spectral
color (spatial coherence) of the noise does not affect the results much, if at all. In other words,
independent random numbers of the same amplitude yield results that are about the same. I
chose this particular noise color to maximize the chance that noise can be recognized on a
poor reproduction. We can see on Figure 4.2 that the noise amplitude is roughly one-third of
the signal amplitude. This data thus has a significant amount of noise, but since the signal is
bigger than the noise, we should really call this “good” data.

4.2. SEGREGATING P AND S CROSSTALK 83

Next we will make the noise bigger than the signal and see that we can still solve the
problem. We will need more powerful techniques, however.

4.2.3 Noise as strong as signal

First we will make the problem tougher by boosting the noise level to the point where it is
comparable to the signal. This is shown in Figure 4.3. Notice that the attempt to remove

Figure 4.3: Left: data with crosstalk. Right: residuals after attempted crosstalk removal using
uniform weights. uni-neqs [ER]

crosstalk is only partly successful. Interestingly, unlike in Figure 4.1, the crosstalk retains its
original polarity, because of the strong noise. Imagine that the noise n dominated everything:
then we would be minimizing something like (nv −αnh) · (nv−αnh). Assuming the noises
were uncorrelated and sample sizes were infinite, then nv · nh = 0, and the best α would be
zero. In real life, samples have finite size, so noises are unlikely to be more than roughly
orthogonal, and the predicted α in the presence of strong noise is a small number of random
polarity. Rerunning the program that produced Figure 4.3 with different random noise seeds
produced results with significantly more and significantly less estimated crosstalk. The results
are dominated more by the noise than the difference between p and s. More about random
fluctuations with finite sample sizes will follow in chapter 11.

4.2.4 Spectral weighting function

Since we humans can do a better job than the mathematical formulation leading up to Fig-
ure 4.3, we naturally want to consider how to reformulate our mathematics to make it work
better. Apparently, our eyes sense the difference between the spatial spectra of the signals
and the noise. Visually, we can suppress the noise because of its noticeably lower frequency.
This suggests filtering the data to suppress the noise.

On the filtered data with the noise suppressed, we can estimate the crosstalk parameter α.
Of course, filtering the noise will filter the signal too, but we need not display the filtered data,

84 CHAPTER 4. UNIVARIATE PROBLEMS

only use it to estimate α. That estimated α is applied to the raw (unfiltered) data and presented
as “the answer.”

Of course, we may as well display both filtered and unfiltered data and label them accord-
ingly. We might prefer unfiltered noisy images or we might prefer filtered images with less
noise. Seismograms present a similar problem. Some people think they prefer to look at a
best image of the earth’s true velocity, impedance, or whatever, while others prefer to look at
a filtered version of the same, especially if the filter is known and the image is clearer.

Here I chose a simple filter to suppress the low-frequency noise. It may be far from opti-
mal. (What actually is optimal is a question addressed in chapters 7 and 8.) For simplicity, I
chose to apply the Laplacian operator ∂2

∂x2 + ∂2

∂y2 to the images to roughen them, i.e., to make
them less predictable. The result is shown in Figure 4.4. The bottom rows are the roughened

Figure 4.4: Estimation on spatially filtered signals. Top: unfiltered signal with crosstalk. Bot-
tom: filtered signal with crosstalk. Left: input data. Center: residual using uniform weights.
Right: residual using inverse-signal weights. uni-rufn [ER]

images. On the left is the input data. Although the crosstalk is visible on both the raw images
and the filtered images, it seems more clearly visible on the filtered images. “Visibility” is not
the sole criterion here because the human eye can be an effective filter device too. There can
be no doubt that the crosstalk has larger amplitude (above the background noise) on the filtered
images. This larger amplitude is what is important in the dot-product definition of α. So the
bottom panels of filtered data are used to compute α, and the top panels are computed from
that α. Finally, notice that the unfiltered data looks somewhat worse after crosstalk removal.
This is because the combination of v and h contains noise from each.

4.3. REFERENCES 85

4.2.5 Flame out

The simple crosstalk problem illustrates many of the features of general modeling and inver-
sion (finding models that fit data). We have learned the importance of weighting functions—
not just their amplitudes, but also their spectral amplitudes. Certainly we have known for
centuries, from the time of Gauss (see Strang, 1986), that the “proper” weighting function is
the “inverse covariance matrix" of the noise (a generalized relative error, that is, involving
the relative amplitudes and relative spectra), formally defined in chapter 11. I do not know that
anyone disagrees with Gauss’s conclusion, but in real life, it is often ignored. It is hard to find
the covariance matrix: we set out to measure a mere scalar (α), and Gauss tells us we need
to figure out a matrix first! It is not surprising that our illustrious statisticians and geophysical
theoreticians often leave this stone unturned. As we have seen, different weighting functions
can yield widely different answers. Any inverse theory that does not tell us how to choose
weighting functions is incomplete.

4.3 References

Aki, K., and Richards, P.G., 1980, Quantitative seismology: theory and methods, vol. 2: W.
H. Freeman.

Backus, G.E., and Gilbert, J.F., 1967, Numerical applications of a formalism for geophysical
inverse problems: Geophys. J. R. astr. Soc., 13, 247-276.

Gauss, K.F.: see Strang, 1986.

Menke, W., 1989, Geophysical data analysis: discrete inverse theory, rev. ed.: Academic
Press, Inc.

Strang, G., 1986, Introduction to applied mathematics, p. 144: Wellesley-Cambridge Press.

Tarantola, A., 1987, Inverse problem theory: methods for data fitting and model parameter
estimation: Elsevier.

4.4 HOW TO DIVIDE NOISY SIGNALS

Another univariate statistical problem arises in Fourier analysis, where we seek a “best an-
swer” at each frequency, then combine all the frequencies to get a best signal. Thus emerges a
wide family of interesting and useful applications. However, Fourier analysis first requires us
to introduce complex numbers into statistical estimation.

86 CHAPTER 4. UNIVARIATE PROBLEMS

Multiplication in the Fourier domain is convolution in the time domain. Fourier-domain
division is time-domain deconvolution. In chapter 3 we encountered the polynomial-division
feedback operation X (Z) = Y (Z)/F(Z). This division is challenging when F has observa-
tional error. By switching from the Z -domain to the ω-domain we avoid needing to know if F
is minimum phase. The ω-domain has pitfalls too, however. We may find for some real ω that
F(Z (ω)) vanishes, so we cannot divide by that F . Failure erupts if zero division occurs. More
insidious are the poor results we obtain when zero division is avoided by a near miss.

4.4.1 Dividing by zero smoothly

Think of any real numbers x , y, and f and any program containing x = y/ f . How can we
change the program so that it never divides by zero? A popular answer is to change x = y/ f
to x = y f/(f 2+ ε2), where ε is any tiny value. When | f | >> |ε|, then x is approximately
y/ f as expected. But when the divisor f vanishes, the result is safely zero instead of infinity.
The transition is smooth, but some criterion is needed to choose the value of ε. This method
may not be the only way or the best way to cope with zero division, but it is a good way, and
it permeates the subject of signal analysis.

To apply this method in the Fourier domain, suppose X , Y , and F are complex numbers.
What do we do then with X = Y/F? We multiply the top and bottom by the complex conjugate
F , and again add ε2 to the denominator. Thus,

X (ω) = F(ω) Y (ω)

F(ω)F(ω) + ε2
(4.12)

Now the denominator must always be a positive number greater than zero, so division is always
safe.

In preparing figures with equation (4.12), I learned that it is helpful to recast the equation
in a scaled form. First replace ε2, which has physical units of |F|2, by ε2 = λσ 2

F , where λ is a
dimensionless parameter and σ 2

F is the average value of F F . Then I rescaled equation (4.12)
to

X (ω) = F(ω) Y (ω)

F(ω)F(ω) + λσ 2
F

(2+λ/2)σF (4.13)

The result is that the scale of X is independent of the scale of F and the scale of λ. This
facilitates plotting X over a range of those parameters. I found the 2s in the expression by
experimentation. Of course, if the plotting software you are using adjusts a scale factor to
fill a defined area, then the scaling may be unimportant. Equation (4.13) ranges continuously
from inverse filtering with X = Y/F to filtering with X = FY , which is called “matched
filtering.” Notice that for any complex number F , the phase of 1/F equals the phase of F , so
all these filters have the same phase.

The filter F is called the “matched filter." If nature created Y by random bursts of energy
into F , then building X from Y and F by choosing λ = ∞ in equation (4.13) amounts to
X = Y F which crosscorrelates F with the randomly placed copies of F that are in Y .

4.4. HOW TO DIVIDE NOISY SIGNALS 87

4.4.2 Damped solution

Equation (4.12) is the solution to an optimization problem that arises in many applications.
Now that we know the solution, let us formally define the problem. First, we will solve a
simpler problem with real values: we will choose to minimize the quadratic function of x:

Q(x) = (f x− y)2+ ε2x2 (4.14)

The second term is called a “damping factor" because it prevents x from going to ±∞ when
f → 0. Set d Q/dx = 0, which gives

0 = f (f x− y)+ ε2x (4.15)

This yields the earlier answer x = f y/(f 2+ ε2).

With Fourier transforms, the signal X is a complex number at each frequency ω. So we
generalize equation (4.14) to

Q(X̄ , X) = (F X −Y)(F X −Y)+ ε2 X̄ X = (X̄ F̄− Ȳ)(F X −Y)+ ε2 X̄ X (4.16)

To minimize Q we could use a real-values approach, where we express X = u+ iv in terms
of two real values u and v and then set ∂ Q/∂u = 0 and ∂ Q/∂v = 0. The approach we will
take, however, is to use complex values, where we set ∂ Q/∂ X = 0 and ∂ Q/∂ X̄ = 0. Let us
examine ∂ Q/∂ X̄ :

∂ Q(X̄ , X)

∂ X̄
= F̄(F X −Y)+ ε2 X = 0 (4.17)

The derivative ∂ Q/∂ X is the complex conjugate of ∂ Q/∂ X̄ . So if either is zero, the other is
too. Thus we do not need to specify both ∂ Q/∂ X = 0 and ∂ Q/∂ X̄ = 0. I usually set ∂ Q/∂ X̄
equal to zero. Solving equation (4.17) for X gives equation (4.12).

4.4.3 Example of deconvolution with a known wavelet

The top trace of Figure 4.5 shows a marine reflection seismic trace from northern Scandinavia.
Its most pronounced feature is a series of multiple reflections from the ocean bottom seen at
.6 second intervals. These reflections share a similar waveshape that alternates in polarity.
The alternation of polarity (which will be more apparent after deconvolution) results from a
negative reflection coefficient at the ocean surface (where the acoustic pressure vanishes). The
spectrum of the top trace has a comb pattern that results from the periodicity of the multiples.
In Figure 4.5, I let the input trace be Y and chose the filter F by extracting (windowing) from
Y the water-bottom reflection, as shown in the second trace. The spectrum of the windowed
trace is like that of the input trace except that the comb modulation is absent (see chapter 9
for the reason for the appearance of the comb). The trace labeled “matched” in Figure 4.5 is
the input after matched filtering, namely Y F . The trace labeled “damped” shows the result
of a value of λ = .03, my best choice. The wavelets are now single pulses, alternating in
polarity. The trace labeled “inverse” is actually not the inverse, but the result of a too small

88 CHAPTER 4. UNIVARIATE PROBLEMS

Figure 4.5: The signals on the top correspond to the spectra on the bottom. The top signal is
a marine seismogram 4 seconds long. A wavelet windowed between 0.5 s and 1 s was used
to deconvolve the signal with various values of λ. (Adapted from Bill Harlan, by personal
communication.) uni-dekon [ER]

damping factor λ = .001. The inverse trace is noisy at high frequencies. Notice how the
spectral bandwidth increases from the matched to the damped to the undamped. Increasing
noise (bad) is associated with sharpening of the pulse (good).

Bill Harlan and I each experimented with varying λ with frequency but did not obtain
results interesting enough to show.

Another example of deconvolution with a known wavelet which is more typical and less
successful is shown in Figure 4.6. Here a filter designed in a window on the water-bottom
reflection of a single signal fails to succeed in compressing the wavelets of multiple reflections
on the same trace. It also fails to compress the water-bottom reflection of a nearby trace. We
need more sophisticated methods for finding the appropriate filter.

4.4.4 Deconvolution with an unknown filter

Equation (4.12) solves Y = X F for X , giving the solution for what is called “the deconvolution
problem with a known wavelet F ." We can also use Y = X F when the filter F is unknown,
but the input X and output Y are given. Here stabilization might not be needed but would be
necessary if the input and output did not fill the frequency band. Taking derivatives as above,
but with respect to F instead of X , gives again equation (4.12) with X and F interchanged:

F(ω) = X (ω) Y (ω)

X (ω)X (ω) + ε2
(4.18)

4.4. HOW TO DIVIDE NOISY SIGNALS 89

Figure 4.6: Division by water-bottom wavelet. uni-crete [ER]

4.4.5 Explicit model for noise

In all the signal analysis above there was no explicit model for noise, but implicitly the idea
of noise was there. Now we will recognize it and solve explicitly for it. This leads to what
is called “linear-estimation theory." Instead of simply Y = F X , we add noise N (ω) into the
defining equation:

Y (ω) = F(ω)X (ω)+ N (ω) (4.19)

To proceed we need to define the “variance" (described more fully in chapter 11) as

σ 2
X = 1

n

n∑
j=1

X̄ (ωj)X (ωj) (4.20)

and likewise the noise variance σ 2
N .

The general linear-estimation method minimizes something that looks like a sum of rela-
tive errors:

Q(X , N) = X̄ X

σ 2
X

+ N̄ N

σ 2
N

(4.21)

Notice that the variances put both terms of the sum into the same physical units. I have
not derived equation (4.21) but stated it as reasonable: from it we will derive reasonable
answers which we have already seen. The rationale for the minimization of (4.21) is that we
want the noise to be small, but because we must guard against zero division in X = Y/F , we
ask for X to be small too. Actually, by introducing equation (4.19), we have abandoned the
model X = Y/F and replaced it with the model X = (Y − N)/F . Thus, instead of thinking
of falsifying F to avoid dividing by zero in X = Y/F , we now think of finding N so the
numerator in (Y − N)/X vanishes wherever the denominator does.

90 CHAPTER 4. UNIVARIATE PROBLEMS

By introducing (4.19) into (4.21) we can eliminate either N or X . Eliminating N , we have

Q(X) = X̄ X

σ 2
X

+ (F X −Y)(F X −Y)

σ 2
N

(4.22)

Minimizing Q(X) by setting its derivative by X̄ to zero gives

0 = X

σ 2
X

+ F̄(F X −Y)

σ 2
N

(4.23)

X = F̄Y

F̄ F + σ 2
N

σ 2
X

(4.24)

Equation (4.24) is the same as equation (4.12), except that it gives us a numerical interpretation
of the value of ε in equation (4.12).

We can find an explicit equation for the noise in terms of the data and filter by substituting
equation (4.24) into equation (4.19) and solving for N .

4.4.6 A self-fulfilling prophecy?

Equation (4.24) and its surrounding theory are easily misunderstood and misused. I would like
to show you a pitfall. Equation (4.24) expresses the answer to the deconvolution problem, but
does so in terms of the unknowns σ 2

N and σ 2
X . Given an initial estimate of σ 2

N /σ 2
X , we see that

equation (4.24) gives us X and (4.19) gives N , so that we can compute σ 2
N and σ 2

X . Presum-
ably these computed values are better than our initial guesses. In statistics, the variances in
equation (4.24) are called “priors," and it makes sense to check them, and even more sense
to correct them. From the corrected values we should be able to iterate, further improving
the corrections. Equation (4.24) applies for each of the many frequencies, and there is only a
single unknown, the ratio σ 2

N /σ 2
X . Hence it seems as if we have plenty of information, and the

bootstrapping procedure might work. A pessimist might call this bootstrapping a self-fulfilling
prophecy, but we will see. What do you think?

Truth is stranger than fiction. I tried bootstrapping the variances. With my first starting
value for the ratio σ 2

N/σ 2
X , iterating led to the ratio being infinite. Another starting value led to

the ratio being zero. All starting values led to zero or infinity. Eventually I deduced that there
must be a metastable starting value. Perhaps the metastable value is the appropriate one, but
I lack a rationale to assert it. It seems we cannot bootstrap the variances because the solutions
produced do not tend to the correct variance, nor is the variance ratio correct. Philosophically,
we can be thankful that these results failed to converge, since this outcome prevents us from
placing a false confidence in the bootstrapping procedure.

The variance of the solution to a least-squares problem is not usable to bootstrap to a
better solution.

I conclude that linear-estimation theory, while it appears to be a universal guide to prac-
tice, is actually incomplete. Its incompleteness grows even more significant in later chapters,

4.5. NONSTATIONARITY 91

when we apply least squares to multivariate problems where the scalar σ 2
x becomes a matrix.

We continue our search for “universal truth” by studying more examples.

EXERCISES:

1 Using the chain rule for differentiation, verify that ∂ Q/∂u = 0 and ∂ Q/∂v = 0 is equiva-
lent to ∂ Q/∂ x̄, where x = u+ iv.

2 Write code to verify the instability in estimating the variance ratio.

4.5 NONSTATIONARITY

Frequencies decrease with time; velocities increase with depth. Reverberation periods change
with offset; dips change with location. Still, we often find it convenient to presume that the
relevant statistical aspects of data remain constant over a large domain. In mathematical statis-
tics this is called a “stationarity" assumption. To assume stationarity is to enjoy a simplicity in
analysis that has limited applicability in the real world. To avoid seduction by the stationarity
assumption we will solve here a problem in which stationarity is obviously an unacceptable
presumption. We will gain skill in and feel comfortable with the computer techniques of es-
timation in moving windows. The first requirement is to learn reliable ways of limiting the
potentially destructive effects of the edges of windows.

The way to cope with spatial (or temporal) variation in unknown parameters is to estimate
them in moving windows. Formulating the estimation might require special shrewdness
so that window edges do not strongly affect the result.

To illustrate computation technique in a nonstationary environment, I have chosen the
problem of dip estimation. Before we take up this problem, however, we will examine a
generic program for moving a window around on a wall of data. The window-moving oper-
ation is so cluttered that the first example of it simply counts the number of windows that hit
each point of the wall. Inspecting subroutine nonstat() on this page we first notice that the
1-axis is handled identically with the 2-axis. (Ratfor makes this more obvious than Fortran

could.) Notice the bottom of the loops where variables (e1,e2) which will be the ends of
the windows are jumped along in steps of (j1,j2). Then notice the tops of the loops where
processing terminates when the ends of the windows pass the ends of the wall. Also at the
tops of the loops, the window count (k1,k2) is incremented, and the starting points of each
window are defined as the window ends (e1,e2) minus their widths (w1,w2).

slide a window around on a wall of data. Count times each data point used.

#

subroutine nonstat(n1,n2, w1,w2, j1,j2, count)

integer n1,n2 # size of data wall

integer w1,w2 # size of window

integer j1,j2 # increments for jumping along the wall

92 CHAPTER 4. UNIVARIATE PROBLEMS

integer s1,s2, e1,e2 # starting and ending points of window on wall

integer k1,k2 # output math size of array of windows

integer i1,i2

real count(n1,n2)

call null(count, n1*n2)

k2=0; e2=w2; while(e2<=n2) { k2=k2+1; s2=e2-w2+1

k1=0; e1=w1; while(e1<=n1) { k1=k1+1; s1=e1-w1+1

do i1= s1, e1 {

do i2= s2, e2 {

count(i1,i2) = count(i1,i2) + 1.

}}

e1=e1+j1 }

e2=e2+j2 }

return; end

A sample result is shown in Figure 4.7. Since window widths do not match window jumps,
the count is not a constant function of space. We see ridges where the rectangles overlapped a
little. Likewise, since the windows were not fitted to the wall, some data values near the end of
each axis failed to be used in any window. Next we address the problem of splicing together

Figure 4.7: Sample output of non-

stat() with n1=100, w1=20, j1=15,
n2=50, w2=20, j2=8. uni-nonstat
[ER]

data processing outputs derived in each window. This could be done with rectangle weights
derived from count in subroutine nonstat() but it is not much more difficult to patch together
triangle weighting functions as shown in subroutine nonstat2() on the current page.

slide a window around on a wall of data. Triangle weighting.

#

subroutine nonstat2(n1,n2, w1,w2, j1,j2, data, output, weight)

integer n1,n2, w1,w2, j1,j2, s1,s2, e1,e2, k1,k2, i1,i2

real data(n1,n2), output(n1,n2), weight(n1,n2), triangle1, triangle2, shape

temporary real window(w1,w2), winout(w1,w2)

call null(weight, n1*n2)

call null(output, n1*n2)

k2=0; e2=w2; while(e2<=n2) { k2=k2+1; s2=e2-w2+1

k1=0; e1=w1; while(e1<=n1) { k1=k1+1; s1=e1-w1+1

do i1= 1, w1 {

do i2= 1, w2 { window(i1,i2) = data(s1+i1-1,s2+i2-1)

}}

do i1= 1, w1 { # Trivial data processing

do i2= 1, w2 { winout(i1,i2) = window(i1,i2)

}}

do i1= s1, e1 { triangle1= amax1(0., 1. - abs(i1-.5*(e1+s1)) / (.5*w1))

do i2= s2, e2 { triangle2= amax1(0., 1. - abs(i2-.5*(e2+s2)) / (.5*w2))

shape = triangle1 * triangle2

output(i1,i2) = output(i1,i2) + shape * winout(i1-s1+1,i2-s2+1)

4.5. NONSTATIONARITY 93

weight(i1,i2) = weight(i1,i2) + shape

}}

e1=e1+j1 }

e2=e2+j2 }

do i1= 1, n1 {

do i2= 1, n2 { if(weight(i1,i2) > 0.)

output(i1,i2) = output(i1,i2) / weight(i1,i2)

}}

return; end

Triangles allow for a more gradual transition from one window to another. In nonstat2(), data
is first pulled from the wall to the window. Next should be the application-specific operation on
the data that processes the data window into an output window. (This output is often a residual
image of a least squares procedure). To avoid getting into many application-specific details,
here we simply copy the input data window to the output window. Next we devise some
triangular weighting functions. These are used to weight the output window as it is copied
onto the wall of accumulating weighted outputs. Simultaneously, at each point on the wall,
the sum of all applied weights is accumulated. Finally, the effect of weight shape and window
overlap is compensated for by dividing the value at each point on the wall of outputs by the
sum of weights at that point. Figure 4.7 applies nonstat2() to constant data. As expected,
the output is also constant, except at edges where it is zero because no windows overlap the
input data. The flattness of the output means that in practice we may allow window overlap
greater or less than the triangle half width. Notice that five ridges in Figure 4.7 correspond to
five valleys in Figure 4.8.

Figure 4.8: Sample output of nonstat2() with same parameters as Figure 4.7. Left is
weight(n1,n2) and right is output(n1,n2) for constant data. The flattness of the output
means that in practice we may allow window overlap greater or less than the triangle half
width. uni-nstri [ER]

In a typical application, there is one more complication. The filter outputs in each window
are shorter than the input data because the filters themselves may not run over the edges else
there would be truncation transients. Thus some of the values of the output in each window
are undefined. The application-specific filter program may leave these values undefined or it

94 CHAPTER 4. UNIVARIATE PROBLEMS

may set them to zero. If they come out zeros, it is safe to add them in to the wall of outputs,
but care must be taken that the window weight that is normally accumulated on the wall of
weights is omitted. There is one final complication for those of you who plan to be really
meticulous. The triangles designed in nonstat2() on page 92 taper to zero just beyond the
ends of the window of data. They should taper to zero just beyond the ends of the window of
outputs.

4.6 DIP PICKING WITHOUT DIP SCANNING

“Picking” is the process of identifying dipping seismic events. Here we will do something
like picking, but in a continuum; i.e., dips will be picked continuously and set on a uniform
mesh. Customarily, dip picking is done by scanning two-dimensional data along various dips.
We will see that our method, based on the “plane-wave destructor operator," does not have its
resolution limited by the spatial extent of a dip scan.

4.6.1 The plane-wave destructor

A plane wave in a wave field u(t , x) = u(t − px) with stepout p can be extinguished with a
partial differential operator, which we write as a matrix A, where

0 ≈ v(t , x)=
(

∂

∂x
+ pi

∂

∂t

)
u(t , x) (4.25)

0 ≈ v= A u (4.26)

The parameter p is called the “wavenumber" or “Snell parameter," and |p| can take on any
value less than 1/v, where v is the medium velocity. The angle of propagation of the wave is
sinθ = pv.

We need a method of discretization that allows the mesh for du/dt to overlay exactly
du/dx . To this end I chose to represent the t-derivative by

du

dt
≈ 1

2

(
u(t +�t , x)−u(t , x)

�t

)
+ 1

2

(
u(t+�t , x+�x)−u(t , x +�x)

�t

)
(4.27)

and the x-derivative by an analogous expression with t and x interchanged. Now the differ-
ence operator δx + piδt is a two-dimensional filter that fits on a 2× 2 differencing star. As a
matrix operation, this two-dimensional convolution is denoted A. (More details about finite
differencing can be found in IEI.)

The program wavekill1() applies the operator aδx + pδt , which can be specialized to the
operators δx , δt , δx + piδt .

vv = (aa Dx + pp Dt) uu

#

subroutine wavekill1(aa, pp, n1,n2,uu, vv)

4.6. DIP PICKING WITHOUT DIP SCANNING 95

integer i1,i2, n1,n2

real aa, pp, s11, s12, s21, s22, uu(n1,n2), vv(n1-1, n2-1)

s11 = -aa-pp; s12 = aa-pp

s21 = -aa+pp; s22 = aa+pp

call null(vv,(n1-1)*(n2-1))

do i1= 1, n1-1 { # vv is one point shorter than uu on both axes.

do i2= 1, n2-1 {

vv(i1,i2) = vv(i1,i2) +

uu(i1 ,i2) * s11 + uu(i1 ,i2+1) * s12 +

uu(i1+1,i2) * s21 + uu(i1+1,i2+1) * s22

}}

return; end

I carefully arranged the side boundaries so that the filter never runs off the sides of the data.
Thus the output is shorter than the input by one point on both the t-axis and the x-axis. The
reason for using these side boundaries is that large datasets can be chopped into independent
sections without the boundaries themselves affecting the result. By chopping a large dataset
into sections, we can handle curved events as piecewise linear.

When only one wave is present and the data is adequately sampled, then finding the best
value of p is a single-parameter, linear least-squares problem. Let x be an abstract vector
whose components are values of ∂u/∂x taken on a mesh in (t , x). Likewise, let t contain
∂u/∂t . Since we want x+ p t ≈ 0, we minimize the quadratic function of p,

Q(p) = (x+ p t) · (x+ p t) (4.28)

by setting to zero the derivative. We get

p = − x · t
t · t (4.29)

Since data will not always fit the model very well, it may be helpful to have some way to
measure how good the fit is. I suggest

C2 = 1 − (x+ p t) · (x+ p t)
x ·x (4.30)

which, on inserting p =−(x · t)/(t · t), leads to C , where

C = x · t√
(x ·x)(t · t) (4.31)

is known as the “normalized correlation.” The program for this calculation is straightfor-
ward. I named the program puck() to denote picking on a continuum.

measure coherency and dip, and compute residual res = (Dx + p Dt) uu

#

subroutine puck (n1, n2, uu, coh, pp, res)

integer i1, i2, n1, n2

real uu(n1,n2), res(n1,n2), xx, xt, tt, coh, pp

temporary real dx(n1,n2-1), dt(n1-1,n2-1)

call wavekill1(1., 0., n1,n2 , uu, dx)

96 CHAPTER 4. UNIVARIATE PROBLEMS

call wavekill1(0., 1., n1,n2 , uu, dt)

xx = 1.e-30; tt = 1.e-30; xt = 0.

do i1= 1, n1-1 {

do i2= 1, n2-1 {

xt = xt + dt(i1,i2) * dx(i1,i2)

tt = tt + dt(i1,i2) * dt(i1,i2)

xx = xx + dx(i1,i2) * dx(i1,i2)

}}

coh = sqrt((xt/tt)*(xt/xx))

pp = - xt/tt

call wavekill1(1., pp, n1,n2 , uu, res)

return; end

Finally and parenthetically, an undesirable feature of the plane-wave destructor method
is that the residual v has no particular relation to the data u, unlike in time-series analysis—
see chapter 7. Another disadvantage, well known to people who routinely work with finite-
difference solutions to partial differential equations, is that for short wavelengths a difference
operator is not the same as a differential operator; thereby the numerical value of p is biased.

4.6.2 Moving windows for nonstationarity

Wavefronts generally curve. But a curved line viewed only over a small range is barely dis-
tinguishable from a straight line. A straight-line wavefront is much easier to manage than a
curved one. If we think of the slope of the line as a parameter estimated statistically, then it is a
nonstationary variable—it varies from place to place. So we can work with curved wavefronts
by working in a small window that is moved around. The main thing to beware of about small
windows is that unless we are very careful, their side boundaries may bias the result.

The puck() method was designed to be ignorant of side boundaries: it can be applied in a
small window and the window moved freely around the data. A strength of the puck() method
is that the window can be smaller than a wavelength—it can be merely two traces wide. A
sample based on synthetic data is shown in Figures 4.9 through 4.11. The synthetic data in
4.9 mimics a reflection seismic field profile, including one trace that is slightly delayed as if
recorded on a patch of unconsolidated soil. Notice a low level of noise in the synthetic data.

Figure 4.10 shows the residual. The residual is small in the central region of the data;
it is large where there is spatial aliasing; and it is large at the transient onset of the signal.
The residual is rough because of the noise in the signal, because it is made from derivatives,
and because the synthetic data was made by nearest-neighbor interpolation. Notice that the
residual is not particularly large for the delayed trace.

Figure 4.11 shows the dips. The most significant feature of this figure is the sharp local-
ization of the dips surrounding the delayed trace. Other methods based on wave or Fourier
concepts might lead us to conclude that the aperture must be large to resolve a wide range
of angles. Here we have a narrow aperture (two traces), but the dip can change rapidly and
widely.

4.6. DIP PICKING WITHOUT DIP SCANNING 97

Figure 4.9: Input synthetic data.
uni-puckin [ER]

Figure 4.10: Residuals, i.e., an eval-
uation of Ux + pUt . uni-residual
[ER]

Figure 4.11: Output values of p are
shown by the slope of short line seg-
ments. uni-puckout [ER]

98 CHAPTER 4. UNIVARIATE PROBLEMS

Subroutine slider() on the current page below shows the code that generated Figure 4.9
through 4.11.

slide a window around on a wall of data measuring coherency, dip, residual

#

subroutine slider(n1,n2, w1,w2, k1,k2, data, coh, pp, res)

integer i1,i2, n1,n2, w1,w2, k1,k2, s1,s2, e1,e2

integer p1,p2 # number of subwindows is p1*p2

real data(n1,n2) # input

real res(n1,n2) # outputs. math size (n1-1,n2-1)

real pp(n1,n2), coh(n1,n2) # outputs defined at pp(1..p1, 1..p2)

temporary real count(n1,n2)

temporary real window(w1,w2), tres(w1-1,w2-1)

call null(count, n1*n2)

call null(res, n1*n2)

p2=0; e2=w2; while(e2<=n2) { p2=p2+1; s2=e2-w2+1

p1=1; e1=w1; while(e1<=n1) { p1=p1+1; s1=e1-w1+1

do i1 = 1, w1 {

do i2 = 1, w2 { window(i1,i2) = data(i1+s1-1,i2+s2-1)

}}

call null(tres, (w1-1)*(w2-1))

call puck (w1, w2, window, coh(p1,p2), pp(p1,p2), tres)

do i1= s1, e1-1 {

do i2= s2, e2-1 {

res(i1,i2) = res(i1,i2) + tres(i1-s1+1, i2-s2+1)

count(i1,i2) = count(i1,i2) + 1.

}}

e1=e1+k1 }

e2=e2+k2 }

do i2= 1, n2-1 {

do i1= 1, n1-1 { if(count(i1,i2) > 0.)

res(i1,i2) = res(i1,i2) / count(i1,i2)

}}

return; end

A disadvantage of the puck() method is that the finite-difference operator is susceptible
to spatial aliasing as well as to distortions at spatial frequencies that are high but not yet
aliased. This suggests a logical step—estimating missing interlaced traces—which we take up
in chapter 8.

EXERCISES:

1 It is possible to reject two dips with the operator

(∂x + p1∂t)(∂x + p2∂t) (4.32)

This is equivalent to(
∂2

∂x2
+a

∂2

∂x∂t
+b

∂2

∂t2

)
u(t , x) = v(t , x) ≈ 0 (4.33)

where u is the input signal and v is the output signal. Show how to solve for a and b by
minimizing the energy in v.

4.6. DIP PICKING WITHOUT DIP SCANNING 99

2 Given a and b from the previous exercise, what are p1 and p2?

100 CHAPTER 4. UNIVARIATE PROBLEMS

Chapter 5

Adjoint operators

A great many of the calculations we do in science and engineering are really matrix multipli-
cation in disguise. The first goal of this chapter is to unmask the disguise by showing many
examples. Second, we will illuminate the meaning of the adjoint operator (matrix transpose)
in these many examples.

Geophysical modeling calculations generally use linear operators that predict data from
models. Our usual task is to find the inverse of these calculations, i.e., to find models (or make
maps) from the data. Logically, the adjoint is the first step and a part of all subsequent steps in
this inversion process. Surprisingly, in practice the adjoint sometimes does a better job than
the inverse! This is because the adjoint operator tolerates imperfections in the data and does
not demand that the data provide full information.

Using the methods of this chapter, you will find that once you grasp the relationship be-
tween operators in general and their adjoints, you can have the adjoint just as soon as you have
learned how to code the modeling operator.

If you will permit me a poet’s license with words, I will offer you the following table of
operators and their adjoints:

matrix multiply conjugate-transpose matrix multiply
convolution crosscorrelation
stretching squeezing
zero padding truncation
causal integration anticausal integration
add functions do integrals
plane-wave superposition slant stack / beam forming
superposing on a curve summing along a curve
upward continuation downward continuation
diffraction modeling imaging by migration
hyperbola modeling CDP stacking
ray tracing tomography

101

102 CHAPTER 5. ADJOINT OPERATORS

The left column above is often called “modeling," and the adjoint operators on the right
are often used in “data processing."

When the adjoint operator is not an adequate approximation to the inverse, then you apply
the techniques of fitting and optimization which require iterative use of the modeling operator
and its adjoint.

The adjoint operator is sometimes called the “back projection" operator because in-
formation propagated in one direction (earth to data) is projected backward (data to earth
model). With complex-valued operators the transpose and complex conjugate go together and
in Fourier analysis, taking the complex conjugate of exp(iωt) reverses the sense of time. Still
assuming poetic license, I will say that adjoint operators undo the time and phase shifts of
modeling operators. The inverse operator does this too, but it also divides out the color. For
example, with linear interpolation high frequencies are smoothed out, so inverse interpolation
must restore them. You can imagine the possibilities for noise amplification. That is why
adjoints are safer than inverses. But nature determines in each application what is the best
operator to use, whether to stop after the adjoint, to go the whole way to the inverse, or to stop
part-way.

We will see that computation of the adjoint is a straightforward adjunct to the computa-
tion itself, and the computed adjoint should be, and generally can be, exact (within machine
precision). If the application’s operator is computed in an approximate way, we will see that
it is natural and best to compute the adjoint with adjoint approximations. Much later in this
chapter is a formal definition of adjoint operator. Throughout the chapter we handle an adjoint
operator as a matrix transpose, but we hardly ever write down any matrices or their transposes.
Instead, we always prepare two subroutines, one that performs y = Ax and another that per-
forms x̃= A′y, so we need a test that the two subroutines really embody the essential aspects
of matrix transposition. Although the test is an elegant and useful test and is itself a fundamen-
tal definition, curiously, that definition helps us not one bit in constructing adjoint operators,
so I postpone the formal definition of adjoint until after we have seen many examples.

5.1 FAMILIAR OPERATORS

The operation yi =∑
j bi j xj is multiplication of a matrix B times a vector x. The adjoint

operation is x̃j =∑
i bi j yi . The operation adjoint to multiplying by a matrix is multiplying

by the transposed matrix (unless the matrix has complex elements, in which case we need
the complex-conjugated transpose). The following pseudocode does matrix multiplication
y= Bx and multiplication by the transpose matrix x̃= B′y:

5.1. FAMILIAR OPERATORS 103

if operator itself
then erase y

if adjoint
then erase x

do iy = 1, ny {
do ix = 1, nx {

if operator itself
y(iy) = y(iy) + b(iy,ix) × x(ix)

if adjoint
x(ix) = x(ix) + b(iy,ix) × y(iy)

}}

Notice that the “bottom line” in the program is that x and y are simply interchanged. The
above example is a prototype of many to follow, so observe carefully the similarities and
differences between the operation and its adjoint.

A formal program for matrix multiply and its adjoint is found below. The first step is
erasing the output. That may seem like too trivial a function to put in a separate library routine,
but, at last count, 15 other routines in this book use the output-erasing subroutine adjnull()

below.

subroutine adjnull(adj, add, x, nx, y, ny)

integer ix, iy, adj, add, nx, ny

real x(nx), y(ny)

if(add == 0)

if(adj == 0)

do iy= 1, ny

y(iy) = 0.

else

do ix= 1, nx

x(ix) = 0.

return; end

The subroutine matmult() on this page for matrix multiply and its adjoint exhibits a style that
we will use repeatedly.

matrix multiply and its adjoint

#

subroutine matmult(adj, bb, nx,x, ny,y)

integer ix, iy, adj, nx, ny

real bb(ny,nx), x(nx), y(ny)

call adjnull(adj, 0, x,nx, y,ny)

do ix= 1, nx {

do iy= 1, ny {

if(adj == 0)

y(iy) = y(iy) + bb(iy,ix) * x(ix)

else

x(ix) = x(ix) + bb(iy,ix) * y(iy)

104 CHAPTER 5. ADJOINT OPERATORS

}}

return; end

5.1.1 Transient convolution

When the matrix has a special form, such as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 0 0 0 0
b2 b1 0 0 0
b3 b2 b1 0 0
0 b3 b2 b1 0
0 0 b3 b2 b1

0 0 0 b3 b2

0 0 0 0 b3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤
⎥⎥⎥⎥⎦ (5.1)

then the matrix multiplication and transpose multiplication still fit easily in the same com-
putational framework. The operation Bx convolves bt with xt , whereas the operation B′y
crosscorrelates bt with yt . I will leave it to you to verify the pseudocode

do ix = 1, nx {
do ib = 1, nb {

iy = ib + ix – 1
if operator itself (convolution)

y(iy) = y(iy) + b(ib) × x(ix)
if adjoint (correlation)

x(ix) = x(ix) + b(ib) × y(iy)
}}

Again, notice that the “bottom line” in the program is that x and y are simply interchanged.

Equation (5.1) could be rewritten as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 0
x2 x1 0
x3 x2 x1

x4 x3 x2

x5 x4 x3

0 x5 x4

0 0 x5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ b1

b2

b3

⎤
⎦ (5.2)

which we abbreviate by y = Xb. So we can choose between y= Xb and y= Bx. In one case
the output y is dual to the filter b, and in the other case the output y is dual to the input x. In
applications, sometimes we will solve for b and sometimes for x; so sometimes we will use
equation (5.2) and sometimes (5.1).

5.1. FAMILIAR OPERATORS 105

The program contran() on the current page can be used with either equation (5.1) or
equation (5.2), because the calling program can swap the xx and bb variables. The name
contran() denotes convolution with “transpose” and with “transient” end effects.

Convolve and correlate (adjoint convolve).

#

subroutine contran(adj, add, nx, xx, nb, bb, yy)

integer ix, ib, ny, adj, add, nx, nb

real xx(nx) # input signal

real bb(nb) # filter (or output crosscorrelation)

real yy(nx+nb-1) # filtered signal (or second input signal)

ny = nx + nb - 1 # length of filtered signal

call adjnull(adj, add, bb, nb, yy, ny)

do ib= 1, nb {

do ix= 1, nx {

if(adj == 0)

yy(ib+ix-1) = yy(ib+ix-1) + xx(ix) * bb(ib)

else

bb(ib) = bb(ib) + xx(ix) * yy(ib+ix-1)

}}

return; end

5.1.2 Zero padding is the transpose of truncation.

Surrounding a dataset by zeros (zero padding) is adjoint to throwing away the extended data
(truncation). Let us see why this is so. Set a signal in a vector x, and then make a longer
vector y by adding some zeros at the end of x. This zero padding can be regarded as the matrix
multiplication

y =
[

I
0

]
x (5.3)

The matrix is simply an identity matrix I above a zero matrix 0. To find the transpose to zero
padding, we now transpose the matrix and do another matrix multiply:

x̃ = [
I 0

]
y (5.4)

So the transpose operation to zero padding data is simply truncating the data back to its origi-
nal length.

5.1.3 Product of operators

We will look into details of Fourier transformation elsewhere. Here we use it as an example
of any operator containing complex numbers. For now, we can think of Fourier transform as
a square matrix F. We denote the complex-conjugate transpose (or adjoint) matrix with a
prime, i.e., F′. The adjoint arises naturally whenever we consider energy. The statement that
Fourier transforms conserve energy is y′y = x′x where y = Fx. Substituting gives F′F = I
which shows that the inverse matrix to Fourier transform happens to be the complex conjugate
of the transpose of F.

106 CHAPTER 5. ADJOINT OPERATORS

With Fourier transforms, zero padding and truncation are particularly prevalent. Most
programs transform a dataset of length of 2n, whereas dataset lengths are often of length
m× 100. The practical approach is therefore to pad given data with zeros. Padding followed
by Fourier transformation F can be expressed in matrix algebra as

Program = F
[

I
0

]
(5.5)

According to matrix algebra, the transpose of a product, say AB=C, is the product C′ =B′A′
in reverse order. So the adjoint program is given by

Program′ = [
I 0

]
F′ (5.6)

Thus the adjoint program truncates the data after the inverse Fourier transform.

5.1.4 Convolution end effects

In practice, filtering generally consists of three parts: (1) convolution, (2) shifting to some
preferred time alignment, and (3) truncating so the output has the same length as the input.
An adjoint program for this task, is easily built from an earlier program. We first make a
simple time-shift program advance().

signal advance: y(iy) = x(iy+jump)

#

subroutine advance(adj, add, jump, nx, xx, ny, yy)

integer ix, iy, adj, add, jump, nx, ny

real xx(nx), yy(ny)

call adjnull(adj, add, xx,nx, yy,ny)

do iy= 1, ny {

ix = iy + jump

if(ix >= 1)

if(ix <= nx)

if(adj == 0)

yy(iy) = yy(iy) + xx(ix)

else

xx(ix) = xx(ix) + yy(iy)

}

return; end

Although the code is bulky for such a trivial program, it is easy to read, works for any size of
array, and works whether the shift is positive or negative. Since filtering ordinarily delays, the
advance() routine generally compensates.

Merging advance() with the earlier program contran() according to the transpose rule
(AB)′ = B′A′, we get contrunc().

Convolve, shift, and truncate output.

#

subroutine contrunc(conj, add, lag, np,pp, nf,ff, nq,qq)

5.1. FAMILIAR OPERATORS 107

integer ns, conj, add, lag, np, nf, nq

real pp(np) # input data

real ff(nf) # filter (output at ff(lag))

real qq(nq) # filtered data

temporary real ss(np+nf-1)

ns = np + nf - 1

if(conj == 0) {

call contran(0, 0, np,pp, nf,ff, ss)

call advance(0, add, lag-1, ns,ss, nq,qq)

}

else { call advance(1, 0, lag-1, ns,ss, nq,qq)

call contran(1, add, np,pp, nf,ff, ss)

}

return; end

For a symmetrical filter, a lag parameter half of the filter length would be specified. The output
of a minimum-phase filter is defined to be at the beginning of the filter, ff(1), so then lag=1.
The need for an adjoint filtering program will be apparent later, when we design filters for
prediction and interpolation. The program variable add happens to be useful when there are
many signals. Our first real use of add will be found in the subroutine stack1() on page 118.

Another goal of convolution programs is that zero data not be assumed beyond the interval
for which the data is given. This can be important in filter design and spectral estimation,
when we do not want the truncation at the end of the data to have an effect. Thus the output
data is shorter than the input signal. To meet this goal, I prepared subroutine convin().

Convolve and correlate with no assumptions off end of data.

#

subroutine convin(adj, add, nx, xx, nb, bb, yy)

integer ib, iy,ny, adj, add, nx, nb

real xx(nx) # input signal

real bb(nb) # filter (or output crosscorrelation)

real yy(nx-nb+1) # filtered signal (or second input signal)

ny = nx - nb + 1 # length of filtered signal

if(ny < 1) call erexit(’convin() filter output negative length.’)

call adjnull(adj, add, bb, nb, yy, ny)

if(adj == 0)

do iy= 1, ny {

do ib= 1, nb {

yy(iy) = yy(iy) + bb(ib) * xx(iy-ib+nb)

}}

else

do ib= 1, nb {

do iy= 1, ny {

bb(ib) = bb(ib) + yy(iy) * xx(iy-ib+nb)

}}

return; end

By now you are probably tired of looking at so many variations on convolution; but convolu-
tion is the computational equivalent of ordinary differential equations, its applications are vast,
and end effects are important. The end effects of the convolution programs are summarized
in Figure 5.1.

108 CHAPTER 5. ADJOINT OPERATORS

Figure 5.1: Example of convolution
end effects. From top to bottom: (1)
input; (2) filter; (3) output of con-

vin(); (4) output of contrunc() with
no lag (lag=1); and (5) output of con-
tran(). conj-conv [ER]

5.1.5 Kirchhoff modeling and migration

Components of a vector can be summed into a scalar. The adjoint is taking the scalar and
distributing it out to a vector (also called “scattering" or “spraying"). Alternately, values to
be summed can come from a trajectory in a plane, such as a hyperbolic trajectory.

When reflectors in the earth are dipping, or broken into point scatterers, time-to-depth
conversion is not simply a stretching of the time axis. Modeling is done in a variety of ways,
one of which is to model each point in the depth (x , z)-plane by a hyperbola in the data (x , t)-
plane. The adjoint operation consumes much computer power in the petroleum-prospecting
industry and is called “migration." Many migration methods exist, most of which are taken up
in IEI, but that book does not describe the adjoint property I discuss below.

Hyperbola superposition is the adjoint to hyperbola recognition by summing along hyper-
bolas. The summing is called “Kirchhoff migration” or “imaging,” and the spraying is called
“Kirchhoff modeling." The name comes from Kirchhoff’s diffraction integral.

In the pseudocode below, the parameter ih refers to the separation of a point on a hyperbola
from its top at ix. Ignoring “if index off data” tests, I show Kirchhoff modeling and migration
in the pseudocode following:

do iz = 1,nz
do ix = 1,nx

do ih = –25, 25
it = sqrt(iz∗iz + ih∗ih)/velocity
ig = ix + ih
if not adjoint

zz(iz,ix) = zz(iz,ix) + tt(it,ig) # imaging
if adjoint

tt(it,ig) = tt(it,ig) + zz(iz,ix) # modeling

5.2. ADJOINT DEFINED: DOT-PRODUCT TEST 109

We can speed up the program by moving the ix loop to the inside of the square root and
interpolation overheads.

5.1.6 Migration defined

“Migration” is a word in widespread use in reflection seismology to define any data-processing
program that converts a data plane to an image. IEI offers several descriptive definitions of
migration. Here I offer you a mathematical definition of a migration operator: given any
(diffraction) modeling operator B, its adjoint B′ defines a migration operator. This raises the
interesting question, what is the inverse to B, and how does it differ from the adjoint B′?

An adjoint operator is not the same as an inverse operator. Most people think of migration
as the inverse of modeling, but mathematically it is the adjoint of modeling. In many wave-
propagation problems, B−1 and B′ are nearly the same. A formula for B−1 (from (5.14)) is
B−1 = (B′B)−1B′. So the difference between B′ and B−1 is in the factor B′B. Theoreticians
that work in the continuum find something like B′B in the form of a weighting function in the
physical domain or a weighting function in the spectral domain or both. Since it is merely a
weighting function, it is not very exciting to practitioners who are accustomed to weighting
functions in both domains for other purposes, principally for enhancing data display. Indeed,
it could be a pitfall to introduce the weighting function of inversion, because it could interfere
with the data display. The opportunity that I see for inversion lies in practice where B′B is
quite far from an identity matrix for another reason—that data is not a continuum and has
aliasing, truncation, and noise.

A curious aspect of migration arises from the reflection amplitude versus offset (AVO)
along the hyperbola. The effect of changing AVO is to change the dip filtering. Notice that
effort expended to get the correct AVO in the modeling operator affects the migration operator
(the adjoint) without necessarily making it closer to the inverse. It is a pitfall to imagine that
carefully constructing the correct amplitude versus offset in a diffraction operator will make
the corresponding migration operator more effective. The question of whether an inverse
operator is better than an adjoint has no simple answer; its answer depends on circumstances.
So the phrase “true amplitude migration” has questionable meaning.

You might look at the Kirchhoff migration code above and ask, what is the modelling
matrix that is transposed? We don’t see it. We started by defining “adjoint operator” as the
transpose of a matrix, but now we seem to be defining it by a certain programming style. The
abstract vector for Kirchhoff migration is packed with data values from a two-dimensional
(t , x)-plane. The abstract matrix is hard to visualize. How can we know whether we have
defined the adjoint operator correctly? The answer is given next by the dot-product test.

5.2 ADJOINT DEFINED: DOT-PRODUCT TEST

There is a huge gap between the conception of an idea and putting it into practice. During
development, things fail far more often than not. Often, when something fails, many tests

110 CHAPTER 5. ADJOINT OPERATORS

are needed to track down the cause of failure. Maybe the cause cannot even be found. More
insidiously, failure may be below the threshold of detection and poor performance suffered for
years. I find the dot-product test to be an extremely valuable checkpoint.

Conceptually, the idea of matrix transposition is simply a′i j = aj i . In practice, however,
we often encounter matrices far too large to fit in the memory of any computer. Sometimes
it is also not obvious how to formulate the process at hand as a matrix multiplication. What
we find in practice is that an application and its adjoint amounts to two subroutines. The
first subroutine amounts to the matrix multiplication Ax. The adjoint subroutine computes
A′y, where A′ is the transpose matrix. In a later chapter we will be solving huge sets of
simultaneous equations. Then both subroutines are required. We are doomed from the start if
the practitioner provides an inconsistent pair of subroutines. The dot product test is a simple
test for verifying that the two subroutines are adjoint to each other.

The associative property of linear algebra says that we do not need parentheses in a vector-
matrix-vector product like y′Ax because we get the same result no matter where we put the
parentheses. They serve only to determine the sequence of computation. Thus,

y′(Ax) = (y′A)x (5.7)

y′(Ax) = (A′y)′x (5.8)

(In general, the matrix is not square.) For the dot-product test, load the vectors x and y with
random numbers. Compute the vector ỹ=Ax using your program for A, and compute x̃=A′y
using your program for A′. Inserting these into equation (5.8) gives you two scalars that should
be equal.

y′(Ax) = y′ỹ = x̃′x = (A′y)′x (5.9)

The left and right sides of this equation will be computationally equal only if the program
doing A′ is indeed adjoint to the program doing A (unless the random numbers do something
miraculous).

I tested (5.9) on many operators and was surprised and delighted to find that it is often sat-
isfied to an accuracy near the computing precision. More amazing is that on some computers,
equation (5.9) was sometimes satisfied down to and including the least significant bit. I do not
doubt that larger rounding errors could occur, but so far, every time I encountered a relative
discrepancy of 10−5 or more, I was later able to uncover a conceptual or programming error.
Naturally, when I do dot-product tests, I scale the implied matrix to a small dimension in order
to speed things along, and to be sure that boundaries are not overwhelmed by the much larger
interior.

Do not be alarmed if the operator you have defined has truncation errors. Such errors in
the definition of the original operator should be identically matched by truncation errors in
the adjoint. If your code passes the dot-product test, then you really have coded the adjoint
operator. In that case, you can take advantage of the standard methods of mathematics to
obtain inverse operators.

We can speak of a continuous function f (t) or a discrete one ft . For continuous functions
we use integration, and for discrete ones we use summation. In formal mathematics the dot-
product test defines the adjoint operator, except that the summation in the dot product may

5.3. NORMAL MOVEOUT AND OTHER MAPPINGS 111

need to be changed to an integral. The input or the output or both can be given either on a
continuum or in a discrete domain. So the dot-product test y′ỹ= x̃′x could have an integration
on one side of the equal sign and a summation on the other. Linear-operator theory is rich with
concepts, but I will not develop it here. I assume that you studied it before you came to read
this book, and that it is my job to show you how to use it.

5.2.1 What is an adjoint operator?

In mathematics the word “adjoint” has three meanings. One of them, the so-called Hilbert
adjoint, is the one generally found in Physics and Engineering and it is the one used in this
book. In Linear Algebra is a different matrix, called the adjugate matrix. It is a matrix whose
elements are signed cofactors (minor determinants). For invertible matrices, this matrix is the
determinant times the inverse matrix. It is computable without ever using division, so poten-
tially the adjugate can be useful in applications where an inverse matrix cannot. Unfortunately,
the adjugate matrix is sometimes called the adjoint matrix particularly in the older literature.
Because of the confusion of multiple meanings of the word adjoint, in the first printing of
this book I avoided the use of the word, substituting the definition, “conjugate transpose”.
Unfortunately this was often abbreviated to “conjugate” which caused even more confusion.

EXERCISES:

1 Suppose a linear operator A has its input in the discrete domain and its output in the
continuum. How does the operator resemble a matrix? Describe the operator A′ which
has its output in the discrete domain and its input in the continuum. To which do you
apply the words “scales and adds some functions,” and to which do you apply the words
“does a bunch of integrals”? What are the integrands?

2 Examine the end effects in the programs contran() and convin(). Interpret differences
in the adjoints.

3 An operator is “self-adjoint” if it equals its adjoint. Only square matrices can be self-
adjoint. Prove by a numerical test that subroutine leaky() on page 57 is self-adjoint.

4 Prove by a numerical test that the subroutine triangle() on page 52, which convolves
with a triangle and then folds boundary values back inward, is self-adjoint.

5.3 NORMAL MOVEOUT AND OTHER MAPPINGS

Many times we simply deform or stretch a wave field or a map. A curious mapping I once
made was a transformation of world topography (including ocean depth). Great circles play
an important role in global surface-wave propagation because waves travel on the great circles.
In my transformed map, the great circle from Stanford University to the east is plotted as an

112 CHAPTER 5. ADJOINT OPERATORS

equator on a Mercator projection. North at Stanford is plotted vertically as usual. Figure 5.2
shows it.

Figure 5.2: The world as Gerhardus Mercator might have drawn it if he had lived at Stanford
University. Press button for movie (and be patient). conj-great [NR,M]

Deformations can either stretch or shrink or both, and different practical problems arise in
each of these cases.

5.3.1 Nearest-neighbor interpolation

Deformations begin from the task of selecting a value val from an array vec(ix), ix=1,nx.
The points of the array are at locations x = x0+dx*(ix-1). Given the location x of the desired
value we backsolve for ix. In Fortran, conversion of a real value to an integer is done by
truncating the fractional part of the real value. To get rounding up as well as down, we add a
half before conversion to an integer, namely ix=int(1.5+(x-x0)/dx). This gives the nearest
neighbor. The adjoint to extracting a value from a vector is putting it back. A convenient
subroutine for nearest-neighbor interpolation is spot0().

Nearest neighbor interpolation, essentially: val = vec(1.5 + (t-t0)/dt)

#

subroutine spot0(adj, add, nt,t0,dt, t, val, vec)

integer it, adj, add, nt

real t0,dt, t, val, vec(nt)

call adjnull(adj, add, val, 1, vec, nt)

it = 1.5 + (t-t0) / dt

if(0 < it && it <= nt)

if(adj == 0) # add value onto vector

5.3. NORMAL MOVEOUT AND OTHER MAPPINGS 113

vec(it) = vec(it) + val

else # take value from vector

val = val + vec(it)

return; end

Recall subroutine advance() on page 106. For jump==0 its matrix equivalent is an identity
matrix. For other values of jump, the identity matrix has its diagonal shifted up or down. Now
examine subroutine spot0() on the facing page and think about its matrix equivalent. Since
its input is a single value and its output is a vector, that means its matrix is a column vector so
the adjoint operator is a row vector. The vector is all zeros except for somewhere where there
is a “1”.

5.3.2 A family of nearest-neighbor interpolations

Let an integer k range along a survey line, and let data values xk be packed into a vector x.
(Each data point xk could also be a seismogram.) We plan to resample the data more densely,
say from 4 to 6 points. For illustration, I follow a crude nearest-neighbor interpolation
scheme by sprinkling ones along the diagonal of a rectangular matrix that is

y = Bx (5.10)

where ⎡
⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ (5.11)

The interpolated data is simply y = (x1, x2, x2, x3, x4, x4). The matrix multiplication (5.11)
would not be done in practice. Instead there would be a loop running over the space of the
outputs y that picked up values from the input.

Looping over input space

The obvious way to program a deformation is to take each point from the input space and
find where it goes on the output space. Naturally, many points could land in the same place,
and then only the last would be seen. Alternately, we could first erase the output space, then
add in points, and finally divide by the number of points that ended up in each place. The
biggest aggravation is that some places could end up with no points. This happens where the
transformation stretches. There we need to decide whether to interpolate the missing points,
or simply low-pass filter the output.

114 CHAPTER 5. ADJOINT OPERATORS

Looping over output space

The alternate method that is usually preferable to looping over input space is that our program
have a loop over the space of the outputs, and that each output find its input. The matrix multi-
ply of (5.11) can be interpreted this way. Where the transformation shrinks is a small problem.
In that area many points in the input space are ignored, where perhaps they should somehow
be averaged with their neighbors. This is not a serious problem unless we are contemplating
iterative transformations back and forth between the spaces.

We will now address interesting questions about the reversibility of these deformation
transforms.

5.3.3 Formal inversion

We have thought of equation (5.10) as a formula for finding y from x. Now consider the
opposite problem, finding x from y. Begin by multiplying equation (5.11) by the transpose
matrix to define a new quantity x̃:

⎡
⎢⎢⎣

x̃1

x̃2

x̃3

x̃4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.12)

Obviously, x̃ is not the same as x, but at least these two vectors have the same dimensionality.
This turns out to be the first step in the process of finding x from y. Formally, the problem is

y = Bx (5.13)

And the formal solution to the problem is

x = (B′B)−1 B′y (5.14)

Formally, we verify this solution by substituting (5.13) into (5.14).

x = (B′B)−1 (B′B)x = Ix = x (5.15)

In applications, the possible nonexistance of an inverse for the matrix (B′B) is always a topic
for discussion. For now we simply examine this matrix for the interpolation problem. We see
that it is diagonal:

B′B =

⎡
⎢⎢⎣

1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2

⎤
⎥⎥⎦ (5.16)

5.3. NORMAL MOVEOUT AND OTHER MAPPINGS 115

So, x̃1 = x1; but x̃2 = 2x2. To recover the original data, we need to divide x̃ by the diagonal
matrix B′B. Thus, matrix inversion is easy here.

Equation (5.14) has an illustrious reputation, which arises in the context of “least squares.”
Least squares is a general method for solving sets of equations that have more equations than
unknowns.

Recovering x from y using equation (5.14) presumes the existence of the inverse of B′B.
As you might expect, this matrix is nonsingular when B stretches the data, because then a few
data values are distributed among a greater number of locations. Where the transformation
squeezes the data, B′B must become singular, since returning uniquely to the uncompressed
condition is impossible.

We can now understand why an adjoint operator is often an approximate inverse. This
equivalency happens in proportion to the nearness of the matrix B′B to an identity matrix.
The interpolation example we have just examined is one in which B′B differs from an identity
matrix merely by a scaling.

5.3.4 Nearest-neighbor NMO

Normal-moveout correction (NMO) is a geometrical correction of reflection data that stretches
the time axis so that data recorded at nonzero separation x0 of shot and receiver, after stretch-
ing, appears to be at x0 = 0. See Figure 5.3. NMO correction is roughly like time-to-depth

Figure 5.3: A sound emitter at loca-
tion s on the earth’s surface z = 0,
and rays from a horizontal reflector at
depth z reflecting back to surface lo-
cations xi . conj-geometry [ER]

conversion with the equation v2t2 = z2+ x2
0 . After the data at x0 is stretched from t to z, it

should look like stretched data from any other x (assuming plane horizontal reflectors, etc.). In
practice, z is not used; rather, traveltime depth τ is used, where τ = z/v; so t 2 = τ 2+ x2

0/v2.

To show how surfaces deform under moveout correction, I took a square of text and de-
formed it according to the NMO correction equation and its inverse. This is shown in Fig-
ure 5.4. The figure assumes a velocity of unity, so the asymptotes of the hyperbolas lie at 45◦.
The main thing to notice is that NMO stretches information at wide offsets and early time,
whereas modeling, its inverse, squeezes it. More precisely, starting from the center panel, ad-
joint NMO created the left panel, and NMO created the right panel. Notice that adjoint NMO
throws away data at late time, whereas NMO itself throws away data at early time. Otherwise,
adjoint NMO in this example is the same as inverse NMO.

Normal moveout is a linear operation. This means that data can be decomposed into any
two parts, early and late, high frequency and low, smooth and rough, steep and shallow dip,

116 CHAPTER 5. ADJOINT OPERATORS

Figure 5.4: Roughly, NMO takes each panel to the one on its right. conj-frazer [ER]

etc.; and whether the two parts are NMO’ed either separately or together, the result is the
same, i.e., N(a+b)= Na+Nb.

Figure 5.5 shows a marine dataset before and after NMO correction at the water velocity.
You can notice that the wave packet reflected from the ocean bottom is approximately a con-
stant width on the raw data. After NMO, however, this waveform broadens considerably—a
phenomenon known as “NMO stretch."

Figure 5.5: Marine data moved out
with water velocity. Input on the
left, output on the right. Press button
for movie sweeping through velocity
(actually through slowness squared).
conj-stretch [ER,M]

The NMO transformation N is representable as a square matrix. The matrix N is a (τ , t)-
plane containing all zeros except an interpolation operator centered along the hyperbola. The
dots in the matrix below are zeros. The input signal xt is put into the vector x. (This xt should
not be confused with the x0 denoting distance in the hyperbola t2 = τ 2+ x2

0/v2.) The output
vector y—i.e., the NMO’ed signal—is simply (x6, x6, x6, x7, x7, x8, x8, x9, x10,0). In real life,

5.3. NORMAL MOVEOUT AND OTHER MAPPINGS 117

the subscript would go up to about one thousand instead of merely to ten.

y = Nx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. 1

. 1

. 1

. 1 . . .

. 1 . . .

. 1 . .

. 1 . .

. 1 .

. 1

.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.17)

You can think of the matrix as having a horizontal t-axis and a vertical τ -axis. The 1’s in the
matrix are arranged on the hyperbola t2 = τ 2+ x2

0/v2. The transpose matrix defining some x̃
from y gives pseudodata x̃ from the zero-offset (or stack) model y, namely,

x̃ = N′y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃1

x̃2

x̃3

x̃4

x̃5

x̃6

x̃7

x̃8

x̃9

x̃10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.

.

.

.

.
1 1 1
. . . 1 1
. 1 1 . . .
. 1 . .
. 1 .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.18)

A program for nearest-neighbor normal moveout as defined by equations (5.17) and (5.18)
is nmo1(). Because of the limited alphabet of programming languages, I used the keystroke z

to denote τ .

subroutine nmo1(adj, add, slow, x, t0, dt, n,zz, tt)

integer it, iz, adj, add, n

real xs, t , z, slow(n), x, t0, dt, zz(n), tt(n), wt

call adjnull(adj, add, zz,n, tt,n)

do iz= 1, n { z = t0 + dt*(iz-1)

xs = x * slow(iz)

t = sqrt (z * z + xs * xs) + 1.e-20

wt = z/t * (1./sqrt(t)) # weighting function

it = 1 + .5 + (t - t0) / dt

if(it <= n)

if(adj == 0)

tt(it) = tt(it) + zz(iz) * wt

else

zz(iz) = zz(iz) + tt(it) * wt

}

return; end

118 CHAPTER 5. ADJOINT OPERATORS

5.3.5 Stack

Typically, many receivers record every shot. Each seismogram can be transformed by NMO
and the results all added. This is called “stacking” or “NMO stacking.” The adjoint to this
operation is to begin from a model that is identical to the near-offset trace and spray this trace
to all offsets. There is no “official” definition of which operator of an operator pair is the
operator itself and which is the adjoint. On the one hand, I like to think of the modeling
operation itself as the operator. On the other hand, the industry machinery keeps churning
away at many processes that have well-known names, so I often think of one of them as the
operator. Industrial data-processing operators are typically adjoints to modeling operators.

Figure 5.6 illustrates the operator pair, consisting of spraying out a zero-offset trace (the
model) to all offsets and the adjoint of the spraying, which is stacking. The moveout and stack
operations are in subroutine stack1().

subroutine stack1(adj, add, slow, t0,dt, x0,dx, nt,nx, stack, gather)

integer ix, adj, add, nt,nx

real x, slow(nt), t0,dt, x0,dx, stack(nt), gather(nt,nx)

call adjnull(adj, add, stack,nt, gather,nt*nx)

do ix= 1, nx {

x = x0 + dx * (ix-1)

call nmo1(adj, 1, slow, x, t0,dt, nt, stack, gather(1,ix))

}

return; end

Let S denote NMO, and let the stack be defined by invoking stack1() with the conj=0 argu-
ment. Then S′ is the modeling operation defined by invoking stack1() with the conj=1 argu-
ment. Figure 5.6 illustrates both. Notice the roughness on the waveforms caused by different

Figure 5.6: Top is a model trace m.
Center shows the spraying to syn-
thetic traces, S′m. Bottom is the
stack of the synthetic data, SS′m.
conj-stack [ER]

numbers of points landing in one place. Notice also the increase of AVO as the waveform gets
compressed into a smaller space. Finally, notice that the stack is a little rough, but the energy
is all in the desired time window.

We notice a contradiction of aspirations. On the one hand, an operator has smooth outputs
if it “loops over output space” and finds its input where-ever it may. On the other hand, it

5.3. NORMAL MOVEOUT AND OTHER MAPPINGS 119

is nice to have modeling and processing be exact adjoints of each other. Unfortunately, we
cannot have both. If you loop over the output space of an operator, then the adjoint operator
has a loop over input space and a consequent roughness of its output.

Unfortunately, the adjoint operator N′ defined by the subroutine nmo1() on page 117 is not
a good operator for seismogram modeling—notice the roughness of the synthetic seismograms
in Figure 5.6. This roughness is not an inevitable consequence of nearest-neighbor interpo-
lation. It is a consequence of defining the NMO program as a loop over the output space τ .
Instead, we can define inverse NMO as a loop over its output space, which is not τ but t . This
is done in imo1() on this page.

subroutine imo1(adj, add, xs, t0, dt, nt, zz, tt)

integer adj, add, nt, it, iz

real t0, dt, zz(nt), tt(nt), t, xs, zsquared

call adjnull(adj, add, zz,nt, tt,nt)

do it= 1, nt { t = t0 + dt*(it-1)

zsquared = t * t - xs * xs

if (zsquared >= 0.) { iz = 1.5 + (sqrt(zsquared) - t0) /dt

if (iz > 0) { if(adj == 0)

tt(it) = tt(it) + zz(iz)

else

zz(iz) = zz(iz) + tt(it)

}

}

}

return; end

inverse moveout and spray into a gather.

#

subroutine imospray(adj, add, slow, x0,dx, t0,dt, nx,nt, stack, gather)

integer ix, adj, add, nx,nt

real xs, slow, x0,dx, t0,dt, stack(nt), gather(nt,nx)

call adjnull(adj, add, stack,nt, gather, nt*nx)

do ix= 1, nx {

xs = (x0 + dx * (ix-1)) * slow

call imo1(adj, 1, xs, t0, dt, nt, stack, gather(1,ix))

}

return; end

120 CHAPTER 5. ADJOINT OPERATORS

5.3.6 Pseudoinverse to nearest-neighbor NMO

Examine the matrix N′N:

N′N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.

.

.

.

.

. 3

. 2 . . .

. 2 . .

. 1 .

. 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.19)

Any mathematician will say that equation (5.19) is not invertible because the zeros on the
diagonal make it singular. But as a geophysicist, you know better. Our inverse, called a
“pseudoinverse,” is

(N′N)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.

.

.

.

.

. 1
3

. 1
2 . . .

. 1
2 . .

. 1 .

. 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.20)

We could write code for inverse NMO, which is an easy task, or we could try to write code for
inverse NMO and stack, which has no clean solution known to me. Instead, we move to other
topics.

5.3.7 Null space and inconsistency

The normal-moveout transformation is a textbook example of some of the pathologies of si-
multaneous equation solving. Reexamine equation (5.17), thinking of it as a set of simulta-
neous equations for xi given yi . First, (5.17) shows that there may exist a set of yi for which
no solution xi is possible—any set containing y10
= 0, for example. This is an example of
inconsistency in simultaneous equations. Second, there are x vectors that satisfy Nx = 0, so
any number of such vectors can be added into any solution and it remains a solution. These
solutions are called the “null space." Here these solutions are the arbitrary values of x1, x2, x3,
x4, and x5 that obviously leave y unaffected. Typical matrices disguise their inconsistencies
and null spaces better than does the NMO transformation. To make such a transformation,

5.3. NORMAL MOVEOUT AND OTHER MAPPINGS 121

we could start from the NMO transformation and apply any coordinate transformation to the
vectors x and y.

EXERCISES:

1 A succession of normal-moveout operators is called “cascaded NMO.” Consider NMO
from time t ′′ to traveltime depth t ′ by t ′′2 = t ′2+ x2/v2

2, followed by another NMO trans-
form which uses the transformation equation t ′2 = t2+ x2/v2

1. Show that the overall
transformation is another NMO transformation. What is its velocity? Notice that cas-
caded NMO can be used to correct an NMO velocity. Thus it can be called residual
velocity analysis or residual normal moveout.

5.3.8 NMO with linear interpolation

NMO with linear interpolation implies that the matrix N is a two-band matrix. Each row
has exactly two elements that interpolate between two elements on the input. I will sketch the
appearance of the matrix, using the letters a and b for the elements. Each a and b is different
numerically, but on a given row, a+b = 1.⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . a b

. . . . a b

. . . . a b

. a b . . .

. a b . . .

. a b . .

. a b . .

. a b .

. a b

. a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.21)

Here the matrix N′N is tridiagonal, but I am going to let you work out the details by yourself.
The original data can be recovered by solving the tridiagonal system. This method can be used
to program an invertible NMO or to program an invertible trace interpolation. I do not want
to clutter this book with the many details. Instead, I present spot1(), a convenient subroutine
for linear interpolation that can be used in many applications.

Nearest neighbor interpolation would do this: val = vec(1.5 + (t-t0)/dt)

This is the same but with _linear_ interpolation.

#

subroutine spot1(adj, add, nt,t0,dt, t, val, vec)

integer it, itc, adj, add, nt

real tc, fraction, t0,dt, t, val, vec(nt)

call adjnull(adj, add, val, 1, vec,nt)

tc = (t-t0) / dt

itc = tc

it = 1 + itc; fraction = tc - itc

122 CHAPTER 5. ADJOINT OPERATORS

if(1 <= it && it < nt)

if(adj == 0) { # add value onto vector

vec(it) = vec(it) + (1.-fraction) * val

vec(it+1) = vec(it+1) + fraction * val

}

else # take value from vector

val = val + (1.-fraction) * vec(it) + fraction * vec(it+1)

return; end

5.4 DERIVATIVE AND INTEGRAL

Differentiation and integration are very basic operations. Their adjoints are best understood
when they are represented in the sampled-time domain, rather than the usual time continuum.

5.4.1 Adjoint derivative

Given a sampled signal, its time derivative can be estimated by convolution with the filter
(1,−1)/�t . This could be done with any convolution program. For example if we choose to
ignore end effects we might select convin() on page 107. This example arises so frequently
that I display the matrix multiply below:

⎡
⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−1 1

. −1 1 . . .

. . −1 1 . .

. . . −1 1 .

. . . . −1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.22)

The filter impulse response is seen in any column in the middle of the matrix, namely (1,−1).
In the transposed matrix the filter impulse response is time reversed to (−1,1). So, math-
ematically, we can say that the adjoint of the time derivative operation is the negative time
derivative. This corresponds also to the fact that the complex conjugate of −iω is iω. We can
also speak of the adjoint of the boundary conditions: we might say the adjoint of “no boundary
condition” is “specified value” boundary conditions.

Banded matrices like in (5.21) and (5.22) arise commonly, and subroutines like convin()

on page 107 are awkward and over-general because they sum with a do loop where a mere
statement of the two terms is enough. This is illustrated in subroutine ruffen1(). Notice the
adjoint calculation resembles that in spot1() on the page before.

subroutine ruffen1(adj, n, xx, yy)

integer i, adj, n

real xx(n), yy(n-1)

call adjnull(adj, 0, xx,n, yy, n-1)

do i= 1, n-1 {

if(adj == 0)

5.5. CAUSAL INTEGRATION RECURSION 123

yy(i) = yy(i) + xx(i+1) - xx(i)

else {

xx(i+1) = xx(i+1) + yy(i)

xx(i) = xx(i) - yy(i)

}

}

return; end

5.5 CAUSAL INTEGRATION RECURSION

Causal integration is defined as

y(t) =
∫ t

−∞
x(t) dt (5.23)

Sampling the time axis gives a matrix equation which we should call causal summation, but
we often call it causal integration.⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.24)

(In some applications the 1 on the diagonal is replaced by 1/2.) Causal integration is the
simplest prototype of a recursive operator. The coding is trickier than operators we considered
earlier. Notice when you compute y5 that it is the sum of 6 terms, but that this sum is more
quickly computed as y5 = y4+ x5. Thus equation (5.24) is more efficiently thought of as the
recursion

yt = yt−1+ xt for increasing t (5.25)

(which may also be regarded as a numerical representation of the differential equation dy/dt =
x .)

When it comes time to think about the adjoint, however, it is easier to think of equa-
tion (5.24) than of (5.25). Let the matrix of equation (5.24) be called C. Transposing to get C′
and applying it to y gives us something back in the space of x, namely x̃ = C′y. From it we
see that the adjoint calculation, if done recursively, needs to be done backwards like

x̃t−1 = x̃t + yt−1 for decreasing t (5.26)

We can sum up by saying that the adjoint of causal integration is anticausal integration.

124 CHAPTER 5. ADJOINT OPERATORS

A subroutine to do these jobs is causint() on this page. The code for anticausal inte-
gration is not obvious from the code for integration and the adjoint coding tricks we learned
earlier. To understand the adjoint, you need to inspect the detailed form of the expression
x̃= C′y and take care to get the ends correct.

causal integration (1’s on diagonal)

#

subroutine causint(adj, add, n,xx, yy)

integer i, n, adj, add; real xx(n), yy(n)

temporary real tt(n)

call adjnull(adj, add, xx,n, yy,n)

if(adj == 0){ tt(1) = xx(1)

do i= 2, n

tt(i) = tt(i-1) + xx(i)

do i= 1, n

yy(i) = yy(i) + tt(i)

}

else { tt(n) = yy(n)

do i= n, 2, -1

tt(i-1) = tt(i) + yy(i-1)

do i= 1, n

xx(i) = xx(i) + tt(i)

}

return; end

Figure 5.7: in1 is an input pulse. C

in1 is its causal integral. C’ in1 is
the anticausal integral of the pulse.
in2 is a separated doublet. Its causal
integration is a box and its anti-
causal integration is the negative. CC

in2 is the double causal integral of
in2. How can a triangle be built?
conj-causint [ER]

Later we will consider equations to march wavefields up towards the earth’s surface, a
layer at a time, an operator for each layer. Then the adjoint will start from the earth’s surface
and march down, a layer at a time, into the earth.

EXERCISES:

1 Modify the calculation in Figure 5.7 to make a triangle waveform on the bottom row.

5.6. UNITARY OPERATORS 125

5.5.1 Readers’ guide

Now we have completed our discussion of most of the essential common features of adjoint
operators. You can skim forward to the particular operators of interest to you without fear of
missing anything essential.

5.6 UNITARY OPERATORS

The nicest operators are unitary. Let us examine the difference between a unitary operator and
a nonunitary one.

5.6.1 Meaning of B’B

A matrix operation like B′B arises whenever we travel from one space to another and back
again. The inverse of this matrix arises when we ask to return from the other space with no
approximations. In general, B′B can be complicated beyond comprehension, but we have seen
some recurring features. In some cases this matrix turned out to be a diagonal matrix which
is a scaling function in the physical domain. With banded matrices, the B′B matrix is also a
banded matrix, being tridiagonal for B operators of both (5.22) and (5.21). The banded matrix
for the derivative operator (5.22) can be thought of as the frequency domain weighting factor
ω2. We did not examine B′B for the filter operator, but if you do, you will see that the rows
(and the columns) of B′B are the autocorrelation of the filter. A filter in the time domain is
simply a weighting function in the frequency domain.

The tridiagonal banded matrix for linearly-interpolated NMO is somewhat more compli-
cated to understand, but it somehow represents the smoothing inherent to the composite pro-
cess of NMO followed by adjoint NMO, so although we may not fully understand it, we can
think of it as some multiplication in the spectral domain as well as some rescaling in the phys-
ical domain. Since B′B clusters on the main diagonal, it never has a “time-shift” behavior.

5.6.2 Unitary and pseudounitary transformation

A so-called unitary transformation U conserves energy. In other words, if v= Ux, then
x′x= v′v, which requires U′U= I. Imagine an application where the transformation seems
as if it should not destroy information. Can we arrange it to conserve energy? The conven-
tional inversion

y = Bx (5.27)

x = (B′B)−1B′y (5.28)

can be verified by direct substitution. Seeking a more symmetrical transformation between y
and x than the one above, we define

U = B(B′B)−1/2 (5.29)

126 CHAPTER 5. ADJOINT OPERATORS

and the transformation pair

v = Ux (5.30)

x = U′v (5.31)

where we can easily verify that x′x= v′v by direct substitution. In practice, it would often be
found that v is a satisfactory substitute for y, and further that the unitary property is often a
significant advantage.

Is the operator U unitary? It would not be unitary for NMO, because equation (5.19) is
not invertible. Remember that we lost (x1, x2, x3, x4, and x5) in (5.17). U is unitary, however,
except for lost points, so we call it “pseudounitary." A trip into and back from the space
of a pseudounitary operator is like a pass through a bandpass filter. Something is lost the
first time, but no more is lost if we do it again. Thus, x
= U′Ux, but U′Ux = U′U(U′Ux)
for any x. Furthermore, (U′U)2 = U′U, but U′U
= I. In mathematics the operators U′U and
UU′ are called “idempotent" operators. Another example of an idempotent operator is that of
subroutine advance() on page 106

5.6.3 Pseudounitary NMO with linear interpolation

It is often desirable to work with transformations that are as nearly unitary as possible, i.e., their
transpose is their pseudoinverse. These transformations are pseudounitary. Let us make NMO
with linear interpolation into a pseudounitary transformation. We need to factor the tridiago-
nal matrix N′N= T into bidiagonal parts, T= B′B. One such factorization is the well-known
Cholesky decomposition; which is like spectral factorization. (We never really need to look at
square roots of matrices). Then we will define pseudounitary NMO as U= NB−1. To con-
firm the unitary property, we check that U′U = B′−1N′NB−1 = B′−1B′BB−1 = I. An all-pass
filter is a ratio of two terms, both with the same color, the denominator minimum phase, and
the numerator not. Analogously, in U=NB−1, the numerator time shifts, and the denominator
corrects the numerator’s color.

EXERCISES:

1 Explain why normal moveout is not generally invertible where velocity depends on depth.

2 What adaptations should be made to equation (5.17) to make it pseudounitary?

3 Extend subroutine wavekill1() on page 94 to include the adjoint considering the wave
input to be dual to its output (not considering the filter to be dual to the output).

5.7 VELOCITY SPECTRA

An important transformation in exploration geophysics is from data as a function of shot-
receiver offset to data as a function of apparent velocity. To go from offset to velocity, the

5.8. INTRODUCTION TO TOMOGRAPHY 127

transformation sums along hyperbolas of many velocities. The adjoint is a superposition of
hyperbolas of all the different velocities. Pseudocode for these transformations is

do v

do τ

do x
t =√

τ 2+ x2/v2

if hyperbola superposition
data(t , x)= data(t , x) + vspace(τ ,v)

else if velocity analysis
vspace(τ ,v)=vspace(τ ,v)+data(t , x)

5.8 INTRODUCTION TO TOMOGRAPHY

Tomography is the reconstruction of a function from line integrals through the function. To-
mography has become a routine part of medicine, and an experimental part of earth sciences.
For illustration, a simple arrangement is well-to-well tomography. A sound source can be
placed at any depth in one well and receivers placed at any depth in another well. At the
sender well, we have sender depths s, and at the receiver well, we have receiver depths g. Our
data is a table t(s, g) of traveltimes from s to g. The idea is to try to map the area between
the wells. We divide the area between wells into cells in (x , z)-space. The map could be one
of material velocities or one of absorptivity. The traveltime of a ray increases by adding the
slownesses of cells traversed by the ray. Our model is a table s(x , z) of slownesses in the
plane between wells. (Alternately, the logarithm of the amplitude of the ray is a summation of
absorptivities of the cells traversed.) The pseudocode is

do s = range of sender locations
do g = range of receiver locations

z = z(s) # depth of sender.
θ = θ(s,g) # ray take-off angle.
do x = range from senders to receivers.

z = z+�x tanθ # ray tracing
if modeling

tsg = tsg+ sxz �x/cosθ

else tomography
sxz = sxz+ tsg �x/cosθ

In the pseudocode above, we assumed that the rays were straight lines. The problem remains
one of linear operators even if the rays curve, making ray tracing more complicated. If the

128 CHAPTER 5. ADJOINT OPERATORS

solution s(x , z) is used to modify the ray tracing then the problem becomes nonlinear, requiring
the complexities of nonlinear optimization theory.

5.8.1 Units

Notice that the physical units of an operator (such as the meters or feet implied by �x) are the
same as the physical units of the adjoint operator. The units of an inverse operator, however, are
inverse to the units of the original operator. Thus it is hard to imagine that an adjoint operator
could ever be a satisfactory approximation to the inverse. We know, however, that adjoints
often are a satisfactory approximation to an inverse, which means then that either (1) such
operators do not have physical units, or (2) a scaling factor in the final result is irrelevant. With
the tomographic operator, the adjoint is quite far from the inverse so practicioners typically
work from the adjoint toward the inverse.

Some operators are arrays with different physical units for different array elements. For
these operators the adjoint is unlikely to be a satisfactory approximation to the inverse since
changing the units changes the adjoint. A way to bring all components to the same units is
to redefine each member of data space and model space to be itself divided by its variance.
Alternately, again we can abandon the idea of finding immediate utility in the adjoint of an
operator and and we could progress from the adjoint toward the inverse.

EXERCISES:

1 Show how to adapt tomography for “fat” rays of thickness Nz points along the z-axis.

5.9 STOLT MIGRATION

NMO is based on the quadratic equation v2t2 = z2+ x2 (as explained in IEI). Stolt migration
is based on the quadratic equation ω2/v2 = k2

z + k2
x , which is the dispersion relation of the

scalar wave equation. Stolt migration is NMO in the Fourier domain (see IEI). Denote the
Fourier transform operator by F and the Stolt operator by S, where

S = F′NF (5.32)

A property of matrix adjoints is (ABC)′ = C′B′A′. We know the transpose of NMO, and
we know that the adjoint of Fourier transformation is inverse Fourier transformation. So

S′ = F′N′F (5.33)

We see then that the transpose to Stolt modeling is Stolt migration. (There are a few more
details with Stolt’s Jacobian.)

5.10. REFERENCES 129

5.10 References

Nolet, G., 1985, Solving or resolving inadequate and noisy tomographic systems: J. Comp.
Phys., 61, 463-482.

Thorson, J.R., 1984, Velocity stack and slant stack inversion methods: Ph.D. thesis, Stanford
University.

130 CHAPTER 5. ADJOINT OPERATORS

Chapter 6

Model fitting by least squares

The first level of computer use in science and engineering is “modeling." Beginning from
physical principles and design ideas, the computer mimics nature. After this, the worker looks
at the result and thinks a while, then alters the modeling program and tries again. The next,
deeper level of computer use is that the computer itself examines the results of modeling
and reruns the modeling job. This deeper level is variously called “fitting" or “inversion."
The term “processing" is also used, but it is broader, including the use of adjoint operators
(as discussed in chapter 5). Usually people are more effective than computers at fitting or
inversion, but some kinds of fitting are more effectively done by machines. A very wide range
of methods comes under the heading of “least squares,” and these methods are the topic of
this chapter and chapters 7 through ??.

A part of basic education in mathematics is the fitting of scattered points on a plane to
a straight line. That is a simple example of inversion, a topic so grand and broad that some
people think of learning to do inversion as simply “learning.” Although I will be drawing many
examples from my area of expertise, namely, earth soundings analysis, the methods presented
here are much more widely applicable.

6.1 MULTIVARIATE LEAST SQUARES

As described at the beginning of chapter 4, signals and images will be specified here by num-
bers packed into abstract vectors. We consider first a hypothetical application with one data
vector d and two fitting vectors b1 and b2. Each fitting vector is also known as a “regressor."
Our first task is to try to approximate the data vector d by a scaled combination of the two
regressor vectors. The scale factors x1 and x2 should be chosen so that the model matches the
data, i.e.,

d ≈ b1x1+b2x2 (6.1)

For example, if I print the characters “P” and “b” on top of each other, I get “Pb,” which looks
something like an image of the letter “B.” This is analogous to d≈ b1+b2. More realistically,
d could contain a sawtooth function of time, and b1 and b2 could be sinusoids. Still more

131

132 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

realistically, d could be an observed 2-D wave field, and b1 and b2 could be theoretical data
in two parts, where the contribution of each part is to be learned by fitting. (One part could be
primary reflections and the other multiple reflections.)

Notice that we could take the partial derivative of the data in (6.1) with respect to an
unknown, say x1, and the result is the regressor b1.

The partial derivative of all data with respect to any model parameter gives a regressor.
A regressor is a column in the partial-derivative matrix.

Equation (6.1) is often expressed in the more compact mathematical matrix notation d ≈
Bx, but in our derivation here we will keep track of each component explicitly and use math-
ematical matrix notation to summarize the final result. Fitting the data d to its two theoretical
components can be expressed as minimizing the length of the residual vector r, where

r = d−b1x1−b2x2 (6.2)

So we construct a sum of squares (also called a “quadratic form") of the components of the
residual vector by using a dot product:

Q(x1, x2) = r · r (6.3)

= (d−b1x1−b2x2) · (d−b1x1−b2x2) (6.4)

The gradient of Q(x1, x2)/2 is defined by its two components:

∂ Q

∂x1
= −b1 · (d−b1x1−b2x2)− (d−b1x1−b2x2) ·b1 (6.5)

∂ Q

∂x2
= −b2 · (d−b1x1−b2x2)− (d−b1x1−b2x2) ·b2 (6.6)

Setting these derivatives to zero and using (b1 ·b2)= (b2 ·b1) etc., we get

(b1 ·d) = (b1 ·b1)x1+ (b1 ·b2)x2 (6.7)

(b2 ·d) = (b2 ·b1)x1+ (b2 ·b2)x2 (6.8)

which two equations we can use to solve for the two unknowns x1 and x2. Writing this expres-
sion in matrix notation, we have[

(b1 ·d)
(b2 ·d)

]
=

[
(b1 ·b1) (b1 ·b2)
(b2 ·b1) (b2 ·b2)

] [
x1

x2

]
(6.9)

It is customary to use matrix notation without dot products. For this we need some additional
definitions. To clarify these definitions, I choose the number of components in the vectors b1,
b2, and d to be three. Thus I can explicitly write a matrix B in full as

B = [b1 b2] =
⎡
⎣ b11 b12

b21 b22

b31 b32

⎤
⎦ (6.10)

6.1. MULTIVARIATE LEAST SQUARES 133

Likewise, the transposed matrix B′ is defined by

B′ =
[

b11 b21 b31

b12 b22 b32

]
(6.11)

The matrix in equation (6.9) contains dot products. Matrix multiplication is an abstract way
of representing the dot products:

[
(b1 ·b1) (b1 ·b2)
(b2 ·b1) (b2 ·b2)

]
=

[
b11 b21 b31

b12 b22 b32

]⎡
⎣ b11 b12

b21 b22

b31 b32

⎤
⎦ (6.12)

Thus, equation (6.9) without dot products is

[
b11 b21 b31

b12 b22 b32

] ⎡
⎣ d1

d2

d3

⎤
⎦ =

[
b11 b21 b31

b12 b22 b32

]⎡
⎣ b11 b12

b21 b22

b31 b32

⎤
⎦[

x1

x2

]
(6.13)

which has the matrix abbreviation

B′d = (B′ B)x (6.14)

Equation (6.14) is the classic result of least-squares fitting of data to a collection of regressors.
Obviously, the same matrix form applies when there are more than two regressors and each
vector has more than three components. Equation (6.14) leads to an analytic solution for x
using an inverse matrix. To solve formally for the unknown x, we premultiply by the inverse
matrix (B′ B)−1:

x = (B′ B)−1 B′d (6.15)

Equation (6.15) is the central result of least-squares analysis. We see it everywhere.

Equation (6.12) is an example of what is called a “covariance matrix.” Such matrices
usually need to be inverted, and in equation (6.15) you already see an example of the oc-
currence of an inverse covariance matrix. Any description of an application of least-squares
fitting will generally include some discussion of the covariance matrix—how it will be com-
puted, assumed, or estimated, and how its inverse will be found or approximated. In chapter 4
we found the need to weight residuals by the inverse of their scale. That was our first example
of the occurrence of an inverse covariance matrix—although in that case the matrix size was
only 1×1.

In our first manipulation of matrix algebra, we move around some parentheses in (6.14):

B′d = B′ (Bx) (6.16)

Moving the parentheses implies a regrouping of terms or a reordering of a computation. You
can verify the validity of moving the parentheses by writing (6.16) in full as the set of two

134 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

equations it represents. Equation (6.14) led to the “analytic” solution (6.15). In a later sec-
tion on conjugate gradients, we will see that equation (6.16) expresses better than (6.15) the
philosophy of computation.

Notice how equation (6.16) invites us to cancel the matrix B′ from each side. We cannot
do that of course, because B′ is not a number, nor is it a square matrix with an inverse. If you
really want to cancel the matrix B′, you may, but the equation is then only an approximation
that restates our original goal (6.1):

d ≈ Bx (6.17)

A speedy problem solver might ignore the mathematics covering the previous page, study
his or her application until he or she is able to write the statement of wishes (6.17) = (6.1),
premultiply by B′, replace ≈ by =, getting (6.14), and take (6.14) to a simultaneous equation-
solving program to get x.

The formal literature does not speak of “statement of wishes” but of “regression," which
is the same concept. In a regression, there is an abstract vector called the residual r= d−Bx
whose components should all be small. Formally this is often written as:

min
x
||d−Bx|| (6.18)

The notation above with two pairs of vertical lines looks like double absolute value, but we
can understand it as a reminder to square and sum all the components. This notation is more
explicit about what is being minimized, but I often find myself sketching out applications in
the form of a “statement of wishes,” which I call a “regression.”

6.1.1 Inverse filter example

Let us take up a simple example of time-series analysis. Given the input, say (· · · , 0,0,2,1,0,0, · · ·),
to some filter, say f= (f0, f1), then the output is necessarily c= (2 f0, f0+2 f1, f1). To design
an inverse filter, we would wish to have c come out as close as possible to (1,0,0). So the
statement of wishes (6.17) is ⎡

⎣ 1
0
0

⎤
⎦ ≈

⎡
⎣ 2 0

1 2
0 1

⎤
⎦ [

f0

f1

]
(6.19)

The method of solution is to premultiply by the matrix B′, getting

[
2 1 0
0 2 1

] ⎡
⎣ 1

0
0

⎤
⎦ =

[
2 1 0
0 2 1

]⎡
⎣ 2 0

1 2
0 1

⎤
⎦[

f0

f1

]
(6.20)

Thus, [
2
0

]
=

[
5 2
2 5

] [
f0

f1

]
(6.21)

6.1. MULTIVARIATE LEAST SQUARES 135

and the inverse filter comes out to be[
f0

f1

]
= 1

21

[
5 −2
−2 5

] [
2
0

]
=

[10
21− 4
21

]
(6.22)

Inserting this value of (f0, f1) back into (6.19) yields the actual output (20
21 ,+ 2

21 ,− 4
21), which

is not a bad approximation to (1,0,0).

6.1.2 Normal equations

The basic least-squares equations are often called the “normal" equations. The word “normal"
means perpendicular. We can rewrite equation (6.16) to emphasize the perpendicularity. Bring
both terms to the left, and recall the definition of the residual r from equation (6.2):

B′(d−Bx) = 0 (6.23)

B′r = 0 (6.24)

Equation (6.24) says that the residual vector r is perpendicular to each row in the B′ matrix.
These rows are the fitting functions. Therefore, the residual, after it has been minimized, is
perpendicular to the fitting functions.

6.1.3 Differentiation by a complex vector

Complex numbers frequently arise in physical problems, particularly with Fourier series. Let
us extend the multivariable least-squares theory to the use of complex-valued unknowns x.
First recall how complex numbers were handled with single-variable least squares, i.e., as in
the discussion leading up to equation (??). Use prime, such as x′, to denote the complex
conjugate of the transposed vector x. Now write the positive quadratic form as

Q(x′,x) = (Bx−d)′(Bx−d) = (x′B′ −d′)(Bx−d) (6.25)

In chapter 4 (after equation (4.16)), we minimized a quadratic form Q(X̄ , X) by setting to
zero both ∂ Q/∂ X̄ and ∂ Q/∂ X . We noted that only one of ∂ Q/∂ X̄ and ∂ Q/∂ X is necessary
because they are conjugates of each other. Now take the derivative of Q with respect to the
(possibly complex, row) vector x′. Notice that ∂ Q/∂x′ is the complex conjugate transpose of
∂ Q/∂x. Thus, setting one to zero sets the other also to zero. Setting ∂ Q/∂x′ = 0 gives the
normal equations:

0 = ∂ Q

∂x′
= B′(Bx−d) (6.26)

The result is merely the complex form of our earlier result (6.14). Therefore, differentiating by
a complex vector is an abstract concept, but it gives the same set of equations as differentiating
by each scalar component, and it saves much clutter.

136 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

6.1.4 Time domain versus frequency domain

Equation (??) is a frequency-domain quadratic form that we minimized by varying a single
parameter, a Fourier coefficient. Now we will look at the same problem in the time domain.
The time domain offers new flexibility with boundary conditions, constraints, and weighting
functions. The notation will be that a filter f t has input xt and output yt . In Fourier space this
is Y = X F . There are two problems to look at, unknown filter F and unknown input X .

Unknown filter

Given inputs and outputs, the problem of finding an unknown filter appears to be overdeter-
mined, so we write y≈ Xf where the matrix X is a matrix of downshifted columns like (6.19).
Thus the quadratic form to be minimized is a restatement of equation (6.25) using filter defi-
nitions:

Q(f′, f) = (Xf−y)′(Xf−y) (6.27)

The solution f is found just as we found (6.26), and it is the set of simultaneous equations
0= X′(Xf−y).

Unknown input: deconvolution with a known filter

For the unknown input problem we put the known filter ft in a matrix of downshifted columns
F. Our statement of wishes is now to find xt so that y ≈ Fx. We can expect to have trouble
finding unknown filter inputs xt when we are dealing with certain kinds of filters, such as
bandpass filters. If the output is zero in a frequency band, we will never be able to find the
input in that band and will need to prevent xt from diverging there. We do this by the statement
that we wish 0≈ ε x, where ε is a parameter that is small and whose exact size will be chosen
by experimentation. Putting both wishes into a single, partitioned matrix equation gives[

0
0

]
≈

[
r1

r2

]
=

[
y
0

]
−

[
F
ε I

]
x (6.28)

To minimize the residuals r1 and r2, we can minimize the scalar r′r= r′1r1+ r′2r2. This is

Q(x′,x) = (Fx−y)′(Fx−y)+ ε2x′x
= (x′F′ −y′)(Fx−y)+ ε2x′x (6.29)

We have already solved this minimization in chapter 4 in the frequency domain (beginning
from equation (4.16)).

Formally the solution is found just as with equation (6.26), but this solution looks un-
appealing in practice because there are so many unknowns and because the problem can be
solved much more quickly in the Fourier domain. To motivate ourselves to solve this prob-
lem in the time domain, we need either to find an approximate solution method that is much
faster, or to discover that constraints or time-variable weighting functions are required in some
applications.

6.2. ITERATIVE METHODS 137

EXERCISES:

1 Try other lags in (6.19) such as (0,1,0)′ and (0,0,1)′. Which works best? Why?

2 Using matrix algebra, what value of x minimizes the quadratic form Q(x)= (y−Ax)′M−1
nn (y−

Ax)+ (x−x0)′M−1
xx (x−x0)? In applications, x0 is called the prior model, Mxx its covari-

ance matrix, and Mnn the noise covariance matrix.

3 Let y(t) constitute a complex-valued function at successive integer values of t . Fit y(t) to
a least-squares straight line y(t)≈ α+βt , where α = αr+ iαt and β = βr + iβt . Do it two
ways: (a) assume αr , αt , βi , and βr are four independent variables, and (b) assume α, ᾱ,
β, and β̄ are independent variables. (Leave the answer in terms of sn =∑

t t n.)

4 Ocean tides fit sinusoidal functions of known frequencies quite accurately. Associated
with the tide is an earth tilt. A complex time series can be made from the north-south tilt
plus
√−1 times the east-west tilt. The observed complex time series can be fitted to an

analytical form
∑N

j=1 Aj eiωj t . Find the set of equations which can be solved for the Aj

that gives the best fit of the formula to the data. Show that some elements of the normal
equation matrix are sums that can be summed analytically.

5 The general solution to Laplace’s equation in cylindrical coordinates (r ,θ) for a potential
field P which vanishes at r =∞ is given by

P (r ,θ)=�
∞∑

m=0

Am
eimθ

rm+1

Find the potential field surrounding a square object at the origin which is at unit potential.
Do this by finding N of the coefficients Am by minimizing the squared difference between
P(r ,θ) and unity integrated around the square. Give the answer in terms of an inverse
matrix of integrals. Which coefficients Am vanish exactly by symmetry?

6.2 ITERATIVE METHODS

The solution time for simultaneous linear equations grows cubically with the number of un-
knowns. There are three regimes for solution; which one is applicable depends on the number
of unknowns n. For n three or less, we use analytical methods. We also sometimes use ana-
lytical methods on matrices of size 4× 4 if the matrix contains many zeros. For n < 500 we
use exact numerical methods such as Gauss reduction. A 1988 vintage workstation solves a
100×100 system in a minute, but a 1000×1000 system requires a week. At around n = 500,
exact numerical methods must be abandoned and iterative methods must be used.

An example of a geophysical problem with n > 1000 is a missing seismogram. Deciding
how to handle a missing seismogram may at first seem like a question of missing data, not
excess numbers of model points. In fitting wave-field data to a consistent model, however, the
missing data is seen to be just more unknowns. In real life we generally have not one missing

138 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

seismogram, but many. Theory in 2-D requires that seismograms be collected along an infinite
line. Since any data-collection activity has a start and an end, however, practical analysis must
choose between falsely asserting zero data values where data was not collected, or implicitly
determining values for unrecorded data at the ends of a survey.

A numerical technique known as the “conjugate-gradient method" (CG) works well for
all values of n and is our subject here. As with most simultaneous equation solvers, an exact
answer (assuming exact arithmetic) is attained in a finite number of steps. And if n is too large
to allow n3 computations, the CG method can be interrupted at any stage, the partial result
often proving useful. Whether or not a partial result actually is useful is the subject of much
research; naturally, the results vary from one application to the next.

The simple form of the CG algorithm covered here is a sequence of steps. In each step the
minimum is found in the plane given by two vectors: the gradient vector and the vector of
the previous step.

6.2.1 Method of random directions and steepest descent

Let us minimize the sum of the squares of the components of the residual vector given by

residual = data space − transform model space (6.30)⎡
⎢⎢⎢⎣ R

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣ Y

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣ A

⎤
⎥⎥⎥⎦

[
x

]
(6.31)

Fourier-transformed variables are often capitalized. Here we capitalize vectors transformed
by the A matrix. A matrix such as A is denoted by boldface print.

A contour plot is based on an altitude function of space. The altitude is the dot product
R · R. By finding the lowest altitude we are driving the residual vector R as close as we can
to zero. If the residual vector R reaches zero, then we have solved the simultaneous equations
Y = Ax . In a two-dimensional world the vector x has two components, (x1, x2). A contour is
a curve of constant R · R in (x1, x2)-space. These contours have a statistical interpretation as
contours of uncertainty in (x1, x2), given measurement errors in Y .

Starting from R = Y −Ax , let us see how a random search direction can be used to try to
reduce the residual. Let g be an abstract vector with the same number of components as the
solution x , and let g contain arbitrary or random numbers. Let us add an unknown quantity α

of vector g to vector x , thereby changing x to x+αg. The new residual R+d R becomes

R+d R = Y −A(x+αg) (6.32)

= Y −Ax−αAg (6.33)

= R−αG (6.34)

6.2. ITERATIVE METHODS 139

We seek to minimize the dot product

(R+d R) · (R+d R) = (R−αG) · (R−αG) (6.35)

Setting to zero the derivative with respect to α gives

α = (R ·G)

(G ·G)
(6.36)

Geometrically and algebraically the new residual R+ = R−αG is perpendicular to the “fitting
function” G. (We confirm this by substitution leading to R+ ·G = 0.)

In practice, random directions are rarely used. It is more common to use the gradient
vector. Notice also that a vector of the size of x is

g = A′R (6.37)

Notice also that this vector can be found by taking the gradient of the size of the residuals:

∂

∂x ′
R · R = ∂

∂x ′
(Y ′ − x ′A′) (Y − A x) = −A′ R (6.38)

Descending by use of the gradient vector is called “the method of steepest descent."

6.2.2 Conditioning the gradient

Often people do calculations by the method of steepest descent without realizing it. Often a re-
sult is improved in a single step, or with a small number of steps, many fewer than the number
needed to achieve convergence. This is especially true with images where the dimensionality
is huge and where a simple improvement to the adjoint operator is sought. Three-dimensional
migration is an example. In these cases it may be worthwhile to make some ad hoc improve-
ments to the gradient that acknowledge the gradient will be a perturbation to the image x and so
should probably have an amplitude and spectrum like that of x. A more formal mathematical
discussion of preconditioning is on page 144.

6.2.3 Why steepest descent is so slow

Before we can understand why the conjugate-gradient method is so fast, we need to see why
the steepest-descent method is so slow. The process of selecting α is called “line search,"
but for a linear problem like the one we have chosen here, we hardly recognize choosing
α as searching a line. A more graphic understanding of the whole process is possible in a
two-dimensional space where the vector of unknowns x has just two components, x1 and x2.
Then the size of the residual vector R · R can be displayed with a contour plot in the plane
of (x1, x2). Visualize a contour map of a mountainous terrain. The gradient is perpendicular
to the contours. Contours and gradients are curved lines. In the steepest-descent method we
start at a point and compute the gradient direction at that point. Then we begin a straight-line

140 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

descent in that direction. The gradient direction curves away from our direction of travel, but
we continue on our straight line until we have stopped descending and are about to ascend.
There we stop, compute another gradient vector, turn in that direction, and descend along a
new straight line. The process repeats until we get to the bottom, or until we get tired.

What could be wrong with such a direct strategy? The difficulty is at the stopping loca-
tions. These occur where the descent direction becomes parallel to the contour lines. (There
the path becomes horizontal.) So after each stop, we turn 90◦, from parallel to perpendicular
to the local contour line for the next descent. What if the final goal is at a 45◦ angle to our
path? A 45◦ turn cannot be made. Instead of moving like a rain drop down the centerline of a
rain gutter, we move along a fine-toothed zigzag path, crossing and recrossing the centerline.
The gentler the slope of the rain gutter, the finer the teeth on the zigzag path.

6.2.4 Conjugate gradient

In the conjugate-gradient method, not a line, but rather a plane, is searched. A plane is
made from an arbitrary linear combination of two vectors. One vector will be chosen to be
the gradient vector, say g. The other vector will be chosen to be the previous descent step
vector, say s = xj − xj−1. Instead of α g we need a linear combination, say αg+ βs. For
minimizing quadratic functions the plane search requires only the solution of a two-by-two set
of linear equations for α and β. The equations will be specified here along with the program.
(For nonquadratic functions a plane search is considered intractable, whereas a line search
proceeds by bisection.)

6.2.5 Magic

Some properties of the conjugate-gradient approach are well known but hard to explain. D.
G. Luenberger’s book, Introduction to Linear and Nonlinear Programming, is a good place
to look for formal explanations of this magic. (His book also provides other forms of the
conjugate-gradient algorithm.) Another helpful book is Strang’s Introduction to Applied Math-
ematics. Known properties follow:

1. The conjugate-gradient method gets the exact answer (assuming exact arithmetic) in
n descent steps (or less), where n is the number of unknowns.

2. Since it is helpful to use the previous step, you might wonder why not use the previous
two steps, since it is not hard to solve a three-by-three set of simultaneous linear equa-
tions. It turns out that the third direction does not help: the distance moved in the extra
direction is zero.

6.2. ITERATIVE METHODS 141

6.2.6 Conjugate-gradient theory for programmers

Define the solution, the solution step (from one iteration to the next), and the gradient by

X = A x (6.39)

Sj = A sj (6.40)

Gj = A gj (6.41)

A linear combination in solution space, say s+g, corresponds to S+G in the conjugate space,
because S+G = As+Ag= A(s+ g). According to equation (6.31), the residual is

R = Y − A x = Y − X (6.42)

The solution x is obtained by a succession of steps sj , say

x = s1 + s2 + s3 + ·· · (6.43)

The last stage of each iteration is to update the solution and the residual:

solution update: x ← x + s
residual update: R ← R − S

The gradient vector g is a vector with the same number of components as the solution
vector x . A vector with this number of components is

g = A′ R = gradient (6.44)

G = A g = conjugate gradient (6.45)

The gradient g in the transformed space is G, also known as the “conjugate gradient.”

The minimization (6.35) is now generalized to scan not only the line with α, but simulta-
neously another line with β. The combination of the two lines is a plane:

Q(α,β) = (R−αG−βS) · (R−αG−βS) (6.46)

The minimum is found at ∂ Q/∂α = 0 and ∂ Q/∂β = 0, namely,

0 = G · (R−αG−βS) (6.47)

0 = S · (R−αG−βS) (6.48)

The solution is[
α

β

]
= 1

(G ·G)(S · S)− (G · S)2

[
(S · S) −(S ·G)
−(G · S) (G ·G)

] [
(G · R)
(S · R)

]
(6.49)

142 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

6.2.7 First conjugate-gradient program

The conjugate-gradient program can be divided into two parts: an inner part that is used
almost without change over a wide variety of applications, and an outer part containing the
initializations. Since Fortran does not recognize the difference between upper- and lower-
case letters, the conjugate vectors G and S in the program are denoted by gg and ss. The inner
part of the conjugate-gradient task is in subroutine cgstep().

A step of conjugate-gradient descent.

#

subroutine cgstep(iter, n, x, g, s, m, rr, gg, ss)

integer i, iter, n, m

real x(n), rr(m) # solution, residual

real g(n), gg(m) # gradient, conjugate gradient

real s(n), ss(m) # step, conjugate step

real dot, sds, gdg, gds, determ, gdr, sdr, alfa, beta

if(iter == 0) {

do i= 1, n

s(i) = 0.

do i= 1, m

ss(i) = 0.

if(dot(m,gg,gg)==0) call erexit(’cgstep: grad vanishes identically’)

alfa = dot(m,gg,rr) / dot(m,gg,gg)

beta = 0.

}

else { # search plane by solving 2-by-2

gdg = dot(m,gg,gg) # G . (R - G*alfa - S*beta) = 0

sds = dot(m,ss,ss) # S . (R - G*alfa - S*beta) = 0

gds = dot(m,gg,ss)

determ = gdg * sds - gds * gds + (.00001 * (gdg * sds) + 1.e-15)

gdr = dot(m,gg,rr)

sdr = dot(m,ss,rr)

alfa = (sds * gdr - gds * sdr) / determ

beta = (-gds * gdr + gdg * sdr) / determ

}

do i= 1, n # s = model step

s(i) = alfa * g(i) + beta * s(i)

do i= 1, m # ss = conjugate

ss(i) = alfa * gg(i) + beta * ss(i)

do i= 1, n # update solution

x(i) = x(i) + s(i)

do i= 1, m # update residual

rr(i) = rr(i) - ss(i)

return; end

real function dot(n, x, y)

integer i, n; real val, x(n), y(n)

val = 0.; do i=1,n { val = val + x(i) * y(i) }

dot = val; return; end

This program was used to produce about 50 figures in this book. The first example of its
use is the solution of the 5× 4 set of simultaneous equations below. Observe that the “exact”

6.2. ITERATIVE METHODS 143

solution is obtained in the last step. Since the data and answers are integers, it is quick to
check the result manually.

y transpose

3.00 3.00 5.00 7.00 9.00

A transpose

1.00 1.00 1.00 1.00 1.00

1.00 2.00 3.00 4.00 5.00

1.00 0.00 1.00 0.00 1.00

0.00 0.00 0.00 1.00 1.00

for iter = 0, 4

x 0.43457383 1.56124675 0.27362058 0.25752524

res 0.73055887 -0.55706739 -0.39193439 0.06291389 0.22804642

x 0.51313990 1.38677311 0.87905097 0.56870568

res 0.22103608 -0.28668615 -0.55250990 0.37106201 0.10523783

x 0.39144850 1.24044561 1.08974123 1.46199620

res 0.27836478 0.12766024 -0.20252618 0.18477297 -0.14541389

x 1.00001717 1.00006616 1.00001156 2.00000978

res -0.00009474 -0.00014952 -0.00022683 -0.00029133 -0.00036907

x 0.99999994 1.00000000 1.00000036 2.00000000

res -0.00000013 -0.00000003 0.00000007 0.00000018 -0.00000015

Initialization of the conjugate-gradient method typically varies from one application to
the next, as does the setting up of the transformation and its adjoint. The problem above was
set up with the matmul() program given in chapter 5. The program cgmeth() below initializes
a zero solution and the residual of a zero solution.

setup of conjugate gradient descent, minimize SUM rr(i)**2

nx

rr(i) = yy(i) - sum aaa(i,j) * x(j)

j=1

subroutine cgmeth(nx,x, nr,yy,rr, aaa, niter)

integer i, iter, nx, nr, niter

real x(nx), yy(nr), rr(nr), aaa(nr,nx)

temporary real dx(nx), sx(nx), dr(nr), sr(nr)

do i= 1, nx

x(i) = 0.

do i= 1, nr

rr(i) = yy(i)

do iter= 0, niter {

call matmult(1, aaa, nx,dx, nr,rr) # dx= dx(aaa,rr)

call matmult(0, aaa, nx,dx, nr,dr) # dr= dr(aaa,dx)

call cgstep(iter, nx, x,dx,sx, _

nr,rr,dr,sr) # x=x+s; rr=rr-ss

}

return; end

Then it loops over iterations, invoking matrix multiply, conjugate transpose multiply, and the
conjugate-gradient stepper. In subroutine cgmeth(), the variable dx is like g in equation (6.44),
and the variable dr is like G in equation (6.45).

144 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

6.2.8 Preconditioning

Like steepest descent, CG methods can be accelerated if a nonsingular matrix M with known
inverse can be found to approximate A. Then, instead of solving Ax≈ y, we solve M−1Ax≈
M−1y= c, which should converge much faster since M−1A≈ I. This is called “preconditioning.”

In my experience the matrix M is rarely available, except in the crude approximation of
scaling columns, so the unknowns have about equal magnitude. As with signals and images,
spectral balancing should be helpful.

EXERCISES:

1 Remove lines from the conjugate-gradient program to convert it to a program that solves
simultaneous equations by the method of steepest descent. Per iteration, how many dot
products are saved, and how much is the memory requirement reduced?

2 A precision problem can arise with the CG method when many iterations are required.
What happens is that R drifts away from Ar and X drifts away from Ax . Revise the
program cgmeth() to restore consistency every twentieth iteration.

6.3 INVERSE NMO STACK

Starting from a hypothetical, ideal, zero-offset model, Figure 5.6 shows synthetic data and the
result of adjoint modeling (back projection), which reconstructs an imperfect model. Inversion
should enable us to reconstruct the original model. Let us see how back projection can be
upgraded towards inversion.

Unfortunately, the adjoint operator N′ defined by the subroutine nmo1() on page 117 is not
a good operator for seismogram modeling—notice the roughness of the synthetic seismograms
in Figure 5.6. This roughness is not an inevitable consequence of nearest-neighbor interpo-
lation. It is a consequence of defining the NMO program as a loop over the output space τ .
Instead, we can define inverse NMO as a loop over its output space, which is not τ but t . This
is done in imo1() on page 119 and imospray() on page 119.

If we plan an upgrade from back projection towards inversion, we must be aware that the
accuracy of the original modeling operator can become an issue.

The new seismograms at the bottom of Figure 6.1 show the first four iterations of conjugate-
gradient inversion. You see the original rectangle-shaped waveform returning as the iterations
proceed. Notice also on the stack that the early and late events have unequal amplitudes, but
after iteration they are equal, as they began. Mathematically, we can denote the top trace as the
model m, the synthetic data signals as d=Mm, and the stack as M′d. The conjugate-gradient
algorithm solves the regression d≈Mx by variation of x, and the figure shows x converging to
m. Since there are 256 unknowns in m, it is gratifying to see good convergence occurring after

6.3. INVERSE NMO STACK 145

Figure 6.1: Top is a model trace m.
Next are the synthetic data traces, d=
Mm. Then, labeled niter=0 is the
stack, a result of processing by ad-
joint modeling. Increasing values of
niter show x as a function of itera-
tion count in the regression d ≈Mx.
(Carlos Cunha-Filho) ls-invstack
[ER]

the first four iterations. The CG subroutine used is invstack(), which is just like cgmeth()

on page 143 except that the matrix-multiplication operator matmul() on page ?? has been re-
placed by imospray() on page 119. Studying the program, you can deduce that, except for a
scale factor, the output at niter=0 is identical to the stack M′d. All the signals in Figure 6.1
are intrinsically the same scale.

NMO stack by inverse of forward modeling

#

subroutine invstack(nt,model,nx,gather,rr,t0,x0,dt,dx,slow,niter)

integer it, ix, iter, nt, nx, niter

real t0,x0,dt,dx,slow, gather(nt,nx), rr(nt,nx), model(nt)

temporary real dmodel(nt), smodel(nt), dr(nt,nx), sr(nt,nx)

do it= 1, nt

model(it) = 0.0

do it= 1, nt

do ix= 1, nx

rr(it,ix) = gather(it,ix)

do iter = 0, niter {

call imospray(1,0,slow,x0,dx,t0,dt,nx,nt,dmodel,rr) # nmo-stack

call imospray(0,0,slow,x0,dx,t0,dt,nx,nt,dmodel,dr) # modeling

call cgstep(iter, nt, model, dmodel, smodel, _

nt*nx, rr, dr, sr)

}

return; end

This simple inversion is inexpensive. Has anything been gained over conventional stack?
First, though we used nearest-neighbor interpolation, we managed to preserve the spectrum of
the input, apparently all the way to the Nyquist frequency. Second, we preserved the true am-
plitude scale without ever bothering to think about (1) dividing by the number of contributing
traces, (2) the amplitude effect of NMO stretch, or (3) event truncation.

With depth-dependent velocity, wave fields become much more complex at wide offset.
NMO soon fails, but wave-equation forward modeling offers interesting opportunities for in-
version.

146 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

6.4 MARINE DEGHOSTING

The marine ghost presents a problem that is essentially insoluble; but because it is always with
us, we need to understand how to do the best we can with it. Even if an airgun could emit
a perfect impulse, the impulse would reflect from the nearby water surface, thereby giving
a second pulse of opposite polarity. The energy going down into the earth is therefore a
doublet when we would prefer a single pulse. Likewise, hydrophones see the upcoming
wave once coming up, and an instant later they see the wave with opposite polarity reflecting
from the water surface. Thus the combined system is effectively a second derivative wavelet
(1,−2,1) that is convolved with signals of interest. Our problem is to remove this wavelet by
deconvolution. It is an omnipresent problem and is cleanly exposed on marine data where the
water bottom is hard and deep.

Theoretically, a double integration of the second derivative gives the desired pulse. A
representation in the discrete time domain is the product of (1−Z)2 with 1+2Z+3Z 2+4Z3+
5Z4+·· ·, which is 1. Double integration amounts to spectral division by−ω2. Mathematically
the problem is that −ω2 vanishes at ω = 0. In practice the problem is that dividing by ω2

where it is small amplifies noises at those low frequencies. (Inversion theorists are even more
frustrated because they are trying to create something like a velocity profile, roughly a step
function, and they need to do something like a third integration.) Old nuts like this illustrate
the dichotomy between theory and practice.

Chapter 4 provides a theoretical solution to this problem in the Fourier domain. Here we
will express the same concepts in the time domain. Define as follows:

yt Given data.
bt Known filter.
xt Excitation (to be found).
nt = yt − xt∗bt Noise: data minus filtered excitation.

With Z -transforms the problem is given by Y (Z) = B(Z)X (Z)+ N (Z). Our primary wish is
N ≈ 0. Our secondary wish is that X not be infinity as X = Y/B threatens. This second wish
is expressed as εX ≈ 0 and is called “stabilizing" or “damping." In the Fourier domain the
wishes are

Y ≈ B X (6.50)

0 ≈ εX (6.51)

The formal expression of the regression is

min
X

(||Y − B X || + ε2||X ||) (6.52)

6.4. MARINE DEGHOSTING 147

In the time domain the regression is much more explicit:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

y6

0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−2 1

1 −2 1
. 1 −2 1 . . .
. . 1 −2 1 . .
. . . 1 −2 1 .
. . . . 1 −2 1
ε
. ε
. . ε
. . . ε . . .
. . . . ε . .
. ε .
. ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.53)

where “·” denotes a zero. Since it is common to add εI to an operator to stabilize it, I prepared
subroutine ident() for this purpose. It is used so frequently that I coded it in a special way to
allow the input and output to overlie one another.

subroutine ident(adj, add, epsilon, n, pp, qq)

integer i, adj, add, n

real epsilon, pp(n), qq(n) # equivalence (pp,qq) OK

if(adj == 0) {

if(add == 0) { do i=1,n { qq(i) = epsilon * pp(i) } }

else { do i=1,n { qq(i) = qq(i) + epsilon * pp(i) } }

}

else { if(add == 0) { do i=1,n { pp(i) = epsilon * qq(i) } }

else { do i=1,n { pp(i) = pp(i) + epsilon * qq(i) } }

}

return; end

We can use any convolution routine we like, but for simplicity, I selected contrunc() so
the output would be the same length as the input. The two operators ident() and contrunc()

could be built into a new operator. I found it easier to simply cascade them in the deghosting
subroutine deghost() below.

deghost: min |rrtop| = | y - bb (contrunc) xx |

x |rrbot| | 0 - epsilon I xx |

subroutine deghost(eps, nb,bb, n, yy, xx, rr, niter)

integer iter, nb, n, niter

real bb(nb), yy(n), eps # inputs. typically bb=(1,-2,1)

real xx(n), rr(n+n) # outputs.

temporary real dx(n), sx(n), dr(n+n), sr(n+n)

call zero(n, xx)

call copy(n, yy, rr(1)) # top half of residual

call zero(n , rr(1+n)) # bottom of residual

do iter= 0, niter {

call contrunc(1,0,1,nb,bb, n,dx,n,rr); call ident(1,1,eps, n,dx,rr(1+n))

148 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

call contrunc(0,0,1,nb,bb, n,dx,n,dr); call ident(0,0,eps, n,dx,dr(1+n))

call cgstep(iter, n,xx,dx,sx, _

n+n,rr,dr,sr)

}

return; end

6.4.1 Synthetics

I made some synthetic marine data and added 5% noise. This, along with an attempted decon-
volution, is shown in Figure 6.2. The plot in Figure 6.2 is for the value of ε that I subjectively

Figure 6.2: Top is the synthetic data
yt . Middle is the deconvolved data xt .
Bottom is the noise nt . This choice
of ε = .2 gave my preferred result.
ls-syn+.2 [ER]

regarded as best. The result is pleasing because the doublets tend to be converted to impulses.
Unfortunately, the low-frequency noise in xt is significantly stronger than that in yt , as ex-
pected.

Taking ε larger will decrease ||X || but increase the explicit noise ||Y − B X ||. To decrease
the explicit noise, I chose a tiny value of ε = .001. Figure 6.3 shows the result. The explicit
noise nt appears to vanish, but the low-frequency noise implicit to the deconvolved output xt

has grown unacceptably.

Finally, I chose a larger value of ε = .5 to allow more noise in the explicit nt , hoping
to get a lower noise implicit to xt . Figure 6.4 shows the result. Besides the growth of the
explicit noise (which is disturbingly correlated to the input), the deconvolved signal has the
same unfortunate wavelet on it that we are trying to remove from the input.

Results of a field-data test shown in Figure 6.5 do not give reason for encouragement.

In conclusion, all data recording has an implicit filter, and this filter is arranged to make the
data look good. Application of a theoretical filter, such as ω−2, may achieve some theoretical
goals, but it does not easily achieve practical goals.

6.4. MARINE DEGHOSTING 149

Figure 6.3: As before, the signals
from top to bottom are yt , xt , and
nt . Choosing a small ε = .001 forces
the noise mostly into the output xt .
Thus the noise is essentially implicit.
ls-syn+.001 [ER]

Figure 6.4: Noise essentially explicit.
ε = .5. ls-syn+.5 [ER]

Figure 6.5: Field-data test. As before,
the signals from top to bottom are yt ,
xt , and nt . ls-field+.3 [ER]

150 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

EXERCISES:

1 The (1,−2,1) signature is an oversimplification. In routine operations the hydrophones
are at a depth of 7-10 meters and the airgun is at a depth of 5-6 meters. Assuming a
sampling rate of .004 s (4 milliseconds) and a water velocity of 1500 m/s, what should the
wavelet be?

2 Rerun the figures with the revised wavelet of the previous exercise.

6.5 CG METHODOLOGY

The conjugate-gradient method is really a family of methods. Mathematically these algo-
rithms all converge to the answer in n (or fewer) steps where there are n unknowns. But the
various methods differ in numerical accuracy, treatment of underdetermined systems, accuracy
in treating ill-conditioned systems, space requirements, and numbers of dot products. I will
call the method I use in this book the “book3” method. I chose it for its clarity and flexibility.
I caution you, however, that among the various CG algorithms, it may have the least desirable
numerical properties.

The “conjugate-gradient method” was introduced by Hestenes and Stiefel in 1952. A
popular reference book, “Numerical Recipes,” cites an algorithm that is useful when the
weighting function does not factor. (Weighting functions are not easy to come up with in
practice, and I have not found any examples of nonfactorable weighting functions yet.) A
high-quality program with which my group has had good experience is the Paige and Saunders
LSQR program. A derivative of the LSQR program has been provided by Nolet. A disadvan-
tage of the book3 method is that it uses more auxiliary memory vectors than other methods.
Also, you have to tell the book3 program how many iterations to make.

There are a number of nonlinear optimization codes that reduce to CG in the limit of a
quadratic function.

According to Paige and Saunders, accuracy can be lost by explicit use of vectors of the
form A′Ax , which is how the book3 method operates. An algorithm with better numerical
properties, invented by Hestenes and Stiefel, can be derived by algebraic rearrangement. This
rearrangement (adapted from Paige and Saunders by Lin Zhang) for the problem Ax ≈ Y is

• Set x = 0, R = Y , g = A′Y , s = g and γ− = ‖g‖2.

• For each iteration, repeat the following:

S = As

α = γ−/‖S‖2
x = x+αs

R = R−αS

g = A′R

6.5. CG METHODOLOGY 151

γ = ‖g‖2
β = γ/γ−

γ− = γ

s = g+βs

where ‖v‖ stands for the L2 norm of vector v. A program that implements this algorithm in
a manner consistent with a blending of cgmeth() on page 143 and cgstep() on page 142 is
hestenes().

subroutine hestenes(nx,x, nr,yy,rr, aaa, niter)

integer i, iter, nx, nr, niter

real alpha, beta, gamma, gammam

real dot

real x(nx), yy(nr), rr(nr), aaa(nr,nx)

temporary real g(nx), s(nx), ss(nr)

do i= 1, nx

x(i) = 0.

do i= 1, nr

rr(i) = yy(i)

call matmult(1, aaa, nx,g, nr,yy)

do i= 1, nx

s(i) = g(i)

gammam = dot(nx,g,g)

do iter= 0, niter {

call matmult(0, aaa, nx,s, nr,ss)

alpha = gammam / dot(nr,ss,ss)

do i = 1, nx

x(i) = x(i) + alpha*s(i)

do i = 1, nr

rr(i) = rr(i) - alpha*ss(i)

call matmult(1, aaa, nx,g, nr,rr)

gamma = dot(nx,g,g)

beta = gamma / gammam

gammam = gamma

do i = 1, nx

s(i) = g(i) + beta*s(i)

}

return; end

I have not used the Hestenes and Stiefel version of the CG method for the tutorial programs in
this book because I wish to isolate features of geophysical analysis from features of solution
by the CG method. The blending of geophysical features with solution details is worsened by
the combination of Fortran and this improved version of the CG algorithm.

6.5.1 Programming languages and this book

A valuable goal is to isolate the CG solving program from all physical aspects of the linear
operator. We wish to abstract the CG solver, to put it in a compiled subroutine library where
we can feed it inputs and get back the outputs, and never again to see the internals of how it

152 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

works (like the fast Fourier transform). Unfortunately, the primitive nature of the Fortran-
Ratfor language does not appear to allow this abstraction. The reason is that the CG program
needs to call your linear operator routine and, to do this, it needs to know not only the name
of your routine but how to supply its arguments. (I recall from years ago a Fortran where
subroutines could have several entry points. This might help.) Thus, everywhere in this book
where I solve a model-fitting problem, we must see some of the inner workings of CG. To
keep this from becoming too objectionable, I found the nonstandard CG method we have been
using and coupled it with Bill Harlan’s idea of isolating its inner workings into cgstep().
Because of this we can see complete code for many examples, and the code is not awfully
cluttered. Unfortunately, my CG is not Hestenes’ CG.

In many of the Fortran codes you see in this book it is assumed that the abstract vector
input and vector output correspond to physical one-dimensional arrays. In real life, these
abstract vectors are often matrices, or matrices in special forms, such as windows on a wall of
data (nonpacked arrays), and they may contain complex numbers. Examining equation (6.53),
we notice that the space of residuals for a damped problem is composed of two parts, the
residual of the original problem and a part εx the size of the unknowns. These two parts are
packed, somewhat uncomfortably, into the abstract residual vector.

A linear operator really consists of (at least) four subroutines, one for applying the opera-
tor, one for its adjoint, one for a dot product in the space of inputs, and one for a dot product
in the space of outputs. Modern programming theory uses the terms “data abstraction” and
“object-oriented programming (OOP)” to describe methods and languages that are well
suited to the problems we are facing here. The linear-operator object is what the CG solver
needs to be handed, along with an instance of the input abstract vector and a pointer to space
for the output vector. (The linear-operator object, after it is created, could also be handed to a
universal dot-product test routine. With Fortran I write a separate dot-product test program
for each operator.)

Another abstraction that Fortran cannot cope with is this: the CG program must allocate
space for the gradient and past-steps vectors. But the detailed form of these abstract vectors
should not be known to the CG program. So the linear-operator object requires four more
routines (called “methods" in OOP) that the CG routine uses to allocate and free memory (to
create and destroy objects from the physical space of inputs and outputs). In this way OOP
allows us to isolate concepts, so that each concept need only be expressed once. A single
version of a concept can thus be reused without being replicated in a form blended with other
concepts.

As I am going along generating examples for this book, and as the examples get more
complicated, I am wondering just where I will drop the idea of exhibiting complete codes.
Obviously, if I switched from Fortran to a more modern language, such as C++, I could get
further. The disadvantages of C++ are that I am not experienced in it, few of my readers will
know it, and its looping statements are cluttered and do not resemble mathematics. Instead of
do i=1,n, C and C++ use for(i=0; i<=n; i++). It would be fun to do the coding in a better
way, but for now, I am having more fun identifying new problems to solve.

6.6. REFERENCES 153

6.6 References

Gill, P.E., Murray, W., and Wright, M.H., 1981, Practical optimization: Academic Press.

Gorlen, K.E., Orlow, S.M., and Plexico, P.S., 1990, Data abstraction and object-oriented pro-
gramming in C++: J. Wiley.

Hestenes, M.R., and Stiefel, E., 1952, Methods of conjugate gradients for solving linear sys-
tems: J. Res. Natl. Bur. Stand., 49, 409-436.

Luenberger, D.G., 1973, Introduction to linear and nonlinear programming: Addison-Wesley.

Nolet, G., 1985, Solving or resolving inadequate and noisy tomographic systems: J. Comp.
Phys., 61, 463-482.

Paige, C.C., and Saunders, M.A., 1982a, LSQR: an algorithm for sparse linear equations and
sparse least squares: Assn. Comp. Mach. Trans. Mathematical Software, 8, 43-71.

Paige, C.C., and Saunders, M.A., 1982b, Algorithm 583, LSQR: sparse linear equations and
least squares problems: Assn. Comp. Mach. Trans. Mathematical Software, 8, 195-209.

Press, W.H. et al., 1989, Numerical recipes: the art of scientific computing: Cambridge Uni-
versity Press.

Strang, G., 1986, Introduction to applied mathematics: Wellesley-Cambridge Press.

154 CHAPTER 6. MODEL FITTING BY LEAST SQUARES

Chapter 7

Time-series analysis

In chapter 5 we learned about many operators and how adjoints are a first approximation to
inverses. In chapter 6 we learned how to make inverse operators from adjoint operators by
the least-squares (LS) method using conjugate gradients (CG). The many applications of least
squares to the convolution operator constitute the subject known as “time-series analysis." In
this chapter we examine applications of time-series analysis to reflection seismograms. These
applications further illuminate the theory of least squares in the area of weighting functions
and stabilization.

In the simplest applications, solutions can be most easily found in the frequency domain.
When complications arise, it is better to use the time domain, directly applying the convolution
operator and the method of least squares.

A first complicating factor in the frequency domain is a required boundary in the time
domain, such as that between past and future, or requirements that a filter be nonzero in a
stated time interval. Another factor that attracts us to the time domain rather than the Fourier
domain is weighting functions. As we saw in the beginning of chapter 6 weighting functions
are appropriate whenever a signal or image amplitude varies from place to place. Most of the
literature on time-series analysis applies to the limited case of uniform weighting functions.
Such time series are said to be “stationary.” This means that their statistical properties do not
change in time. In real life, particularly in the analysis of echos, signals are never stationary in
time and space. A stationarity assumption is a reasonable starting assumption, but we should
know how to go beyond it so we can take advantage of the many opportunities that do arise.
In order of increasing difficulty in the frequency domain are the following complications:

1. A time boundary such as between past and future.

2. More time boundaries such as delimiting a filter.

3. Nonstationary signal, i.e., time-variable weighting.

4. Time-axis stretching such as normal moveout.

155

156 CHAPTER 7. TIME-SERIES ANALYSIS

We will not have difficulty with any of these complications here because we will stay in the
time domain and set up and solve optimization problems using the conjugate-gradient method.
Thus we will be able to cope with great complexity in problem formulation and get the right
answer without approximations. By contrast, analytic or partly analytic methods can be more
economical, but they generally solve somewhat different problems than those given to us by
nature.

7.1 SHAPING FILTER

A shaping filter is a simple least-squares filter that converts one waveform to another. Shaping
filters arise in a variety of contexts. In the simplest context, predicting one infinitely long time
series from another, the shaping filter can be found in the Fourier domain.

7.1.1 Source waveform and multiple reflections

Figure 7.1 shows some reflection seismic data recorded at nearly vertical incidence from an
arctic ice sheet. Apparently the initial waveform is somewhat complex, but the water-bottom

Figure 7.1: Some of the inner offset seismograms from Arctic dataset 24 (Yilmaz and Cumro).
tsa-wz24 [NR]

reflection does not complicate it further. You can confirm this by noticing the water-bottom
multiple reflection, i.e., the wave that bounces first from the water bottom, then from the water
surface, and then a second time from the water bottom. This multiple reflection is similar to
but has polarity opposite to the shape of the primary water-bottom reflection. (The opposite

7.1. SHAPING FILTER 157

polarity results from the reflection at the ocean surface, where the acoustic pressure, the sum
of the downgoing wave plus the upgoing wave, vanishes.)

Other data in water of similar depth shows a different reflection behavior. The bottom
gives back not a single reflection, but a train of reflections. Let this train of reflections from the
ocean floor be denoted by F(Z). Instead of looking like −F(Z), the first multiple reflection
can look like −F(Z)2. The ray sketch in Figure 7.2 shows a simple multiple reflection. There

Figure 7.2: Water bottom soft-mud
multiple (left) and similar travel
times to mudstone (center and right).
tsa-peg [NR]

is only one water-bottom path, but there are two paths to a slightly deeper layer. I will call the
first arrival the soft-mud arrival and the second one the mudstone arrival. If these two arrivals
happen to have the same strength, an expression for F(Z) is 1+ Z . The expression for the
first multiple is −F(Z)2 =−(1+ Z)2 =−1+2Z− Z 2 where the 2Z represents the two paths
in Figure 7.2. The waveform of the second water bottom multiple is (1− Z)3 in which the
mudstone would be three times as strong as the soft mud. In the nth wave train the mudstone
is n times as strong as the soft mud. Figure 7.3 is a textbook quality example of this simple
concept.

Figures 7.3 and 7.1 illustrate how arctic data typically contrasts with data from temperate
or tropic regions. The arctic water-bottom reflection is generally hard, indicating that the
bottom is in a constant state of erosion from the scraping of the ice floes and the carrying away
of sediments by the bottom currents. In temperate and tropical climates, the bottom is often
covered with soft sediments: the top layer is unconsolidated mud, and deeper layers are mud
consolidated into mudstone.

Now we devise a simple mathematical model for the multiple reflections in Figures 7.1
and 7.3. There are two unknown waveforms, the source waveform S(Z) and the ocean-floor
reflection F(Z). The water-bottom primary reflection P(Z) is the convolution of the source
waveform with the water-bottom response; so P(Z)= S(Z)F(Z). The first multiple reflection
M(Z) sees the same source waveform, the ocean floor, a minus one for the free surface, and
the ocean floor again. Thus the observations P(Z) and M(Z) as functions of the physical
parameters are

P(Z) = S(Z) F(Z) (7.1)

M(Z) = −S(Z) F(Z)2 (7.2)

In Figure 7.1 it appears that F(Z) is nearly an impulse, whereas Figure 7.3 is dominated by
the nonimpulsive aspect of F(Z). Algebraically the solutions of equations (7.1) and (7.2) are

F(Z) = −M(Z)/P(Z) (7.3)

158 CHAPTER 7. TIME-SERIES ANALYSIS

Figure 7.3: Two displays of a common-shot collection of seismograms from offshore Crete
(Yilmaz and Cumro dataset 30). Top display is called “raster” and bottom display “wiggle.”
Raw data scaled by t2. tsa-wz30 [NR]

7.1. SHAPING FILTER 159

S(Z) = −P(Z)2/M(Z) (7.4)

These solutions can be computed in the Fourier domain. The difficulty is that the divisors
in equations (7.3) and (7.4) can be zero, or small. This difficulty can be attacked by using a
positive number ε to stabilize it. Equation (7.3), for example, could be written

F(Z) = − M(Z)P(1/Z)

P(Z)P(1/Z)+ ε
(7.5)

We can easily understand what this means as ε tends to infinity, where, because of the 1/Z ,
the matched filter has a noncausal response. Thus, although the ε stabilization seems nice,
it apparently produces a nonphysical model. For ε large or small, the time-domain response
could turn out to be of much greater duration than is physically reasonable. This should not
happen with perfect data, but in real life, data always has a limited spectral band of good
quality.

Functions that are rough in the frequency domain will be long in the time domain. This
suggests making a short function in the time domain by local smoothing in the frequency
domain. Let the notation < · · ·> denote smoothing by local averaging. Thus we can specify
filters whose time duration is not unreasonably long by revising equation (7.5) to

F(Z) = − < M(Z)P(1/Z) >

< P(Z)P(1/Z)+ ε >
(7.6)

where it remains to specify the method and amount of smoothing.

These time-duration difficulties do not arise in a time-domain formulation. First express
(7.3) and (7.4) as

P(Z)F(Z) ≈ −M(Z) (7.7)

M(Z)S(Z) ≈ −P(Z)2 (7.8)

To imagine these in the time domain, refer back to equation (??). Think of Pf≈m where f is
a column vector containing the unknown sea-floor filter, m is a column vector containing the
portion of a seismogram in Figure 7.1 labeled “multiple,” and P is a matrix of down-shifted
columns, each column being the same as the signal labeled “primary” in Figure 7.1. The
time-domain solutions are called “shaping filters.” For a simple filter of two coefficients, f 0

and f1, we solved a similar problem, equation (6.19), theoretically. With longer filters we use
numerical methods.

In the time domain it is easy and natural to limit the duration and location of the nonzero
coefficients in F(Z) and S(Z). The required program for this task is shaper(), which operates
like cgmeth() on page 143 and invstack() on page 145 except that the operator needed here
is contran() on page 105.

shaping filter

minimize SUM rr(i)**2 by finding ff and rr where

#

rr = yy - xx (convolve) ff

160 CHAPTER 7. TIME-SERIES ANALYSIS

#

subroutine shaper(nf,ff, nx,xx, ny, yy, rr, niter)

integer i, iter, nf, nx, ny, niter

real ff(nf), xx(nx), yy(ny), rr(ny)

temporary real df(nf), dr(ny), sf(nf), sr(ny)

if(ny != nx+nf-1) call erexit(’data length error’)

do i= 1, nf

ff(i) = 0.

do i= 1, ny

rr(i) = yy(i)

do iter= 0, niter {

call contran(1, 0, nx,xx, nf,df, rr) # df=xx*rr

call contran(0, 0, nx,xx, nf,df, dr) # dr=xx*df

call cgstep(iter, nf,ff,df,sf, ny,rr,dr,sr) # rr=rr-dr; ff=ff+df

}

return; end

The goal of finding the filters F(Z) and S(Z) is to best model the multiple reflections so
that they can be subtracted from the data, enabling us to see what primary reflections have
been hidden by the multiples. An important practical aspect is merging the analysis of many
seismograms (see exercises).

Typical data includes not only that shown in Figures 7.1 and 7.3, but also wider source-
receiver separation, as well as many other nearby shots and their receivers. Corrections need to
be made for hyperbolic traveltime resulting from lateral separation between shot and receiver.
Diffractions are a result of lateral imperfections in the generally flat sea floor. The spatial
aspects of this topic are considered at great length in IEI. We will investigate them here in
only a limited way.

7.1.2 Shaping a ghost to a spike

An exasperating problem in seismology is the “ghost” problem, in which a waveform is repli-
cated a moment after it occurs because of a strong nearby reflection. In marine seismology
the nearby reflector is the sea surface. Because the sea surface is near both the airgun and the
hydrophones, it creates two ghosts. Upgoing and downgoing waves at the sea surface have
opposite polarity because their pressures combine to zero at the surface. Thus waves seen in
the hydrophone encounter the ghost operator gt = (1,0,0, · · · ,−1) twice, once for the surface
near the source and once for the surface near the hydrophone. The number of zeros is typi-
cally small, depending on the depth of the device. The sound receivers can be kept away from
surface-water wave noise by positioning them deeper, but that extends the ghost delay; and as
we will see, this particular ghost is very hard to eliminate by processing. For simplicity, let us
analyze just one of the two ghosts. Take it to be G(Z)= 1− Z 2. Theoretically, the inverse is
of infinite duration, namely, (1,0,1,0,1,0,1,0,1, · · ·).

Since an infinitely long operator is not satisfactory, I used the program shaper() above to
solve a least-squares problem for an antighost operator of finite duration. Since we know that
the least-squares method abhors large errors and thus tends to equalize them, we should be
able to guess the result.

7.2. SYNTHETIC DATA FROM FILTERED NOISE 161

The filter (.9, .0, .8, .0, .7, .0, .6, .0, .5, .0, .4, .0, .3, .0, .2, .0, .1), when convolved with (1,0,−1),
produces the desired spike (impulse) along with equal squared errors of .01 at each output
time. Thus, the least-squares filter has the same problem as the analytical one—it is very long.
This disappointment can be described in the Fourier domain by the many zeros in the spectrum
of (1,0,−1). Since we cannot divide by zero, we should not try to divide by 1− Z n , which has
zeros uniformly distributed on the unit circle. The method of least squares prevents disaster,
but it cannot perform miracles.

I consider ghosts to be a problem in search of a different solution. Ghosts also arise when
seismograms are recorded in a shallow borehole. As mentioned, the total problem gener-
ally includes many waveforms propagating in more than one direction; thus it is not as one-
dimensional as it may appear in Figures 7.3 and 7.1, in which I did not display the wide-offset
signals.

EXERCISES:

1 What inputs to subroutine shaper() on page 159 give the filter (.9,0, .8, · · · .1) mentioned
above?

2 Figure 7.1 shows many seismograms that resemble each other but differ in the x location
of the receiver. Sketch the overdetermined simultaneous equations that can be used to find
the best-fitting source function S(Z), where Mx (Z)S(Z)≈ Px (Z)2 for various x .

3 Continue solving the previous problem by defining a contranx() subroutine that includes
several signals going through the same filter. In order to substitute your contranx() into
shaper() on page 159 to replace contran() on page 105, you will need to be sure that
the output and the filter are adjoint (not the output and the input). Suggestion: define real
xx(nt,nx), etc.

7.2 SYNTHETIC DATA FROM FILTERED NOISE

A basic way to describe the random character of signals is to model them by putting random
numbers into a filter. Practical work often consists of the reverse: deducing the filter and
deconvolving it to see the input.

7.2.1 Gaussian signals versus sparse signals

Most theoretical work is based on random numbers from a Gaussian probability function. The
basic theoretical model is that at every time point a Gaussian random number is produced.
In real life we do observe such signals, but we also observe signals with less frequent noise
bursts. Such signals, called “sparse signals” or “bursty signals,” can be modeled in many
ways, two of which are (1) that many points can have zero value (or a value that is smaller

162 CHAPTER 7. TIME-SERIES ANALYSIS

than expected from a Gaussian); and (2) that the Gaussian probability function describes the
many smaller values, but some larger values also occur from time to time.

It turns out that the Gaussian probability function generates more cryptic signals than any
other probability function. It also turns out that theory is best developed for the Gaussian case.
Thus, Gaussian theory, which is the most pessimistic, tends to be applied to both Gaussian
and sparser data. Sparse signals derive from diverse models, and usually there is not enough
information to establish a convincing model. In practical work, “non-Gaussian” generally
means “sparser than Gaussian.” Figure 7.4 illustrates random signals from a Gaussian proba-
bility function and a sparser signal made by cubing the random numbers that emerge from a
Gaussian random-number generator.

Figure 7.4: Left are random numbers from a Gaussian probability function. (The random
numbers are connected by lines.) Right, the random numbers are cubed, making a signal in
which large spikes are sparser. tsa-spikes [ER]

7.2.2 Random numbers into a filter

Figure 7.5 shows random numbers fed through leaky integration and the resulting spectral
amplitude. The output spectral amplitude of an integrator should be |ω|−1, but the decay
constant in the leaky integrator gives instead the amplitude (ω2+ ε2)−1/2. Since the random
numbers are sparse, you can see damped exponents in the data itself. This enables us to
confirm the direction of the time axis. If the random numbers had been Gaussian, the spectrum
would be the same, but we would be able neither to see the damped exponents nor detect the
direction of time.

7.2.3 Random numbers into the seismic spectral band

Figure 7.6 shows synthetic data designed to look like real seismic noise. Here some Gaussian
random numbers were passed into a filter to simulate the seismic passband. Two five-term
Butterworth filters (see chapter 10) were used, a highcut at .4 of the Nyquist and a lowcut at
.1 of the Nyquist.

7.2. SYNTHETIC DATA FROM FILTERED NOISE 163

Figure 7.5: Left is sparse random noise passed through a leaky integrator. Right is the ampli-
tude spectrum of the output. tsa-leaky [ER]

Figure 7.6: Left is Gaussian random noise passed through Butterworth filters to simulate the
seismic passband. Right is the amplitude spectrum of the output. tsa-band [ER]

164 CHAPTER 7. TIME-SERIES ANALYSIS

7.3 THE ERROR FILTER FAMILY

A simple regression for a prediction filter (f1, f2) is⎡
⎢⎢⎣

x2

x3

x4

x5

⎤
⎥⎥⎦ ≈

⎡
⎢⎢⎣

x1 x0

x2 x1

x3 x2

x4 x3

⎤
⎥⎥⎦

[
f1

f2

]
(7.9)

Notice that each row in this equation says that xt fits a linear combination of x at earlier times;
hence the description of f as a “prediction" filter. The error in the prediction is simply the left
side minus the right side. Rearranging the terms, we get⎡

⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ ≈

⎡
⎢⎢⎣

x2 x1 x0

x3 x2 x1

x4 x3 x2

x5 x4 x3

⎤
⎥⎥⎦

⎡
⎣ 1
− f1

− f2

⎤
⎦ (7.10)

We have already written programs for regressions like (7.9). Regressions like (7.10), however,
often arise directly in practice. They are easier to solve directly than by transforming them to
resemble (7.9).

Multiple reflections are predictable. It is the unpredictable part of a signal, the prediction
residual, that contains the primary information. The output of the filter (1,− f1,− f2) is the
unpredictable part of the input. This filter is a simple example of a “prediction-error" (PE)
filter. It is one member of a family of filters called “error filters."

The error-filter family are filters with one coefficient constrained to be unity and various
other coefficients constrained to be zero. Otherwise, the filter coefficients are chosen to have
minimum power output. Names for various error filters follow:

(1,a1,a2,a3, · · · ,an) prediction-error (PE) filter
(1,0,0,a3,a4, · · · ,an) gapped PE filter with a gap of 2
(a−m , · · · ,a−2,a−1,1,a1,a2,a3, · · · ,an) interpolation-error (IE) filter
(a−m , · · · ,a−4,a−3,0,0,1,0,0,a3,a4, · · · ,an) a gapped IE filter

A program for computing all the error filters will be presented after we examine a collec-
tion of examples.

7.3.1 Prediction-error filters on synthetic data

The idea of using a gap in a prediction filter is to relax the goal of converting realistic signals
into perfect impulses. Figure 7.7 shows synthetic data, sparse noise into a leaky integrator,
and deconvolutions with prediction-error filters. Theoretically, the filters should turn out to be
1− (.9Z)gap. Varying degrees of success are achieved by the filters obtained on the different
traces, but overall, the results are good.

7.3. THE ERROR FILTER FAMILY 165

Figure 7.7: Deconvolution of leaky integrator signals with PE filters of various prediction-gap
sizes. Inputs and outputs on alternate traces. Gap size increases from left to right. tsa-dleak
[NR]

To see what happens when an unrealistic deconvolution goal is set for prediction error,
we can try to compress a wavelet that is resistant to compression—for example, the impulse
response of a Butterworth bandpass filter. The perfect filter to compress any wavelet is its
inverse. But a wide region of the spectrum of a Butterworth filter is nearly zero, so any
presumed inverse must require nearly dividing by that range of zeros. Compressing a Butter-
worth filter is so difficult that I omitted the random numbers used in Figure 7.7 and applied
prediction error to the Butterworth response itself, in Figure 7.8. Thus, we have seen that

Figure 7.8: Butterworth deconvolu-
tion by prediction error. tsa-dbutter
[NR]

gapped PE filters sometimes are able to compress a wavelet, and sometimes are not. In real
life, resonances arise in the earth’s shallow layers; and as we will see, the resonant filters can
be shortened by PE filters.

7.3.2 PE filters on field data

Figure 7.9 is a nice illustration of the utility of prediction-error filters. The input is quasi-
sinusoidal, which indicates that PE filtering should be successful. Indeed, some events are
uncovered that probably would not have been identified on the input. In this figure, a separate
problem is solved for each trace, and the resulting filter is shown on the right.

166 CHAPTER 7. TIME-SERIES ANALYSIS

Figure 7.9: Data from offshore Texas (extracted from Yilmaz and Cumro dataset 14). Wig-
gle display above and raster below. Inputs above outputs. Filters displayed on the right.
tsa-wz14 [NR]

7.3. THE ERROR FILTER FAMILY 167

7.3.3 Prediction-error filter output is white.

The most important property of a prediction-error filter is that its output tends to a white
spectrum. No matter what the input to this filter, its output tends to whiteness as the number
of the coefficients n→∞ tends to infinity. Thus, the PE filter adapts itself to the input by
absorbing all its color. If the input is already white, the aj coefficients vanish. The PE filter
is frustrated because with a white input it can predict nothing, so the output is the same as
the input. Thus, if we were to cascade one PE filter after another, we would find that only
the first filter does anything. If the input is a sinusoid, it is exactly predictable by a three-
term recurrence relation, and all the color is absorbed by a three-term PE filter (see exercises).
The power of a PE filter is that a short filter can often extinguish, and thereby represent the
information in, a long filter.

That the output spectrum of a PE filter is white is very useful. Imagine the reverberation
of the soil layer, highly variable from place to place, as the resonance between the surface and
deeper consolidated rocks varies rapidly with surface location as a result of geologically recent
fluvial activity. The spectral color of this erratic variation on surface-recorded seismograms
is compensated for by a PE filter. Of course, we do not want PE-filtered seismograms to be
white, but once they all have the same spectrum, it is easy to postfilter them to any desired
spectrum.

Because the PE filter has an output spectrum that is white, the filter itself has a spectrum
that is inverse to the input. Indeed, an effective mechanism of spectral estimation, developed
by John P. Burg and described in FGDP, is to compute a PE filter and look at the inverse of
its spectrum.

Another interesting property of the PE filter is that it is minimum phase. The best proofs
of this property are found in FGDP. These proofs assume uniform weighting functions.

7.3.4 Proof that PE filter output is white

1 The basic idea of least-squares fitting is that the residual is orthogonal to the fitting functions.
Applied to the PE filter, this idea means that the output of a PE filter is orthogonal to lagged
inputs. The orthogonality applies only for lags in the past because prediction knows only the
past while it aims to the future. What we want to show is different, namely, that the output is
uncorrelated with itself (as opposed to the input) for lags in both directions; hence the output
spectrum is white.

We are given a signal yt and filter it by

xt = yt −
∑
τ>0

aτ yt−τ (7.11)

1I would like to thank John P. Burg for this proof.

168 CHAPTER 7. TIME-SERIES ANALYSIS

We found aτ by setting to zero d(
∑

x2
t)/daτ :∑

t

xt yt−τ = 0 for τ > 0 (7.12)

We interpret this to mean that the residual is orthogonal to the fitting function, or the present
PE filter output is orthogonal to its past inputs, or one side of the crosscorrelation vanishes.
Taking an unlimited number of time lags and filter coefficients, the crosscorrelation vanishes
not only for τ > 0 but for larger values, say τ + s where τ ≥ 0 and s > 0. In other words, the
future PE filter outputs are orthogonal to present and past inputs:∑

t

xt+s yt−τ = 0 for τ ≥ 0 and s > 0 (7.13)

Recall that if r ·u = 0 and r ·v = 0, then r · (a1u±a2v) = 0 for any a1 and a2. So for any aτ

we have ∑
t

xt+s(yt ±aτ yt−τ) = 0 for τ ≥ 0 and s > 0 (7.14)

and for any linear combination we have∑
t

xt+s(yt −
∑
τ>0

aτ yt−τ) = 0 for τ ≥ 0 and s > 0 (7.15)

Therefore, substituting from (7.11), we get∑
t

xt+s xt = 0 for s > 0 (7.16)

which is an autocorrelation function and must be symmetric. Thus,∑
t

xt+s xt = 0 for s
= 0 (7.17)

Since the autocorrelation of the prediction-error output is an impulse, its spectrum is white.
This has many interesting philosophical implications, as we will see next.

7.3.5 Nonwhiteness of gapped PE-filter output

When a PE filter is constrained so that a few near-zero-lag coefficients are zero, the output no
longer tends to be white as the number of coefficients in the filter tends to infinity. If f1, the
filter coefficient of Z = eiω�t , vanishes, then F(ω) lacks the slow variation in ω that this term
provides. It lacks just the kind of spectral variation that could boost weak near-Nyquist noises
up to the strength of the main passband. With such variation made absent by the constraint,
the growth of Nyquist-region energy is no longer a necessary byproduct of PE filtering.

Figure 7.10 illustrates a PE filter with a long gap. (The gap was chosen to be a little less
than the water depth.) This example nicely shows the suppression of some multiple reflections,
but unfortunately I do not see that any primary reflections have been uncovered. Because the

7.3. THE ERROR FILTER FAMILY 169

Figure 7.10: Data from offshore Canada (extracted from Yilmaz and Cumro dataset 27) pro-
cessed by gapped prediction error. Inputs above outputs; filters displayed on the right. Nicely
suppressed multiples appear in boxes. Badly suppressed multiples are shown above diagonal
lines. tsa-wz27 [NR]

170 CHAPTER 7. TIME-SERIES ANALYSIS

prediction gap is so long, the filter causes no visible change to the overall spectrum. Notice
how much more the spectrum was broadened by the filter with a shorter gap in Figure 7.9.
The theoretical association of prediction gap width with spectral broadening is examined next.
Another interesting feature of Figure 7.10, which we will investigate later, is a geometrical
effect. This shows up as poor multiple removal on and above the diagonal lines and happens
because of the nonzero separation of the sound source and receiver.

7.3.6 Postcoloring versus prewhitening

The output of a PE filter, as we know, is white (unless it is gapped), but people do not like
to look at white signals. Signals are normally sampled at adequate density, which means that
they are small anywhere near the Nyquist frequency. There is rarely energy above the half-
Nyquist and generally little but marine noises above the quarter-Nyquist. To avoid boosting
these noises, the ungapped PE filter is generally altered or accompanied by other filters. Three
common approaches follow:

• Use a gapped filter.

• Deconvolve, then apply a filter with the desired spectrum S(ω).

• Prefilter the input with S(ω)−1, then deconvolve with an ungapped PE filter, and finally
postfilter with S(ω).

The last process is called “prewhitening” for some complicated reasons: the idea seems to be
that the prefilter removes known color so that the least-squares coefficients are not “wasted”
on predicting what is already known. Thus the prefilter spectrum S(ω)−1 is theoretically the
inverse of the prior estimate of the input spectrum. In real life, that is merely an average of
estimates from other data. If the desired output spectrum does not happen to be S(ω), it does
not matter, since any final display filter can be used. Although this is a nice idea, I have no
example to illustrate it.

There is also the question of what phase the postfilter should have. Here are some cautions
against the obvious two choices:

• Zero phase: a symmetrical filter has a noncausal response.

• Causal: if a later step of processing is to make a coherency analysis for velocity versus
time, then the effective time will be more like the signal maximum than the first break.

Since the postfilter is broadband, its phase is not so important as that of the deconvolution
operator, which tries to undo the phase of a causal and resonant earth.

7.4. BLIND DECONVOLUTION 171

7.4 BLIND DECONVOLUTION

The prediction-error filter solves the “blind-deconvolution” problem. So far little has been
said about the input data to the PE filter. A basic underlying model is that the input data
results from white noise into a filter, where the filter is some process in nature. Since the
output of the PE filter is white, it has the same spectrum as the original white noise. The
natural hypothesis is that the filter in nature is the inverse of our PE filter. Both filters are
causal, and their amplitude spectra are mutually inverse. Theoretically, if the model filter were
minimum phase, then its inverse would be causal, and it would be our PE filter. But if the
model filter were an all-pass filter, or had an all-pass filter as a factor, then its inverse would
not be causal, so it could not be our PE filter.

Figure 7.11: Spectra of random num-
bers, a filter, and the output of the fil-
ter. tsa-model [ER]

The blind-deconvolution problem can be attacked without PE filters by going to the fre-
quency domain. Figure 7.11 shows sample spectra for the basic model. We see that the spectra
of the random noise are random-looking. In chapter 11 we will study random noise more thor-
oughly; the basic fact important here is that the longer the random time signal is, the rougher
is its spectrum. This applies to both the input and the output of the filter. Smoothing the
very rough spectrum of the input makes it tend to a constant; hence the common oversimpli-
fication that the spectrum of random noise is a constant. Since for Y (Z) = F(Z)X (Z) we
have |Y (ω)| = |F(ω)||X (ω)|, the spectrum of the output of random noise into a filter is like
the spectrum of the filter, but the output spectrum is jagged because of the noise. To esti-
mate the spectrum of the filter in nature, we begin with data (like the output in Figure 7.11)
and smooth its spectrum, getting an approximation to that of the filter. For blind deconvo-
lution we simply apply the inverse filter. The simplest way to get such a filter is to inverse
transform the smoothed amplitude spectrum of the data to a time function. This time-domain
wavelet will be a symmetrical signal, but in real life the wavelet should be causal. Chapter 10
shows a Fourier method, called the “Kolmogoroff method," for finding a causal wavelet of a
given spectrum. Chapter 11 shows that the length of the Kolmogoroff wavelet depends on the
amount of spectral smoothing, which in this chapter is like the ratio of the data length to the
filter length.

In blind deconvolution, Fourier methods determine the spectrum of the unknown wavelet.

172 CHAPTER 7. TIME-SERIES ANALYSIS

They seem unable to determine the wavelet’s phase by measurements, however—only to assert
it by theory. We will see that this is a limitation of the “stationarity” assumption, that signal
strengths are uniform in time. Where signal strengths are nonuniform, better results can be
found with weighting functions and time-domain methods. In Figure 7.14 we will see that the
all-pass filter again becomes visible when we take the trouble to apply appropriate weights.

7.5 WEIGHTED ERROR FILTERS

What I have described above is “industrial standard” material. A great many companies devote
much human and computer energy to it. Now we will see what new opportunities are promised
by a formulation that includes weighting functions.

7.5.1 Automatic gain control

Echos get weaker with time, though the information content is unrelated to the signal strength.
Echos also vary in strength as different materials are encountered by the outgoing wave. Pro-
grams for echo analysis typically divide the data by a scaling factor that is a smoothed average
of the signal strength. This practice is nearly universal, although it is fraught with hazards. An
example of automatic gain control (AGC) is to compute the divisor by forming the absolute
value of the signal strength and then smoothing with the program triangle() on page 52 or
the program leaky() on page 57. Pitfalls are the strange amplitude behavior surrounding the
water bottom, and the overall loss of information contained in amplitudes. Personally, I have
found that the gain function t2 nearly always eliminates the need for AGC on raw field data,
but I have no doubt that AGC is occasionally needed. (A theoretical explanation for t 2 is given
in IEI.)

7.5.2 Gain before or after convolution

It is a common but questionable practice to apply AGC to echo soundings before filter anal-
ysis. A better practice is first to analyze according to the laws of physics and only at the last
stage to apply gain functions for purposes of statistical estimation and final display. Here we
will examine correct and approximate ways of setting up deconvolution problems with gain
functions. Then we will use CG to solve the proper formulation.

Solving problems in the time domain offers an advantage over the frequency domain be-
cause in the time domain it is easy to control the interval where the solution should exist.
Another advantage of the time domain arises when weighting functions are appropriate. I
have noticed that people sometimes use Fourier solutions inappropriately, forcing themselves
to use uniform weighting when another weighting would work better. Since we look at echos,
it is unavoidable that we apply gain functions. Weighting is always justified on the process
outputs, but it is an approximation of unknown validity on the data that is input to those pro-
cesses. I will clarify this approximation by an equation with two filter points and an output

7.5. WEIGHTED ERROR FILTERS 173

of four time points. In real-life applications, the output is typically 1000-2000 points and the
filter 5-50 points. The valid formulation of a filtering problem is⎡

⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ ≈

⎡
⎢⎢⎣

w1 0 0 0
0 w2 0 0
0 0 w3 0
0 0 0 w4

⎤
⎥⎥⎦

⎛
⎜⎜⎝

⎡
⎢⎢⎣

d1

d2

d3

d4

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

x1 0
x2 x1

x3 x2

0 x3

⎤
⎥⎥⎦

[
f1

f2

]⎞
⎟⎟⎠ (7.18)

The weights wt are any positive numbers we choose. Typically the wt are chosen so that the
residual components are about equal in magnitude.

If, instead, the weighting function is applied to the inputs, we have an approximation that
is somewhat different:⎡

⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ ≈

⎡
⎢⎢⎣

w1d1

w2d2

w3d3

w4d4

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

w1x1 0
w2x2 w1x1

w3x3 w2x2

0 w3x3

⎤
⎥⎥⎦

[
f1

f2

]
(7.19)

Comparing the weighted output-residual equation (7.18) to the weighted input-data equa-
tion (7.19), we note that their right-hand columns do not match. The right-hand column
in (7.18) is (0,w2x1,w3x2,w4x3)′ but in (7.19) is (0,w1x1,w2x2,w3x3)′. The matrix in (7.19)
is a simple convolution, so some fast solution methods are applicable.

7.5.3 Meet the Toeplitz matrix

The solution to any least-squares problem proceeds explicitly or implicitly by finding the
inverse to a covariance matrix. Recall the basic filtering equation (??),⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 0
x2 x1 0
x3 x2 x1

x4 x3 x2

x5 x4 x3

0 x5 x4

0 0 x5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ f1

f2

f3

⎤
⎦ (7.20)

which we can abbreviate by y = Xf. To gain some understanding of your cultural heritage in
time-series analysis, form the covariance matrix X′X,

X′X =
⎡
⎣ s0 s1 s2

s1 s0 s1

s2 s1 s0

⎤
⎦ (7.21)

where the elements st are lags of the autocorrelation of xt . This covariance matrix is an
example of a Toeplitz matrix. When an application is formulated in the frequency domain,

174 CHAPTER 7. TIME-SERIES ANALYSIS

you may encounter a spectrum as a divisor. When the same application is formulated in the
time domain, you will see an autocorrelation matrix that needs inversion.

The Toeplitz matrix is highly structured. Whereas an n× n matrix could contain n2 dif-
ferent elements, the Toeplitz matrix contains only n elements that are different from each
other. When computers had limited memory, this memory savings was important. Also, there
are techniques for solving least-squares problems with Toeplitz covariance matrices that are
much faster than those for solving problems with arbitrary matrices. The effort for arbitrary
matrices is proportional to n3, whereas for Toeplitz matrices it is n2. These advantages of
Toeplitz matrices were once overwhelming, although now they are rarely significant. But be-
cause old methods linger on, we need to decide if they are warranted. Recall that we wrote
three convolution programs, contran() on page 105, contrunc() on page 106, and convin()

on page 107. You can verify that a Toeplitz matrix arises only in the first of these. The other
two represent different ways of handling boundaries. Let W be a diagonal matrix of weighting
functions. You can also verify that the covariance matrix B′WB is not Toeplitz. Thus, Toeplitz
matrices only arise with uniform weighting and transient boundary conditions. If the only tool
you have is a hammer, then everything you see starts to look like a nail. In earlier days, and by
inertia even today, convolution applications tend to be formulated as uniformly weighted with
transient boundaries. This is a pitfall.

Toeplitz matrices are associated with elegant mathematics and rapid numerical solutions.
Applications that are solvable by standard methods have historically been cast in Toeplitz
form by imposing simplifying assumptions. This is risky.

The approximation (7.19) becomes reasonable when the weights are slowly variable, i.e.,
when wt is a slowly variable function of t . In practice, I think the approximation is often
justified for slow t2 gain but questionable for automatic gains that are faster. Compared to
Toeplitz methods of solving equation (7.19), the CG method of solving (7.18) is slower. Here
we are going to see how to solve the problem correctly. If you want to solve the correct
problem rapidly, perhaps you can do so by solving the approximate problem first by a quasi-
analytic method and then doing a few steps of CG.

7.5.4 Setting up any weighted CG program

Equation (7.18) is of the form 0≈W(d−Bf). This can be converted to a new problem with-
out weights by defining a new data vector Wd and a new operator WB simply by carrying W
through the parentheses to 0 ≈Wd− (WB)f. Convolution followed by weighting is imple-
mented in subroutine wcontrunc() on this page.

filter and weight.

#

subroutine wcontrunc(adj, add, ww, lag, nx, xx, nf,ff, nn,yy)

integer i, adj, add, lag, nx, nf, nn

real ww(nn), xx(nx), ff(nf), yy(nn)

temporary real ss(nn)

call adjnull(adj, add, ff,nf, yy,nn)

7.6. CALCULATING ERROR FILTERS 175

if(adj == 0) { call contrunc(0,0, lag, nx,xx, nf,ff, nn,ss)

do i= 1, nn

yy(i) = yy(i) + ss(i) * ww(i)

}

else { do i= 1, nn

ss(i) = yy(i) * ww(i)

call contrunc(1,1, lag, nx,xx, nf,ff, nn,ss)

}

return; end

7.6 CALCULATING ERROR FILTERS

The error in prediction (or interpolation) is often more interesting than the prediction itself.
When the predicted component is removed, leaving the unpredictable, the residual is the pre-
diction error. Let us see how the program shaper() can be used to find an interpolation-error
filter like (f−2, f−1,1, f1, f2). The statement of wishes is⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.

.
x1

x2

x3

x4

x5

x6

.

.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 . . .
x2 x1 . .
x3 x2 . .
x4 x3 x1 .
x5 x4 x2 x1

x6 x5 x3 x2

. x6 x4 x3

. . x5 x4

. . x6 x5

. . . x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

f−2

f−1

f1

f2

⎤
⎥⎥⎦ (7.22)

Taking the column vector of xt to the other side of the equation gives the form required by
previous CG programs. After solving this system for (f−2, f−1, f1, f2), we insert the “1” to
make the IE filter (f−2, f−1,1, f1, f2), which, applied to the data xt , gives the desired IE
output.

Notice that the matrix in (7.22) is almost convolution. It would be convolution if the
central column were not absent. I propose that you not actually solve the system (7.22).
Instead I will show you a more general solution that uses the convolution operator itself. That
way you will not need to write programs for the many “almost” convolution operators arising
from the many PE and IE filters with their various gaps and lags.

The conjugate-gradient program here is a combination of earlier CG programs and the
weighting methods we must introduce now:

• We need to constrain a filter coefficient to be unity, which we can do by initializing it to
unity and then allowing no changes to it.

• We may wish to constrain some other filter coefficients to be zero (gapping) by initial-
izing them to zero and allowing no changes to them.

176 CHAPTER 7. TIME-SERIES ANALYSIS

• We may want the output to occur someplace other than off-end prediction. Thus we will
specify a time lag that denotes the predicted or interpolated time point. The program
contrunc() on page 106 is designed for this.

Incorporating all these features into shaper(), we get iner().

weighted interpolation-error filter

#

subroutine iner(nf,f, nr,yy,rr, ww, niter, lag, gap1, gapn)

integer i, iter, nf, nr, niter, lag, gap1, gapn

real f(nf), yy(nr), rr(nr), ww(nr)

temporary real df(nf), sf(nf), dr(nr), wr(nr), sr(nr)

if(lag < gap1 || lag > gapn) call erexit(’input fails gap1<=lag<=gapn’)

do i= 1, nf

f(i) = 0.

f(lag) = 1. # set output lag

call wcontrunc(0,0, ww, lag, nr,yy, nf, f, nr,wr)

call scaleit(-1., nr,wr) # negative

do iter= 0, niter {

call wcontrunc(1,0, ww, lag, nr,yy, nf,df, nr,wr) # df=yy*wr

do i= gap1, gapn

df(i) = 0. # constrained lags

call wcontrunc(0,0, ww, lag, nr,yy, nf,df, nr,dr) # dr=yy*df

call cgstep(iter, nf, f,df,sf, _

nr,wr,dr,sr) # f=f+df

}

call contrunc(0,0, lag, nr,yy, nf,f, nr,rr) # unweighted res

return; end

For a filter of the form (1, f1, f2, · · · , fn−1), we would specify lag=1, gap1=1, gapn=1. For a
filter of the form (1,0, f2, · · · , fn−1), we would specify lag=1, gap1=1, gapn=2. For a filter
of the form (f−2, f−1,1, f1, f2), we would specify nf=5, lag=3, gap1=3, gapn=3.

This program uses the convolution program contrunc(), which is handy in practice be-
cause its output has the same length as its input. This convenience is partly offset by the small
danger that significant output energy in the “start up” and “off end” zones could be truncated.
Specifically, that energy would be in the top two and bottom two rows of equation (7.22).

7.6.1 Stabilizing technique

Theory for stabilizing least squares, using equations (??) and (??), was described earlier in
this book. I installed this stabilization, along with the filter determinations discussed in this
chapter, but as I expected, stabilization in this highly overdetermined application showed no
advantages. Nevertheless, it is worth seeing how stabilization is implemented, particularly
since the changes to the program calling iner() make for more informative plots.

The input data is modified by appending a zero-padded impulse at the data’s end. The
output will contain the filter impulse response in that region. The spike size is chosen to be
compatible with the data size, for the convenience of the plotting programs. The weighting

7.6. CALCULATING ERROR FILTERS 177

function in the appended region is scaled according to how much stabilization is desired.
Figure 7.12 shows the complete input and residual. It also illustrates the problem that output

Figure 7.12: Data from the North Sea (extracted from Yilmaz and Cumro dataset 33) processed
by prediction error. Rightmost box is weighted according to the desired stabilization. The
truncation event is weighted by zero. tsa-wz33 [NR]

data flows beyond the length of the input data because of the nonzero length of the filter. This
extra output is undoubtedly affected by the truncation of the data, and its energy should not be
part of the energy minimization. Therefore it is weighted by zero.

EXERCISES:

1 Given a sinusoidal function xt = cos(ωt+φ), a three-term recurrence relationship predicts
xt from the previous two points, namely, xt = a1xt−1+a2xt−2. Find a1 and a2 in terms of
ω�t . HINT: See chapter 3. (Notice that the coefficients depend on ω but not φ.)

2 Figure 7.9 has a separate filter for each trace. Consider the problem of finding a single fil-
ter for all the traces. What is the basic operator and its adjoint? Assemble these operators
using subroutine contrunc() on page 106.

178 CHAPTER 7. TIME-SERIES ANALYSIS

3 Examine the filters on Figure 7.12. Notice that, besides the pulse at the water depth,
another weak pulse occurs at double that depth. Suggest a physical mechanism. Suggest
a mechanism relating to computational approximations.

7.7 INTERPOLATION ERROR

Interpolation-error filters have the form (a−m , · · · ,a−2,a−1,1,a1,a2,a3, · · · ,an), where the at

coefficients are adjusted to minimize the power in the filter output. IE filters have the strange
characteristic that if the input spectrum is S(ω), then the output spectrum will tend to S(ω)−1.
Thus these filters tend to turn poles into zeros and vice versa. To see why IE filters invert
the spectrum of the input, we only need recall the basic premise of least-squares methods,
that the residual (the output) is orthogonal to the fitting function (the input at all lags except
the zero lag). Thus, the crosscorrelation of the input and the output is an impulse. This can
only happen if their spectra are inverses, which is a disaster for the overall appearance of a
seismogram. Such drastic spectral change can be controlled in a variety of ways, as is true
with PE filters, but with IE filters there seems to be little experience to build on besides my
own. Figure 7.13 illustrates an interpolation-error result where gapping has been used to limit
the color changes. I also chose the gap to condense the wavelet. You judge whether the result
is successful. Notice also a high-frequency arrival after the diagonal lines: this shows that the
IE filters are boosting very high frequencies despite the gapping.

7.7.1 Blind all-pass deconvolution

A well-established theoretical concept that leads to unwarranted pessimism is the idea that
blind deconvolution cannot find an all-pass filter. If we carefully examine the analysis lead-
ing to that conclusion, we will find lurking the assumption that the weighting function used in
the least-squares estimation is uniform. And when this assumption is wrong, so is our conclu-
sion, as Figure 7.14 shows. Recall that the inverse to an all-pass filter is its time reverse. The
reversed shape of the filter is seen on the inputs where there happen to be isolated spikes.

Let us see what theory predicts cannot be done, and then I will tell you how I did it. If
you examine the unweighted least-squares error-filter programs, you will notice that the first
calculation is the convolution operator and then its transpose. This takes the autocorrelation
of the input and uses it as a gradient search direction. Take a white input and pass it through
a phase-shift filter; the output autocorrelation is an impulse function. This function vanishes
everywhere except for the impulse itself, which is constrained against rescaling. Thus the
effective gradient is zero. The solution, an impulse filter, is already at hand, so a phase-shift
filter seems unfindable.

On the other hand, if the signal strength of the input varies, we should be balancing its
expectation by weighting functions. This is what I did in Figure 7.14. I chose a weighting
function equal to the inverse of the absolute value of the output of the filter plus an ε. Since
the weighting function depends on the output, the process is iterative. The value of ε chosen

7.7. INTERPOLATION ERROR 179

Figure 7.13: Data from the North Sea (extracted from Yilmaz and Cumro dataset 33) processed
by interpolation error. Inputs above outputs. Filters displayed on the right. tsa-wz33ie [NR]

Figure 7.14: Four independent trials of deconvolution of sparse noise into an all-pass filter.
Alternate lines are input and output. tsa-dallpass [NR]

180 CHAPTER 7. TIME-SERIES ANALYSIS

was 20% of the maximum signal value.

Since the iteration is a nonlinear procedure, it might not always work. A well-established
body of theory says it will not work with Gaussian signals, and Figure 7.15 is consistent with
that theory.

Figure 7.15: Failure of blind all-pass deconvolution for Gaussian signals. The top signal is
based on Gaussian random numbers. Lower signals are based on successive integer powers
of Gaussian signals. Filters (on the right) fail for the Gaussian case, but improve as signals
become sparser. tsa-dgauss [NR]

In Figure 7.13, I used weighting functions roughly inverse to the envelope of the signal,
taking a floor for the envelope at 20% of the signal maximum. Since weighting functions
were used, the filters need not have turned out to be symmetrical about their centers, but the
resulting asymmetry seems to be small.

Chapter 8

Missing-data restoration

A brief summary of chapters 5 and 6 is that “the answer” is the solution to an inversion
problem—a series of steps with many pitfalls. Practitioners often stop after the first step,
while academics quibble about the convergence, i.e., the last steps. Practitioners might stop
after one step to save effort, to save risk, or because the next step is not obvious. Here we study
a possible second step—replacing the zero-valued data presumed by any adjoint operator with
more reasonable values.

A great many processes are limited by the requirement to avoid spatial aliasing—that no
wavelength should be shorter than twice the sampling interval on the data wave field. This
condition forces costly expenditures in 3-D reflection data acquisition and yields a mathe-
matical dichotomy between data processing in exploration seismology and data processing in
earthquake seismology.

The simple statement of the spatial Nyquist requirement oversimplifies real life. Recently,
S. Spitz (1991) showed astonishing results that seem to violate the Nyquist requirement. In
fact they force us to a deeper understanding of it. In this chapter we will discuss many new
opportunities that promise much lower data-acquisition costs and should also reduce the con-
ceptual gap between exploration and earthquake seismology.

8.1 INTRODUCTION TO ALIASING

In its simplest form, the Nyquist condition says that we can have no frequencies higher than
two points per wavelength. In migration, this is a strong constraint on data collection. It seems
there is no escape. Yet, in applications dealing with a CMP gather (such as in Figure 5.5 or
5.6), we see data with spatial frequencies that exceed Nyquist and we are not bothered, because
after NMO, these frequencies are OK. Nevertheless, such data is troubling because it breaks
many of our conventional programs, such as downward continuation with finite differences
or with Fourier transforms. (No one uses focusing for stacking.) Since NMO defies the
limitation imposed by the simple statement of the Nyquist condition, we revise the condition
to say that the real limitation is on the spectral bandwidth, not on the maximum frequency.

181

182 CHAPTER 8. MISSING-DATA RESTORATION

Mr. Nyquist does not tell us where that bandwidth must be located. Further, it seems that
precious bandwidth need not be contiguous. The signal’s spectral band can be split into pieces
and those pieces positioned in different places. Fundamentally, the issue is whether the total
bandwidth exceeds Nyquist. Noncontiguous Nyquist bands are depicted in Figure 8.1.

Figure 8.1: Hypothetical spatial fre-
quency bands. Top is typical. Middle
for data skewed with τ = t− px . Bot-
tom depicts data with wave arrivals
from three directions. mis-nytutor
[ER]

Noncontiguous bandwidth arises naturally with two-dimensional data where there are sev-
eral plane waves present. There the familiar spatial Nyquist limitation oversimplifies real life
because the plane waves link time and space.

The spatial Nyquist frequency need not limit the analysis of seismic data because the
plane-wave model links space with time.

8.1.1 Relation of missing data to inversion

We take data space to be a uniform mesh on which some values are given and some are miss-
ing. We rarely have missing values on a time axis, but commonly have missing values on
a space axis, i.e., missing signals. Missing signals (traces) happen occasionally for miscel-
laneous reasons, and they happen systematically because of aliasing and truncation. The
aliasing arises for economic reasons—saving instrumentation by running receivers far apart.
Truncation arises at the ends of any survey, which, like any human activity, must be finite. Be-
yond the survey lies more hypothetical data. The traces we will find for the missing data are
not as good as real observations, but they are closer to reality than supposing unmeasured data
is zero valued. Making an image with a single application of an adjoint modeling operator
amounts to assuming that data vanishes beyond its given locations. Migration is an exam-
ple of an economically important process that makes this assumption. Dealing with missing
data is a step beyond this. In inversion, restoring missing data reduces the need for arbitrary
model filtering.

8.2. MISSING DATA IN ONE DIMENSION 183

8.1.2 My model of the world

In your ears now are sounds from various directions. From moment to moment the directions
change. Momentarily, a single direction (or two) dominates. Your ears sample only two points
in x-space. Earthquake data is a little better. Exploration data is much better and sometimes
seems to satisfy the Nyquist requirement, especially when we forget that the world is 3-D.

We often characterize data from any region of (t , x)-space as “good” or “noisy” when we
really mean it contains “few” or “many” plane-wave events in that region. For noisy regions
there is no escaping the simple form of the Nyquist limitation. For good regions we may
escape it. Real data typically contains both kinds of regions. Undersampled data with a broad
distribution of plane waves is nearly hopeless. Undersampled data with a sparse distribution of
plane waves is prospective. Consider data containing a spherical wave. The angular bandwidth
in a plane-wave decomposition appears huge until we restrict attention to a small region of
the data. (Actually a spherical wave contains very little information compared to an arbitrary
wave field.) It can be very helpful in reducing the local angular bandwidth if we can deal
effectively with tiny pieces of data as we did in chapter 4. If we can deal with tiny pieces of
data, then we can adapt to rapid spatial and temporal variations. This chapter will show such
tiny windows of data. We will begin with missing-data problems in one dimension. Because
these are somewhat artificial, we will move on to two dimensions, where the problems are
genuine.

8.2 MISSING DATA IN ONE DIMENSION

A method for restoring missing data is to ensure that the restored data, after specified filtering,
has minimum energy. Specifying the filter chooses the interpolation philosophy. Generally
the filter is a “roughening" filter. When a roughening filter goes off the end of smooth data, it
typically produces a big end transient. Minimizing energy implies a choice for unknown data
values at the end, to minimize the transient. We will examine five cases and then make some
generalizations.

A method for restoring missing data is to ensure that the restored data, after specified
filtering, has minimum energy.

Let m denote a missing value. The dataset on which the examples are based is (· · · ,m,m, 1,m, 2,1,2,m,m, · · ·).
Using subroutine miss1() on page 186, values were found to replace the missing m values so
that the power in the filtered data is minimized. Figure 8.2 shows interpolation of the dataset
with 1− Z as a roughening filter. The interpolated data matches the given data where they
overlap.

Figures 8.2–8.6 illustrate that the rougher the filter, the smoother the interpolated data, and
vice versa. Let us switch our attention from the residual spectrum to the residual itself. The
residual for Figure 8.2 is the slope of the signal (because the filter 1− Z is a first derivative),
and the slope is constant (uniformly distributed) along the straight lines where the least-squares

184 CHAPTER 8. MISSING-DATA RESTORATION

Figure 8.2: Top is given data. Middle
is given data with interpolated val-
ues. Missing values seem to be in-
terpolated by straight lines. Bottom
shows the filter (1,−1), whose output
has minimum power. mis-mlines
[ER]

Figure 8.3: Top is the same input
data as in Figure 8.2. Middle is in-
terpolated. Bottom shows the fil-
ter (−1,2,−1). The missing data
seems to be interpolated by parabo-
las. mis-mparab [ER]

Figure 8.4: Top is the same input.
Middle is interpolated. Bottom shows
the filter (1,−3,3,−1). The missing
data is very smooth. It shoots upward
high off the right end of the obser-
vations, apparently to match the data
slope there. mis-mseis [ER]

Figure 8.5: The filter
(−1,−1,4,−1,−1) gives inter-
polations with stiff lines. They
resemble the straight lines of Fig-
ure 8.2, but they project through a
cluster of given values instead of
projecting to the nearest given value.
Thus, this interpolation tolerates
noise in the given data better than the
interpolation shown in Figure 8.4.
mis-msmo [ER]

Figure 8.6: Bottom shows the fil-
ter (1,1). The interpolation is rough.
Like the given data itself, the interpo-
lation has much energy at the Nyquist
frequency. But unlike the given data,
it has little zero-frequency energy.
mis-moscil [ER]

8.2. MISSING DATA IN ONE DIMENSION 185

procedure is choosing signal values. So these examples confirm the idea that the least-squares
method abhors large values (because they are squared). Thus, least squares tend to distribute
uniformly residuals in both time and frequency to the extent the constraints allow.

This idea helps us answer the question, what is the best filter to use? It suggests choosing
the filter to have an amplitude spectrum that is inverse to the spectrum we want for the inter-
polated data. A systematic approach is given in the next section, but I will offer a simple sub-
jective analysis here. Looking at the data, I see that all points are positive. It seems, therefore,
that the data is rich in low frequencies; thus the filter should contain something like (1− Z),
which vanishes at zero frequency. Likewise, the data seems to contain Nyquist frequency, so
the filter should contain (1+ Z). The result of using the filter (1− Z)(1+ Z)= 1− Z 2 is shown
in Figure 8.7. This is my best subjective interpolation based on the idea that the missing data
should look like the given data. The interpolation and extrapolations are so good that you
can hardly guess which data values are given and which are interpolated.

Figure 8.7: Top is the same as in
Figures 8.2 to 8.6. Middle is in-
terpolated. Bottom shows the fil-
ter (1,0,−1), which comes from
the coefficients of (1 − Z)(1 + Z).
Both the given data and the interpo-
lated data have significant energy at
both zero and Nyquist frequencies.
mis-mbest [ER]

8.2.1 Missing-data program

There are two ways to code the missing-data estimation, one conceptually simple and the other
leading to a concise program. Begin with a given filter f and create a shifted-column matrix
F, as in equation ??. The problem is that 0≈ Fd where d is the data. The columns of F are of
two types, those that multiply missing data values and those that multiply known data values.
Suppose we reorganize F into two collections of columns: Fm for the missing data values,
and Fk for the known data values. Now, instead of 0 ≈ Fd, we have 0 ≈ Fmdm +Fkdk or
−Fkdk ≈ Fmdm . Taking −Fkdk = y, we have simply an overdetermined set of simultaneous
equations like y≈ Ax, which we solved with cgmeth() on page 143.

The trouble with this approach is that it is awkward to program the partitioning of the
operator into the known and missing parts, particularly if the application of the operator uses
arcane techniques, such as those used by the fast Fourier transform operator or various numer-
ical approximations to differential or partial differential operators that depend on regular data
sampling. Even for the modest convolution operator, we already have a library of convolution
programs that handle a variety of end effects, and it would be much nicer to use the library as it
is rather than recode it for all possible geometrical arrangements of missing data values. Here

186 CHAPTER 8. MISSING-DATA RESTORATION

I take the main goal to be the clarity of the code, not the efficiency or accuracy of the solution.
(So, if your problem consumes too many resources, and if you have many more known points
than missing ones, maybe you should solve y≈ Fmx and ignore what I suggest below.)

How then can we mimic the erratically structured Fm operator using the F operator? When
we multiply any vector into F, we must be sure that the vector has zero-valued components to
hit the columns of F that correspond to missing data. When we look at the result of multiplying
the adjoint F′ into any vector, we must be sure to ignore the output at the rows corresponding
to the missing data. As we will see, both of these criteria can be met using a single loop.

The missing-data program begins by loading the negative-filtered known data into a resid-
ual. Missing data should try to reduce this residual. The iterations proceed as in cgmeth()

on page 143, invstack() on page 145, deghost() on page 147, shaper() on page 159, and
iner() on page 176. The new ingredient in the missing-data subroutine miss1() on this page
is the simple constraint that the known data cannot be changed. Thus, after the gradient is
computed, the components that correspond to known data values are set to zero.

fill in missing data on 1-axis by minimizing power out of a given filter.

#

subroutine miss1(na, a, np, p, copy, niter)

integer iter, ip, nr, na, np, niter

real p(np) # in: known data with zeros for missing values.

out: known plus missing data.

real copy(np) # in: copy(ip) vanishes where p(ip) is a missing value.

real a(na) # in: roughening filter

temporary real dp(np),sp(np), r(np+na-1),dr(np+na-1),sr(np+na-1)

nr = np+na-1

call contran(0, 0, na,a, np, p, r) # r = a*p convolution

call scaleit (-1., nr, r) # r = -r

do iter= 0, niter { # niter= number missing or less

call contran(1, 0, na,a, np,dp, r) # dp(a,r) correlation

do ip= 1, np

if(copy(ip) != 0.) # missing data where copy(ip)==0

dp(ip) = 0. # can’t change known data

call contran(0, 0, na,a, np,dp, dr) # dr=a*dp convolution

call cgstep(iter, np,p,dp,sp, nr,r,dr,sr) # p=p+dp; r=r-dr

}

return; end

That prevents changes to the known data by motion any distance along the gradient. Likewise,
motion along previous steps cannot perturb the known data values. Hence, the CG method
(finding the minimum power in the plane spanned by the gradient and the previous step) leads
to minimum power while respecting the constraints.

EXERCISES:

1 Figure 8.2–8.6 seem to extrapolate to vanishing signals at the side boundaries. Why is
that so, and what could be done to leave the sides unconstrained in that way?

2 Compare Figure 8.7 to the interpolation values you expect for the filter (1,0,−.5).

8.3. MISSING DATA AND UNKNOWN FILTER 187

3 Indicate changes to miss1() on the preceding page for missing data in two dimensions.

4 Suppose the call in miss1() on the facing page was changed from contran() on page 105
to convin() on page 107. Predict the changed appearance of Figure 8.2.

5 Suppose the call in miss1() was changed from contran() on page 105 to convin() on
page 107. What other changes need to be made?

6 Show that the interpolation curve in Figure 8.3 is not parabolic as it appears, but cubic.
(HINT: Show that (∇2)′∇2u = 0.)

7 Verify by a program example that the number of iterations required with simple constraints
is the number of free parameters.

8.3 MISSING DATA AND UNKNOWN FILTER

Recall the missing-data figures beginning with Figure 8.2. There the filters were taken as
known, and the only unknowns were the missing data. Now, instead of having a predetermined
filter, we will solve for the filter along with the missing data. The principle we will use is that
the output power is minimized while the filter is constrained to have one nonzero coefficient
(else all the coefficients would go to zero). We will look first at some results and then see how
they were found.

In Figure 8.8 the filter is constrained to be of the form (1,a1,a2). The result is pleasing in

Figure 8.8: Top is known data. Mid-
dle includes the interpolated values.
Bottom is the filter with the left-
most point constrained to be unity
and other points chosen to minimize
output power. mis-missif [ER]

that the interpolated traces have the same general character as the given values. The filter came
out slightly different from the (1,0,−1) that I suggested for Figure 8.7 based on a subjective
analysis. Curiously, constraining the filter to be of the form (a−2,a−1,1) in Figure 8.9 yields
the same interpolated missing data as in Figure 8.8. I understand that the sum squared of the
coefficients of A(Z)P(Z) is the same as that of A(1/Z)P(Z), but I do not see why that would
imply the same interpolated data.

8.3.1 Objections to interpolation error

In any data interpolation or extrapolation, we want the extended data to behave like the original
data. And, in regions where there is no observed data, the extrapolated data should drop away

188 CHAPTER 8. MISSING-DATA RESTORATION

Figure 8.9: The filter here had
its rightmost point constrained to
be unity—i.e., this filtering amounts
to backward prediction. The in-
terpolated data seems to be iden-
tical, as with forward prediction.
mis-backwards [ER]

in a fashion consistent with its spectrum determined from the known region. We will see that
a filter like (a−2,a−1,1,a1,a2) fails to do the job. We need to keep an end value constrained to
“1,” not the middle value.

In chapter 7 we learned about the interpolation-error filter (IE filter), a filter constrained
to be “+1” near the middle and consisting of other coefficients chosen to minimize the power
out. The basic fact about the IE filter is that the spectrum out tends to the inverse of the
spectrum in, so the spectrum of the IE filter tends to the inverse squared of the spectrum
in. The IE filter is thus not a good weighting function for a minimization, compared to the
prediction-error (PE) filter, whose spectrum is inverse to the input. To confirm these concepts,
I prepared synthetic data consisting of a fragment of a damped exponential, and off to one
side of it an impulse function. Most of the energy is in the damped exponential. Figure 8.10
shows that the spectrum and the extended data are about what we would expect. From the
extrapolated data, it is impossible to see where the given data ends. For comparison, I prepared

Figure 8.10: Top is synthetic data
with missing data represented by ze-
ros. Middle includes the interpo-
lated values. Bottom is the filter, a
prediction-error filter which may look
symmetric but is not quite. mis-exp
[ER]

Figure 8.11. It is the same as Figure 8.10, except that the filter is constrained in the middle.
Notice that the extended data does not have the spectrum of the given data—the wavelength is
much shorter. The boundary between real data and extended data is not nearly as well hidden
as in Figure 8.10.

Next I will pursue some esoteric aspects of one-dimensional missing-data problems. You
might prefer to jump forward to section 8.4, where we tackle two-dimensional analysis.

8.3. MISSING DATA AND UNKNOWN FILTER 189

Figure 8.11: Top is synthetic data
with missing data represented by
zeros. Middle includes the in-
terpolated values. Bottom is the
filter, an interpolation-error filter.
mis-center [ER]

8.3.2 Packing both missing data and filter into a CG vector

Now let us examine the theory and coding behind the above examples. Define a roughening
filter A(Z) and a data signal P(Z) at some stage of interpolation. The regression is 0 ≈
A(Z)P(Z) where the filter A(Z) has at least one coefficient constrained to be nonzero and
the data contains both known and missing values. Think of perturbations �A and �P . We
neglect the nonlinear term �A�P as follows:

0 ≈ (A + �A)(P + �P) (8.1)

0 ≈ AP + P �A + A�P + �A�P (8.2)

−AP ≈ P �A + A�P (8.3)

To make a program such as miss1() on page 186, we need to pack both unknowns into a single
vector x() = (�P ,�A) before calling the conjugate-gradient program. Likewise, the resulting
filter and data coming out must be unpacked. Also, the gradient now has two contributions,
one from A�P and one from P �A, and these must be combined. The program missif(),
which makes Figures 8.8 through 8.11, effectively combines miss1() on page 186 and iner()

on page 176. A new aspect is that, to avoid accumulation of errors from the neglect of the
nonlinear product �A�P , the residual is recalculated inside the iteration loop instead of
only once at the beginning.

MISSIF -- find MISSing Input data and Filter on 1-axis by min power out.

#

subroutine missif(na, lag, aa, np, pp, known, niter)

integer iter, na, lag, np, niter, nx, ax, px, ip, nr

real pp(np) # input: known data with zeros for missing values.

output: known plus missing data.

real known(np) # known(ip) vanishes where p(ip) is a missing value.

real aa(na) # input and output: roughening filter

temporary real x(np+na), g(np+na), s(np+na)

temporary real rr(np+na-1), gg(np+na-1), ss(np+na-1)

nr= np+na-1; nx= np+na; px=1; ax=1+np;

call copy(np, pp, x(px))

call copy(na, aa, x(ax))

190 CHAPTER 8. MISSING-DATA RESTORATION

if(aa(lag) == 0.) call erexit(’missif: a(lag)== 0.’)

do iter= 0, niter {

call contran(0, 0, na,aa, np, pp, rr)

call scaleit (-1., nr, rr)

call contran(1, 0, na,aa, np, g(px), rr)

call contran(1, 0, np,pp, na, g(ax), rr)

do ip= 1, np

if(known(ip) != 0)

g(ip) = 0.

g(lag+np) = 0.

call contran(0, 0, na,aa, np, g(px), gg)

call contran(0, 1, np,pp, na, g(ax), gg)

call cgstep(iter, nx, x, g, s, nr, rr, gg, ss)

call copy(np, x(px), pp)

call copy(na, x(ax), aa)

}

return; end

There is a danger that missif() might converge very slowly or fail if aa() and pp() are
much out of scale with each other, so be sure you input them with about the same scale. I
really should revise the code, perhaps to scale the “1” in the filter to the data, perhaps to equal
the square root of the sum of the data values.

8.3.3 Spectral preference and training data

I tried using the missif() program to interlace data—i.e., to put new data values between
each given value. This did not succeed. The interlaced missing values began equaling zero
and remained zero. Something is missing from the problem formulation.

This paragraph describes only the false starts I made toward the solution. It seems that
the filter should be something like (1,−2,1), because that filter interpolates on straight lines
and is not far from the feedback coefficients of a damped sinusoid. (See equation (??).) So I
thought about different ways to force the solution to move in that direction. Traditional linear
inverse theory offers several suggestions; I puzzled over these before I found the right one.
First, I added the obvious stabilizations λ2

1||p|| and λ2
2||a||, but they simply made the filter and

the interpolated data smaller. I thought about changing the identity matrix in λI to a diagonal
matrix ||�3p|| or ||�4a||. Using �4, I could penalize the filter at even-valued lags, hoping
that it would become nonzero at odd lags, but that did not work. Then I thought of using
λ2

5||p−p||, λ2
6||a−a||, �2

7||p−p||, and �2
8||a−a||, which would allow freedom of choice of

the mean and variance of the unknowns. In that case, I must supply the mean and variance,
however, and doing that seems as hard as solving the problem itself. Suddenly, I realized the
answer. It is simpler than anything above, yet formally it seems more complicated, because a
full inverse covariance matrix of the unknown filter is implicitly supplied.

I found a promising new approach in the stabilized minimization

min
P,A

(||P A|| + λ9||P0 A|| + λ10||P A0||) (8.4)

8.3. MISSING DATA AND UNKNOWN FILTER 191

where P0 and A0 are like given priors. But they are not prior estimates of P and A because the
phases of P0 and A0 are irrelevant, washing out in the squaring. If we specify large values for
λ, the overall problem becomes more linear, so P0 and A0 give a way to impose uniqueness
in a nonlinear case where uniqueness is otherwise unknown. Then, of course, the λ values
can be reduced to see where the nonlinear part ||P A|| is leading.

The next question is, what are the appropriate definitions for P0 and A0? Do we need both
P0 and A0, or is one enough? We will come to understand P0 and A0 better as we study more
examples. Simple theory offers some indications, however. It seems natural that P0 should
have the spectrum that we believe to be appropriate for P . We have little idea about what to
expect for A, except that its spectrum should be roughly inverse to P .

To begin with, I think of P0 as a low-pass filter, indicating that data is normally over-
sampled. Likewise, A0 should resemble a high-pass filter. When we turn to two-dimensional
problems, I will guess first that P0 is a low-pass dip filter, and A0 a high-pass dip filter.

Returning to the one-dimensional signal-interlacing problem, I take A0 = 0 and choose
P0 to be a different dataset, which I will call the “training data.” It is a small, additional,
theoretical dataset that has no missing values. Alternately, the training data could come from
a large collection of observed data that is without missing parts. Here I simply chose the short
signal (1,1) that is not interlaced by zeros. This gives the fine solution we see in Figure 8.12.

Figure 8.12: Left shows that data will not interlace without training data. Right shows data
being interlaced because of training data. mis-priordata [ER]

To understand the coding implied by the optimization (8.4), it is helpful to write the lin-
earized regression. The training signal P0 enters as a matrix of shifted columns of the training
signal, say T; and the high-pass filter A0 also appears as shifted columns in a matrix, say H.
The unknowns A and P appear both in the matrices A and P and in vectors a and p. The
linearized regression is ⎡

⎣ −Pa
−Hp
−Ta

⎤
⎦ ≈

⎡
⎣ A P

H 0
0 T

⎤
⎦ [

�p
�a

]
(8.5)

The top row restates equation (8.3). The middle row says that 0 = H(p+�p), and the

192 CHAPTER 8. MISSING-DATA RESTORATION

bottom row says that 0= T(a+�a). A program that does the job is misfip() on this page. It
closely resembles missif() on page 189.

MISFIP --- find MISsing peF and Input data on 1-axis using Prior data.

#

subroutine misfip(nt,tt, na,aa, np,pp,known, niter)

integer nt, na, ip,np, npa, nta, nx,nr, iter,niter, ax, px, qr, tr

real pp(np), known(np), aa(na) # same as in missif()

real tt(nt) # input: prior training data set.

temporary real x(np+na), g(np+na), s(np+na)

temporary real rr(np+na-1 +na+nt-1), gg(np+na-1 +na+nt-1), ss(np+na-1 +na+nt-1)

npa= np+na-1; nta= nt+na-1 # lengths of outputs of filtering

nx = np+na; nr= npa+nta # length of unknowns and residuals

px=1; qr=1; ax=1+np; tr=1+npa # pointers

call zero(na, aa); aa(1) = 1.

call copy(np, pp, x(px))

call copy(na, aa, x(ax))

do iter= 0, niter {

call contran(0, 0, na,aa, np, pp, rr(qr))

call contran(0, 0, na,aa, nt, tt, rr(tr)) # extend rr with train

call scaleit(-1., nr, rr)

call contran(1, 0, na,aa, np, g(px), rr(qr))

call contran(1, 0, np,pp, na, g(ax), rr(qr))

call contran(1, 1, nt,tt, na, g(ax), rr(tr))

do ip= 1, np { if(known(ip) != 0) { g(ip+(px-1)) = 0. } }

g(1 +(ax-1)) = 0.

call contran(0, 0, na,aa, np, g(px), gg(qr))

call contran(0, 1, np,pp, na, g(ax), gg(qr))

call contran(0, 0, nt,tt, na, g(ax), gg(tr))

call cgstep(iter, nx, x, g, s, nr, rr, gg, ss)

call copy(np, x(px), pp)

call copy(na, x(ax), aa)

}

return; end

The new computations are the lines containing the training data tt. (I omitted the extra clutter
of the high-pass filter hh because I did not get an interesting example with it.) Compared to
missif() on page 189, additional clutter arises from pointers needed to partition the residual
and the gradient abstract vectors into three parts, the usual one for ||P A|| and the new one for
||P0 A|| (and potentially ||P A0||).

You might wonder why we need another program when we could use the old program and
simply append the training data to the observed data. We will encounter some applications
where the old program will not be adequate. These involve the boundaries of the data. (Recall
that, in chapter 4, when seismic events changed their dip, we used a two-dimensional wave-
killing operator and were careful not to convolve the operator over the edges.) Imagine a
dataset that changes with time (or space). Then P0 might not be training data, but data from a
large interval, while P is data in a tiny window that is moved around on the big interval. These
ideas will take definite form in two dimensions.

8.4. 2-D INTERPOLATION BEYOND ALIASING 193

8.3.4 Summary of 1-D missing-data restoration

Now I will summarize our approach to 1-D missing-data restoration in words that will carry
us towards 2-D missing data. First we noticed that, given a filter, minimizing the output power
will find missing input data regardless of the volume missing or its geometrical complexity.
Second, we experimented with various filters and saw that the prediction-error filter is an ap-
propriate choice, because data extensions into regions without data tend to have the spectrum
inverse to the PE filter, which (from chapter 7) is inverse to the known data. Thus, the overall
problem is perceived as a nonlinear one, involving the product of unknown filter coefficients
and unknown data. It is well known that nonlinear problems are susceptible to multiple solu-
tions; hence the importance of the stabilization method described, which enables us to ensure
a reasonable solution.

8.3.5 2-D interpolation before aliasing

A traditional method of data interpolation on a regular mesh is a four-step procedure: (1) set
zero values at the points to be interpolated; (2) Fourier transform; (3) set to zero the high fre-
quencies; and (4) inverse transform. This is a fine method and is suitable for many applications
in both one dimension and higher dimensions. Where the method falls down is where more
is needed than simple interlacing—for example, when signal values are required beyond the
ends of the data sample. The simple Fourier method of interlacing also loses its applicability
when known data is irregularly distributed. An example of an application in two dimensions of
the methodology of this section is given in the section on tomography beginning on page 208.

8.4 2-D INTERPOLATION BEYOND ALIASING

I have long marveled at the ability of humans to interpolate seismic data containing mixtures
of dips where spatial frequencies exceed the Nyquist limits. These limits are hard limits on
migration programs. Costly field-data-acquisition activities are designed with these limits in
mind. I feared this human skill of going beyond the limit was deeply nonlinear and beyond
reliable programming. Now, however, I have obtained results comparable in quality to those
of S. Spitz, and I am doing so in a way that seems reliable—using two-stage, linear least
squares. First we will look at some results and then examine the procedure. Before this
program can be applied to field data for migration, remember that the data must be broken
into many overlapping tiles of about the size shown here and the results from each tile pieced
together.

Figure 8.13 shows three plane waves recorded on five channels and the interpolated data.
Both the original data and the interpolated data can be described as “beyond aliasing” because
on the input data the signal shifts exceed the signal duration. The calculation requires only a
few seconds of a “two-stage least-squares” method, where the first stage estimates an inverse
covariance matrix of the known data, and the second uses it to estimate the missing traces.

194 CHAPTER 8. MISSING-DATA RESTORATION

Figure 8.13: Left is five signals, each showing three arrivals. Using the data shown on the
left (and no more), the signals have been interpolated. Three new traces appear between each
given trace as shown on the right. mis-lace3 [ER]

Actually, a 2-D prediction-error filter is estimated, and the inverse covariance matrix, which
amounts to the PE filter times its adjoint, is not needed explicitly.

Figure 8.14: Two plane waves and their interpolation. mis-lace2 [ER]

Let us now examine a case with minimal complexity. Figure 8.14 shows two plane waves
recorded on three channels. That is the minimum number of channels required to distinguish
two superposing plane waves. Notice on the interpolated data that the original traces are noise-
free, but the new traces have acquired a low level of noise. This will be dealt with later.

Figure 8.15 shows the same calculation in the presence of noise on the original data. We
see that the noisy data is interpolatable just as was the noise-free data, but now we can notice
the organization of the noise. It has the same slopes as the plane waves. This was also true
on the earlier figures (Figure 8.13 and 8.14), as is more apparent if you look at the page from
various grazing angles. To display the slopes more clearly, Figure 8.15 is redisplayed in a
raster mode in Figure 8.16.

8.4. 2-D INTERPOLATION BEYOND ALIASING 195

Figure 8.15: Interpolating noisy plane waves. mis-lacenoise [ER]

Figure 8.16: Interpolating noisy plane waves. mis-laceras [ER]

196 CHAPTER 8. MISSING-DATA RESTORATION

8.4.1 Interpolation with spatial predictors

A two-dimensional filter is a small plane of numbers that is convolved over a big data plane
of numbers. One-dimensional convolution can use the mathematics of polynomial multipli-
cation, such as Y (Z)= X (Z)F(Z), whereas two-dimensional convolution can use something
like Y (Z1, Z2)= X (Z1, Z2)F(Z1, Z2). Polynomial mathematics is appealing, but unfortunately
it implies transient edge conditions, whereas here we need different edge conditions, such as
those of the dip-rejection filters discussed in Chapter 4, which were based on simple partial
differential equations. Here we will examine spatial prediction-error filters (2-D PE filters)
and see that they too can behave like dip filters.

The typesetting software I am using has no special provisions for two-dimensional filters,
so I will set them in a little table. Letting “·” denote a zero, we denote a two-dimensional
filter that can be a dip-rejection filter as

a b c d e
· · 1 · · (8.6)

where the coefficients (a,b,c,d,e) are to be estimated by least squares in order to minimize
the power out of the filter. (In the table, the time axis runs horizontally, as on data displays.)

Fitting the filter to two neighboring traces that are identical but for a time shift, we see that
the filter (a,b,c,d,e) should turn out to be something like (−1,0,0,0,0) or (0,0,−.5,−.5,0),
depending on the dip (stepout) of the data. But if the two channels are not fully coherent, we
expect to see something like (−.9,0,0,0,0) or (0,0,−.4,−.4,0). For now we will presume that
the channels are fully coherent.

8.4.2 Refining both t and x with a spatial predictor

Having determined a 2-D filter, say on the original data mesh, we can now interlace both t
and x and expect to use the identical filter. This is because slopes are preserved if we replace
(�t ,�x) by (�t/2,�x/2). Everyone knows how to interpolate data on the time mesh, so that
leaves the job of interpolation on the space mesh: in (8.6) the known (a,b,c,d,e) can multiply
a known trace, and then the “1” can multiply the interlaced and unknown trace. It is then easy
to minimize the power out by defining the missing trace to be the negative of that predicted
by the filter (a,b,c,d,e) on the known trace. (The spatial interpolation problem seems to be
solved regardless of the amount of the signal shift. A “spatial aliasing” issue does not seem to
arise.) It is nice to think of the unknowns being under the “1” and the knowns being under the
(a,b,c,d,e), but the CG method has no trouble working backwards too.

After I became accustomed to using the CG method, I stopped thinking that the unknown
data is that which is predicted, and instead began to think that the unknown data is that which
minimizes the power out of the prediction filter. I ignored the question of which data values
are known and which are unknown. This thinking enables a reformulation of the problem, so
that interpolation on the time axis is an unnecessary step. This is the way all my programs

8.4. 2-D INTERPOLATION BEYOND ALIASING 197

work. Think of the filter that follows as applied on the original coarse-mesh data:

a · b · c · d · e
· · · · · · · · ·
· · · · 1 · · · ·

(8.7)

The first stage is to use CG to find (a,b,c,d,e) in (8.7). For the second stage, we assert that the
same values (a,b,c,d,e) found from (8.7) can be used in (8.6), and we use CG a second time
to find the missing data values. A wave field interpolated this way is shown in Figure 8.17.
Figures 8.13 to 8.16 were made with filters that had more rows than (8.7), for reasons we will
discuss next.

Figure 8.17: Two signals with one dip. mis-lace1 [ER]

8.4.3 The prediction form of a two-dip filter

Now we handle two dips simultaneously. The following filter destroys a wave that is sloping
down to the right:

−1 · ·
· · 1

(8.8)

The next filter destroys a wave that is sloping less steeply down to the left:

· −1
1 · (8.9)

Convolving the above two filters together, we get

· 1 · ·
−1 · · −1
· · 1 ·

(8.10)

The 2-D filter (8.10) destroys waves of both slopes. Given appropriate interlacing, the filter
(8.10) destroys the data in Figure 8.14 both before and after interpolation. To find filters such

198 CHAPTER 8. MISSING-DATA RESTORATION

as (8.10), I adjust coefficients to minimize the power out of filters like

v w x y z
a b c d e
· · 1 · ·

(8.11)

A filter of this shape is suitable for figures like 8.14 and 8.15.

Let us examine the Fourier domain for this filter. The filter (8.10) was transformed to the
Fourier domain; it was multiplied by its conjugate; the square root was taken; and contours are
plotted at near-zero magnitudes in Figure 8.18. The slanting straight lines have slopes at the
two dips that are destroyed by the filters. Noticing the broad lows where the null lines cross,
we might expect to see energy at this temporal and spatial frequency, but I have not noticed
any.

Figure 8.18: Magnitude of two-
dimensional Fourier transform of the
2-D filter contoured at .01 and at .1.
mis-fk2dip [ER]

CINJOF --- Convolution INternal with Jumps. Output and FILTER are adjoint.

#

subroutine cinjof(adj, add, jump, n1,n2,xx, nb1,nb2,bb, yy)

integer adj, add, jump, n1,n2, nb1,nb2 # jump subsamples data

real xx(n1,n2), bb(nb1,nb2), yy(n1,n2)

integer y1,y2, x1,x2, b1, b2, ny1, ny2

call adjnull(adj, add, bb, nb1*nb2, yy, n1*n2)

ny1 = n1 - (nb1-1) * jump; if(ny1<1) call erexit(’cinjof: ny1<1’)

ny2 = n2 - (nb2-1); if(ny2<1) call erexit(’cinjof: ny2<1’)

if(adj == 0)

do b2=1,nb2 { do y2=1,ny2 { x2 = y2 - (b2-nb2)

do b1=1,nb1 { do y1=1,ny1 { x1 = y1 - (b1-nb1) * jump

yy(y1,y2) = yy(y1,y2) + bb(b1,b2) * xx(x1,x2)

}} }}

else

do b2=1,nb2 { do y2=1,ny2 { x2 = y2 - (b2-nb2)

do b1=1,nb1 { do y1=1,ny1 { x1 = y1 - (b1-nb1) * jump

bb(b1,b2) = bb(b1,b2) + yy(y1,y2) * xx(x1,x2)

}} }}

return; end

In practice, wavefronts have curvature, so we will estimate the 2-D filters in many small
windows on a wall of data. Therefore, to eliminate edge effects, I designed the 2-D filter

8.4. 2-D INTERPOLATION BEYOND ALIASING 199

programs starting from the 1-D internal convolution program convin() on page 107. The
subroutine for two-dimensional filtering is cinjof() on the facing page. The adjoint operation
included in this subroutine is exactly what we need for estimating the filter.

A companion program, cinloi(), is essentially the same as cinjof(), except that in cin-

loi() the other adjoint is used (for unknown input instead of unknown filter), and there is no
need to interlace the time axis. A new feature of cinloi() is that it arranges for the output
residuals to come out directly on top of their appropriate location on the original data. In other
words, the output of the filter is at the “1.” Although the edge conditions in this routine are
confusing, it should be obvious that xx(,) is aligned with yy(,) at bb(lag1,lag2).

CINLOI --- Convolution INternal with Lags. Output is adjoint to INPUT.

#

subroutine cinloi(adj, add, lag1,lag2,nb1,nb2,bb, n1,n2, xx, yy)

integer adj, add, lag1,lag2,nb1,nb2, n1,n2 # lag=1 causal

real bb(nb1,nb2), xx(n1,n2), yy(n1,n2)

integer y1,y2, x1,x2, b1,b2

call adjnull(adj, add, xx,n1*n2, yy,n1*n2)

if(adj == 0)

do b2=1,nb2 { do y2= 1+nb2-lag2, n2-lag2+1 { x2= y2 - b2 + lag2

do b1=1,nb1 { do y1= 1+nb1-lag1, n1-lag1+1 { x1= y1 - b1 + lag1

yy(y1,y2) = yy(y1,y2) + bb(b1,b2) * xx(x1,x2)

}} }}

else

do b2=1,nb2 { do y2= 1+nb2-lag2, n2-lag2+1 { x2= y2 - b2 + lag2

do b1=1,nb1 { do y1= 1+nb1-lag1, n1-lag1+1 { x1= y1 - b1 + lag1

xx(x1,x2) = xx(x1,x2) + bb(b1,b2) * yy(y1,y2)

}} }}

return; end

8.4.4 The regression codes

The programs for the two-dimensional prediction-error filter and missing data resemble those
for one dimension. I simplified the code by not trying to pack the unknowns and residuals
tightly in the abstract vectors. Because of this, it is necessary to be sure those abstract vectors
are initialized to zero. (Otherwise, the parts of the abstract vector that are not initialized could
contribute to the result when cgstep() on page 142 evaluates dot products on abstract vectors.)
The routine pe2() on this page finds the 2-D PE filter.

Find spatial prediction-error filter.

#

subroutine pe2(eps, a1,a2,aa, n1,n2 ,pp, rr, niter, jump)

integer a1,a2, n1,n2, niter, jump

integer i1, iter, midpt, r12, a12

real aa(a1 , a2), pp(n1 , n2), rr(n1 , n2 * 2), eps

temporary real da(a1, a2), dr(n1, n2 * 2)

temporary real sa(a1, a2), sr(n1, n2 * 2)

r12 = n1 * n2

a12 = a1 * a2

call null(aa, a12); call null(rr, 2 * r12)

call null(da, a12); call null(dr, 2 * r12)

200 CHAPTER 8. MISSING-DATA RESTORATION

midpt = (a1+1) / 2

aa(midpt, 1) = 1.

call cinjof(0, 0, jump, n1,n2,pp, a1,a2,aa, rr)

call ident (0, 0, eps, a12, aa, rr(1,n2+1))

call scaleit (-1., 2*r12, rr)

do iter= 0, niter {

call cinjof(1, 0, jump, n1,n2,pp, a1,a2,da, rr)

call ident (1, 1, eps, a12, da, rr(1,n2+1))

do i1= 1, a1 { da(i1, 1) = 0. }

call cinjof(0, 0, jump, n1,n2,pp, a1,a2,da, dr)

call ident (0, 0, eps, a12, da, dr(1,n2+1))

call cgstep(iter, a12, aa,da,sa, _

2*r12, rr,dr,sr)

}

return; end

This routine is the two-dimensional equivalent of finding the filter A(Z) so that 0 ≈ R(Z) =
P(Z)A(Z). We coded the 1-D problem in iner() on page 176. In pe2(), however, I did
not bother with the weighting functions. A further new feature of pe2() is that I added λI
capability (where λ is eps) by including the call to ident() on page 147, so that I could
experiment with various forms of filter stabilization. (This addition did not seem to be helpful.)

Given the 2-D PE filter, the missing data is found with miss2() on the current page, which
is the 2-D equivalent of miss1() on page 186.

fill in missing data in 2-D by minimizing power out of a given filter.

#

subroutine miss2(lag1,lag2, a1,a2, aa, n1,n2, ww, pp, known, rr, niter)

integer i1,i2,iter, lag1,lag2, a1,a2, n1,n2, niter, n12

real pp(n1, n2) # in: known data with zeros for missing values

out: known plus missing data.

real known(n1, n2) # in: known(ip) vanishes where pp(ip) is missing

real ww(n1, n2) # in: weighting function on data pp

real aa(a1, a2) # in: roughening filter

real rr(n1, n2*2) # out: residual

temporary real dp(n1, n2), dr(n1, n2*2)

temporary real sp(n1, n2), sr(n1, n2*2)

n12 = n1 * n2; call null(rr, n12*2)

call null(dp, n12); call null(dr, n12*2)

call cinloi(0, 0, lag1,lag2,a1,a2,aa, n1,n2, pp, rr)

call diag (0, 0, ww, n12, pp, rr(1,n2+1))

call scaleit (-1., 2*n12, rr)

do iter= 0, niter {

call cinloi(1, 0, lag1,lag2,a1,a2,aa, n1,n2, dp, rr)

call diag (1, 1, ww, n12, dp, rr(1,n2+1))

do i1= 1, n1 {

do i2= 1, n2 { if(known(i1,i2) != 0.) dp(i1,i2) = 0.

}}

call cinloi(0, 0, lag1,lag2,a1,a2,aa, n1,n2, dp, dr)

call diag (0, 0, ww, n12, dp, dr(1,n2+1))

call cgstep(iter, n12, pp,dp,sp, _

2*n12, rr,dr,sr)

}

return; end

8.4. 2-D INTERPOLATION BEYOND ALIASING 201

We will soon see that stabilization is more critical in miss2() than in pe2(). Furthermore,
miss2() must be stabilized with a weighting function, here ww(,), which is why I used
the diagonal matrix multiplier diag() rather than the identity matrix I used in deghost() on
page 147 and pe2() on page 199. Subroutine diag() is used so frequently that I coded it in a
special way to allow the input and output to overlie one another.

subroutine diag(adj, add, lambda,n, pp, qq)

integer i, adj, add, n # equivalence (pp,qq) OK

real lambda(n), pp(n), qq(n)

if(adj == 0) {

if(add == 0) { do i=1,n { qq(i) = lambda(i) * pp(i) } }

else { do i=1,n { qq(i) = qq(i) + lambda(i) * pp(i) } }

}

else { if(add == 0) { do i=1,n { pp(i) = lambda(i) * qq(i) } }

else { do i=1,n { pp(i) = pp(i) + lambda(i) * qq(i) } }

}

return; end

8.4.5 Zapping the null space with envelope scaling

Here we will see how to remove the small noise we are seeing in the interpolated outputs. The
filter (8.10) obviously destroys the input in Figure 8.14. On the output interpolated data, the
filter-output residuals (not shown) were all zeros despite the small noises. The filter totally
extinguishes the small noise on the outputs because the noise has the same stepout (slope)
as the signals. The noise is absent from the original traces, which are interlaced. How can
dipping noises exist on the interpolated traces but be absent from the interlaced data? The
reason is that one dip can interfere with another to cancel on the known, noise-free traces. The
filter (8.10) destroys perfect output data as well as the noisy data in Figure 8.14. Thus, there
is more than one solution to the problem. This is the case in linear equation solving whenever
there is a null space. Since we manufactured many more data points than we originally had,
we should not be surprised by the appearance of a null space. When only a single dip is
present, the null space should vanish because the dip vanishes on the known traces, having
no other dips to interfere with it there. Confirm this by looking back at Figure 8.17, which
contains no null-space noise. This is good news, because in real life, in any small window of
seismic data, a single-dip model is often a good model.

If we are to eliminate the null-space noises, we will need some criterion in addition to
stepout. One such criterion is amplitude: the noise events are the small ones. Before using a
nonlinear method, we should be sure, however, that we have exploited the full power of linear
methods. Information in the data is carried by the envelope functions, and these envelopes have
not been included in the analysis so far. The envelopes can be used to make weighting func-
tions. These weights are not weights on residuals, as in the routine iner() on page 176. These
are weights on the solution. The λI stabilization in routine pe2() on page 199 applied uniform
weights using the subroutine ident() on page 147, as has been explained. Here we simply
apply variable weights � using the subroutine diag() on this page. The weights themselves
are the inverse of the envelope of input data (or the output of a previous iteration). Where the
envelope is small lies a familiar problem, which I approached in a familiar way—by adding a

202 CHAPTER 8. MISSING-DATA RESTORATION

small constant. The result is shown in Figure 8.19. The top row is the same as Figure 8.13.
The middle row shows the improvement that can be expected from weighting functions based
on the inputs. So the middle row is the solution to a linear interpolation problem. Examining
the envelope function on the middle left, we can see that it is a poor approximation to the
envelope of the output data, but that is to be expected because it was estimated by smoothing
the absolute values of the input data (with zeros on the unknown traces). The bottom row is a
second stage of the process just described, where the new weighting function is based on the
result in the middle row. Thus the bottom row is a nonlinear operation on the data.

When interpolating data, the number of unknowns is large. Here each row of data is 75
points, and there are 20 rows of missing data. So, theoretically, 1500 iterations might be
required. I was getting good results with 15 conjugate-gradient iterations until I introduced
weighting functions; then the required number of iterations jumped to about a hundred. The
calculation takes seconds (unless the silly computer starts to underflow; then it takes me 20
times longer.)

I believe the size of the dynamic range in the weighting function has a controlling influence
on the number of iterations. Before I made Figure 8.19, I got effectively the same result, and
more quickly, using another method, which I abandoned because its philosophical foundation
was crude. I describe this other method here only to keep alive the prospect of exploring
the issue of the speed of convergence. First I moved the “do iter” line above the already
indented lines to allow for the nonlinearity of the method. After running some iterations with
�= 0 to ensure the emergence of some big interpolated values, I turned on � at values below
a threshold. In the problem at hand, convergence speed is not important economically but is
of interest because we have so little guidance as to how we can alter problem formulation in
general to increase the speed of convergence.

8.4.6 Narrow-band data

Spitz’s published procedure is to Fourier transform time to (ω, x), where, following Canales,
he computes prediction filters along x for each ω. Spitz offers the insight that for a dip-
ping event with stepout p = kx/ω, the prediction filter at trace separation �x at frequency ω0

should be identical to the prediction filter at trace separation �x/2 at frequency 2ω0. There
is trouble unless both ω0 and 2ω0 have reasonable signal-to-noise ratio. So a spectral band of
good-quality data is required. It is not obvious that the same limitation applies to the inter-
lacing procedure that I have been promoting, but I am certainly suspicious, and the possibility
deserves inspection. Figure 8.20 shows a narrow-banded signal that is properly interpolated,
giving an impressive result. It is doubtful that an observant human could have done as well. I
found, however, that adding 10% noise caused the interpolation to fail.

On further study of Figure 8.20 I realized that it was not a stringent enough test. The sig-
nals obviously contain zero frequency, so they are not narrow-band in the sense of containing
less than an octave. Much seismic data is narrow-band.

I have noticed that aspects of these programs are fragile. Allowing filters to be larger than
they need to be to fit the waves at hand (i.e., allowing excess channels) can cause failure.

8.4. 2-D INTERPOLATION BEYOND ALIASING 203

Figure 8.19: Top left is input. Top right is the interpolation with uniform weights. In the
middle row are the envelope based on input data and the corresponding interpolated data. For
the bottom row, the middle-row solution was used to design weights from which a near-perfect
solution was derived. mis-wlace3 [ER]

204 CHAPTER 8. MISSING-DATA RESTORATION

Figure 8.20: Narrow-banded signal (left) with interpolation (right). mis-lacenarrow [ER]

We could continue to study the limitations of these programs. Instead, I will embark on an
approach similar to the 1-D missif() on page 189 program. That program is fundamentally
nonlinear and so somewhat risky, but it offers us the opportunity to drop the idea of inter-
lacing the filter. Interlacing is probably the origin of the requirement for good signal-to-noise
ratio over a wide spectral band. Associated with interlacing is also a nagging doubt about
plane waves that are imperfectly predictable from one channel to the next. When such data is
interlaced, the PE filter really should change to account for the interlacing. Interlacing the PE
filter is too simple a model. We can think of interlacing as merely the first guess in a nonlinear
problem.

8.5 A FULLY TWO-DIMENSIONAL PE FILTER

The prediction-error filters we dealt with above are not genuinely two-dimensional because
Fourier transform over time would leave independent, 1-D, spatial PE filters for each tempo-
ral frequency. What is a truly two-dimensional prediction-error filter?1 This is a question
we should answer in our quest to understand resonant signals aligned along various dips. Fig-
ure 8.11 shows that an interpolation-error filter is no substitute for a PE filter in one dimension.
So we need to use special care in properly defining a 2-D PE filter. Recall the basic proof in
chapter 7 (page ??) that the output of a PE filter is white. The basic idea is that the out-
put residual is uncorrelated with the input fitting functions (delayed signals); hence, by linear
combination, the output is uncorrelated with the past outputs (because past outputs are also
linear combinations of past inputs). This is proven for one side of the autocorrelation, and the
last step in the proof is to note that what is true for one side of the autocorrelation must be true
for the other. Therefore, we need to extend the idea of “past” and “future” into the plane to

1I am indebted to John P. Burg for some of these ideas.

8.5. A FULLY TWO-DIMENSIONAL PE FILTER 205

divide the plane into two halves. Thus I generally take a 2-D PE filter to be of the form

a a a a a a a
a a a a a a a
a a a a a a a
a a a a a a a
· · · 1 a a a
· · · · · · ·

(8.12)

where “·” marks the location of a zero element and a marks the location of an element that
is found by minimizing the output power. Notice that for each a, there is a point mirrored
across the “1” at the origin, and the mirrored point is not in the filter. Together, all the a
locations and their mirrors cover the plane. Obviously the plane can be bisected in other ways,
but this way seems a natural one for the processes we have in mind. The three-dimensional
prediction-error filter which embodies the same concept is shown in Figure 8.21.

Figure 8.21: Three-dimensional
prediction-error filter. mis-3dpef
[NR]

1

Can “short” filters be used? Experience shows that a significant detriment to whitening
with a PE filter is an underlying model that is not purely a polynomial division because it has
a convolutional (moving average) part. The convolutional part is especially troublesome when
it involves serious bandlimiting, as does convolution with bionomial coefficients (for example,
the Butterworth filter, discussed in chapter 10). When bandlimiting occurs, it seems best to
use a gapped PE filter. I have some limited experience with 2-D PE filters that suggests using
a gapped form like

a a a a a a a a a
a a a a a a a a a
a a a a a a a a a
a a a a a a a a a
· · · 1 · · a a a

(8.13)

With this kind of PE filter, the output traces are uncorrelated with each other, and the output
plane is correlated with itself only for a short distance (the length of the gap) on the time axis.

206 CHAPTER 8. MISSING-DATA RESTORATION

EXERCISES:

1 Recall Figure 4.4. Explain how to do the job properly.

8.5.1 The hope method

We have examined the two-stage linear method of missing-data restoration, which calls for
solving for a filter, interlacing it, and then solving for the missing data. I believe that method,
with its interlacing, is unsuitable for data with a narrow spectral signal-to-noise ratio, such as
we often encounter in practice. It would indeed be nice to be able to work with such data.

Recall equation (8.4):

min
P,A

(||P A|| + λ9||P0 A|| + λ10||P A0||)

Now we hope to solve the trace-interlace problem directly from this optimization. Without
the training data P0 and the high-pass filter A0, however, the trace-interlace problem is highly
nonlinear, and, as in the case of the one-dimensional problem, I found I was unable to descend
to a satisfactory solution. Therefore, we must think about what the training data and prior filter
might be. Our first guess might be that P0 is a low-pass dip filter and A0 is a high-pass dip filter.
Several representations for low- and high-pass dip filters are described in IEI. I performed a
few tests with them but was not satisfied with the results.

Another possibility is that P0 should be the solution as found by the interlacing method.
Time did not allow me to investigate this promising idea.

Still another possibility is that these problems are so easy to solve (requiring worksta-
tion compute times of a few seconds only) that we should abandon traditional optimization
methods and use simulated annealing (Rothman, 1985).

All the above ideas are hopeful. A goal of this study is to define and characterize the kinds
of problems that we think should be solvable. A simple example of a dataset that I believe
should be amenable to interpolation, even with substantial noise, is shown in Figure 8.22. I
have not worked with this case yet.

Figure 8.22: Narrow-banded data that
skilled humans can readily interpo-
late. mis-alias [ER]

8.5. A FULLY TWO-DIMENSIONAL PE FILTER 207

To prepare the way, and to perform my preliminary (but unsatisfactory) tests, I prepared
subroutine hope(), the two-dimensional counterpart to missif() on page 189 and misfip()

on page 192.

subroutine hope(gap, h1,h2,hh, t1,t2,tt, a1,a2,aa, p1,p2,pp, known, niter)

integer h1,h2,h12, t1,t2,t12, a1,a2,a12, p1,p2,p12

integer i, gap, iter, niter, midpt, nx,nr, px,ax, qr,tr,hr

real hh(h1,h2), tt(t1,t2), aa(a1,a2), pp(p1*p2), known(p1*p2), dot

temporary real x(p1*p2 +a1*a2), rr(p1*p2 +p1*p2 +t1*t2)

temporary real g(p1*p2 +a1*a2), gg(p1*p2 +p1*p2 +t1*t2)

temporary real s(p1*p2 +a1*a2), ss(p1*p2 +p1*p2 +t1*t2)

p12 = p1*p2; a12 = a1*a2; t12 = t1*t2; h12= h1*h2;

nx = p12 + a12; px= 1; ax= 1+p12

nr = p12 + p12 + t12; qr= 1; hr= 1+p12; tr= 1+p12+p12

call zero(a12, aa); midpt= a1/2; aa(midpt, 1) = sqrt(dot(p12,pp,pp))

call zero(nx, x); call zero(nr, rr); call copy(p12, pp, x(px))

call zero(nx, g); call zero(nr, gg); call copy(a12, aa, x(ax))

do iter= 0, niter {

call cinloi(0, 0, midpt,1, a1,a2,aa, p1,p2,pp, rr(qr))

call cinloi(0, 0, midpt,1, h1,h2,hh, p1,p2,pp, rr(hr))

call cinloi(0, 0, midpt,1, a1,a2,aa, t1,t2,tt, rr(tr))

call scaleit (-1., nr, rr)

call cinloi(1, 0, midpt,1, a1,a2,aa, p1,p2,g(px), rr(qr))

call cinlof(1, 0, midpt,1, p1,p2,pp, a1,a2,g(ax), rr(qr))

call cinloi(1, 1, midpt,1, h1,h2,hh, p1,p2,g(px), rr(hr))

call cinlof(1, 1, midpt,1, t1,t2,tt, a1,a2,g(ax), rr(tr))

do i= 1, p12 { if(known(i) != 0.) g(i + (px-1)) = 0.}

do i= 1, midpt+gap { g(i + (ax-1)) = 0.}

call cinloi(0, 0, midpt,1, a1,a2,aa, p1,p2,g(px), gg(qr))

call cinlof(0, 1, midpt,1, p1,p2,pp, a1,a2,g(ax), gg(qr))

call cinloi(0, 0, midpt,1, h1,h2,hh, p1,p2,g(px), gg(hr))

call cinlof(0, 0, midpt,1, t1,t2,tt, a1,a2,g(ax), gg(tr))

call cgstep(iter, nx, x, g, s, _

nr, rr,gg,ss)

call copy(p12, x(px), pp)

call copy(a12, x(ax), aa)

}

return; end

I found the jump-and-interlace 2-D convolution cinjof() on page 198 unsuitable here because
it does not align its output consistently with the aligning convolution cinloi() on page 199.
So I wrote an aligning convolution identical with cinloi() except that the filter is the adjoint.
It is called cinlof().

CINLOF --- Convolution INternal with Lags. Output is adjoint to FILTER.

#

subroutine cinlof(adj, add, lag1,lag2, n1,n2,xx, nb1,nb2,bb, yy)

integer adj, add, lag1,lag2, n1,n2, nb1,nb2

real xx(n1,n2), bb(nb1,nb2), yy(n1,n2)

integer y1,y2, x1,x2, b1, b2

call adjnull(adj, add, bb,nb1*nb2, yy,n1*n2)

if(adj == 0)

do b2=1,nb2 { do y2= 1+nb2-lag2, n2-lag2+1 { x2= y2 - b2 + lag2

do b1=1,nb1 { do y1= 1+nb1-lag1, n1-lag1+1 { x1= y1 - b1 + lag1

208 CHAPTER 8. MISSING-DATA RESTORATION

yy(y1,y2) = yy(y1,y2) + bb(b1,b2) * xx(x1,x2)

}} }}

else

do b2=1,nb2 { do y2= 1+nb2-lag2, n2-lag2+1 { x2= y2 - b2 + lag2

do b1=1,nb1 { do y1= 1+nb1-lag1, n1-lag1+1 { x1= y1 - b1 + lag1

bb(b1,b2) = bb(b1,b2) + yy(y1,y2) * xx(x1,x2)

}} }}

return; end

8.5.2 An alternative principle for 2-D interpolation

In principle, missing traces can be determined to simplify (ω,k)-space. Consider a wave field
P composed of several linear events in (t , x)-space. A contour plot of energy in (ω,k)-space
would show energy concentrations along lines of various p = k/ω, much like Figure 8.18. Let
the energy density be E = P P . Along contours of constant E , we should also see p= dk/dω.
The gradient vector (∂ E/∂ω,∂ E/∂k) is perpendicular to the contours. Thus the dot product
of the vector (ω,k) with the gradient should vanish. I propose to solve the regression that the
dot product of the vector (ω,k) with the gradient of the log energy be zero, or, formally,

0 ≈ ω
� P ∂

∂ω
P

P P
+ k
� P ∂

∂k P

P P
(8.14)

The variables in the regression are the values of the missing traces. Obviously, the numerator
and the denominator should be smoothed in small windows in the (ω,k)-plane. This makes
conceptual sense but does not fit well with the idea of small windows in (t , x)-space. It should
be good for some interesting discussions, though. For example, in Figure 8.18, what will
happen where event lines cross? Is this formulation adequate there? Also, how should the
Nyquist limitation on total bandwidth be expressed?

8.6 TOMOGRAPHY AND OTHER APPLICATIONS

Medical tomography avoids a problem that is unavoidable in earth-science tomography. In
medicine it is not difficult to surround the target with senders and receivers. In earth science it
is nearly impossible. It is well known that our reconstructions tend to be indeterminate along
the dominant ray direction. Customarily, the indeterminacy is resolved by minimizing power
in a roughened image. The roughening filter should be inverse in spectrum to the desired image
spectrum. Unfortunately, that spectrum is unknown and arbitrary. Perhaps we can replace this
arbitrary image smoothing by something more reasonable in the space of the missing data.

Recall the well-to-well tomography problem in chapter 5. Given a sender at depth zs in
one well, a receiver at depth zg in the other well, and given traveltimes tk(zs , zg), the rays are
predominantly horizontal. Theory says we need some rays around the vertical. Imagine the
two vertical axes of the wells being supplemented by two horizontal axes, one connecting the
tops of the wells and one connecting the bottoms, with missing data traveltimes tm(xs , xg).
From any earth model, tk and tm are predicted. But what principles can give us tm from tk?

8.6. TOMOGRAPHY AND OTHER APPLICATIONS 209

Obviously something like we used in Figures 8.2–8.6. Data for the tomographic problem
is two-dimensional, however: let the source location be measured as the distance along the
perimeter of a box, where the two sides of the box are the two wells. Likewise, receivers may
be placed along the perimeter. Analogous to the midpoint and offset axes of surface seismology
(see IEI), we have midpoint and offset along the perimeter. Obviously there are discontinuities
at the corners of the box, and everything is not as regular as in medical imaging, where sources
and receivers are on a circle and their positions measured by angles. The box gives us a plane
in which to lay out the data, not just the recorded data, but all the data that we think is required
to represent the image. To fill in the missing data we can minimize the power out of some
two-dimensional filter, say, for example, the Laplacian filter ∂ 2

s + ∂2
g . This would give us the

two-dimensional equivalent of Figures 8.2–8.6.

Alas, this procedure cannot produce information where none was recorded. But it should
yield an image that is not overwhelmed by the obvious heterogeneity of the data-collection
geometry.

The traditional approach of “geophysical inverse theory” requires the inverse of the
model covariance matrix. How is this to be found using our procedure? How are we to
cope with the absence of rays in certain directions? Notice that whatever the covariance ma-
trix may be, the resolution is very different in different parts of the model: it is better near the
wells, best halfway down near a well, and worst halfway between the wells, especially near
the top and bottom. How can this information be quantified in the model’s inverse covariance
matrix? This is a hard question, harder than the problem that we would solve if we were
given the matrix. Most people simply give up and let the inverse covariance be a roughening
operator like a Laplacian, constant over space.

With the filling of data space, will it still be necessary to smooth the model explicitly
(by minimizing energy in a roughened model)? Mathematically, the question is one of the
“completeness” of the data space. I believe there are analytic solutions well known in medical
imaging that prove that a circle of data is enough information to specify completely the image.
Thus, we can expect that little or no arbitrary image smoothing is required to resolve the
indeterminacy—it should be resolved by the assertion that statistics gathered from the known
data are applicable to the missing data.

I suggest, therefore, that every data space be augmented until it has the dimensionality and
completeness required to determine a solution. If this cannot be done fully, it should still be
done to the fullest extent feasible.

The covariance matrix of the residual in data space (missing and observed) seems a
reasonable thing to estimate—easier than the covariance matrix of the model. I think the
model covariance matrix should not be thought of as a covariance matrix of the solution, but
as a chosen interpolation function for plotting the solution.

210 CHAPTER 8. MISSING-DATA RESTORATION

8.6.1 Clash in philosophies

One philosophy of geophysical data analysis called “inverse theory” says that missing data is
irrelevant. According to this philosophy, a good geophysical model only needs to fit the real
data, not interpolated or extrapolated data, so why bother with interpolated or extrapolated
data? Even some experienced practitioners belong to this school of thought. My old friend
Boris Zavalishin says, “Do not trust the data you have not paid for.”

I can justify data interpolation in both human and mathematical terms. In human terms,
the solution to a problem often follows from the adjoint operator, where the data space has
enough known values. With a good display of data space, people often apply the adjoint
operator in their minds. Filling the data space prevents distraction and confusion. The math-
ematical justification is that inversion methods are notorious for slow convergence. Consider
that matrix-inversion costs are proportional to the cube of the number of unknowns. Comput-
ers balk when the number of unknowns goes above one thousand; and our images generally
have millions. By extending the operator (which relates the model to the data) to include miss-
ing data, we can hope for a far more rapid convergence to the solution. On the extended data,
perhaps the adjoint alone will be enough. Finally, we are not falsely influenced by the “data
not paid for” if we adjust it so that there is no residual between it and the final model.

8.6.2 An aside on theory-of-constraint equations

A theory exists for general constraints in quadratic form minimization. I have not found the
theory to be useful in any application I have run into so far, but it should come in handy for
writing erudite theoretical articles.

Constraint equations are an underdetermined set of equations, say d = Gx (the number
of components in x exceeds that in d), which must be solved exactly while some other set is
solved in the least-squares sense, say y≈ Bx. This is formalized as

min
x
{QC(x) = lim

ε→0
[(y−Bx)′(y−Bx)+ 1

ε
(d−Gx)′(d−Gx)]} (8.15)

In my first book (FGDP: see page 113), I minimized QC by power series, letting x = x(0)+
ε x(1), and hence QC = Q(0)+ εQ(1)+·· ·. I minimized both Q(0) and Q(1) with respect to x(0)

and x(1). After a page of algebra, this approach leads to the system of equations[
B′B G′
G 0

][
x
λ

]
=

[
B′y
d

]
(8.16)

where x(1) has been superseded by the variable λ = Gx(1), which has fewer components than
x(1), and where x(0) has simply been replaced by x. The second of the two equations shows that
the constraints are satisfied. But it is not obvious from equation (8.16) that (8.15) is minimized.

The great mathematician Lagrange apparently looked at the result, equation (8.16), and
realized that he could arrive at it far more simply by extremalizing the following quadratic

8.7. REFERENCES 211

form:
QL(x,λ) = (y−Bx)′(y−Bx)+ (d−Gx)′λ+λ′(d−Gx) (8.17)

We can quickly verify that Lagrange was correct by setting to zero the derivatives with re-
spect to x′ and λ′. Naturally, everyone prefers to handle constraints by Lagrange’s method.
Unfortunately, Lagrange failed to pass on to the teachers of this world an intuitive reason why
extremalizing (8.17) gives the same result as extremalizing (8.15). Lagrange’s quadratic form
is not even positive definite (that is, it cannot be written as something times its adjoint). In
honor of Lagrange, the variables λ have come to be known as Lagrange multipliers.

8.7 References

Canales, L.L., 1984, Random noise reduction: 54th Ann. Internat. Mtg., Soc. Explor. Geo-
phys., Expanded Abstracts, 525-527.

Rothman, D., 1985, Nonlinear inversion, statistical mechanics, and residual statics estima-
tion: Geophysics, 50, 2784-2798

Spitz, S., 1991, Seismic trace interpolation in the F-X domain: Geophysics, 56, 785-794.

212 CHAPTER 8. MISSING-DATA RESTORATION

Chapter 9

Hyperbola tricks

In exploration seismology much attention is given to all aspects of hyperbolas. My previous
book (IEI) is filled with hyperbola lore, especially wave-equation solution methodology. That
book, however, only touches questions of hyperbolas arising in least-squares problems. I
wish I could say this chapter organizes everything better, but in reality it is a miscellaneous
collection of additional material in which hyperbolas are exploited with due regard to operator
conjugacy and least squares.

9.1 PIXEL-PRECISE VELOCITY SCANNING

Traditionally, velocity scanning is done by the loop structure given in chapter 5, in which the
concept of a velocity transform was introduced. This structure is

do v

do tau

do x

t = sqrt(tau**2 + (x/v)**2)

velo(tau, v) = velo(tau, v) + data(t, x)

These loops transform source-receiver offset x to velocity v in much the same way as Fourier
analysis transforms time to frequency. Here we will investigate a new alternative that gives
conceptually the same result but differs in practical ways. It is to transform with the following
loop structure:

do tau

do t = tau, tmax

do x

v = sqrt(x**2 / (t**2 - tau**2))

velo(tau, v) = velo(tau, v) + data(t, x)

213

214 CHAPTER 9. HYPERBOLA TRICKS

Notice that t = √
τ 2+ (x/v)2 in the conventional code is algebraically equivalent to v =

x/
√

t2− τ 2 in the new code. The traditional method finds one value for each point in out-
put space, whereas the new method uses each point of the input space exactly once.

The new method, which I have chosen to call the “pixel-precise method,” differs from the
traditional one in cost, smoothing, accuracy, and truncation. The cost of traditional velocity
scanning is proportional to the product Nt Nx Nv of the lengths of the axes of time, offset,
and velocity. The cost of the new method is proportional to the product N 2

t Nx/2. Normally
Nt/2 > Nv , so the new method is somewhat more costly than the traditional one, but not
immensely so, and in return we can have all the (numerical) resolution we wish in velocity
space at no extra cost. The verdict is not in yet on whether the new method is better than the
old one in routine practice, but the reasoning behind the new method teaches many lessons.
Not examined here is the smooth envelope (page ??) that is a postprocess to conventional
velocity scanning.

Figure 9.1: A typical hyperbola
crossing a typical mesh. Notice that
the curve is represented by multiple
time points for each x . hyp-lineint
[NR]

Certain facts about aliasing must be borne in mind as one defines any velocity scan. A first
concern arises because typical hyperbolas crossing a typical mesh encounter multiple points
on the time axis for each point on the space axis. This is shown in Figure 9.1. An aliasing
problem will be experienced by any program that selects only one signal value for each x
instead of the multiple points that are shown. The extra boxes complicate traditional velocity
scanning. Many programs ignore it without embarrassment only because low-velocity events
contain only shallow information about the earth. (A cynical view is that field operations
tend to oversample in offset space because of this limitation in some velocity programs.) A
significant improvement is made by summing all the points in boxes. A still more elaborate
analysis (which we will not pursue here) is to lay down a hyperbola on a mesh and interpolate
a line integral from the traces on either side of the line.

A second concern arises from the sampling in velocity space. Traditionally people question
whether to sample velocity uniformly in velocity, slowness, or slowness squared. Difficulty
arises first on the widest-offset trace. When jumping from one velocity to the next, the time
on the wide-offset trace should not jump so far that it leaves a gap, as shown in Figure 9.2.

9.1. PIXEL-PRECISE VELOCITY SCANNING 215

Figure 9.2: Too large an interval in
velocity will leave a gap between the
hyperbolic scans. hyp-deltavel
[NR]

With the new method there is no chance of missing a point on the wide-offset trace. For
each depth τ , every point below τ in the input-data space (including the wide-offset trace)
is summed exactly once into velocity space (whether that space is discretized uniformly in
velocity or slowness). Also, the inner trace enters only once.

The new method also makes many old interpolation issues irrelevant. New questions arise,
however. The (t , x)-position of the input data is exact, as is τ . Interpolation becomes a question
only on v. Since velocity scanning in this way is independent of the number of points in
velocity, we could sample densely and use nearest-neighbor interpolation (or any other form
of interpolation). A disadvantage is that some points in (τ ,v)-space may happen to get no
input data, especially if we refine v too much.

The result of the new velocity transformation is shown in Figure 9.3. The figure includes
some scaling that will be described later. The code that generated Figure 9.3 is just like the
pseudocode above except that it parameterizes velocity in uniform samples of inverse velocity
squared, s = v−2. A small advantage of using s-space instead of v-space is that the trajectories
we see in (τ ,s)-space are readily recognized as parabolas, namely τ 2 = t2− x2s, where each
parabola comes from a particular point in (t , x).

To exhibit all the artifacts as clearly as possible, I changed all signal values to their signed
square roots before plotting brightness. This has the effect of making the plots look noisier
than they really are. I also chose �t to be unrealistically large to enable you to see each point.
The synthetic input data was made with nearest-neighbor NMO. Notice that resulting timing
irregularities in the input are also present in the reconstruction. This shows a remarkable
precision.

Balancing the pleasing result of Figure 9.3 is the poor result from the same program shown
in Figure 9.4. The new figure shows that points in velocity space map to bits of hyperbolas in
offset space—not to entire hyperbolas. It also shows that small-offset points become sparsely
dotted lines in velocity space.

The problem of hyperbolas being present only discontinuously is solvable by smearing
over any axis, t , x , τ , or v, but we would prefer intelligent smoothing over the appropriate

216 CHAPTER 9. HYPERBOLA TRICKS

Figure 9.3: Offset to slowness squared and back to offset. hyp-vspray1 [NR]

Figure 9.4: Slowness squared to offset and back to slowness squared. hyp-vspray2 [NR]

9.1. PIXEL-PRECISE VELOCITY SCANNING 217

axis.

9.1.1 Smoothing in velocity

To get smoother results I took the time axis to be continuous and the signal value at (t , x) to be
distributed between the two points t− = t−�t/2 and t+ = t +�t/2. The two time points t±
and the x-value are mapped to two slownesses s±. The signal from the (t , x)-pixel is sprayed
into the horizontal line (τ ,s±). To enable you to reproduce the result, I include the vspray()

subroutine.

subroutine vspray(adj, nt,dt,t0, nx,dx,x0, tx, ns,ds,s0, zs)

integer adj, it, nt, iz, nz, ix, nx, is, ns, isp, ism

real tx(nt,nx), zs(nt,ns), scale

real z,dz,z0, t,dt,t0, x,dx,x0, s,ds,s0, sm,sp, xm,xp, tm,tp

nz=nt; dz=dt; z0=t0;

call adjnull(adj, 0, tx, nt*nx, zs, nz*ns)

if(adj == 0) { do ix=1,nx; call halfdif (1, nt, tx(1,ix), tx(1,ix))}

do iz= 1, nz { z = z0 + dz*(iz-1)

do ix= 1, nx { x = x0 + dx*(ix-1)

do it= iz, nt { t = t0 + dt*(it-1)

tm = t-dt/2; xm = x

tp = t+dt/2; xp = x

sm = (tm**2 -z**2)/xp**2; ism = 1.5+(sm-s0)/ds

sp = (tp**2 -z**2)/xm**2; isp = 1.5+(sp-s0)/ds

if(ism<2) next

if(isp>ns) next

scale = sqrt(t / (1.+isp-ism)) / (abs(x) + abs(dx)/2.)

do is= ism, isp {

if(adj == 0)

zs(iz ,is) = zs(iz ,is) + tx(it ,ix) * scale

else

tx(it ,ix) = tx(it ,ix) + zs(iz ,is) * scale

}

} } }

if(adj != 0) { do ix=1,nx; call halfdif (0, nt, tx(1,ix), tx(1,ix))}

return; end

Figure 9.5 shows the result for the same inputs as used in Figures 9.3 and 9.4.

9.1.2 Rho filter

Notice the dark halo around the reconstruction in Figure 9.3. It was suppressed in Figure 9.5
by the subroutine halfdifa(). Recall that slant-stack inversion (see IEI for an example) re-
quires an |ω| filter. Without doing any formal analysis I guessed that the same filter would be
helpful here because the dark halo has a strong spectral component at ω = 0 which would be
extinguished by an |ω| filter. The |ω| filter is sometimes called a “rho filter.” Because of the
close relation of slant-stack inversion to wave propagation and causality, I found it appealing

218 CHAPTER 9. HYPERBOLA TRICKS

Figure 9.5: Horizontal line method. Compare the left to Figure 9.3 and the right to 9.4.
hyp-vspray4 [ER]

to factor |ω| into a causal
√−iω part and an anticausal

√
iω part. I applied a causal

√−iω
after generating the (t , x)-space and an anticausal

√
iω before making the (τ ,v−2)-space. I im-

plemented the causality by taking the square root of a Fourier domain representation of causal
differentiation, namely,

√
1− Z . I show this in subroutine halfdifa().

Half order causal derivative. OK to equiv(xx,yy)

#

subroutine halfdifa(adj, add, n, xx, yy)

integer n2, i, adj, add, n

real omega, xx(n), yy(n)

complex cz, cv(4096)

n2=1; while(n2<n) n2=2*n2; if(n2 > 4096) call erexit(’halfdif memory’)

do i= 1, n2 { cv(i) = 0.}

do i= 1, n

if(adj == 0) { cv(i) = xx(i)}

else { cv(i) = yy(i)}

call adjnull(adj, add, xx,n, yy,n)

call ftu(+1., n2, cv)

do i= 1, n2 {

omega = (i-1.) * 2.*3.14159265 / n2

cz = csqrt(1. - cexp(cmplx(0., omega)))

if(adj != 0) cz = conjg(cz)

cv(i) = cv(i) * cz

}

call ftu(-1., n2, cv)

do i= 1, n

if(adj == 0) { yy(i) = yy(i) + cv(i)}

else { xx(i) = xx(i) + cv(i)}

return; end

9.2. GEOMETRY-BASED DECON 219

Notice also that vspray() includes a scaling variable named scale. I have not developed
a theory for this scale factor, but if you omit it, amplitudes in the reconstructions will be far
out of amplitude balance with the input.

9.2 GEOMETRY-BASED DECON

In chapter 7 deconvolution was considered to be a one-dimensional problem. We ignored
spatial issues. The one-dimensional approach seems valid for waves from a source and to a
receiver in the same location, but an obvious correction is required for shot-to-receiver spatial
offset. A first approach is to apply normal-moveout correction to the data before deconvo-
lution. Previous figures have applied a t2 amplitude correction to the deconvolution input.
(Simple theory suggests that the amplitude correction should be t , not t2, but experimental
work, summarized along with more complicated theory in IEI, suggests t2.) Looking back to
Figure ??, we see that the quality of the deconvolution deteriorated with offset. To test the idea
that deconvolution would work better after normal moveout, I prepared Figure 9.6. Looking

Figure 9.6: Data from Yilmaz and Cumro dataset 27 after t 2 gain illustrates deconvolution
working better after NMO. hyp-wz27nmo [NR]

in the region of Figure 9.6 outlined by a rectangle, we can conclude that NMO should be done
before deconvolution. The trouble with this conclusion is that data comes in many flavors. On

220 CHAPTER 9. HYPERBOLA TRICKS

the wider offsets of any data (such as Figure ??), it can be seen that NMO destroys the wavelet.
A source of confusion is that the convolutional model can occur in two different forms from
two separate physical causes, as we will see next.

9.2.1 A model with both signature and reverberation

Convolution occurs in data modeling both before and after moveout correction. Two dif-
ferent deconvolution processes that deal with the two ways convolution occurs are called
“designature" and “dereverberation."

Reverberation

Reverberation is the multiple bouncing of waves between layers. Waves at vertical incidence
in a water layer over the earth can develop clear, predictable, periodic echos. FGDP gives a de-
tailed theory for this. At nonzero shot-to-geophone offset, the perfect periodicity is destroyed,
i.e., multiple reflections no longer have a uniform reverberation period. In a model earth with
velocity constant in depth, normal-moveout correction restores the uniform reverberation pe-
riod. Mathematical techniques for dealing with reverberation in the presence of depth-variable
velocity are described in considerable detail in IEI.

Signature

Seismic “signature" is defined to be a convolutional filtering on impulse-source data. This
convolution models the nonimpulsive nature of real sources. Imagine the oscillation of a
marine airgun’s bubble. On land, the earth’s near surface can have a very slow velocity.
There Snell’s law will bend all rays to very near vertical incidence. Mathematically, such
reverberations in such layers are indistinguishable from source signature. For example, in
California the near-surface soils often have a velocity near the air velocity (340 m/s) that grades
toward the water velocity (1500 m/s). A buried shot typically has a free-surface reflection
ghost whose time delay is virtually independent of angle. Thus the ghost is more like signature
than multiple.

Synthetic data in Figure 9.7 shows the result of convolution before and after NMO. An
event labeled “G" marks the tail-end of the source signature. The main idea illustrated by
the figure is that some events are equally spaced before NMO, while other events are equally
spaced after NMO. We will see that proper deconvolution requires a delicious mixture of NMO
and deconvolution principles.

Figure 9.7 happens to have a short time constant with the signature and a longer one with
the reverberation. The time constants would be reversed in water shallow compared with the
gun’s quieting time. This is shown in Figure 9.8. This figure shows an interesting interference
pattern that could also show up in amplitude versus offset studies.

9.2. GEOMETRY-BASED DECON 221

Figure 9.7: Example of convolution
before and after NMO. The raw data
shows a uniform primary-to-tail inter-
val, while the NMO’ed data shows
uniform multiple reverberation. The
letters F , G, and V are adjustable
parameters in the interactive pro-
gram controlling water depth, signa-
ture tail, and velocity. hyp-deep
[NR]

Figure 9.8: Model in water shal-
low compared to gun quieting time.
hyp-shallow [NR]

222 CHAPTER 9. HYPERBOLA TRICKS

9.2.2 Regressing simultaneously before and after NMO

Before launching into a complicated theory for suppressing both reverberation and signature,
let us make some guesses. Let d denote an original data panel like the left sides of Figure 9.7
and 9.8, and let d̄ be moved out like the right sides of those figures. If we had only signature
to contend with, we might formulate the problem as d ≈∑

i αixi , where the xi are delayed
versions of the data, containing d(t − i), and where the αi are the scaling coefficients to be
found. If we had only reverberation to contend with, we might formulate the problem as
d̄ ≈∑

i ᾱi x̄i , where the x̄i are delayed versions of the moved-out data, and the ᾱi are more
unknowns. To suppress both signature and reverberation simultaneously, we need to express
both “statements of wishes” in the same domain, either moved out or not. Letting N be the
moveout operator, and choosing the moved-out domain, we write the statement of wishes as

d̄ ≈
∑

i

ᾱi x̄i +
∑

i

αiNxi (9.1)

Why not estimate the filters sequentially instead of simultaneously? What fails if we first
process raw data by blind deconvolution for the source signature, then do NMO, and finally
do blind deconvolution again for reverberation?

At vertical incidence, both filters are convolutional, and they are indistinguishable. At ver-
tical incidence, doing a stage of deconvolution for each process leads to nonsensical answers.
Whichever stage is applied first will absorb all the color in the data, leaving nothing for the
second stage. The color will not be properly distributed between the stages. In principle, at
nonzero offset the information is present to distinguish between the stages, but the first stage
will always tend to absorb the color attributable to both. A simpler expression of the same
concept arises when we are regressing two theoretical signals against some data. If the regres-
sors are orthogonal, such as a mean value and a sinusoid, then we tend to get the same result
regardless of the order in which we subtract them from the signal. If the regressors resemble
one another, as a mean can resemble a trend, then they must be estimated simultaneously.

9.2.3 A model for convolution both before and after NMO

Here we will develop a formal theory for (9.1). By formalizing the theory, we will see better
how it can be made more precise, and how the wishes expressed by (9.1) are a linearization of
a nonlinear theory.

For a formal model, we will need definitions. Simple multiple reflections are generated
by 1/(1+ cZn), where c is a reflection coefficient and Z n is the two-way traveltime to the
water bottom. We will express reflectivity as an unspecified filter R(Z), so the reverberation
operator as a whole is 1/(1+ R(Z)), where R(Z) is like the adjustable coefficients in a gapped
filter. This form is partly motivated by the idea that 1 > |R|. Taking xt to denote the reflection
coefficients versus depth or the multiple-free seismogram, and taking yt to denote the one-
dimensional seismogram with multiples, we find that the relation between them is conveniently
expressed with Z -transforms as Y (Z)= X (Z)/(1+ R(Z)).

9.2. GEOMETRY-BASED DECON 223

Likewise, we will express the source signature not as a convolution but as an inverse
polynomial (so designature turns into convolution). Suppose that source signature as a whole
is given by the operator 1/(1+ S(Z)). The final data D(Z) is related to the impulse-source
seismogram Y (Z) by D(Z)= Y (Z)/(1+ S(Z)).

The trouble with the definitions above is that they are in the Fourier domain. Since we
are planning to mix in the NMO operator, which stretches the time axis, we will need to
reexpress everything in the time domain. Instead of X (Z) = Y (Z)(1+ R(Z)) and Y (Z) =
D(Z)(1+ S(Z)), we will use shifted-column matrices to denote convolution. Thus our two
convolutions can be written as

x = (I+R)y (9.2)

y = (I+S)d (9.3)

where I is an identity matrix. Combining these two, we have a transformation from the
data to the reflection coefficients for a one-dimensional seismogram. Departures from one-
dimensionality arise from NMO and from spherical divergence of amplitude. Simple theory
(energy distributed on the area of an expanding sphere) suggests that the scaling factor t con-
verts the amplitude of y to x. So we define a matrix T to be a diagonal with the weight t
distributed along it.

We need also to include the time shifts of NMO. In chapter 5 we saw that NMO is a matrix
in which the diagonal line is changed to a hyperbola. Denote this matrix by N. Let y0 be
the result of attempting to generate a zero-offset signal from a signal at any other offset by
correcting for divergence and moveout:

y0 = NTy (9.4)

The NMO operator can be interpreted in two ways, depending on whether we plan to
find one filter for all offsets, or one for each. In other words, we can decide if we want one
set of earth reflection coefficients applicable to all offsets, or if we want a separate reflection
coefficient at each offset. From chapter 7 we recall that the more central question is whether
to include summation over offset in the NMO operator. If we choose to include summation,
then the adjoint sprays the same one-dimensional seismogram out to each offset at the required
moveout. This choice determines if we have one filter for each offset, or if we use the same
filter at all offsets.

Equation (9.2) actually refers only to zero offset. Thus it means x = (I+R)y0. Merging
this with equations (9.3) and (9.4) gives

x = (I+R)NT(I+S)d (9.5)

x = NTd+RNTd+NTSd+RNTSd (9.6)

Now it is time to think about what is known and what is unknown. The unknowns will be
the reverberation operators R and S. Since we can only solve nonlinear problems by iteration,
we linearize by dropping the term that is the product of unknowns, namely, the last term in

224 CHAPTER 9. HYPERBOLA TRICKS

(9.6). This is justified if the unknowns are small, and they might be small, since they are
predictions. Otherwise, we must iterate, which is the usual solution to a nonlinear problem by
a sequence of linearizations. The linearization is

x = (NTd+RNTd+NTSd). (9.7)

When a product of Z -transforms is expressed with a shifted-column matrix, we have a choice
of which factor to put in the matrix and which in the vector. The unknown belongs in the
vector so that simultaneous equations can be the end result. We need, therefore, to rearrange
the capital and lower-case letters in (9.7) to place all unknowns in vectors. Also, besides the
original data d, we will be regressing on processed data d̄, defined by

d̄ = NTd (9.8)

Equation (9.7) thus becomes
x = d̄+ D̄r+NTDs (9.9)

Now the unknowns are vectors.

Recall that the unknowns are like prediction filters. Everything in x that is predictable by
r and s is predicted in an effort to minimize the power in x. During the process we can expect
x to tend to whiteness. Thus our statement of wishes is

0 ≈ d̄+ D̄r+NTDs (9.10)

Equation (9.10) is about the same as (9.1). To see this, associate −r with ᾱ and associate −s
with α. To make (9.10) look more like a familiar overdetermined system, I write it as

d̄ ≈ [−D̄ −NTD
] [

r
s

]
(9.11)

Some years ago I tested this concept on a small selection of data, including Yilmaz and
Cumro dataset 27, used in Figure 9.6. The signature waveform of this dataset was hardly
measurable, and almost everything was in the reverberation. Thus, results nearly equal to
Figure 9.6 could be obtained by omitting the deconvolution before NMO. Although I was
unable to establish by field-data trials that simultaneous deconvolution is necessary, I feel that
theory and synthetic studies would show that it is.

9.2.4 Heavy artillery

In Figure 9.6, we can see that events remain which look suspiciously like multiple reflec-
tions. Careful inspection of the data (rapid blinking on a video screen) convinced me that the
problem lay in imperfect modeling of depth-variable velocity. It is not enough to use a depth-
variable velocity in the NMO (a constant velocity was used in Figure 9.6), because primary
and multiple reflections have different velocities at the same time. I used instead a physical
technique called “diffraction" (explained in detail in IEI) to make the regressors. Instead of

9.2. GEOMETRY-BASED DECON 225

Figure 9.9: Left is the original data. Next is the result of using NMO in the regressors. Next,
the result of downward continuation in the regressors. On the right, velocity scans were also
used. Rectangles outline certain or likely multiple reflections. hyp-veld [NR]

simply shifting on the time axis, diffraction shifts on the depth axis, which results in subtle
changes in hyperbola curvature.

The downward-continuation result is significantly better than the NMO result, but it does
contain some suspicious reflections (boxed). My final effort, shown on the right, includes
the idea that the data contains random noise which could be windowed away in velocity
space. To understand how this was done, recall that the basic model is d ≈∑

i αixi , where
d is the left panel, αi are constants determined by least squares, and xi are the regressors,
which are panels like d but delayed and diffracted. Let V denote an operator that trans-
forms to velocity space. Instead of solving the regression d ≈∑

i αixi , I solved the regres-
sion Vd ≈∑

i αiVxi and used the resulting values of αi in the original (t , x)-space. (Math-
ematically, I did the same thing when making Figure ??.) This procedure offers the pos-
sible advantage that a weighting function can be used in the velocity space. Applying all
these ideas, we see that a reflector remains which looks more like a multiple than a primary.

A regression (d ≈∑
i αixi) can be done in any space. You must be able to transfer into

that space (that is, to make Vd and Vxi) but you do not need to be able to transform back
from that space (you do not need V−1). You should find the αi in whatever space you are
able to define the most meaningful weighting function.

A proper “industrial strength” attack on multiple reflections involves all the methods dis-
cussed above, wave-propagation phenomena described in IEI, and judicious averaging in the
space of source and receiver distributions.

226 CHAPTER 9. HYPERBOLA TRICKS

9.3 References

Claerbout, J.F., 1986, Simultaneous pre-normal moveout and post-normal moveout deconvo-
lution: Geophysics, 51, 1341-1354.

Chapter 10

Spectrum and phase

In this chapter we will examine

• 90◦ phase shift, analytic signal, and Hilbert transform.

• spectral factorization, i.e., finding a minimum-phase wavelet to fit any spectrum.

• a “cookbook” for Butterworth causal bandpass filters.

• phase delay, group delay, and beating.

• where the name “minimum phase” came from.

• what minimum phase implies for energy delay.

10.1 HILBERT TRANSFORM

Chapter 9 explains that many plots in this book have various interpretations. Superficially, the
plot pairs represent cosine transforms of real even functions. But since the functions are even,
their negative halves are not shown. An alternate interpretation of the plot pairs is that one
signal is real and causal. This is illustrated in full detail in Figure 10.1. Half of the values
in Figure 10.1 convey no information: these are the zero values at negative time, and the
negative frequencies of the FT. In other words, the right half of Figure 10.1 is redundant, and
is generally not shown. Likewise, the bottom plot, which is the imaginary part, is generally
not shown, because it is derivable in a simple way from given information. Computation of
the unseen imaginary part is called “Hilbert transform.” Here we will investigate details and
applications of the Hilbert transform. These are surprisingly many, including 90◦ phase-shift
filtering, envelope functions, the instantaneous frequency function, and relating amplitude
spectra to phase spectra.

Ordinarily a function is specified entirely in the time domain or entirely in the frequency
domain. The Fourier transform then specifies the function in the other domain. The Hilbert

227

228 CHAPTER 10. SPECTRUM AND PHASE

Figure 10.1: Both positive and neg-
ative times and frequencies of a real
causal response (top) and real (mid)
and imaginary (bottom) parts of its
FT. spec-intro [NR]

transform arises when half the information is in the time domain and the other half is in
the frequency domain. (Algebraically speaking, any fractional part could be given in either
domain.)

10.1.1 A Z-transform view of Hilbert transformation

Let xt be an even function of t . The definition Z = eiω gives Z−n+ Z n = 2cosωn; so

X (Z) = ·· ·+ x1 Z−1+ x0+ x1 Z + x2 Z 2+·· · (10.1)

X (Z) = x0+2x1 cosω+2x2 cos2ω+·· · (10.2)

Now make up a new function Y (Z) by replacing cosine by sine in (10.2):

Y (Z) = 2x1 sinω+2x2 sin2ω+·· · (10.3)

Recalling that Z = cosω+ i sinω, we see that all the negative powers of Z cancel from X (Z)+
iY (Z), giving a causal C(Z):

C(Z) = 1

2
[X (Z)+ iY (Z)] = 1

2
x0+ x1 Z + x2 Z 2+·· · (10.4)

Thus, for plot pairs, the causal response is ct , the real part of the FT is equation (10.2), and the
imaginary part not usually shown is given by equation (10.3).

10.1.2 The quadrature filter

Beginning with a causal response, we switched cosines and sines in the frequency domain.
Here we do so again, except that we interchange the time and frequency domains, getting a
more physical interpretation.

10.1. HILBERT TRANSFORM 229

A filter that converts sines into cosines is called a “90◦ phase-shift filter" or a “quadrature
filter." More specifically, if the input is cos(ωt+φ1), then the output should be cos(ωt+φ1−
π/2). An example is given in Figure 10.2. Let U (Z) denote the Z -transform of a real signal

Figure 10.2:
with quadrature filter yields
phase-shifted signal (bot-
tom).] Input (top) filtered
with quadrature filter yields
phase-shifted signal (bottom).
spec-hilb0 [NR]

input and Q(Z) denote a quadrature filter. Then the output signal is

V (Z) = Q(Z) U (Z) (10.5)

Let us find the numerical values of qt . The time-derivative operation has the 90◦ phase-
shifting property we need. The trouble with a differentiator is that higher frequencies are
amplified with respect to lower frequencies. Recall the FT and take its time derivative:

b(t) =
∫

B(ω)e−iωt dω (10.6)

db

dt
=

∫
−iωB(ω)e−iωt dω (10.7)

Thus we see that time differentiation corresponds to the weight factor −iω in the frequency
domain. The weight −iω has the proper phase but the wrong amplitude. The desired weight
factor is

Q(ω)= −iω

|ω| = −i sgnω (10.8)

where sgn is the “signum” or “sign” function. Let us transform Q(ω) into the domain of
sampled time t = n:

qn = 1

2π

∫ π

−π

Q(ω)e−iωndω (10.9)

= i

2π

∫ 0

−π

e−iωndω− i

2π

∫ π

0
e−iωndω

= i

2π

(
e−iωn

−in

∣∣∣∣0

−π

−e−iωn

−in

∣∣∣∣π
0

)

= 1

2πn
(−1+ e+inπ + e−inπ −1)

=
{

0 for n even
−2
πn for n odd

(10.10)

230 CHAPTER 10. SPECTRUM AND PHASE

Examples of filtering with qn are given in Figure 10.2 and 10.3.

Since qn does not vanish for negative n, the quadrature filter is nonrealizable (that is, it
requires future inputs to create its present output). If we were discussing signals in continu-
ous time rather than sampled time, the filter would be of the form 1/t , a function that has a
singularity at t = 0 and whose integral over positive t is divergent. Convolution with the filter
coefficients qn is therefore painful because the infinite sequence drops off slowly. Convolution
with the filter qt is called “Hilbert transformation."

Figure 10.3: A Hilbert-transform pair. spec-hilb [NR]

10.1.3 The analytic signal

The so-called analytic signal can be constructed from a real-valued time series ut and itself
90◦ phase shifted, i.e., vt can be found using equation (10.5). The analytic signal is gt , where

G(Z) = U (Z)+ i V (Z) = [1+ i Q(Z)] U (Z) (10.11)

In the time domain, the filter [1+ i Q(Z)] is δt + iqt , where δt is an impulse function at time
t = 0. The filter 1+ i Q(Z)= 1+ω/|ω| vanishes for negative ω. Thus it is a real step function
in the frequency domain. The values all vanish at negative frequency.

We can guess where the name “analytic signal” came from if we think back to Z -transforms
and causal functions. Causal functions are free of poles inside the unit circle, so they are
“analytic” there. Their causality is the Fourier dual to the one-sidedness we see here in the
frequency domain.

A function is “analytic” if it is one-sided in the dual (Fourier) domain.

10.1.4 Instantaneous envelope

The quadrature filter is often used to make the envelope of a signal. The envelope signal can
be defined by et =

√
u2

t +v2
t . Alternatively, with the analytic signal gt = ut+ ivt , the squared

envelope is e2
t = gt ḡt .

10.1. HILBERT TRANSFORM 231

A quick way to accomplish the 90◦ phase-shift operation is to use Fourier transformation.
Begin with ut + i · 0, and transform it to the frequency domain. Then multiply by the step
function. Finally, inverse transform to get gt = ut + ivt , which is equivalent to (δt + iqt)∗ut .

Figure 10.4: Left is a field profile. Middle is the unsmoothed envelope function. Right is the
smoothed envelope. The vertical axis is time and the horizontal axis is space. Independent
time-domain calculations are done at each point in space. spec-envelope [ER]

Sinusoids have smooth envelope functions, but that does not mean real seismograms do.
Figure 10.4 gives an example of a field profile and unsmoothed and smoothed envelopes.
Before smoothing, the stepout (alignment) of the reflections is quite clear. In the practical
world, alignment is considered to be a manifestation of phase. An envelope should be a smooth
function, such as might be used to scale data without altering its phase. Hence the reason for
smoothing the envelope.

If you are interested in wave propagation, you might recognize the possibility of using
analytic signals. Energy stored as potential energy is 90◦ out of phase with kinetic energy,
so ut might represent scaled pressure while vt represents scaled velocity. Then w̄twt is the
instantaneous energy. (The scales are the square root of compressibility and the square root
of density.)

10.1.5 Instantaneous frequency

The phase φt of a complex-valued signal gt = ut + ivt is defined by φt = arctan(vt/ut). The
instantaneous frequency is dφ/dt . Before forming the derivative, recall the definition of a
complex logarithm of g:

g = reiφ

lng = ln |r |+ lneiφ

= ln |r |+ iφ
(10.12)

232 CHAPTER 10. SPECTRUM AND PHASE

Hence, φ = � ln g. The instantaneous frequency is

ωinstantaneous = dφ

dt
= � d

dt
lng(t) = �1

g

dg

dt
(10.13)

For a signal that is a pure sinusoid, such as g(t) = g0eiωt , equation (10.13) clearly gives the
right answer. When various frequencies are simultaneously present, we can hope that (10.13)
gives a sensible average.

Trouble can arise in (10.13) when the denominator g gets small, which happens whenever
the envelope of the signal gets small. This difficulty can be overcome by careful smoothing.
Rationalize the denominator by multiplying by the conjugate signal, and then smooth locally
a little (as indicated by the summation sign below):

ω̂smoothed = �
∑

ḡ(t) d
dt g(t)∑

ḡ(t) g(t)
(10.14)

(Those of you who have studied quantum mechanics may recognize the notion of “expecta-
tion of an operator.” You will also see why the wave probability function of quantum physics
must be complex valued: as a consequence of the analytic signal eliminating negative fre-
quencies from the average. If the negative frequencies were not eliminated, then the average
frequency would be zero.)

What range of times should be smoothed in equation (10.14)? Besides the nature of the
data, the appropriate smoothing depends on the method of representing d

dt . To prepare a figure,
I implemented d

dt by multiplying by−iω. (This is more accurate than finite differences at high
frequencies, but has the disadvantage that the discontinuity in slope at the Nyquist frequency
gives an extended transient in the time domain.) The result is shown in Figure 10.5. Inspection
of the figure shows that smoothing is even more necessary for instantaneous frequency than
for envelopes, and this is not surprising because the presence of d

dt makes the signal rougher.
Particularly notice times in the range 400-512 where the sinusoids are truncated. There the
unsmoothed instantaneous frequency becomes a large rapid oscillation near the Nyquist fre-
quency. This roughness is nicely controlled by (1,2,1) smoothing.

It is gratifying to see that a spike added to the sinusoids (at point 243) causes a burst of
high frequency. Also interesting to notice is where an oscillation approaches the axis and then
turns away just before or just after crossing the axis.

An example of instantaneous frequency applied to field data is shown in Figure 10.6.

The instantaneous-frequency idea can also be applied to the space axis. This will be more
easily understood by readers familiar with the methodology of imaging and migration. Instead
of temporal frequency ω= dφ/dt , we compute the spatial frequency kx = dφ/dx . Figure 10.7
gives an example. Analogously, we could make plots of local dip kx/ω.

EXERCISES:

1 Let ct be a causal complex-valued signal. How does X (Z) change in equation (10.2), and
how must Y (Z) in equation (10.3) be deduced from X (Z)?

10.1. HILBERT TRANSFORM 233

Figure 10.5: A sum of three sinusoids (top), unsmoothed instantaneous frequency (middle),
and smoothed instantaneous frequency (bottom). spec-node [NR]

Figure 10.6: A field profile (left), instantaneous frequency smoothed only with (1,2,1) (mid-
dle), and smoothed more heavily (right). spec-frequency [ER]

234 CHAPTER 10. SPECTRUM AND PHASE

Figure 10.7: A field profile (left), kx smoothed over x only (center), and smoothed over t and
x (right). spec-kx [ER]

2 Figure 10.3 shows a Hilbert-transform pair, the real and imaginary parts of the Fourier
transform of a causal response. Describe the causal response.

3 Given Y (Z)= Q(Z)X (Z), prove that the envelope of yt is the same as the envelope of xt .

4 Using partial fractions, convolve the waveform

2

π

(
. . . ,−1

5
,0,−1

3
,0,−1,0,1,0,

1

3
,0,

1

5
, . . .

)

with itself. What is the interpretation of the fact that the result is (. . . , 0,0,−1,0,0, . . .)?
(HINT: π 2/8= 1+ 1

9 + 1
25 + 1

49 +)

5 Using the fast-Fourier-transform matrix, we can represent the quadrature filter Q(ω) by
the column vector

−i (0,1,1,1, . . . , 0,−1,−1,−1, . . . ,−1)′

Multiply this vector into the inverse-transform matrix to show that the transform is pro-
portional to (cosπk/N)/(sinπk/N). What is the scale factor? Sketch the scale factor for
k� N , indicating the limit N→∞. (HINT: 1+ x+ x 2+ . . .+ x N = (1− x N+1)/(1− x).)

10.2 SPECTRAL FACTORIZATION

The “spectral factorization" problem arises in a variety of physical contexts. It is this: given
a spectrum, find a minimum-phase wavelet that has that spectrum. We will see how to make
this wavelet, and we will recognize that it is unique. (It is unique except for a trivial aspect.

10.2. SPECTRAL FACTORIZATION 235

The negative of any wavelet has the same spectrum as the wavelet, and, more generally, any
wavelet can be multiplied by any complex number of unit magnitude, such as ±i , etc.)

First consider the simpler problem in which the wavelet need not be causal. We can easily
find a symmetric wavelet with any spectrum (which by definition is an energy or power). We
simply take the square root of the spectrum—this is the amplitude spectrum. We then inverse
transform the amplitude spectrum to the time domain, and we have a symmetric wavelet with
the desired spectrum.

The prediction-error filter discussed in chapter 7 is theoretically obtainable by spec-
tral factorization of an inverse spectrum. The Kolmogoroff method of spectral factorization,
which we will be looking at here, is much faster than the time-domain, least-squares methods
considered in chapter 7 and the least-squares methods given in FGDP. Its speed motivates its
widespread practical use.

Figure 10.8: Left are given wavelets, and right are minimum-phase equivalents.
spec-mpsamples [NR]

Some simple examples of spectral factorization are given in Figure 10.8. For all but the
fourth signal, the spectrum of the minimum-phase wavelet clearly matches that of the input.
Wavelets are shifted to t = 0 and turned backwards. In the fourth case, the waveshape changes
into a big pulse at zero lag. As the Robinson theorem introduced on page 250 suggests,
minimum-phase wavelets tend to decay rapidly after a strong onset. I imagined that hand-
drawn wavelets with a strong onset would rarely turn out to be perfectly minimum-phase, but
when I tried it, I was surprised at how easy it seemed to be to draw a minimum-phase wavelet.
This is shown on the bottom of Figure 10.8.

To begin understanding spectral factorization, notice that the polar form of any complex
number puts the phase into the exponential, i.e., x + iy = |r |eiφ = eln |r |+iφ . So we look first
into the behavior of exponentials and logarithms of Fourier transforms.

10.2.1 The exponential of a causal is causal.

Begin with a causal response ct and its associated C(Z). The Z -transform C(Z) could be
evaluated, giving a complex value for each real ω. This complex value could be exponentiated

236 CHAPTER 10. SPECTRUM AND PHASE

to get another value, say
B(Z (ω)) = eC(Z (ω)) (10.15)

Next, we could inverse transform B(Z (ω)) back to bt . We will prove the amazing fact that bt

must be causal too.

First notice that if C(Z) has no negative powers of Z , then C(Z)2 does not either. Likewise
for the third power or any positive integer power, or sum of positive integer powers. Now recall
the basic power-series definition of the exponential function:

ex = 1+ x+ x2

2
+ x3

2 ·3 +
x4

2 ·3 ·4 +
x5

2 ·3 ·4 ·5 +·· · (10.16)

Including equation (10.15) gives the exponential of a causal:

B(Z) = eC(Z) = 1+C(Z)+ C(Z)2

2
+ C(Z)3

2 ·3 +
C(Z)4

2 ·3 ·4 +·· · (10.17)

Each term in the infinite series corresponds to a causal response, so the sum, bt , is causal.
(If you have forgotten the series for the exponential function, then recall that the solution to
dy/dx = y is the definition of the exponential function y(x) = ex , and that the power series
satisfies the differential equation term by term, so it must be the exponential too. The factorials
in the denominators assure us that the power series always converges, i.e., it is finite for any
finite x .)

Putting one polynomial into another or one infinite series into another is an onerous task,
even if it does lead to a wavelet that is exactly causal. In practice we do operations that
are conceptually the same, but for speed we do them with discrete Fourier transforms. The
disadvantage is periodicity, i.e., negative times are represented computationally like negative
frequencies. Negative times are the last half of the elements of a vector, so there can be some
blurring of late times into negative ones.

Figure 10.9: Exponentials. spec-eZ
[NR]

Figure 10.9 gives examples of equation (10.17) for C = Z and C = 4Z . Unfortunately, I
do not have an analytic calculation to confirm the validity of these examples.

10.2.2 Finding a causal wavelet from a prescribed spectrum

To find a causal wavelet from a prescribed spectrum, we will need to form the logarithm of
the spectrum. Since a spectrum can easily vanish, and since the logarithm of zero is infinite,
there is a pitfall. To prepare ourselves, we first examine the log spectra example given in

10.2. SPECTRAL FACTORIZATION 237

Figure 10.10. On the infinite domain, the FT of a box function is a sinc whose zeros become
minus infinities in the logarithm. On the discrete domain, exact zeros may occur or not. The
transform of a triangle is a sinc squared, but since this triangle was imperfectly drawn (by
me), its transform does not go identically to zero. The sinc function drops off as ω, and sinc
squared drops off as ω2. We confirm this on the logarithm plot: sinc squared drops off twice
as much.

Figure 10.10: Log spectra of a
box function and a triangle function.
spec-logspec [NR]

Now for the task of going from a spectrum to a causal wavelet. Take as given the spectrum
of the causal wavelet B(Z). This means that we are not given B(Z) itself, but we are given
S(Z)= B(1/Z)B(Z). Assuming no zeros in the spectrum S(ω), it is easy to find the log of the
spectrum U = ln S. The spectrum may be specified as autocorrelation coefficients or values
on the unit circle. Thus,

B(1/Z) B(Z)= S(Z)= eln S(Z) = eU (Z) = eC(1/Z)+C(Z) = eC(1/Z) eC(Z) (10.18)

Given the spectrum S(Z) for each value on the unit circle, we could deduce the log spectrum
U (Z)= ln S(Z) at each point on the unit circle:

U (Z) = ln[S(Z)] = C(1/Z)+C(Z) (10.19)

This is the answer we have been looking for. Given U (Z) for all real values of ω, we could
inverse transform to the time domain, obtaining the two-sided function ut = c̄−t + ct . Setting
to zero the coefficients at negative times eliminates c̄−t , leaving just ct ; hence C(Z). And we
already know that the exponential of C(Z) gives B(Z) with a causal bt . This method is known
as “Kolmogoroff spectral factorization," after the mathematician who discovered it.

The program mpwave() below begins with a wavelet, forms its spectrum, and then calls
kolmogoroff() to factor the spectrum. The program kolmogoroff() first takes the logarithm
of the spectrum, then returns to the time domain and sets to zero the noncausal part. It returns
to frequency, exponentiates, and returns to the time domain with a wavelet that will be proven
to be minimum-phase.

subroutine mpwave(n, cx) # minimum phase equivalent wavelet

integer i, n # input: cx = any wavelet

complex cx(n) # output: cx = min phase wavelet

call ftu(1., n, cx) # with same spectrum.

call scaleit(sqrt(1.*n), 2*n, cx)

do i= 1, n

cx(i) = cx(i) * conjg(cx(i))

call kolmogoroff(n, cx)

return; end

238 CHAPTER 10. SPECTRUM AND PHASE

subroutine kolmogoroff(n, cx) # Spectral factorization.

integer i, n # input: cx = spectrum

complex cx(n) # output: cx = min phase wavelet

do i= 1, n

cx(i) = clog(cx(i))

call ftu(-1., n, cx); call scaleit(sqrt(1./n), 2*n, cx)

cx(1) = cx(1) / 2.

cx(1+n/2) = cx(1+n/2) / 2.

do i= 1+n/2+1, n

cx(i) = 0.

call ftu(+1., n, cx); call scaleit(sqrt(1.*n), 2*n, cx)

do i= 1, n

cx(i) = cexp(cx(i))

call ftu(-1., n, cx); call scaleit(sqrt(1./n), 2*n, cx)

return; end

Between the times when negative lags are set to zero and positive lags are left untouched are
two points that are scaled by half. The overall scaling was chosen to preserve the scale of the
input wavelet.

The first test I tried on this program was the input wavelet (1,2,0,0). The desired result is
that the wavelet should time-reverse itself to (2,1,0,0). The actual result was (1.9536, 1.0837,
0.0464, -0.0837), imperfect because the four-point Fourier transform is a summation around
the unit circle, whereas theoretically an integration is called for. Therefore, better results can
be obtained by padding additional zeros after the input wavelet. Also, you might notice that
the program is designed for complex-valued signals. As typical of Fourier transform with
single-word precision, the imaginary parts were about 10−6 of the real parts instead of being
precisely zero.

Some examples of spectral factorization are given in Figure 10.11.

Figure 10.11: Examples of log spectra and their associated minimum-phase wavelets.
spec-example [NR]

10.2. SPECTRAL FACTORIZATION 239

10.2.3 Why the causal wavelet is minimum-phase

Next we see why the causal wavelet B(Z), which we have made from the prescribed spectrum,
turns out to be minimum-phase. First return to the original definition of minimum-phase: a
causal wavelet is minimum-phase if and only if its inverse is causal. We have our wavelet in
the form B(Z) = eC(Z). Consider another wavelet A(Z) = e−C(Z), constructed analogously.
By the same reasoning, at is also causal. Since A(Z)B(Z)= 1, we have found a causal, inverse
wavelet. Thus the bt wavelet is minimum-phase.

Since the phase is a Fourier series, it must be periodic; that is, it cannot increase indefi-
nitely with ω as it does for the nonminimum-phase wavelet (see Figure 10.19).

10.2.4 Pathological examples

The spectral-factorization algorithm fails when an infinity is encountered. This happens
when the spectrum becomes zero, so that its logarithm becomes minus infinity. This can occur
in a benign way—for example, in the case of the spectrum of the wavelet (1,1), where the in-
finity occurs at the Nyquist frequency. We could smooth the spectrum near the Nyquist before
we take the logarithm. On the other hand, the pathology can be more extreme. Convolving
(1,1) with itself N times, we see that the result and its spectrum tend to Gaussians. So, at the
Nyquist frequency, smoothing would only replace zero by a very tiny number.

Figure 10.12 shows functions whose spectra contain zeros, along with their minimum-
phase equivalents. When the logarithm of zero arises during the computation, it is replaced
by the log of 10−30. It is surprising that the triangle suffered so much less than the other two
functions. It seems that minor imperfection in specifying the triangle resulted in a spectrum
that did not have the theoretical zeros of sinc squared.

Figure 10.12: Functions whose spec-
tra contain zeros, along with their
minimum-phase equivalents, as com-
puted by discrete Fourier transform.
spec-patho [NR]

10.2.5 Relation of amplitude to phase

As we learned from equation (10.19), a minimum-phase function is determined completely
from its spectrum. Thus its phase is determinable from its spectrum. Likewise, we will see
that, except for a scale, the spectrum is determinable from the phase.

So far we have not discussed the fact that spectral factorization implicitly uses Hilbert
transformation. Somehow we simply generated a phase. To see how the phase arose, recall

240 CHAPTER 10. SPECTRUM AND PHASE

equation (10.18) and (10.19):

Sk = eln Sk = eUk = e(Uk−i�k)/2 e(Uk+i�k)/2 = eCk eCk = Bk Bk (10.20)

Where did �k come from? We took Uk + i0 to the time domain, obtaining ut . Then we
multiplied ut by a real-valued step function of time. This multiplication in the time domain
is what created the phase, because multiplication in the time domain implies a convolution
in the frequency domain. Recall that the Fourier transform of a real-valued step function
arises with Hilbert transform. Multiplying in time with a step means that, in frequency, Uk

has been convolved with δk=0+ i × (90◦ phase-shift filter). So Uk is unchanged and a phase,
�k , has been generated. This explanation will be somewhat clearer if you review the Z -
transform approach discussed at the beginning of the chapter, because there we can see both
the frequency domain and the time domain in one expression.

To illustrate different classes of discontinuity, pulse, step, and slope, Figure 10.13 shows
another Hilbert-transform pair.

Figure 10.13: A Hilbert-transform pair. spec-hilb2 [NR]

EXERCISES:

1 What is the meaning of minimum-phase waveform if the roles of the time and frequency
domains are interchanged?

2 Show how to do the inverse Hilbert transform: given φ, find u. What is the interpretation
of the fact that we cannot get u0?

3 Consider a model of a portion of the earth where x is the north coordinate, +z represents
altitude above the earth, and magnetic bodies are distributed in the earth, creating no
component of magnetic field in the east-west direction. We can show that the magnetic
field h above the earth is represented by[

hx (x , z)
hz(x , z)

]
=

∫ +∞
−∞

F(k)

[−ik
|k|

]
eikx−|k|z dk

Here F(k) is some spatial frequency spectrum.

(a) By using Fourier transforms, how do you compute hx (x , 0) from hz(x , 0) and vice
versa?

(b) Given hz(x , 0), how do you compute hz(x , z)?

10.3. A BUTTERWORTH-FILTER COOKBOOK 241

(c) Notice that, at z = 0,

f (x)= hz(x)+ ihx (x)=
∫ +∞
−∞

eikx F(k) (|k|+ k)dk

and that F(k)(|k|+ k) is a one-sided function of k. With a total field magnetometer
we observe that

h2
x (x)+h2

z (x)=w(x)w̄(x)

What can you say about obtaining F(k) from this?

(d) How unique are hx(x) and hz(x) if f (x) f̄ (x) is given?

4 Test this idea: write code to factor X (Z) into X (Z)= A(Z)B(Z), where B(Z) is minimum-
phase and A(Z) is maximum-phase. Maximum-phase means that Z N A(1/Z) is minimum-
phase. First compute U (ω) = ln X (ω). Then remove a linear trend in the phase of U (ω)
to get N. Then split U with its trend removed into causal and anticausal parts U (Z) =
C−(1/Z)+C+(Z). Finally, form B(Z)= expC+(Z) and Z N A(1/Z) = exp(C−(Z)).

10.3 A BUTTERWORTH-FILTER COOKBOOK

An ideal bandpass filter passes some range of frequencies without distortion and suppresses
all other frequencies. Further thought shows that what we think of as the ideal bandpass
filter, a rectangle function of frequency, is instead far from ideal, because its time-domain
representation (sin ω0t)/(ω0t) is noncausal and decays much too slowly with time for many
practical uses. The appropriate bandpass filter is one whose time decay can be chosen to
be reasonable (in combination with a reasonable necessary compromise on the shape of the
rectangle). Butterworth filters fulfill these needs. They are causal and of various orders, the
lowest order being best (shortest) in the time domain, and the higher orders being better in the
frequency domain. Well-engineered projects often include Butterworth filters. Unfortunately
they are less often used in experimental work because of a complicated setting-up issue that I
am going to solve for you here. I will give some examples and discuss pitfalls as well.

The main problem is that there is no simple mathematical expression for the filter coeffi-
cients as a function of order and cutoff frequency.

Analysis starts from an equation that for large-order n is the equation of a box:

B(ω)B(ω) = 1

1+
(

ω
ω0

)2n
(10.21)

When |ω| < ω0, this Butterworth low-pass spectrum is about unity. When |ω| > |ω0|, the
spectrum drops rapidly to zero. The magnitude |B(ω)| (with some truncation effects to be
described later) is plotted in Figure 10.14 for various values of n.

Conceptually, the easiest form of Butterworth filtering is to take data to the frequency
domain and multiply by equation (10.21), where you have selected some value of n to com-
promise between the demands of the frequency domain (sharp cutoff) and the time domain

242 CHAPTER 10. SPECTRUM AND PHASE

Figure 10.14: Spectra of Butterworth filters of various-order n. spec-butf [NR]

(rapid decay). Of course, the time-domain representation of equation (10.21) is noncausal. If
you prefer a causal filter, you could take the Butterworth spectrum into a spectral-factorization
program such as kolmogoroff().

The time-domain response of the Butterworth filter is infinitely long, although a Butter-
worth filter of degree n can be well approximated by a ratio of n th-order polynomials. Since,
as we will see, n is typically in the range 2-5, time-domain filtering is quicker than FT. To
proceed, we need to express ω in terms of Z , where Z = eiω�t . This is done in an approx-
imate way that is valid for frequencies far from the Nyquist frequency. Intuitively we know
that time differentiation is implied by −iω. We saw that in sampled time, differentiation is
generally represented by the bilinear transform, equation (??): −i ω̂�t = 2(1− Z)/(1+ Z).
Thus a sampled-time representation of ω2 = (iω)(−iω) is

ω2 = 4
1− Z−1

1+ Z−1

1− Z

1+ Z
(10.22)

Substituting equation (10.22) into (10.21) we find

B

(
1

Z

)
B(Z) = [(1+ Z−1)(1+ Z)]n

[(1+ Z−1)(1+ Z)]n + [4
ω2

0
(1− Z−1)(1− Z)]n

(10.23)

B

(
1

Z

)
B(Z) = N (Z−1)N (Z)

D(Z−1)D(Z)
(10.24)

where the desired, causal, Butterworth, discrete-domain filter is B(Z) = N (Z)/D(Z). You
will be able to appreciate the enormity of the task represented by these equations when you
realize that the denominator in (10.23) must be factored into the product of a function of Z
times the same function of Z−1 to get equation (10.24). Since the function is positive, it can
be considered to be a spectrum, and factorization must be possible.

10.3. A BUTTERWORTH-FILTER COOKBOOK 243

10.3.1 Butterworth-filter finding program

To express equation (10.23) in the Fourier domain, multiply every parenthesized factor by
√

Z
and recall that

√
Z +1/

√
Z = 2cos(ω/2). Thus,

B(ω)B(ω) = (2 cos ω/2)2n

(2 cos ω/2)2n + (4
ω0

sin ω/2)2n
(10.25)

An analogous equation holds for high-pass filters. Subroutine butter() on this page does both
equations. First, the denominator of equation (10.25) is set up as a spectrum and factored.
The numerator could be found in the same way, but the result is already apparent from the
numerator of (10.23), i.e., we need the coefficients of (1+ Z)n. In subroutine butter() they
are simply obtained by Fourier transformation. The occurrence of a tangent in the program
arises from equation (??).

Find the numerator and denominator Z-transforms of the Butterworth filter.

hilo={1.,-1.} for {low,high}-pass filter

cutoff in Nyquist units, i.e. cutoff=1 for (1,-1,1,-1...)

#

subroutine butter(hilo, cutoff, npoly, num, den)

integer npoly, nn, nw, i

real hilo, cutoff, num(npoly), den(npoly), arg, tancut, pi

complex cx(2048)

pi = 3.14159265; nw=2048; nn = npoly - 1

tancut = 2. * tan(cutoff*pi/2.)

do i= 1, nw {

arg = (2. * pi * (i-1.) / nw) / 2.

if(hilo > 0.) # low-pass filter

cx(i) = (2.*cos(arg)) **(2*nn) +

(2.*sin(arg) * 2./tancut) **(2*nn)

else # high-pass filter

cx(i) = (2.*sin(arg)) **(2*nn) +

(2.*cos(arg) * tancut/2.) **(2*nn)

}

call kolmogoroff(nw, cx) # spectral factorization

do i= 1, npoly

den(i) = cx(i)

do i= 1, nw # numerator

cx(i) = (1. + hilo * cexp(cmplx(0., 2.*pi*(i-1.)/nw))) ** nn

call ftu(-1., nw, cx)

do i= 1, npoly

num(i) = cx(i)

return; end

10.3.2 Examples of Butterworth filters

Spectra and log spectra of various orders of Butterworth filters are shown in Figure 10.14.
They match a rectangle function that passes frequencies below the half-Nyquist. Convergence
is rapid with order. The logarithm plot shows a range of 0-3, meaning an amplitude ratio

244 CHAPTER 10. SPECTRUM AND PHASE

of 103 = 1000. Tiny glitches near the bottom for high-order curves result from truncating the
time axis in the time domain shown in Figure 10.15. The time-domain truncation also explains

Figure 10.15: Butterworth-filter time
responses for half-Nyquist low pass.
spec-butm [ER]

a slight roughness on the top of the rectangle function.

In practice, the filter is sometimes run both forward and backward to achieve a phase-
less symmetrical response. This squares the spectral amplitudes, resulting in convergence
twice as fast as shown in the figure. Notice that the higher-order curves in the time domain
(Figure 10.15) have undesirable sidelobes which ring longer with higher orders. Also, higher-
order curves have increasing delay for the main signal burst. This delay is a consequence of
the binomial coefficients in the numerator.

Another example of a low-pass Butterworth filter shows some lurking instability. This
is not surprising: a causal bandpass operator is almost a contradiction in terms, since the
word “bandpass” implies multiplying the spectrum by zero outside the chosen band, and
the word “causal” implies a well-behaved spectral logarithm. These cannot coexist because
the logarithm of zero is minus infinity. All this is another way of saying that when we use
Butterworth filters, we probably should not use high orders. Figure 10.16 illustrates that an
instability arises in the seventh-order Butterworth filter, and even the sixth-order filter looks
suspicious. If we insist on using high-order filters, we can probably go to an order about twice

Figure 10.16: Butterworth time re-
sponses for a narrow-band low-pass
filter. spec-butl [ER]

as high as we began with by using double precision, increasing the spectral width nw, and,

10.4. PHASE DELAY AND GROUP DELAY 245

if we are really persistent, using the method of the exercises below. My favorite Butterworth
filters for making synthetic seismograms have five coefficients (fourth order). I do one pass
through a low cut at cutoff=.1 and another through a high cut at cutoff=.4.

EXERCISES:

1 Above we assumed that a bandpass filter should be made by cascading a low-pass and a
high-pass filter. Suggest a revised form of equation (10.21) for making bandpass filters
directly.

2 Notice that equation (10.21) can be factored analytically. Individual factors could be im-
plemented as the Z -transform filters, and the filters cascaded. This prevents the instability
that arises when many poles are combined. Identify the poles of equation (10.21). Which
belong in the causal filter and which in its time reverse?

10.4 PHASE DELAY AND GROUP DELAY

The Fourier-domain ratio of a wave seen at B divided by a wave seen at A can be regarded as
a filter. The propagation velocity is the distance from A to B divided by the delay. There are
at least two ways to define the delay, however.

10.4.1 Phase delay

Whenever we put a sinusoid into a filter, a sinusoid must come out. The only things that can
change between input and output are the amplitude and the phase. Comparing a zero crossing
of the input to a zero crossing of the output measures the so-called phase delay. To quantify
this, define an input, sinωt , and an output, sin(ωt −φ). Then the phase delay tp is found by
solving

sin(ωt−φ) = sinω(t− tp)
ωt−φ = ωt−ωtp

tp = φ

ω

(10.26)

A problem with phase delay is that the phase can be ambiguous within an additive constant of
2π N , where N is any integer. In wave-propagation theory, “phase velocity" is defined by the
distance divided by the phase delay. There it is hoped that the 2π N ambiguity can be resolved
by observations tending to zero frequency or physical separation.

10.4.2 Group delay

A more interesting kind of delay is “group delay," corresponding to group velocity in wave-
propagation theory. Often the group delay is nothing more than the phase delay. This happens
when the phase delay is independent of frequency. But when the phase delay depends on

246 CHAPTER 10. SPECTRUM AND PHASE

frequency, then a completely new velocity, the “group velocity," appears. Curiously, the group
velocity is not an average of phase velocities.

The simplest analysis of group delay begins by defining a filter input xt as the sum of two
frequencies:

xt = cosω1t+ cosω2t (10.27)

By using a trigonometric identity,

xt = 2 cos(
ω1−ω2

2
t)︸ ︷︷ ︸

beat

cos(
ω1+ω2

2
t) (10.28)

we see that the sum of two cosines looks like a cosine of the average frequency multiplied by
a cosine of half the difference frequency. Since the frequencies in Figure 10.17 are taken close
together, the difference frequency factor in (10.28) represents a slowly variable amplitude

Figure 10.17: Two nearby frequencies beating. spec-beat [NR]

multiplying the average frequency. The slow (difference frequency) modulation of the higher
(average) frequency is called “beating.”

The beating phenomenon is also called “interference,” although that word is deceptive. If
the two sinusoids were two wave beams crossing one another, they would simply cross without
interfering. Where they are present simultaneously, they simply add.

Each of the two frequencies could be delayed a different amount by a filter, so take the
output of the filter yt to be

yt = cos(ω1t−φ1)+ cos(ω2t−φ2) (10.29)

In doing this, we have assumed that neither frequency was attenuated. (The group velocity
concept loses its simplicity and much of its utility in dissipative media.) Using the same
trigonometric identity on (10.29) as we used to get (10.28), we find that

yt = 2 cos(
ω1−ω2

2
t− φ1−φ2

2
)︸ ︷︷ ︸

beat

cos(
ω1+ω2

2
t− φ1+φ2

2
) (10.30)

Rewriting the beat factor in terms of a time delay tg, we now have

cos[
ω1−ω2

2
(t− tg)] = cos(

ω1−ω2

2
t− φ1−φ2

2
) (10.31)

(ω1−ω2)tg = φ1−φ2

tg = φ1−φ2

ω1−ω2
= �φ

�ω
(10.32)

10.4. PHASE DELAY AND GROUP DELAY 247

For a continuum of frequencies, the group delay is

tg = dφ

dω
(10.33)

10.4.3 Group delay as a function of the FT

We will see that the group delay of a filter P is a simple function of the Fourier transform
of the filter. I have named the filter P to remind us that the theorem strictly applies only to
all-pass filters, though in practice a bit of energy absorption might be OK. The phase angle
φ could be computed as the arctangent of the ratio of imaginary to real parts of the Fourier
transform, namely, φ(ω) = arctan[�P(ω)/�P(ω)]. As with (10.12), we use φ = � ln P; and
from (10.33) we get

tg = dφ

dω
= � d

dω
ln P(ω) = � 1

P

d P

dω
(10.34)

which could be expressed as the Fourier dual to equation (10.14).

10.4.4 Observation of dispersive waves

Various formulas relate energy delay to group delay. This chapter illuminates those that are
one-dimensional. In observational work, it is commonly said that “what you see is the group
velocity.” This means that when we see an apparently sinusoidal wave train, its distance from
the source divided by its traveltime (group delay) is the group velocity. An interesting example
of a dispersive wave is given in FGDP (Figure 1-11).

10.4.5 Group delay of all-pass filters

We have already discussed (page ??) all-pass filters, i.e., filters with constant unit spectra.
They can be written as P(Z)P(1/Z)= 1. In the frequency domain, P(Z) can be expressed as
eiφ(ω), where φ is real and is called the “phase shift." Clearly, P P = 1 for all real φ. It is an
easy matter to make a filter with any desired phase shift—we merely Fourier transform eiφ(ω)

into the time domain. If φ(ω) is arbitrary, the resulting time function is likely to be two-sided.
Since we are interested in physical processes that are causal, we may wonder what class of
functions φ(ω) corresponds to one-sided time functions. The answer is that the group delay
τg = dφ/dω of a causal all-pass filter must be positive.

Proof that dφ/dω > 0 for a causal all-pass filter is found in FGDP; there is no need to
reproduce the algebra here. The proof begins from equation (??) and uses the imaginary
part of the logarithm to get phase. Differentiation with respect to ω yields a form that is
recognizable as a spectrum and hence is always positive.

A single-pole, single-zero all-pass filter passes all frequency components with constant
gain and a phase shift that can be adjusted by the placement of the pole. Taking Z0 near the

248 CHAPTER 10. SPECTRUM AND PHASE

unit circle causes most of the phase shift to be concentrated near the frequency where the pole
is located. Taking the pole farther away causes the delay to be spread over more frequencies.
Complicated phase shifts or group delays can be built up by cascading single-pole filters.

The above reasoning for a single-pole, single-zero all-pass filter also applies to many roots,
because the phase of each will add, and the sum of τg = dφ/dω > 0 will be greater than zero.

The Fourier dual to the positive group delay of a causal all-pass filter is that the instanta-
neous frequency of a certain class of analytic signals must be positive. This class of analytic
signals is made up of all those with a constant envelope function, as might be approximated
by field data after the process of automatic gain control.

EXERCISES:

1 Let xt be some real signal. Let yt = xt+3 be another real signal. Sketch the phase as a
function of frequency of the cross-spectrum X (1/Z)Y (Z) as would a computer that put
all arctangents in the principal quadrants −π/2 < arctan < π/2. Label the axis scales.

2 Sketch the amplitude, phase, and group delay of the all-pass filter (1− Z0 Z)/(Z0− Z),
where Z0 = (1+ ε)eiω0 and ε is small. Label important parameters on the curve.

3 Show that the coefficients of an all-pass, phase-shifting filter made by cascading (1−
Z0 Z)/ (Z0− Z) with (1− Z0 Z)/(Z0− Z) are real.

4 A continuous signal is the impulse response of a continuous-time, all-pass filter. De-
scribe the function in both time and frequency domains. Interchange the words “time"
and “frequency" in your description of the function. What is a physical example of such a
function? What happens to the statement, the group delay of an all-pass filter is positive?

5 A graph of the group delay τg(ω) shows τg to be positive for all ω. What is the area under
τg in the range 0 < ω < 2π? (HINT: This is a trick question you can solve in your head.)

10.5 PHASE OF A MINIMUM-PHASE FILTER

In chapter 3 we learned that the inverse of a causal filter B(Z) is causal if B(Z) has no roots
inside the unit circle. The term “minimum phase” was introduced there without motivation.
Here we examine the phase, and learn why it is called “minimum."

10.5.1 Phase of a single root

For real ω, a plot of real and imaginary parts of Z is the circle (x , y)= (cos ω, sin ω). A smaller
circle is .9Z . A right-shifted circle is 1+ .9Z . Let Z0 be a complex number, such as x0+ iy0,

10.5. PHASE OF A MINIMUM-PHASE FILTER 249

or Z0 = eiω0/ρ, where ρ and ω0 are fixed constants. Consider the complex Z plane for the
two-term filter

B(Z) = 1− Z

Z 0
(10.35)

B(Z (ω)) = 1−ρei(ω−ω0) (10.36)

B(Z (ω)) = 1−ρ cos(ω−ω0)− iρ sin(ω−ω0) (10.37)

Figure 10.18: Left, complex B plane for ρ < 1. Right, for ρ > 1. spec-origin [ER]

Real and imaginary parts of B are plotted in Figure 10.18. Arrows are at frequency ω

intervals of 20◦. Observe that for ρ > 1 the sequence of arrows has a sequence of angles that
ranges over 360◦, whereas for ρ < 1 the sequence of arrows has a sequence of angles between
±90◦. Now let us replot equation (10.37) in a more conventional way, with ω as the horizontal
axis. Whereas the phase is the angle of an arrow in Figure 10.18, in Figure 10.19 it is the
arctangent of �B/�B. Notice how different is the phase curve in Figure 10.19 for ρ < 1 than
for ρ > 1.

Real and imaginary parts of B are periodic functions of the frequency ω, since B(ω) =
B(ω+ 2π). We might be tempted to conclude that the phase would be periodic too. Fig-
ure 10.19 shows, however, that for a nonminimum-phase filter, as ω ranges from −π to π , the
phase φ increases by 2π (because the circular path in Figure 10.18 surrounds the origin). To
make Figure 10.19 I used the Fortran arctangent function that takes two arguments, x , and y.
It returns an angle between −π and +π . As I was plotting the nonminimum phase, the phase
suddenly jumped discontinuously from a value near π to −π , and I needed to add 2π to keep
the curve continuous. This is called “phase unwinding.”

You would use phase unwinding if you ever had to solve the following problem: given
an earthquake at location (x , y), did it occur in country X? You would circumnavigate the
country—compare the circle in Figure 10.18—and see if the phase angle from the earthquake
to the country’s boundary accumulated to 0 (yes) or to 2π (no).

The word “minimum" is used in “minimum phase" because delaying a filter can always
add more phase. For example, multiplying any polynomial by Z delays it and adds ω to its
phase.

250 CHAPTER 10. SPECTRUM AND PHASE

Figure 10.19: Left shows real and
imaginary parts and phase angle of
equation ((10.37)), for ρ < 1. Right,
for ρ > 1. Left is minimum-
phase and right is nonminimum-
phase. spec-phase [ER]

For the minimum-phase filter, the group delay dφ/dω applied to Figure 10.19 is a periodic
function of ω. For the nonminimum-phase filter, group delay happens to be a monotonically
increasing function of ω. Since it is not an all-pass filter, the monotonicity is accidental.

Because group delay dφ/dω is the Fourier dual to instantaneous frequency dφ/dt , we
can now go back to Figure 10.5 and explain the discontinuous behavior of instantaneous fre-
quency where the signal amplitude is near zero.

10.5.2 Phase of a rational filter

Now let us sum up the behavior of phase of the rational filter

B(Z)= (Z − c1)(Z − c2) · · ·
(Z −a1)(Z −a2) · · · (10.38)

By the rules of complex-number multiplication, the phase of B(Z) is the sum of the phases
in the numerator minus the sum of the phases in the denominator. Since we are discussing
realizable filters, the denominator factors must all be minimum-phase, and so the denominator
phase curve is a sum of periodic phase curves like the lower left of Figure 10.19.

The numerator factors may or may not be minimum-phase. Thus the numerator phase
curve is a sum of phase curves that may resemble either type in Figure 10.19. If any factors
augment phase by 2π , then the phase is not periodic, and the filter is nonminimum-phase.

10.6 ROBINSON’S ENERGY-DELAY THEOREM

Here we will see that a minimum-phase filter has less energy delay than any other one-sided
filter with the same spectrum. More precisely, the energy summed from zero to any time t for
the minimum-phase wavelet is greater than or equal to that of any other wavelet with the same
spectrum.

10.6. ROBINSON’S ENERGY-DELAY THEOREM 251

Here is how I prove Robinson’s energy-delay theorem: compare two wavelets, Fin and
Fout, that are identical except for one zero, which is outside the unit circle for Fout and inside
for Fin. We can write this as

Fout(Z) = (b+ s Z) F(Z) (10.39)

Fin(Z) = (s+bZ) F(Z) (10.40)

where b is bigger than s, and F is arbitrary but of degree n. Proving the theorem for complex-
valued b and s is left as an exercise. Notice that the spectrum of b+ s Z is the same as that of
s+bZ . Next, tabulate the terms in question.

t Fout Fin F2
out− F2

in

∑t
k=0(F2

out− F2
in)

0 b f0 s f0 (b2− s2) f0
2 (b2− s2) f0

2

1 b f1+ s f0 s f1+b f0 (b2− s2) (f1
2− f0

2) (b2− s2) f1
2

...
...

k b fk+ s fk−1 s fk+b fk−1 (b2− s2) (fk
2− f 2

k−1) (b2− s2) fk
2

...
...

n+1 s fn b fn (b2− s2)(− fn
2) 0

The difference, which is given in the right-hand column, is always positive. An example
of the result is shown in Figure 10.20.

Figure 10.20: p
ercentage versus time. ‘x’ for
minimum-phase wavelet. ‘o’ for
nonminimum phase.] Total energy
percentage versus time. ‘x’ for
minimum-phase wavelet. ‘o’ for
nonminimum phase. spec-robinson
[ER]

Notice that (s+bZ)/(b+s Z) is an all-pass filter. Multiplying by an all-pass filter does not
change the amplitude spectrum but instead introduces a zero and a pole. The pole could cancel
a preexisting zero, however. To sum up, multiplying by a causal/anticausal all-pass filter can
move zeros inside/outside the unit circle. Each time we eliminate a zero inside the unit circle,
we cause the energy of the filter to come out earlier. Eventually we run out of zeros inside the
unit circle, and the energy comes out as early as possible.

EXERCISES:

1 Repeat the proof of Robinson’s minimum-energy-delay theorem for complex-valued b, s,
and fk . (HINT: Does Fin = (s+bZ) F or Fin = (s+bZ)F?)

252 CHAPTER 10. SPECTRUM AND PHASE

10.7 FILTERS IN PARALLEL

We have seen that in a cascade of filters the Z -transform polynomials are multiplied together.
For filters in parallel the polynomials add. See Figure 10.21.

Figure 10.21: Filters operating in par-
allel. spec-parallel [NR]

We have seen also that a cascade of filters is minimum-phase if, and only if, each ele-
ment of the product is minimum-phase. Now we will find a condition that is sufficient (but
not necessary) for a sum A(Z)+G(Z) to be minimum-phase. First, assume that A(Z) is
minimum-phase. Then write

A(Z)+G(Z) = A(Z)

(
1+ G(Z)

A(Z)

)
(10.41)

The question as to whether A(Z)+G(Z) is minimum-phase is now reduced to determining
whether A(Z) and 1+G(Z)/A(Z) are both minimum-phase. We have assumed that A(Z)
is minimum-phase. Before we ask whether 1+G(Z)/A(Z) is minimum-phase, we need to
be sure that it is causal. Since 1/A(Z) is expandable in positive powers of Z only, then
G(Z)/A(Z) is also causal. We will next see that a sufficient condition for 1+G(Z)/A(Z) to be
minimum-phase is that the spectrum of A exceed that of G at all frequencies. In other words,
for any real ω, |A| > |G|. Thus, if we plot the curve of G(Z)/A(Z) in the complex plane,
for real 0 ≤ ω ≤ 2π , it lies everywhere inside the unit circle. Now, if we add unity, obtaining
1+G(Z)/A(Z), then the curve will always have a positive real part as in Figure 10.22. Since

Figure 10.22: A phase trajectory as
in Figure 10.18 left, but more com-
plicated. spec-garbage [ER]

the curve cannot enclose the origin, the phase must be that of a minimum-phase function.

You can add garbage to a minimum-phase wavelet if you do not add too much.

This abstract theorem has an immediate physical consequence. Suppose a wave charac-
terized by a minimum-phase A(Z) is emitted from a source and detected at a receiver some

10.7. FILTERS IN PARALLEL 253

time later. At a still later time, an echo bounces off a nearby object and is also detected at the
receiver. The receiver sees the signal Y (Z)= A(Z)+ Z nαA(Z), where n measures the delay
from the first arrival to the echo, and α represents the amplitude attenuation of the echo. To
see that Y (Z) is minimum-phase, we note that the magnitude of Z n is unity and the reflection
coefficient α must be less than unity (to avoid perpetual motion), so that Z nαA(Z) takes the
role of G(Z). Thus, a minimum-phase wave along with its echo is minimum-phase. We will
later consider wave propagation with echoes of echoes ad infinitum.

EXERCISES:

1 Find two nonminimum-phase wavelets whose sum is minimum-phase.

2 Let A(Z) be a minimum-phase polynomial of degree N . Let A′(Z)= Z N A(1/Z). Locate
in the complex Z plane the roots of A′(Z). A′(Z) is called “maximum phase." (HINT:
Work the simple case A(Z) = a0+a1 Z first.)

3 Suppose that A(Z) is maximum-phase and that the degree of G(Z) is less than or equal to
the degree of A(Z). Assume |A|> |G|. Show that A(Z)+G(Z) is maximum-phase.

4 Let A(Z) be minimum-phase. Where are the roots of A(Z)+ cZ N Ā(1/Z) in the three
cases |c|< 1, |c|> 1, |c| = 1? (HINT: The roots of a polynomial are continuous functions
of the polynomial coefficients.)

254 CHAPTER 10. SPECTRUM AND PHASE

Chapter 11

Resolution and random signals

The accuracy of measurements on observed signals is limited not only by practical realities,
but also by certain fundamental principles. The most famous example included in this chap-
ter is the time-bandwidth product in Fourier-transformation theory, called the “uncertainty
principle.”

Observed signals often look random and are often modeled by filtered random numbers.
In this chapter we will see many examples of signals built from random numbers and discover
how the nomenclature of statistics applies to them. Fundamentally, this chapter characterizes
“resolution,” resolution of frequency and arrival time, and the statistical resolution of signal
amplitude and power as functions of time and frequency.

We will see
√

n popping up everywhere. This
√

n enters our discussion when we look
at spectra of signals built from random numbers. Also, signals that are theoretically uncorre-
lated generally appear to be weakly correlated at a level of 1/

√
n, where n is the number of

independent points in the signal.

Measures of resolution (which are variously called variances, tolerances, uncertainties,
bandwidths, durations, spreads, rise times, spans, etc.) often interact with one another, so
that experimental change to reduce one must necessarily increase another or some combination
of the others. In this chapter we study basic cases where such conflicting interactions occur.

To avoid confusion I introduce the unusual notation � where � is commonly used. Notice
that the letter � resembles the letter �, and � connotes length without being confused with
wavelength. Lengths on the time and frequency axes are defined as follows:

dt , d f mesh intervals in time and frequency
�t , � f mesh intervals in time and frequency
�T �F extent of time and frequency axis
�T , �F time duration and spectral bandwidth of a signal

There is no mathematically tractable and universally acceptable definition for time span
�T and spectral bandwidth �F . A variety of defining equations are easy to write, and many

255

256 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

are in general use. The main idea is that the time span �T or the frequency span �F should
be able to include most of the energy but need not contain it all. The time duration of a damped
exponential function is infinite if by duration we mean the span of nonzero function values.
However, for practical purposes the time span is generally defined as the time required for
the amplitude to decay to e−1 of its original value. For many functions the span is defined
by the span between points on the time or frequency axis where the curve (or its envelope)
drops to half of the maximum value. Strange as it may sound, there are certain concepts about
the behavior of �T and �F that seem appropriate for “all” mathematical choices of their
definitions, yet these concepts can be proven only for special choices.

11.1 TIME-FREQUENCY RESOLUTION

A consequence of Fourier transforms being built from eiωt is that scaling a function to be
narrower in one domain scales it to be wider in the other domain. Scaling ω implies inverse
scaling of t to keep the product ωt constant. For example, the FT of a rectangle is a sinc.
Making the rectangle narrower broadens the sinc in proportion because ωt is constant. A pure
sinusoidal wave has a clearly defined frequency, but it is spread over the infinitely long time
axis. At the other extreme is an impulse function (often called a delta function), which is
nicely compressed to a point on the time axis but contains a mixture of all frequencies. In this
section we examine how the width of a function in one domain relates to that in the other. By
the end of the section, we will formalize this into an inequality:

For any signal, the time duration �T and the spectral bandwidth �F are related by

�F �T ≥ 1 (11.1)

This inequality is the uncertainty principle.

Since we are unable to find a precise and convenient analysis for the definitions of �F
and �T , the inequality (11.1) is not strictly true. What is important is that rough equality in
(11.1) is observed for many simple functions, but for others the inequality can be extremely
slack (far from equal). Strong inequality arises from all-pass filters. An all-pass filter leaves
the spectrum unchanged, and hence �F unchanged, but it can spread out the signal arbitrar-
ily, increasing �T arbitrarily. Thus the time-bandwidth maximum is unbounded for all-pass
filters. Some people say that the Gaussian function has the minimum product in (11.1), but
that really depends on a particular method of measuring �F and �T .

11.1.1 A misinterpretation of the uncertainty principle

It is easy to misunderstand the uncertainty principle. An oversimplification of it is to say
that it is “impossible to know the frequency at any particular time.” This oversimplification
leads us to think about a truncated sinusoid, such as in Figure 11.1. We know the frequency
exactly, so �F seems zero, whereas �T is finite, and this seems to violate (11.1). But what

11.1. TIME-FREQUENCY RESOLUTION 257

the figure shows is that the truncation of the sinusoid has broadened the frequency band. More
particularly, the impulse function in the frequency domain has been convolved by the sinc
function that is the Fourier transform of the truncating rectangle function.

Figure 11.1: Windowed sinusoid and its Fourier transform. rand-windcos [NR]

11.1.2 Measuring the time-bandwidth product

Now examine Figure 11.2, which contains sampled Gaussian functions and their Fourier trans-
forms. The Fourier transform of a Gaussian is well known to be another Gaussian function,
as the plot confirms. I adjusted the width of each Gaussian so that the widths would be about
equal in both domains. The Gaussians were sampled at various values of n, increasing in steps
by a factor of 4. You can measure the width dropping by a factor of 2 at each step. For those
of you who have already learned about the uncertainty principle, it may seem paradoxical that
the function’s width is dropping in both time and frequency domains.

Figure 11.2: Sampled Gaussian func-
tions and their Fourier transforms for
vectors of length n = 16, 64, and 256.
rand-uncertain [NR]

The resolution of the paradox is that the physical length of the time axis or the frequency
axis is varying as we change n (even though the plot length is scaled to a constant on the page).
We need to associate a physical mesh with the computational mesh. A method of associating
physical and computational meshes was described in chapter 9 on page ??. In real physical
space as well as in Fourier transform space, the object remains a constant size as the mesh is
refined.

Let us read from Figure 11.2 values for the widths �F and �T . On the top row, where
N = 16, I pick a width of about 4 points, and this seems to include about 90% of the area
under the function. For this signal (with the widths roughly equal in both domains) it seems
that �T =√Ndt and �F =√Nd f . Using the relation between dt and d f found in equation
(??), which says that dt d f = 1/N , the product becomes �T�F = 1.

We could also confirm the inequality (11.1) by considering simple functions for which
we know the analytic transforms—for example, an impulse function in time. Then �T = dt ,

258 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

and the Fourier transform occupies the entire frequency band from minus to plus the Nyquist
frequency ±.5/dt Hz, i.e., �F = 1/dt . Thus again, the product is �T�F = 1.

11.1.3 The uncertainty principle in physics

The inequality (11.1) derives the name “uncertainty principle” from its interpretation in
quantum mechanics. Observations of subatomic particles show they behave like waves with
spatial frequency proportional to particle momentum. The classical laws of mechanics enable
prediction of the future of a mechanical system by extrapolation from the currently known po-
sition and momentum. But because of the wave nature of matter, with momentum proportional
to spatial frequency, such prediction requires simultaneous knowledge of both the location and
the spatial frequency of the wave. This is impossible, as we see from (11.1); hence the word
“uncertainty.”

11.1.4 Gabor’s proof of the uncertainty principle

Although it is easy to verify the uncertainty principle in many special cases, it is not easy to
deduce it. The difficulty begins from finding a definition of the width of a function that leads
to a tractable analysis. One possible definition uses a second moment; that is, �T is defined
by

(�T)2 =
∫

t2 b(t)2 dt∫
b(t)2 dt

(11.2)

The spectral bandwidth �F is defined likewise. With these definitions, Dennis Gabor pre-
pared a widely reproduced proof. I will omit his proof here; it is not an easy proof; it is widely
available; and the definition (11.2) seems inappropriate for a function we often use, the sinc
function, i.e., the FT of a step function. Since the sinc function drops off as t−1, its width �T
defined with (11.2) is infinity, which is unlike the more human measure of width, the distance
to the first axis crossing.

11.1.5 My rise-time proof of the uncertainty principle

In FGDP I came up with a proof of the uncertainty principle that is appropriate for causal
functions. That proof is included directly below, but I recommend that the beginning reader
skip over it, as it is somewhat lengthy. I include it because this book is oriented toward causal
functions, the proof is not well known, and I have improved it since FGDP.

A similar and possibly more basic concept than the product of time and frequency spreads
is the relationship between spectral bandwidth and the “rise time” of a system-response func-
tion. The rise time �T of a system response is defined as follows: when we kick a physical
system with an impulse function, it usually responds rapidly, rising to some maximum level,

11.1. TIME-FREQUENCY RESOLUTION 259

and then dropping off more slowly toward zero. The quantitative value of the rise time is gen-
erally, and somewhat arbitrarily, taken to be the span between the time of excitation and the
time at which the system response is more than halfway up to its maximum.

“Tightness" (nearness to equality) in the inequality (11.1) is associated with minimum
phase. “Slackness" (remoteness from equality) in the (11.1) would occur if a filter with an
additional all-pass component were used. Slackness could also be caused by a decay time that
is more rapid than the rise time, or by other combinations of rises and falls, such as random
combinations. Minimum-phase systems generally respond rapidly compared to the rate at
which they later decay. Focusing our attention on such systems, we can now seek to derive the
inequality (11.1) applied to rise time and bandwidth.

The first step is to choose a definition for rise time. I have found a tractable definition of
rise time to be

1

�T
=

∫∞
0

1
t b(t)2 dt∫∞

0 b(t)2 dt
(11.3)

where b(t) is the response function under consideration. Equation (11.3) defines �T by the
first negative moment. Since this is unfamiliar, consider two examples. Taking b(t) to be a
step function, recognize that the numerator integral diverges, giving the desired �T = 0 rise
time. As a further example, take b(t)2 to grow linearly from zero to t0 and then vanish. Then
the rise time �T is t0/2, again reasonable. It is curious that b(t) could grow as

√
t , which rises

with infinite slope at t = 0, and not cause �T to be pushed to zero.

Proof by way of the dual problem

Although the Z -transform method is a great aid in studying cases where divergence (as 1/t)
plays a role, it has the disadvantage that it destroys the formal interchangeability between the
time domain and the frequency domain. To take advantage of the analytic simplicity of the
Z -transform, we consider instead the dual to the rise-time problem. Instead of a signal whose
square vanishes at negative time, we have a spectrum B(1/Z)B(Z) that vanishes at negative
frequencies. We measure how fast this spectrum can rise after ω = 0. We will find this time
interval to be related to the time duration �T of the complex-valued signal bt . More precisely,
we now define the lowest significant frequency component �F in the spectrum, analogously
to (11.3), as

1

�F
=

∫ ∞
−∞

1

f
B B d f =

∫ ∞
−∞

B B
dω

ω
(11.4)

where we have assumed the spectrum is normalized, i.e., the zero lag of the auto-correlation
of bt is unity. Now recall the bilinear transform, equation (??), which represents 1/(−iω) as
the coefficients of 1

2 (1+ Z)/(1− Z), namely, (. . .0,0,0, 1
2 ,1,1,1 . . .). The pole right on the unit

circle at Z = 1 causes some nonuniqueness. Because 1/ iω is an imaginary, odd, frequency
function, we will want an odd expression (such as on page ??) to insert into (11.4):

1

−iω
= (· · ·− Z−2− Z−1+0+ Z + Z 2+·· ·)

2
(11.5)

260 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

Using limits on the integrals for time-sampled functions and inserting (11.5) into (11.4) gives

1

�F
= −i

2π

∫ +π

−π

1

2
(· · ·− Z−2− Z−1+ Z + Z 2+·· ·) B

(
1

Z

)
B(Z)dω (11.6)

Let st be the autocorrelation of bt . Since any integral around the unit circle of a Z -transform
polynomial selects the coefficient of Z 0 of its integrand, we have

1

�F
= −i

2

[
(s−1− s1)+ (s−2− s2)+ (s−3− s3)+·· ·] =

∞∑
t=1

−�st (11.7)

1

�F
=

∞∑
t=1

−�st ≤
∞∑

t=1

|st | (11.8)

The height of the autocorrelation has been normalized to s0 = 1. The sum in (11.8) is an inte-
gral representing area under the |st | function. So the area is a measure of the autocorrelation
width �Tauto. Thus,

1

�F
≤

∞∑
t=1

|st | = �Tauto (11.9)

Finally, we must relate the duration of a signal �T to the duration of its autocorrelation
�Tauto. Generally speaking, it is easy to find a long signal that has short autocorrelation.
Just take an arbitrary short signal and convolve it using a lengthy all-pass filter. Conversely,
we cannot get a long autocorrelation function from a short signal. A good example is the
autocorrelation of a rectangle function, which is a triangle. The triangle appears to be twice as
long, but considering that the triangle tapers down, it is reasonable to assert that the �T ’s are
the same. Thus, we conclude that

�Tauto ≤ �T (11.10)

Inserting this inequality into (11.9), we have the uncertainty relation

�T �F ≥ 1 (11.11)

Looking back over the proof, I feel that the basic time-bandwidth idea is in the equal-
ity (11.7). I regret that the verbalization of this idea, boxed following, is not especially en-
lightening. The inequality arises from �Tauto < �T , which is a simple idea.

The inverse moment of the normalized spectrum of an analytic signal equals the imaginary
part of the mean of its autocorrelation.

EXERCISES:

1 Consider B(Z) = [1− (Z/Z0)n]/(1− Z/Z0) as Z0 goes to the unit circle. Sketch the
signal and its squared amplitude. Sketch the frequency function and its squared amplitude.
Choose �F and �T .

11.2. FT OF RANDOM NUMBERS 261

2 A time series made up of two frequencies can be written as

bt = Acosω1t+ B sinω1t+C cosω2t+D sinω2t

Given ω1, ω2, b0, b1, b2, and b3, show how to calculate the amplitude and phase angles of
the two sinusoidal components.

11.2 FT OF RANDOM NUMBERS

Many real signals are complicated and barely comprehensible. In experimental work, we
commonly transform such data. To better understand what this means, it will be worthwhile
to examine signals made from random numbers.

Figure 11.3 shows discrete Fourier transforms of random numbers. The basic conclusion
to be drawn from this figure is that transforms of random numbers look like more random
numbers. A random series containing all frequencies is called a “white-noise" series, because

Figure 11.3: Fourier cosine transforms of vectors containing random numbers. N is the num-
ber of components in the vector. rand-nrand [NR]

the color white is made from roughly equal amounts of all colors. Any series made by in-
dependently chosen random numbers is said to be an “independent" series. An independent
series must be white, but a white series need not be independent. Figure 11.4 shows Fourier
transforms of random numbers surrounded by zeros (or zero padded). Since all the vectors of
random numbers are the same length (each has 1024 points, including both sides of the even
function with the even part (513 points) shown), the transforms are also the same length. The
top signal has less randomness than the second trace (16 random numbers versus 64). Thus
the top FT is smoother than the lower ones. Although I introduced this figure as if the left
panel were the time domain and the right panel were frequency, you are free to think of it the
opposite way. This is more clear. With the left-hand signal being a frequency function, where
higher frequencies are present, the right-hand signal oscillates faster.

262 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

Figure 11.4: Zero-padded random numbers and their FTs. rand-pad [NR]

11.2.1 Bandlimited noise

Figure 11.5 shows bursts of 25 random numbers at various shifts, and their Fourier transforms.
You can think of either side of the figure as the time domain and the other side as the frequency
domain. (See page ?? for a description of the different ways of interpreting plots of one side
of Fourier-transform pairs of even functions.) I like to think of the left side as the Fourier
domain and the right side as the signals. Then the signals seem to be sinusoids of a constant
frequency (called the “center" frequency) and of an amplitude that is modulated at a slower
rate (called the “beat” frequency). Observe that the center frequency is related to the location
of the random bursts, and that the beat frequency is related to the bandwidth of the noise burst.

Figure 11.5: Shifted, zero-padded random numbers in bursts of 25 numbers. rand-shift
[NR]

You can also think of Figure 11.5 as having one-sided frequency functions on the left, and
the right side as being the real part of the signal. The real parts are cosinelike, whereas the
imaginary parts (not shown) are sinelike and have the same envelope function as the cosinelike
part.

You might have noticed that the bottom plot in Figure 11.5, which has Nyquist-frequency
modulated beats, seems to have about twice as many beats as the two plots above it. This can
be explained as an end effect. The noise burst near the Nyquist frequency is really twice as
wide as shown, because it is mirrored about the Nyquist frequency into negative frequencies.

11.3. TIME-STATISTICAL RESOLUTION 263

Likewise, the top figure is not modulated at all, but the signal itself has a frequency that
matches the beats on the bottom figure.

11.3 TIME-STATISTICAL RESOLUTION

1 If we flipped a fair coin 1000 times, it is unlikely that we would get exactly 500 heads and
500 tails. More likely the number of heads would lie somewhere between 400 and 600. Or
would it lie in another range? The theoretical value, called the “mean" or the “expectation,"
is 500. The value from our experiment in actually flipping a fair coin is called the “sample
mean.” How much difference �m should we expect between the sample mean m̂ and the true
mean m? Both the coin flips x and our sample mean m̂ are random variables. Our 1000-flip
experiment could be repeated many times and would typically give a different m̂ each time.
This concept will be formalized in section 11.3.5. as the “variance of the sample mean,”
which is the expected squared difference between the true mean and the mean of our sample.

The problem of estimating the statistical parameters of a time series, such as its mean,
also appears in seismic processing. Effectively, we deal with seismic traces of finite duration,
extracted from infinite sequences whose parameters can only be estimated from the finite set
of values available in these seismic traces. Since the knowledge of these parameters, such as
signal-to-noise ratio, can play an important role during the processing, it can be useful not
only to estimate them, but also to have an idea of the error made in this estimation.

11.3.1 Ensemble

The “true value” of the mean could be defined as the mean that results when the coin is flipped
n times, when n is conceived of as going to infinity. A more convenient definition of true value
is that the experiment is imagined as having been done separately under identical conditions by
an infinite number of people (an “ensemble”). The ensemble may seem a strange construction;
nonetheless, much literature in statistics and the natural sciences uses the ensemble idea. Let
us say that the ensemble is defined by a probability as a function of time. Then the ensemble
idea enables us to define a time-variable mean (the sum of the values found by the ensemble
weighted by the probabilities) for, for example, coins that change with time.

11.3.2 Expectation and variance

A conceptual average over the ensemble, or expectation, is denoted by the symbol E. The
index for summation over the ensemble is never shown explicitly; every random variable is
presumed to have one. Thus, the true mean at time t is defined as mx (t) = E(xt). The mean
can vary with time:

mx (t) = E[x(t)] (11.12)
1I would like to thank Gilles Darche for carefully reading this chapter and pointing out some erroneous

assertions in FGDP. If there are any mistakes in the text now, I probably introduced them after his reading.

264 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

The “variance” σ 2 is defined to be the power after the mean is removed, i.e.,

σx (t)2 = E[(x(t)−mx (t))2] (11.13)

(Conventionally, σ 2 is referred to as the variance, and σ is called the “standard deviation.”)

For notational convenience, it is customary to write m(t), σ (t), and x(t) simply as m, σ ,
and xt , using the verbal context to specify whether m and σ are time-variable or constant. For
example, the standard deviation of the seismic amplitudes on a seismic trace before correc-
tion of spherical divergence decreases with time, since these amplitudes are expected to be
“globally” smaller as time goes on.

When manipulating algebraic expressions, remember that the symbol E behaves like a
summation sign, namely,

E ≡ (lim N →∞)
1

N

N∑
1

(11.14)

Note that the summation index is not given, since the sum is over the ensemble, not time. To
get some practice with the expectation symbol E, we can reduce equation (11.13):

σ 2
x = E[(xt −mx)2] = E(x2

t) − 2mxE(xt)+m2
x = E(x2

t) − m2
x (11.15)

Equation (11.15) says that the energy is the variance plus the squared mean.

11.3.3 Probability and independence

A random variable x can be described by a probability p(x) that the amplitude x will be
drawn. In real life we almost never know the probability function, but theoretically, if we do
know it, we can compute the mean value using

m = E(x) =
∫

x p(x)dx (11.16)

“Statistical independence” is a property of two or more random numbers. It means the
samples are drawn independently, so they are unrelated to each other. In terms of probability
functions, the independence of random variables x and y is expressed by

p(x , y) = p(x) p(y) (11.17)

From these, it is easy to show that

E(xy) = E(x)E(y) (11.18)

11.3. TIME-STATISTICAL RESOLUTION 265

11.3.4 Sample mean

Now let xt be a time series made up of identically distributed random numbers: mx and σx

do not depend on time. Let us also suppose that they are independently chosen; this means in
particular that for any different times t and s (t
= s):

E(xt xs) = E(xt)E(xs) (11.19)

Suppose we have a sample of n points of xt and are trying to determine the value of mx . We
could make an estimate m̂x of the mean mx with the formula

m̂x = 1

n

n∑
t=1

xt (11.20)

A somewhat more elaborate method of estimating the mean would be to take a weighted
average. Let wt define a set of weights normalized so that

∑
wt = 1 (11.21)

With these weights, the more elaborate estimate m̂ of the mean is

m̂x =
∑

wt xt (11.22)

Actually (11.20) is just a special case of (11.22); in (11.20) the weights are wt = 1/n.

Further, the weights could be convolved on the random time series, to compute local aver-
ages of this time series, thus smoothing it. The weights are simply a filter response where the
filter coefficients happen to be positive and cluster together. Figure 11.6 shows an example: a
random walk function with itself smoothed locally.

Figure 11.6: Random walk and itself smoothed (and shifted downward). rand-walk [NR]

266 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

11.3.5 Variance of the sample mean

Our objective here is to calculate how far the estimated mean m̂ is likely to be from the true
mean m for a sample of length n. This difference is the variance of the sample mean and is
given by (�m)2 = σ 2

m̂ , where

σ 2
m̂ = E[(m̂−m)2] (11.23)

= E
{

[(
∑

wt xt)−m]2
}

(11.24)

Now use the fact that m = m
∑

wt =∑
wt m:

σ 2
m̂ = E

⎧⎨
⎩

[∑
t

wt (xt −m)

]2
⎫⎬
⎭ (11.25)

= E

{[∑
t

wt (xt −m)

] [∑
s

ws(xs −m)

]}
(11.26)

= E

[∑
t

∑
s

wtws(xt −m)(xs −m)

]
(11.27)

The step from (11.26) to (11.27) follows because

(a1+a2+a3) (a1+a2+a3) = sum of

⎡
⎣ a1a1 a1a2 a1a3

a2a1 a2a2 a2a3

a3a1 a3a2 a3a3

⎤
⎦ (11.28)

The expectation symbol E can be regarded as another summation, which can be done after, as
well as before, the sums on t and s, so

σ 2
m̂ =

∑
t

∑
s

wt ws E [(xt −m)(xs −m)] (11.29)

If t
= s, since xt and xs are independent of each other, the expectation E[(xt−m)(xs−m)] will
vanish. If s = t , then the expectation is the variance defined by (11.13). Expressing the result
in terms of the Kronecker delta, δts (which equals unity if t = s, and vanishes otherwise) gives

σ 2
m̂ =

∑
t

∑
s

wt ws σ 2
x δts (11.30)

σ 2
m̂ =

∑
t

w2
t σ 2

x (11.31)

σm̂ = σx

√∑
t

w2
t (11.32)

For n weights, each of size 1/n, the standard deviation of the sample mean is

�mx = σm̂x = σx

√√√√ n∑
t=1

(
1

n

)2

= σx√
n

(11.33)

11.3. TIME-STATISTICAL RESOLUTION 267

This is the most important property of random numbers that is not intuitively obvious. In-
formally, the result (11.33) says this: given a sum y of terms with random polarity, whose
theoretical mean is zero, then

y = ±1±1±1 · · ·︸ ︷︷ ︸
n terms

(11.34)

The sum y is a random variable whose standard deviation is σy =√n =�y. An experimenter
who does not know the mean is zero will report that the mean of y is E(y)= ŷ±�y, where ŷ
is the experimental value.

If we are trying to estimate the mean of a random series that has a time-variable mean,
then we face a basic dilemma. Including many numbers in the sum in order to make �m small
conflicts with the possibility of seeing mt change during the measurement.

The “variance of the sample variance” arises in many contexts. Suppose we want to
measure the storminess of the ocean. We measure water level as a function of time and subtract
the mean. The storminess is the variance about the mean. We measure the storminess in one
minute and call it a sample storminess. We compare it to other minutes and other locations
and we find that they are not all the same. To characterize these differences, we need the
variance of the sample variance σ 2

σ̂ 2 . Some of these quantities can be computed theoretically,
but the computations become very cluttered and dependent on assumptions that may not be
valid in practice, such as that the random variables are independently drawn and that they
have a Gaussian probability function. Since we have such powerful computers, we might be
better off ignoring the theory and remembering the basic principle that a function of random
numbers is also a random number. We can use simulation to estimate the function’s mean
and variance. Basically we are always faced with the same dilemma: if we want to have
an accurate estimation of the variance, we need a large number of samples, which limits the
possibility of measuring a time-varying variance.

EXERCISES:

1 Suppose the mean of a sample of random numbers is estimated by a triangle weighting
function, i.e.,

m̂ = s
n∑

i=0

(n− i) xi

Find the scale factor s so that E(m̂)= m. Calculate �m. Define a reasonable �T . Exam-
ine the uncertainty relation.

2 A random series xt with a possibly time-variable mean may have the mean estimated by
the feedback equation

m̂t = (1− ε)m̂t−1+bxt

a. Express m̂t as a function of xt , xt−1, . . . , and not m̂t−1.

b. What is �T , the effective averaging time?

c. Find the scale factor b so that if mt = m, then E(m̂t)= m.

268 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

d. Compute the random error �m=√
E(m̂−m)2. (HINT: �m goes to σ

√
ε/2 as ε→ 0.)

e. What is (�m)2�T in this case?

11.4 SPECTRAL FLUCTUATIONS

Recall the basic model of time-series analysis, namely, random numbers passing through a
filter. A sample of input, filter, and output amplitude spectra is shown in Figure 11.7. From

Figure 11.7: Random numbers into a
filter. Top is a spectrum of random
numbers. Middle is the spectrum of a
filter. Bottom is the spectrum of filter
output. rand-filter [ER]

the spectrum of the output we can guess the spectrum of the filter, but the figure shows there
are some limitations in our ability to do so. Let us analyze this formally.

Observations of sea level over a long period of time can be summarized in terms of a few
statistical averages, such as the mean height m and the variance σ 2. Another important kind of
statistical average for use on geophysical time series is the “power spectrum." Many mathe-
matical models explain only statistical averages of data and not the data itself. To recognize
certain pitfalls and understand certain fundamental limitations on work with power spectra,
we first consider the idealized example of random numbers.

Figure 11.8: Autocorrelation and spectra of random numbers. rand-auto [NR]

11.4. SPECTRAL FLUCTUATIONS 269

Figure 11.8 shows a signal that is a burst of noise; its Fourier transform, and the transform
squared; and its inverse transform, the autocorrelation. Here the FT squared is the same as the
more usual FT times its complex conjugate—because the noise-burst signal is even, its FT is
real.

Notice that the autocorrelation has a big spike at zero lag. This spike represents the
correlation of the random numbers with themselves. The other lags are much smaller. They
represent the correlation of the noise burst with itself shifted. Theoretically, the noise burst is
not correlated with itself shifted: these small fluctuations result from the finite extent of the
noise sample.

Imagine many copies of Figure 11.8. Ensemble averaging would amount to adding these
other autocorrelations or, equivalently, adding these other spectra. The fluctuations aside the
central lobe of the autocorrelation would be destroyed by ensemble averaging, and the fluctua-
tions in the spectrum would be smoothed out. The expectation of the autocorrelation is that
it is an impulse at zero lag. The expectation of the spectrum is that it is a constant, namely,

E[Ŝ(Z)] = S(Z) = const (11.35)

11.4.1 Paradox: large n vs. the ensemble average

Now for the paradox. Imagine n→∞ in Figure 11.8. Will we see the same limit as results
from the ensemble average? Here are two contradictory points of view:

• For increasing n, the fluctuations on the nonzero autocorrelation lags get smaller, so the
autocorrelation should tend to an impulse function. Its Fourier transform, the spectrum,
should tend to a constant.

• On the other hand, for increasing n, as in Figure 11.3, the spectrum does not get any
smoother, because the FTs should still look like random noise.

We will see that the first idea contains a false assumption. The autocorrelation does tend to
an impulse, but the fuzz around the sides cannot be ignored—although the fuzz tends to zero
amplitude, it also tends to infinite extent, and the product of zero with infinity here tends to
have the same energy as the central impulse.

To examine this issue further, let us discover how these autocorrelations decrease to zero
with n (the number of samples). Figure 11.9 shows the autocorrelation samples as a func-
tion of n in steps of n increasing by factors of four. Thus

√
n increases by factors of two.

Each autocorrelation in the figure was normalized at zero lag. We see the sample variance
for nonzero lags of the autocorrelation dropping off as

√
n. We also observe that the ratios

between the values for the first nonzero lags and the value at lag zero roughly fit 1/
√

n. No-
tice also that the fluctuations drop off with lag. The drop-off goes to zero at a lag equal to
the sample length, because the number of terms in the autocorrelation diminishes to zero at
that lag. A first impression is that the autocorrelation fits a triangular envelope. More careful

270 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

Figure 11.9: Autocorrelation as a function of number of data points. The random-noise-series
(even) lengths are 60, 240, 960. rand-fluct [NR]

inspection, however, shows that the triangle bulges upward at wide offsets, or large values of
k (this is slightly clearer in Figure 11.8). Let us explain all these observations. Each lag of the
autocorrelation is defined as

sk =
n−k∑
t=1

xt xt+k (11.36)

where (xt) is a sequence of zero-mean independent random variables. Thus, the expectations
of the autocorrelations can be easily computed:

E(s0) =
n∑
1

E(x2
t) = nσ 2

x (11.37)

E(sk) =
n−k∑

1

E(xt)E(xt+k) = 0 (for k ≥ 1) (11.38)

In Figure 11.9, the value at lag zero is more or less nσ 2
x (before normalization), the deviation

being more or less the standard deviation (square root of the variance) of s0. On the other
hand, for k ≥ 1, as E(sk) = 0, the value of the autocorrelation is directly the deviation of sk ,
i.e., something close to its standard deviation. We now have to compute the variances of the
sk . Let us write

sk =
n−k∑
t=1

yk(t) (where yk(t)= xt xt+k) (11.39)

So: sk = (n−k)m̂yk , where m̂ yk is the sample mean of yk with n−k terms. If k
= 0, E(yk)= 0,
and we apply (11.33) to m̂yk :

E(m̂2
yk

) = σ 2
yk

n− k
(11.40)

11.4. SPECTRAL FLUCTUATIONS 271

The computation of σ 2
yk

is straightforward:

σ 2
yk
= E(x2

t x2
t+k) = E(x2

t)E(x2
t+k) = σ 4

x , (11.41)

Thus, for the autocorrelation sk :

E(s2
k) = (n− k)σ 2

yk
= (n− k)σ 4

x = n− k

n2
(E(s0))2 (11.42)

Finally, as E(sk)= 0, we get

σsk =
√

E(s2
k) = E(s0)

√
n− k

n
(11.43)

This result explains the properties observed in Figure 11.9. As n→∞, all the nonzero lags
tend to zero compared to the zero lag, since

√
n− k/n tends to zero. Then, the first lags

(k << n) yield the ratio 1/
√

n between the autocorrelations and the value at lag zero. Finally,
the autocorrelations do not decrease linearly with k, because of

√
n− k.

We can now explain the paradox. The energy of the nonzero lags will be

E =
∑
k
=0

E(s2
k) = (E(s0))2

n2

n∑
k=1

(n− k) = (E(s0))2 n(n−1)

n2
(11.44)

Hence there is a conflict between the decrease to zero of the autocorrelations and the increasing
number of nonzero lags, which themselves prevent the energy from decreasing to zero. The
autocorrelation does not globally tend to an impulse function. In the frequency domain, the
spectrum S(ω) is now

S(ω) = 1

n
(s0+ s1 cosω+ s2 cos2ω+·· ·) (11.45)

So E[S(ω)] = (1/n)E[s0] = σ 2
x , and the average spectrum is a constant, independent of the

frequency. However, as the sk fluctuate more or less like E[s0]/
√

n, and as their count in S(ω)
is increasing with n, we will observe that S(ω) will also fluctuate, and indeed,

S(ω) = 1

n
E[s0]± 1

n
E[s0] = σ 2

x ±σ 2
x (11.46)

This explains why the spectrum remains fuzzy: the fluctuation is independent of the number
of samples, whereas the autocorrelation seems to tend to an impulse. In conclusion, the ex-
pectation (ensemble average) of the spectrum is not properly estimated by letting n→∞ in a
sample.

11.4.2 An example of the bandwidth/reliability tradeoff

Letting n go to infinity does not take us to the expectation Ŝ = σ 2. The problem is, as we
increase n, we increase the frequency resolution but not the statistical resolution (i.e., the
fluctuation around Ŝ). To increase the statistical resolution, we need to simulate ensemble
averaging. There are two ways to do this:

272 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

1. Take the sample of n points and break it into k equal-length segments of n/k points
each. Compute an S(ω) for each segment and then average all k of the S(ω) together.
The variance of the average spectrum is equal to the variance of each spectrum (σ 2

x)
divided by the number of segments, and so the fluctuation is substantially reduced.

2. Form S(ω) from the n-point sample. Replace each of the n/2 independent amplitudes
by an average over its k nearest neighbors. This could also be done by tapering the
autocorrelation.

Figure 11.10: Spectral smoothing by tapering the autocorrelation. �T is constant and speci-
fied on the top row. Successive rows show �F increasing while �S decreases. The width of
a superimposed box roughly gives �F , and its height roughly gives �S. rand-taper [NR]

The second method is illustrated in Figure 11.10. This figure shows a noise burst of 240 points.
Since the signal is even, the burst is effectively 480 points wide, so the autocorrelation is 480
points from center to end: the number of samples will be the same for all cases. The spectrum
is very rough. Multiplying the autocorrelation by a triangle function effectively smooths the
spectrum by a sinc-squared function, thus reducing the spectral resolution (1/�F). Notice that
�F is equal here to the width of the sinc-squared function, which is inversely proportional to
the length of the triangle (�Tauto).

However, the first taper takes the autocorrelation width from 480 lags to 120 lags. Thus
the spectral fluctuations �S should drop by a factor of 2, since the count of terms sk in S(ω) is
reduced to 120 lags. The width of the next weighted autocorrelation width is dropped from 480
to 30 lags. Spectral roughness should consequently drop by another factor of 2. In all cases,
the average spectrum is unchanged, since the first lag of the autocorrelations is unchanged.
This implies a reduction in the relative spectral fluctuation proportional to the square root of
the length of the triangle (

√
�Tauto).

11.5. CROSSCORRELATION AND COHERENCY 273

Our conclusion follows:

The trade-off among resolutions of time, frequency, and spectral amplitude is

�F �T

(
�S

S

)2

> 1 (11.47)

11.4.3 Spectral estimation

In Figure 11.10 we did not care about spectral resolution, since we knew theoretically that the
spectrum was white. But in practice we do not have such foreknowledge. Indeed, the random
factors we deal with in nature rarely are white. A widely used model for naturally occurring
random functions, such as microseism, or sometimes reflection seismograms, is white noise
put into a filter. The spectra for an example of this type are shown in Figure 11.7. We can
see that smoothing the envelope of the power spectrum of the output gives an estimate of the
spectrum of the filter. But we also see that the estimate may need even more smoothing.

11.5 CROSSCORRELATION AND COHERENCY

With two time series we can see how crosscorrelation and coherency are related.

11.5.1 Correlation

“Correlation" is a concept similar to cosine. A cosine measures the angle between two vec-
tors. It is given by the dot product of the two vectors divided by their magnitudes:

c = (x ·y)√
(x ·x)(y ·y)

(11.48)

This is the sample normalized correlation we first encountered on page ?? as a quality mea-
sure of fitting one image to another.

Formally, the normalized correlation is defined using x and y as zero-mean, scalar, ran-
dom variables instead of sample vectors. The summation is thus an expectation instead of a
dot product:

c = E(xy)√
E(x2)E(y2)

(11.49)

A practical difficulty arises when the ensemble averaging is simulated over a sample. The
problem occurs with small samples and is most dramatically illustrated when we deal with a
sample of only one element. Then the sample correlation is

ĉ = xy

|x| |y| = ±1 (11.50)

274 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

regardless of what value the random number x or the random number y should take. For any
n, the sample correlation ĉ scatters away from zero. Such scatter is called “bias." The topic of
bias and variance of coherency estimates is a complicated one, but a rule of thumb seems to be
to expect bias and variance of ĉ of about 1/

√
n for samples of size n. Bias, no doubt, accounts

for many false “discoveries,” since cause-and-effect is often inferred from correlation.

11.5.2 Coherency

The concept of “coherency” in time-series analysis is analogous to correlation. Taking xt and
yt to be time series, we find that they may have a mutual relationship which could depend on
time delay, scaling, or even filtering. For example, perhaps Y (Z)= F(Z)X (Z)+N (Z), where
F(Z) is a filter and nt is unrelated noise. The generalization of the correlation concept is to
define coherency by

C = E
[
X

(
1
Z

)
Y (Z)

]√
E(X X)E(Y Y)

(11.51)

Correlation is a real scalar. Coherency is a complex function of frequency; it expresses
the frequency dependence of correlation. In forming an estimate of coherency, it is always
essential to simulate ensemble averaging. Note that if the ensemble averaging were to be
omitted, the coherency (squared) calculation would give

|C|2 = CC = (XY)(XY)

(X X)(Y Y)
= 1 (11.52)

which states that the coherency squared is unity, independent of the data. Because correlation
scatters away from zero, we find that coherency squared is biased away from zero.

11.5.3 The covariance matrix of multiple signals

A useful model of single-channel time-series analysis is that random numbers xt enter a filter
ft and come out as a signal yt . A useful model of multiple-channel time-series analysis—
with two channels, for example—is to start with independent random numbers in both the
x1(t) channel and the x2(t) channel. Then we need four filters, f11(t), f12(t), f21(t), and
f22(t), which produce two output signals defined by the Z -transforms

Y1(Z) = B11(Z)X1(Z)+ B12(Z)X2(Z) (11.53)

Y2(Z) = B21(Z)X1(Z)+ B22(Z)X2(Z) (11.54)

These signals have realistic characteristics. Each has its own spectral color. Each has a partial
relationship to the other which is characterized by a spectral amplitude and phase. Typically
we begin by examining the covariance matrix. For example, consider two time series, y1(t)
and y2(t). Their Z -transforms are Y1(Z) and Y2(Z). Their covariance matrix is[

E[Y1(1/Z)Y1(Z)] E[Y1(1/Z)Y2(Z)]
E[Y2(1/Z)Y1(Z)] E[Y2(1/Z)Y2(Z)]

]
= E

([
Y1(1/Z)
Y2(1/Z)

] [
Y1(Z) Y2(Z)

])
(11.55)

11.6. SMOOTHING IN TWO DIMENSIONS 275

Here Z -transforms represent the components of the matrix in the frequency domain. In the
time domain, each of the four elements in the matrix of (11.55) becomes a Toeplitz matrix, a
matrix of correlation functions (see page ??).

The expectations in equation (11.55) are specified by theoretical assertions or estimated by
sample averages or some combination of the two. Analogously to spectral factorization, the
covariance matrix can be factored into two parts, U′U, where U is an upper triangular matrix.
The factorization might be done by the well known Cholesky method. The factorization is
a multichannel generalization of spectral factorization and raises interesting questions about
minimum-phase that are partly addressed in FGDP.

11.5.4 Bispectrum

The “bispectrum" is another statistic that is used to search for nonlinear interactions. For a
Fourier transform F(ω), it is defined by

B(ω1,ω2) = E[F(ω1)F(ω2)F(ω1+ω2)] (11.56)

A statistic defined analogously is the “bispectral coherency." In seismology, signals rarely have
adequate duration for making sensible bispectral estimates from time averages.

11.6 SMOOTHING IN TWO DIMENSIONS

In previous sections we assumed that we were using one-dimensional models, and smoothing
was easy. Working in two dimensions is nominally much more costly, but some tricks are
available to make things easier. Here I tell you my favorite trick for smoothing in two dimen-
sions. You can convolve with a two-dimensional (almost) Gaussian weighting function of any
area for a cost of only sixteen additions per output point. (You might expect instead a cost
proportional to the area.)

11.6.1 Tent smoothing

First recall triangular smoothing in one dimension with subroutine triangle() on page 52.
This routine is easily adapted to two dimensions. First we smooth in the direction of the 1-axis
for all values of the 2-axis. Then we do the reverse, convolve on the 2-axis for all values of the
1-axis. Now recall that smoothing with a rectangle is especially fast, because we do not need
to add all the points within the rectangle. We merely adapt a shifted rectangle by adding a
point at one end and subtracting a point at the other end. In other words, the cost of smoothing
is independent of the width of the rectangle. And no multiplies are required. To get a triangle,
we smooth twice with rectangles.

Figure 11.11 shows the application of triangle smoothers on two pulses in a plane. The
plane was first convolved with a triangle on the 1-axis and then with another triangle on the

276 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

Figure 11.11: Two impulses in two dimensions filtered with a triangle function along each
spatial axis. Left: bird’s-eye view. Right: contours of constant altitude z. rand-pyram [NR]

2-axis. This takes each impulse and smooths it into an interesting pyramid that I call a tent.
The expected side-boundary effect is visible on the foreground tent. In the contour plot (of the
same 120 by 40 mesh), we see that the cross section of the tent is rectangular near the base
and diamond shaped near the top. The altitude of the j th tent face is z = a(x − xj)(y− yj),
where (xj , yj) is the location of a corner and a is a scale. The tent surface is parabolic (like
z = x2) along x = y but linear along lines parallel to the axes. A contour of constant z is the
(hyperbolic) curve y = a+b/(x+ c) (where a, b, and c are different constants on each of the
four faces).

11.6.2 Gaussian mounds

In Figure 11.12 we see the result of applying tent smoothing twice. Notice that the contours,

Figure 11.12: Two impulses in two dimensions filtered twice on each axis with a triangle
function. Left: bird’s-eye view. Right: contours of constant altitude z. rand-mound [ER]

instead of being diamonds and rectangles, have become much more circular. The reason for
this is briefly as follows: convolution of a rectangle with itself many times approachs the limit
of a Gaussian function. (This is a well-known result called the “central-limit theorem.”

11.7. PROBABILITY AND CONVOLUTION 277

It is explained in section 11.7.) It happens that the convolution of a triangle with itself is
already a good approximation to the Gaussian function z(x) = e−x2

. The convolution in y
gives z(x , y) = e−x2−y2 = e−r2

, where r is the radius of the circle. When the triangle on the
1-axis differs in width from the triangle on the 2-axis, then the circles become ellipses.

11.6.3 Speed of 2-D Gaussian smoothing

This approximate Gaussian smoothing in two dimensions is very fast. Only eight add-subtract
pairs are required per output point, and no multiplies at all are required except for final scaling.
The compute time is independent of the widths of the Gaussian(!). (You should understand
this if you understood that one-dimensional convolution with a rectangle requires just one add-
subtract pair per output point.) Thus this technique should be useful in two-dimensional slant
stack.

EXERCISES:

1 Deduce that a 2-D filter based on the subroutine triangle() on page 52 which pro-
duces the 2-D quasi-Gaussian mound in Figure 11.12 has a gain of unity at zero (two-
dimensional) frequency (also known as (kx ,ky)= 0).

2 Let the 2-D quasi-Gaussian filter be known as F . Sketch the spectral response of F .

3 Sketch the spectral response of 1− F and suggest a use for it.

4 The tent filter can be implemented by smoothing first on the 1-axis and then on the 2-axis.
The conjugate operator smooths first on the 2-axis and then on the 1-axis. The tent-filter
operator should be self-adjoint (equal to its conjugate), unless some complication arises
at the sides or corners. How can a dot-product test be used to see if a tent-filter program
is self-adjoint?

11.7 PROBABILITY AND CONVOLUTION

One way to obtain random integers from a known probability function is to write integers on
slips of paper and place them in a hat. Draw one slip at a time. After each drawing, replace the
slip in the hat. The probability of drawing the integer i is given by the ratio ai of the number
of slips containing the integer i divided by the total number of slips. Obviously the sum over i
of ai must be unity. Another way to get random integers is to throw one of a pair of dice. Then
all ai equal zero except a1 = a2 = a3 = a4 = a5 = a6 = 1

6 . The probability that the integer i
will occur on the first drawing and the integer j will occur on the second drawing is ai aj . If
we draw two slips or throw a pair of dice, then the probability that the sum of i and j equals k
is the sum of all the possible ways this can happen:

ck =
∑

i

ai ak−i (11.57)

278 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

Since this equation is a convolution, we may look into the meaning of the Z -transform

A(Z) = ·· ·a−1 Z−1+a0+a1 Z +a2 Z 2+·· · (11.58)

In terms of Z -transforms, the probability that i plus j equals k is simply the coefficient of Z k

in
C(Z) = A(Z) A(Z) (11.59)

The probability density of a sum of random numbers is the convolution of their probability
density functions.

EXERCISES:

1 A random-number generator provides random integers 2, 3, and 6 with probabilities
p(2) = 1/2, p(3) = 1/3, and p(6) = 1/6. What is the probability that any given inte-
ger n is the sum of three of these random numbers? (HINT: Leave the result in the form
of coefficients of a complicated polynomial.)

11.8 THE CENTRAL-LIMIT THEOREM

The central-limit theorem of probability and statistics is perhaps the most important theorem
in these fields of study. A derivation of the theorem explains why the Gaussian probability
function is so frequently encountered in nature; not just in physics but also in the biological
and social sciences. No experimental scientist should be unaware of the basic ideas behind
this theorem. Although the central-limit theorem is deep and is even today the topic of active
research, we can quickly go to the basic idea.

From equation (11.59), if we add n random numbers, the probability that the sum of them
equals k is given by the coefficient of Z k in

G(Z) = A(Z)n (11.60)

The central-limit theorem says that as n goes to infinity, the polynomial G(Z) goes to a special
form, almost regardless of the specific polynomial A(Z). The specific form is such that a
graph of the coefficients of G(Z) comes closer and closer to fitting under the envelope of
the bell-shaped Gaussian function. This happens because, if we raise any function to a high
enough power, eventually all we can see is the highest value of the function and its immediate
environment, i.e., the second derivative there. We already saw an example of this in Figure ??.
Exceptions to the central-limit theorem arise (1) when there are multiple maxima of the same
height, and (2) where the second derivative vanishes at the maximum.

Although the central-limit theorem tells us that a Gaussian function is the limit as n→∞,
it does not say anything about how fast the limit is attained. To test this, I plotted the coef-
ficients of (1

4Z + 1
2 + 1

4 Z)n for large values of n. This signal is made up of scaled binomial

11.8. THE CENTRAL-LIMIT THEOREM 279

Figure 11.13: Left: wiggle plot style. Middle: perspective. Right: contour. rand-clim [ER]

coefficients. To keep signals in a suitable amplitude scale, I multiplied them by
√

n. Fig-
ure 11.13 shows views of the coefficients of

√
n(1

4Z + 1
2 + 1

4 Z)n (horizontal axis) versus
√

n
(vertical axis). We see that scaling by

√
n has kept signal peak amplitudes constant. We see

also that the width of the signal increases linearly with
√

n. The contours of constant amplitude
show that the various orders are self-similar with the width stretching.

Sums of independently chosen random variables tend to have Gaussian probability density
functions.

280 CHAPTER 11. RESOLUTION AND RANDOM SIGNALS

Chapter 12

Entropy and Jensen inequality

Jensen inequality is my favorite theory-that-never-quite-made-it-into-practice, but there is still
hope!

In this book we have solved many problems by minimizing a weighted sum of squares.
We understand vaguely that the weights should somehow be the inverse to the expected value
of the object they weight. We really cannot justify the square, however, except to say that it
makes residuals positive, and positive residuals lead to ready methods of analysis. Here we
will think about a more general approach, more clumsy in computation, but potentially more
powerful in principle. As we begin with some mathematical abstractions, you should think
of applications where populations such as envelopes, spectra, or magnitudes of residuals are
adjustable by adjusting model parameters. What you will see here is a wide variety of ways
that equilibrium can be defined.

12.1 THE JENSEN INEQUALITY

Let f be a function with a positive second derivative. Such a function is called “convex" and
satisfies the inequality

f (a) + f (b)

2
− f

(
a+b

2

)
≥ 0 (12.1)

Equation (12.1) relates a function of an average to an average of the function. The average can
be weighted, for example,

1

3
f (a) + 2

3
f (b) − f

(
1

3
a+ 2

3
b

)
≥ 0 (12.2)

Figure 12.1 is a graphical interpretation of equation (12.2) for the function f = x2. There
is nothing special about f = x2, except that it is convex. Given three numbers a, b, and c,
the inequality (12.2) can first be applied to a and b, and then to c and the average of a and

281

282 CHAPTER 12. ENTROPY AND JENSEN INEQUALITY

Figure 12.1: Sketch of y = x2 for in-
terpreting equation ((12.2)). jen-jen
[NR]

f (x) = x 2

A B

B 2

A2
x

)(
21

3 3
2

BA +

1
3 3

2
BA +

3
2

B
1
3

A
2 + 2

b. Thus, recursively, an inequality like (12.2) can be built for a weighted average of three or
more numbers. Define weights wj ≥ 0 that are normalized (

∑
jwj = 1). The general result is

S(pj) =
N∑

j=1

wj f (pj) − f

⎛
⎝ N∑

j=1

wj pj

⎞
⎠ ≥ 0 (12.3)

If all the pj are the same, then both of the two terms in S are the same, and S vanishes. Hence,
minimizing S is like urging all the pj to be identical. Equilibrium is when S is reduced to the
smallest possible value which satisfies any constraints that may be applicable. The function S
defined by (12.3) is like the entropy defined in thermodynamics.

12.1.1 Examples of Jensen inequalities

The most familiar example of a Jensen inequality occurs when the weights are all equal to
1/N and the convex function is f (x)= x2. In this case the Jensen inequality gives the familiar
result that the mean square exceeds the square of the mean:

Q = 1

N

N∑
i=1

x2
i −

(
1

N

N∑
i=1

xi

)2

≥ 0 (12.4)

In the other applications we will consider, the population consists of positive members, so
the function f (p) need have a positive second derivative only for positive values of p. The
function f (p)= 1/p yields a Jensen inequality for the harmonic mean:

H =
∑ wi

pi
− 1∑

wi pi
≥ 0 (12.5)

A more important case is the geometric inequality. Here f (p)=− ln(p), and

G = −
∑

wi ln pi + ln
∑

wi pi ≥ 0 (12.6)

12.2. RELATED CONCEPTS 283

The more familiar form of the geometric inequality results from exponentiation and a choice
of weights equal to 1/N:

1

N

N∑
i=1

pi ≥
N∏

i=1

p1/N
i (12.7)

In other words, the product of square roots of two values is smaller than half the sum of the
values. A Jensen inequality with an adjustable parameter is suggested by f (p)= pγ :

�γ =
N∑

i=1

wi pγ

i −
(

N∑
i=1

wi pi

)γ

(12.8)

Whether � is always positive or always negative depends upon the numerical value of γ . In
practice we may see the dimensionless form, in which the ratio instead of the difference of the
two terms is used. A most important inequality in information theory and thermodynamics is
the one based on f (p) = p1+ε , where ε is a small positive number tending to zero. I call this
the “weak" inequality. With some calculation we will quickly arrive at the limit:

∑
wi p1+ε

i ≥
(∑

wi pi

)1+ε

(12.9)

Take logarithms
ln

∑
wi p1+ε

i ≥ (1+ ε) ln
∑

wi pi (12.10)

Expand both sides in a Taylor series in powers of ε using

d

dε
au = du

dε
au lna (12.11)

The leading term is identical on both sides and can be canceled. Divide both sides by ε and go
to the limit ε = 0, obtaining ∑

wi pi ln pi∑
wi pi

≥ ln
∑

wi pi (12.12)

We can now define a positive variable S ′ with or without a positive scaling factor
∑

wp:

S ′intensive =
∑

wi pi ln pi∑
wi pi

− ln
∑

wi pi ≥ 0 (12.13)

S ′extensive =
∑

wi pi ln pi −
(∑

wi pi

)
ln

(∑
wi pi

)
≥ 0 (12.14)

Seismograms often contain zeros and gaps. Notice that a single zero pi can upset the harmonic
H or geometric G inequality, but a single zero has no horrible effect on S or �.

12.2 RELATED CONCEPTS

In practice we may wonder which Jensen inequality to use.

284 CHAPTER 12. ENTROPY AND JENSEN INEQUALITY

12.2.1 Prior and posterior distributions

Random variables have a prior distribution and a posterior distribution. Denote the prior
by bi (for “before") and posterior by ai (for “after"). Define pi = ai/bi , and insert pi in any of
the inequalities above. Now suppose we have an adjustable model parameter upon which the
ai all depend. Suppose we adjust that model parameter to try to make some Jensen inequality
into an equality. Thus we will be adjusting it to get all the pi equal to each other, that is, to
make all the posteriors equal to their priors. It is nice to have so many ways to do this, one for
each Jensen inequality. The next question is, which Jensen inequality should we use? I cannot
answer this directly, but we can learn more about the various inequalities.

12.2.2 Jensen average

Physicists speak of maximizing entropy, which, if we change the polarity, is like minimizing
the various Jensen inequalities. As we minimize a Jensen inequality, the small values tend to
get larger while the large values tend to get smaller. For each population of values there is an
average value, i.e., a value that tends to get neither larger nor smaller. The average depends not
only on the population, but also on the definition of entropy. Commonly, the pj are positive
and

∑
wj pj is an energy. Typically the total energy, which will be fixed, can be included as a

constraint, or we can find some other function to minimize. For example, divide both terms in
(12.3) by the second term and get an expression which is scale invariant; i.e., scaling p leaves
(12.15) unchanged: ∑N

j=1 wj f (pj)

f
(∑N

j=1 wj pj

) ≥ 1 (12.15)

Because the expression exceeds unity, we are tempted to take a logarithm and make a new
function for minimization:

J = ln

⎛
⎝∑

j

wj f (pj)

⎞
⎠ − ln

⎡
⎣ f

⎛
⎝∑

j

wj pj

⎞
⎠

⎤
⎦ ≥ 0 (12.16)

Given a population pj of positive variants, and an inequality like (12.16), I am now prepared
to define the “Jensen average” p. Suppose there is one element, say pJ , of the population
pj that can be given a first-order perturbation, and only a second-order perturbation in J will
result. Such an element is in equilibrium and is the Jensen average p:

0 = ∂ J

∂pJ

]
pJ=p

(12.17)

Let fp denote the derivative of f with respect to its argument. Inserting (12.16) into (12.17)
gives

0 = ∂ J

∂pJ
= wJ fp(pJ)∑

wj f (pj)
− fp(

∑N
j=1 wj pj)wJ

f
(∑

wj pj
) (12.18)

12.2. RELATED CONCEPTS 285

Solving,

p = pJ = f −1
p

⎛
⎝eJ fp(

N∑
j=1

wj pj)

⎞
⎠ (12.19)

But where do we get the function f , and what do we say about the equilibrium value? Maybe
we can somehow derive f from the population. If we cannot work out a general theory,
perhaps we can at least find the constant γ , assuming the functional form to be f = pγ .

12.2.3 Additivity of envelope entropy to spectral entropy

In some of my efforts to fill in missing data with entropy criteria, I have often based the
entropy on the spectrum and then found that the envelope would misbehave. I have come
to believe that the definition of entropy should involve both the spectrum and the envelope.
To get started, let us assume that the power of a seismic signal is the product of an envelope
function times a spectral function, say

u(ω, t) = p(ω)e(t) (12.20)

Notice that this separability assumption resembles the stationarity concept. I am not de-
fending the assumption (12.20), only suggesting that it is an improvement over each term
separately. Let us examine some of the algebraic consequences. First evaluate the intensive
entropy:

S ′intensive =
∑

t

∑
ω u lnu∑

t

∑
ω u

− ln
1

N2

∑
t

∑
ω

u ≥ 0 (12.21)

=
∑∑

pe(ln p+ lne)

(
∑

p)(
∑

e)
− ln

(
1

N

∑
ω

p
1

N

∑
t

e

)
(12.22)

=
∑

e
∑

p ln p + ∑
p
∑

e lne

(
∑

p)(
∑

e)
− ln

1

N

∑
p − ln

1

N

∑
e (12.23)

=
(∑

p ln p∑
p
− ln

1

N

∑
p

)
+

(∑
e lne∑

e
− ln

1

N

∑
e

)
(12.24)

= S(p) + S(e)≥ 0 (12.25)

It is remarkable that all the cross terms have disappeared and that the resulting entropy is the
sum of the two parts. Now we will tackle the same calculation with the geometric inequality:

G = ln
1

N2

∑∑
u − 1

N2

∑∑
lnu (12.26)

= ln

[(
1

N

∑
t

e

)(
1

N

∑
ω

p

)]
− 1

N2

∑
t

∑
ω

(ln pω + lnet) (12.27)

= lne + ln p − 1

N2

∑
t

1t

∑
ω

ln pω − 1

N2

∑
ω

1ω

∑
t

lnet (12.28)

286 CHAPTER 12. ENTROPY AND JENSEN INEQUALITY

= lne + ln p − 1

N

∑
ω

ln p − 1

N

∑
t

lne (12.29)

= G(t) + G(ω) (12.30)

Again all the cross terms disappear, and the resulting entropy is the sum of the two parts. I
wonder if this result applies for the other Jensen inequalities.

In conclusion, although this book is dominated by model building using the method of
least squares, Jensen inequalities suggest many interesting alternatives.

Chapter 13

RATional FORtran == Ratfor

Bare-bones Fortran is our most universal computer language for computational physics. For
general programming, however, it has been surpassed by C. “Ratfor" is Fortran with C-like
syntax. I believe Ratfor is the best available expository language for mathematical algorithms.
Ratfor was invented by the people who invented C. Ratfor programs are converted to Fortran
with the Ratfor preprocessor. Since the preprocessor is publicly available, Ratfor is practi-
cally as universal as Fortran.1

You will not really need the Ratfor preprocessor or any precise definitions if you already
know Fortran or almost any other computer language, because then the Ratfor language will be
easy to understand. Statements on a line may be separated by “;." Statements may be grouped
together with braces { }. Do loops do not require statement numbers because { } defines the
range. Given that if() is true, the statements in the following { } are done. else{ } does
what you expect. We may not contract else if to elseif. We may always omit the braces
{ } when they contain only one statement. break will cause premature termination of the
enclosing { }. break 2 escapes from {{ }}. while() { } repeats the statements in { } while
the condition () is true. repeat { ... } until() is a loop that tests at the bottom. A
looping statement more general than do is for(initialize; condition; reinitialize) { }. next
causes skipping to the end of any loop and a retrial of the test condition. next is rarely used,
but when it is, we must beware of an inconsistancy between Fortran and C-language. Where
Ratfor uses next, the C-language uses continue (which in Ratfor and Fortran is merely a place
holder for labels). The Fortran relational operators .gt., .ge., .ne., etc. may be written >,
>=, !=, etc. The logical operators .and. and .or. may be written && and ||. Anything
from a # to the end of the line is a comment. Anything that does not make sense to the
Ratfor preprocessor, such as Fortran input-output, is passed through without change. (Ratfor
has a switch statement but we never use it because it conflicts with the implicit undefined

declaration. Anybody want to help us fix the switch in public domain ratfor?)

1Kernighan, B.W. and Plauger, P.J., 1976, Software Tools: Addison-Wesley. Ratfor was invented at
AT&T, which makes it available directly or through many computer vendors. The original Ratfor trans-
forms Ratfor code to Fortran 66. See http://sepwww.stanford.edu/sep/prof for a public-domain Ratfor
translator to Fortran 77.

287

288 CHAPTER 13. RATIONAL FORTRAN == RATFOR

Indentation in Ratfor is used for readability. It is not part of the Ratfor language. Choose
your own style. I have overcondensed. There are two pitfalls associated with indentation.
The beginner’s pitfall is to assume that a do loop ends where the indentation ends. The loop
ends after the first statement. A larger scope for the do loop is made by enclosing multiple
statements in braces. The other pitfall arises in any construction like if() ... if() ...

else. The else goes with the last if() regardless of indentation. If you want the else with
the earlier if(), you must use braces like if() { if() ... } else

The most serious limitation of Fortran-77 is its lack of ability to allocate temporary mem-
ory. I have written a preprocessor to Ratfor or Fortran to overcome this memory-allocation
limitation. This program, named sat, allows subroutines to include the declaration temporary

real data(n1,n2), so that memory is allocated during execution of the subroutine where the
declaration is written. Fortran-77 forces us to accomplish something like this only with pre-
determined constants or parameters. If the sat preprocessor is not available on your system,
you can modify the subroutines in this book by putting the appropriate numerical constants
into the memory arrays being allocated, or adapt the programs here to Fortran 90 (although
students at Stanford seem to prefer the sat approach).

Below are simple Ratfor subroutines for erasing an array (zero()), (null()), for copy-
ing one array to another (copy()), for vector scaling (scaleit()), for the signum function
sgn(x) = x/|x| (signum()), for nearest-neighbor interpolation. In the interpolation programs
the mathematical concept x = x0+ n�x is expressed as x = x0 +(ix-1)*dx. The idea of
“nearest neighbor” arises when backsolving for the integer ix: a half is added to the floating-
point value before rounding down to an integer, i.e., ix = .5 + 1 + (x-x0)/dx. The file
quantile() on the next page contains two quantile-finding utilities. The method is the well-
known one developed by Hoare.

subroutine zero(n, xx)

integer i, n; real xx(n)

do i= 1, n

xx(i) = 0.

return; end

subroutine null(xx, n)

integer i, n; real xx(n)

do i= 1, n

xx(i) = 0.

return; end

subroutine copy(n, xx, yy)

integer i, n; real xx(n), yy(n)

do i= 1, n

yy(i) = xx(i)

return; end

subroutine scaleit(factor, n, data)

integer i, n

real factor, data(n)

do i= 1, n

data(i) = factor * data(i)

return; end

289

real function signum(x)

real x

if (x > 0) { signum = 1. }

else if (x < 0) { signum = -1. }

else { signum = 0. }

return; end

Two quantile utilities. Changed since formally tested.

#

value = value of bb(k) if bb(1...n) were sorted into increasing order.

subroutine quantile(k, n, bb, value)

integer i, k, n; real bb(n), value

temporary real aa(n)

do i= 1, n

aa(i) = bb(i)

call quantinternal(k, n, aa)

value = aa(k)

return; end

value = value of abs(bb(k)) if abs(bb(1...n)) were sorted to increasing order.

subroutine quantabs(k, n, bb, value)

integer i, k, n; real bb(n), value

temporary real aa(n)

do i= 1, n

aa(i) = abs(bb(i))

call quantinternal(k, n, aa)

value = aa(k)

return; end

subroutine quantinternal(k, n, a)

integer k, n; real a(n)

integer i, j, low, hi; real ak, aa

if(k>n || k<1) call erexit("quant: inputs not in range 1 <= k <= n ")

low = 1; hi = n

while(low < hi) {

ak = a(k); i = low; j = hi

repeat {

if(a(i) < ak)

i = i+1

else {

while(a(j) > ak) j = j-1

if(i > j) break

aa = a(i); a(i) = a(j); a(j) = aa

i = i+1; j = j-1

if(i > j) break

}

}

if(j < k) low = i

if(k < i) hi = j

}

return; end

real function rand01(iseed)

integer ia, im, iseed

290 CHAPTER 13. RATIONAL FORTRAN == RATFOR

parameter(ia = 727,im = 524287)

iseed = mod(iseed*ia,im)

rand01 =(float(iseed) - 0.5)/float(im - 1)

return; end

Chapter 14

Seplib and SEP software

At the time of writing, this book can be run on a variety of computers. You will have noticed
that each figure caption contains a box enclosing a label. In the electronic book, this box is
a pushbutton that generally activates a rebuilding of the figure, sometimes after program or
parameter changes and sometimes interactively. The label in the box points to the location
of the underlying software. My associates and I have worked through complete cycles of
“burning” and building all the figures on various computers. To enable you to do the same,
and to further enable you to rapidly build on my work, I intend to release an electronic copy
of the book soon. This short appendix describes the utility software that is used extensively in
the electronic book.

Most of the seismic utility software at the Stanford Exploration Project1 (SEP) handles
seismic data as a rectangular lattice or “cube” of numbers. Each cube-processing program
appends to the history file for the cube. Preprocessors extend Fortran (or Ratfor) to enable
it to allocate memory at run time, to facilitate input and output of data cubes, and to facilitate
self-documenting programs.

At the SEP a library of subroutines known as seplib evolved for routine operations.
These subroutines mostly handle data in the form of cubes, planes, and vectors. A cube is
defined by 14 parameters with standard names and two files: one the data cube itself, and the
other containing the 14 parameters and a history of the life of the cube as it passed through
a sequence of cube-processing programs. Most of these cube-processing programs have been
written by researchers, but several nonscientific cube programs have become highly developed
and are widely shared. Altogether there are (1) a library of subroutines, (2) a library of main
programs, (3) some naming conventions, and (4) a graphics library called vplot. The sub-
routine library has good manual pages. The main programs rarely have manual pages, their
documentation being supplied by the on-line self-documentation that is extracted from the
comments at the beginning of the source file. Following is a list of the names of popular main
programs:

1Old reports of the Stanford Exploration Project can be found in the library of the Society of Exploration
Geophysicists in Tulsa, Oklahoma.

291

292 CHAPTER 14. SEPLIB AND SEP SOFTWARE

Byte Scale floats to brightness bytes for raster display.
Cat Concatenate conforming cubes along the 3-axis.
Contour Contour plot a plane.
Cp Copy a cube.
Dd Convert between ASCI, floats, complex, bytes, etc.
Dots Plot a plane of floats.
Ft3d Do three-dimensional Fourier transform.
Graph Plot a line of floats.
In Check the validity of a data cube.
Merge Merge conforming cubes side by side on any axis.
Movie View a cube with Rick Ottolini’s cube viewer.
Noise Add noise to data.
Reverse Reverse a cube axis.
Spike Make a plane wave of synthetic data.
Ta2vplot Convert a byte format to raster display with vplot.
Tpow Scale data by a power of time t (1-axis).
Thplot Make a hidden line plot.
Transpose Transpose cube axes.
Tube View a vplot file on a screen.
Wiggle Plot a plane of floats as “wiggle traces.”
Window Find a subcube by truncation or subsampling.

To use the cube-processing programs, read this document, and then for each command,
read its on-line self-documentation. To write cube-processing programs, read the manual page
for seplib and the subroutines mentioned there and here. To write vplot programs, see the
references on vplot.

14.1 THE DATA CUBE

The data cube itself is like a Fortran three-dimensional matrix. Its location in the computer file
system is denoted by in=PATHNAME, where in= is the literal occurrence of those three charac-
ters, and PATHNAME is a directory tree location like /sep/professor/pvi/data/western73.F.
Like the Fortran cube, the data cube can be real, complex, double precision, or byte, and these
cases are distinguished by the element size in bytes. Thus the history file contains one of
esize=4, esize=8, or esize=1, respectively. Embedded blanks around the “=” are always for-
bidden. The cube values are binary information; they cannot be printed or edited (without the
intervention of something like a Fortran “format”). To read and write cubes, see the manual
pages for such routines as reed, sreed, rite, srite, snap.

A cube has three axes. The number of points on the 1-axis is n1. A Fortran declaration of
a cube could be real mydata(n1,n2,n3). For a plane, n3=1, and for a line, n2=1. In addition,
many programs take “1” as the default for an undefined value of n2 or n3. The physical
location of the single data value mydata(1,1,1), like a mathematical origin (o1,o2,o3), is
denoted by the three real variables o1, o2, and o3. The data-cube values are presumed to

14.2. THE HISTORY FILE 293

be uniformly spaced along these axes like the mathematical increments (�1,�2,�3), which
may be negative and are denoted by the three real variables d1, d2, and d3. Each axis has a
label, and naturally these labels are called label1, label2, and label3. Examples of labels
are kilometers, sec, Hz, and "offset, km". Most often, label1="time, sec". Altogether
that is 2+3×4 parameters, and there is an optional title parameter that is interpreted by most
of the plot programs. An example is title="Yilmaz and Cumro Canada profile 25". We
reserve the names n4,o4,d4, and label4 (a few programs support them already), and please
do not use n5 etc. for anything but a five-dimensional cubic lattice.

14.2 THE HISTORY FILE

The 15 parameters above, and many more parameters defined by authors of cube-processing
programs, are part of the “history file" (which is ASCI, so we can print it). A great many
cube-processing programs are simple filters—i.e., one cube goes in and one cube comes out—
and that is the case I will describe in detail here. For other cases, such as where two go in
and one comes out, or none go in and one comes out (synthetic data), or one goes in and none
come out (plotting program), I refer you to the manual pages, particularly to subroutine names
beginning with aux (as in “auxiliary").

Let us dissect an example of a simple cube-processing program and its use. Suppose
we have a seismogram in a data cube and we want only the first 500 points on it, i.e., the
first 500 points on the 1-axis. A utility cube filter named Window will do the job. Our com-
mand line looks like < mygiven.H Window n1=500 > myshort.H On this command line,
mygiven.H is the name of the history file of the data we are given, and myshort.H is the his-
tory file we will create. The moment Window, or any other seplib program, begins, it copies
mygiven.H to myshort.H; from then on, information can only be appended to myshort.H.
When Window learns that we want the 1-axis on our output cube to be 500, it does call

putch(’n1’,’i’,500), which appends n1=500 to myshort.H. But before this, some other
things happen. First, seplib’s internals will get our log-in name, the date, the name of the
computer we are using, and Window’s name (which is Window), and append these to myshort.H.
The internals will scan mygiven.H for in=somewhere to find the input data cube itself, and will
then figure out where we want to keep the output cube. Seplib will guess that someone named
professor wants to keep his data cube at some place like /scr/professor/_Window.H@. You
should read the manual page for datapath to see how you can set up the default location for
your datasets. The reason datapath exists is to facilitate isolating data from text, which is
usually helpful for archiving.

When a cube-processing filter wonders what the value is of n1 for the cube coming in, it
makes a subroutine call like call hetch("n1","i",n1). The value returned for n1 will be the
last value of n1 found on the history file. Window also needs to find a different n1, the one we
put on the command line. For this it will invoke something like call getch("n1","i",n1out).
Then, so the next user will know how big the output cube is, it will call putch("n1","i",n1out).
For more details, see the manual pages.

If we want to take input parameters from a file instead of from the command line, we type

294 CHAPTER 14. SEPLIB AND SEP SOFTWARE

something like <in.H Window par=myparfile.p > out.H. The .p is my naming convention
and is wholly optional, as is the .H notation for a history file.

Sepcube programs are self-documenting. When you type the name of the program with no
input cube and no command-line arguments, you should see the self-documentation (which
comes from the initial comment lines in the program).

SEP software supports “pipelining.” For example, we can slice a plane out of a data cube,
make a contour plot, and display the plot, all with the command line <in.H Window n3=1 |

Contour | Tube where, as in UNIX pipes, the “|” denotes the passage of information from
one program to the next. Pipelining is a convenience for the user because it saves defining a
location for necessary intermediate files. The history files do flow down UNIX pipes. You
may not have noticed that some location had to be assigned to the data at the intermediate
stages, and when you typed the pipeline above, you were spared that clutter. To write seplib

programs that allow pipelining, you need to read the manual page on hclose() to keep the
history file from intermingling with the data cube itself.

A sample history file follows: this was an old one, so I removed a few anachronisms
manually.

Texaco Subduction Trench: read from tape by Bill Harlan

n1=1900 n2=2274

o1=2.4 it0=600 d1=.004 d2=50. in=/d5/alaska

Window: bill Wed Apr 13 14:27:57 1983

input() : in ="/d5/alaska"

output() : sets next in="/q2/data/Dalw"

Input: float Fortran (1900,2274,1)

Output: float Fortran (512,128,1)

n1=512 n2=128 n3=1

Swab: root@mazama Mon Feb 17 03:23:08 1986

input history file /r3/q2/data/Halw

input() : in ="/q2/data/Dalw"

output() : sets next in="/q2/data/Dalw_002870_Rcp"

#ibs=8192 #obs=8192

Rcp: paul Mon Feb 17 03:23:15 PST 1986

Copying from mazama:/r3/q2/data/Halw

to hanauma:/q2/data/Halw

in="/q2/data/Dalw"

Cp: jon@hanauma Wed Apr 3 23:18:13 1991

input() : in ="/q2/data/Dalw"

output() : sets next in="/scr/jon/_junk.H@"

14.3 MEMORY ALLOCATION

Sepcube programs can be written in Fortran, Ratfor, or C. A serious problem with Fortran-77
(and hence Ratfor) is that memory cannot be allocated for arrays whose size is determined at
run time. We have worked around this limitation by using two home-grown preprocessors,
one called saw (Stanford Auto Writer) for main programs, and one called sat (Stanford Auto
Temporaries) for subroutines. Both preprocessors transform either Fortran or Ratfor.

14.4. REFERENCES 295

14.3.1 Memory allocation in subroutines with sat

The sat preprocessor allows us to declare temporary arrays of arbitrary dimension, such as
temporary real*4 data(n1,n2,n3), convolution(j+k-1) These declarations must follow
other declarations and precede the executable statements.

14.3.2 The main program environment with saw

The saw preprocessor also calls an essential initialization routine initpar(), organizes the
self-doc, and simplifies data-cube input. See the on-line self-documentation or the manual
pages for full details. Following is a complete saw program for a simple task:

<in.H Scale scaleval=1. > out.H

#

Copy input to output and scale by scaleval

keyword generic scale

#%

integer n1, n2, n3, esize

from history: integer n1, n2, n3, esize

if (esize !=4) call erexit(’esize != 4’)

allocate: real x(n1,n2)

subroutine scaleit(n1,n2, x)

integer i1,i2, n1,n2

real x(n1,n2), scaleval

from par: real scaleval=1.

call hclose() # no more parameter handling.

call sreed(’in’, x, 4*n1*n2)

do i1=1,n1

do i2=1,n2

x(i1,i2) = x(i1,i2) * scaleval

call srite(’out’, x, 4*n1*n2)

return; end

14.4 References

Claerbout, J., 1990, Introduction to seplib and SEP utility software: SEP–70, 413–436.

Claerbout, J., 1986, A canonical program library: SEP–50, 281–290.

Cole, S., and Dellinger, J., Vplot: SEP’s plot language: SEP-60, 349–389.

Dellinger, J., 1989, Why does SEP still use Vplot?: SEP–61, 327–335.

296 CHAPTER 14. SEPLIB AND SEP SOFTWARE

14.5 Acknowledgments

Robert Clayton introduced the original parameter-fetching method. I introduced history files.
Stew Levin got pipes to work and brought the code to a high standard. Dave Nichols general-
ized it to support many computer architectures and networks of machines.

Chapter 15

Notation

The following notation is consistent throughout this book. Other notation defined locally as
applying to an exercise or a subsection is not given here. A few symbols have several meanings
(separated by semicolons), but never more than one meaning per chapter.

15.1 OPERATORS

�z real part of complex number z
�z imaginary part of complex number z
E expectation; sum over ensemble

15.2 SCALARS

n,m, N number of components in a vector
x , y, z Cartesian coordinates
r radius
φ phase angle
z = x+ iy = reiφ complex number
z complex conjugate of z
t time; transmission coefficient
j ,k index on discrete time
f generic function; frequency in cycles
ω = 2π f angular frequency (common)
Z = eiω�t Z -transform variable
∗ convolution; multiplication (in programs)
�t ,dt sampling time interval
� f ,d f frequency sampling interval
�T extent of time axis

297

298 CHAPTER 15. NOTATION

�F extent of frequency axis
�T signal duration
�F spectral bandwidth
σ 2 variance
c reflection coefficient

15.3 FILTERS, SIGNALS, AND THEIR TRANSFORMS

The example x(t), xt , Xk , X (Z), X (ω) can be understood as follows. A lower-case letter with
a function argument (t) denotes a continuous time function (rare). Lower case with a subscript
denotes a signal or filter as a function of discrete time (common). Upper case with subscript
denotes a discrete Fourier transform. Z -transforms are denoted by the function argument (Z).
Where a function argument ω is occasionally seen, such as in A(ω), it is generally a shorthand
for A(Z = eiω). For a definition of the complex conjugate of filters, see page ??.

a A feedback filter (autoregression)
bB convolution filter
cC causal filter; reflected wave; cross-spectrum
d D downgoing wave
E escaping wave
f F component of layer matrix; force; generic function
gG component of layer matrix; analytic signal; causal garbage filter
h H admittance
I causal integration operator
J K L M O unused
N noise
pP phase shift; pressure; all-pass filter; generic input space
q Q quadrature filter; generic output space
r R impedance; reflection seismogram
sS S is spectrum; st is autocorrelation
T transmitted wave
uU upcoming wave; logarithm of S
vV velocity
W weighting function; vertical component of flow
x X generic input signal
yY generic output signal
φ� phase

15.4. MATRICES AND VECTORS 299

15.4 MATRICES AND VECTORS

Matrices are universally denoted by upper-case boldface. Vectors are lower-case boldface
everywhere except in the conjugate-gradient section of chapter 5, where vectors are capitalized
when in transform space.

x generic model space, often unknown
y generic data space
d data, given
A generic matrix
B generic matrix
B′ conjugate transpose of generic matrix
I identity matrix
U unitary or pseudounitary matrix
W weighting diagonal matrix
D diagonal matrix
N NMO (normal-moveout) matrix
T tridiagonal matrix; matrix with time t on diagonal
Q quadratic form

15.5 CHANGES FROM FGDP

In FGDP I used R(Z) to denote a reflection seismogram, an impedance function, and a spec-
trum with autocorrelation coefficients rt . I liked this classic notation, which was used by the
mathematicians Wiener and Levinson. It is confusing, however, to use in one equation rt both
for the causal, one-sided, reflection seismogram and for the two-sided autocorrelation. Thus
I have introduced S, which is a natural notation for spectrum, although s is admittedly less
natural for autocorrelation.

300 CHAPTER 15. NOTATION

Chapter 16

Interactive, 1-D, seismology program ed1D

The ed1D program made 23 figures for this paper book, many of them in chapters 9 and 11.
In the electronic book, the caption for each of those 23 figures contains a pushbutton that
activates ed1D and initializes it to that figure. ed1D has a built-in tutorial that will enable you
to operate it without this document.

ed1D is an interactive program that shows two one-dimensional signals related by various
selectable mathematical transforms. Using a pointer, you can edit either signal and see the
effect on the other one. The signals can be Fourier-transform pairs, or a wide variety of
other pairs created by transformations such as Hilbert transforms, spectral factorization,
autocorrelations, reflection coefficients, and impedance. Some of these transformations are
not described in this book, but are described in chapter 8 of FGDP.

When you enter the program, you should move the pointer around the screen until you
find the “Tutor” button and then click pointer buttons on it, all the while watching the message
window for instructions.

You will see that there are several ways of editing a signal. First, you can use the pointer
simply to draw the signal you wish. Second, you can draw a weighting function to multiply
any signal that you have previously prepared. Third, there are a variety of preexisting ana-
lytic signals that you can use as weights. These mathematical weighting functions have two
adjustable parameters, the shift and the bandwidth, which you select with the pointer. Watch
the message window for instructions for selecting these parameters.

As long as the number of ordinates is less than about 256, edited changes in one domain
show up immediately in both domains. That is good for learning. With more ordinates (more
computational work), you see the changes only in the domain you are editing, until later, when
you move the cursor into the other domain.

The number of options in this program proved confusing to beginners, so I commented
out a few in the source code. See Claerbout (1988) for more details. For example, there is a
parabolic-shaped editing tool that can be pushed against any signal to deform it. The curvature
of the parabola is adjustable. You can reinstall the parabolic pushing tool by uncommenting
a few lines in the control panel. Another example is the huge number of transformations that

301

302 CHAPTER 16. INTERACTIVE, 1-D, SEISMOLOGY PROGRAM ED1D

can be studied with this program: I hid these, since they have no obvious interest and proved
confusing to beginners.

16.1 References

Claerbout, J., 1988, Interaction with 1-D seismology: SEP–57, 513–522.

Chapter 17

The Zplane program

The Zplane program made 16 figures for this paper book. In the electronic book, each of those
16 figure captions contains a pushbutton that activates Zplane and initializes it to that figure.
Zplane has a built-in tutorial that enables you to operate it without this document. Huge gaps
between the abstract and the concrete are bridged by Zplane. First is the conceptual gap from
the time-domain representation of a filter to its poles and zeros in the complex frequency plane
(as described in chapter 3). Second is a gap from the appearance of a filter to the appearance of
field data after applying it. Zplane gives you hands-on experience with all these relationships.
Z -plane theory conveniently incorporates causality and relates time and frequency domains.
With Zplane, you create and move poles and zeros in the complex Z -plane. You immediately
see the filter impulse response and its spectrum as you readjust the poles and zeros. If you
choose to touch a plane of seismograms, it is filtered by your chosen filter and redisplayed
after a few seconds.

Choice of a display filter is important for both field data and synthetic data. Goals for filter
design that are expressed in the frequency domain generally conflict with other goals in the
time domain. For example, when a filter is specified by frequency cutoffs and rolloffs, then
the time-domain behavior, i.e., filter length, phase shift, and energy delay, are left to fall where
they may.

17.1 THE SCREEN

The program displays four planes: (1) an impulse-response graph, (2) a frequency-response
graph, (3) a complex frequency plane for roots, and (4) a seismic data plane (such as a gather
or section). Planes (1), (2), and (3) are line drawings or “vector plots," and they update im-
mediately, whereas plane (4) is a variable brightness plane that updates only on command and
after a delay of several seconds.

303

304 CHAPTER 17. THE ZPLANE PROGRAM

17.1.1 Complex frequency plane

A frequency-response graph displays the amplitude spectra of the current filter. On the same
axes, the amplitude spectrum of a portion of data can be displayed. Further, since the horizon-
tal axis of these spectra is the real ω-axis, it is convenient to superpose the complex ω-plane
with �ω horizontal and scaled �ω vertical. The location of the pointer in the complex fre-
quency plane is printed in the message window as the pointer moves. Theory suggests a
display of the complex Z -plane. Instead I selected a complex ω-plane, because its Cartesian
axes are well suited to the superposition of the amplitude spectra of filters and data.

The letters “z” and “p” are plotted in the complex ω-plane to show the locations of poles
and zeros. The location of these roots is under the exact center of the letter. You may put one
letter exactly on top of another, but that only disguises the multiplicity of the root.

Recall from Z -plane theory that to keep the filter response real, any pole or zero on the
positive ω-axis must have a twin on the negative ω-axis. To save screen space, I do not plot the
negative axis, so you do not see the twin. Thus you need to be careful to distinguish between a
root exactly at zero frequency (or at Nyquist frequency) with no twin, and a root slightly away
from zero (or Nyquist) that has a twin at negative frequency (not displayed).

Let the complex frequency be decomposed into its real and imaginary parts, i.e., ω =
�ω+ i�ω. All filters are required to be causal and minimum-phase—that is, all poles and
zeros must be outside the unit circle in the Z -plane. Since Z = eiω, the roots must all have
negative values of �ω. Any attempt to push a root to positive values of �ω simply leaves the
root stranded on the axis of �ω = 0. Likewise, roots can easily be placed along the edges
�ω = 0 and �ω = π .

Although mathematics suggests plotting �ω along the vertical axis, I found it more prac-
tical to plot something like the logarithm of �ω, because we frequently need to put poles
close to the real axis. The logarithm is not exactly what we want either, because zeros may
be exactly on the unit circle. I could not devise an ideal theory for scaling �ω. After some
experimentation, I settled on �ω = −(1+ y3)/(1− y3), where y is the vertical position in a
window of vertical range 0 < y < 1, but you do not need to know this since the value of ρ can
be read from the message window as you move the pointer on the Z -plane.

17.1.2 The seismic data plane

The seismic data plane is displayed as wiggle traces or as raster information, i.e., gray levels,
with clipped values shown in a dull red.

The “clip" value is defined as that above which a signal cannot be displayed, because the
screen cannot be made brighter. To replot the filtered data with a different clip value, you
touch the data in a different place. The clip is taken as 1% more than the maximum of the 30
time points surrounding the pointer.

There are no numbered axes on the data plane because none are needed. As you move

17.2. REFERENCES 305

the pointer across the data plane, the values of time and space are written near the ends of the
axes. These values are more accurate than you could read from numbered axes.

17.1.3 Burg spectra

The Burg spectral method is described in FGDP. A theoretical description is not repeated in
this book. The main feature of the Burg spectrum is its insensitivity to the edges of the data
window of estimation.

In building the Zplane program, several interesting practical aspects arose. First, the pro-
gram allows us to put a box on the data, and the Burg spectrum of the data in that box is
computed and displayed. Thus the Burg computation of the reflection coefficients is a ratio of
a numerator to a denominator, each of which is averaged in your selected box. Second, some
traditional literature suggests that the only parameter you choose with the Burg spectrum is the
filter length. After experimenting a while, I decided to keep the filter length at a constant 25,
and instead let the variable be the corners of the estimation box that we draw on the data plane.
Third, I found it necessary to bias the reflection coefficients downward as the lag approaches
the data length.

17.2 References

Claerbout, J., 1987, Interactive filter design in the Z -plane: SEP–56, 263–271.

306 CHAPTER 17. THE ZPLANE PROGRAM

Index

Z -transform, 2, 8
Z -transform

and Fourier transform, 8
inverse, 13

abstract vector, 77, 78, 199
adjnull subroutine, 26, 103
adjoint, v, 101, 102, 105, 111, 118
adjoint operator, 111
adjoint truncation errors, 110
adjugate, 111
advance subroutine, 106
AGC, 172
airgun, 24, 146, 160, 220
alias, 182, 193
all-pass filter, 69, 126, 171, 172, 178, 247,

256
amplitude spectrum, 7, 49, 235
amplitude versus offset, 109
analytic signal, 33, 230–232
anticausal, 65
arctic, 156
autocorrelation, 14, 15, 19, 125, 168, 173,

237, 260, 269
automatic gain control, 172
AVO, 109, 118

back projection, 102, 144
bandpass, 244
bandwidth, 88, 255, 258, 301
basement rock, 39
beat, 262
beating, 246
bilinear transform, 54, 259
binomial coefficients, 279
blind deconvolution, 171, 178
book3, 150
boundary, zero-slope, 56

box car, 51
boxconv subroutine, 51
Burg, 167, 305
burn, 291
bursty signal, 161
butter subroutine, 243
Butterworth filter, 165, 241
Byte program, 292

C, 287
C++, 152
cascade of filters, 3, 252
cascaded NMO, 121
Cat program, 292
Cauchy function, 17
causal, 33, 47, 65, 68, 170, 227, 228, 235,

244
causality, 217
causint subroutine, 124
central-limit theorem, 276, 278
CG, 138, 150, 151
cgmeth subroutine, 143
cgstep subroutine, 142
Cholesky, 275
Cholesky decomposition, 126
cinjof subroutine, 198
cinlof subroutine, 207
cinloi subroutine, 199
coherency, 274
color, 82, 167
comb, 17, 19, 24, 87
commute, 4
complex plane, 11
complex-valued signal, 7, 11, 17, 18, 64,

70, 231
conjugate gradient, 141
conjugate signal in time-domain, 18

307

308 INDEX

conjugate-gradient method, 138–140, 143,
150

conjugate-gradient program, 142
constraint, 185, 186, 210
contour, 138, 208
Contour program, 292
contran subroutine, 105
contrunc subroutine, 106
convin subroutine, 107
convolution, 1, 9, 104, 106, 175, 278
convolution, two-dimensional, 196
convolve subroutine, 5
copy subroutine, 288
corkscrew, 18
correlation, 273
correlation

normalized, 95, 273
sample normalized, 273

covariance matrix, 85, 133, 137, 173, 190,
193, 209, 274

Cp program, 292
cross-spectrum, 19
crosscorrelate, 19, 86, 104
crosstalk, 77, 78
curvature, 198

damping, 87, 146
Darche, 263
Dd program, 292
deconvolution, 88, 146, 165, 219
deconvolution

blind, 171
blind decon of all-pass filter, 178
geometry based, 219
known wavelet, 87

deep-water seismogram, 19
deghost subroutine, 147
delay, 29
dereverberation, 220
designature, 220
diag subroutine, 201
differentiate, 9, 58, 218
differentiate

by a complex vector, 135
diffraction, 109

digitizing, 1
dip, 91, 197, 201
divergence, 67, 223
divergence

amplitude, 223
dot-product test, 110
Dots program, 292
double-sided exponential, 17
doubling, 43
duration, 255

earthquake, 249
edge, 196
end effect, 29, 52, 107
energy delay, 250
ensemble, 263
entropy, 282, 284, 285
envelope, 18, 201, 230–232, 285
even function, 17, 32
expectation, 263
expectation of the autocorrelation, 269
expectation of the spectrum, 269
exponential, 17
exponential

double-sided, 17
exponential of a causal, 236
extrapolation, 185

factor, 4
factorization, 275, 301
fast Fourier transform, 35
feedback, 47, 61
FGDP, viii, 167, 299
filter, 3
filter

2-D prediction-error, 194, 204
3-D prediction-error, 205
all-pass, 69, 247, 256
Butterworth, 241
causal bandpass, 244
impedance, 74
interpolation-error, 164, 175, 178
inverse, 86
matched, 19, 86
minimum-phase, 250

INDEX 309

narrow-band, 58, 62
nonrealizable, 6
notch, 71
parallel, 252
prediction, 164
prediction-error, 164
prediction-error, gapped, 205
quadrature, 229, 230, 234
rational, 64, 250
rho, 217
two dimensional, 196
two-dimensional, 196

fitting, 131
fitting function, 79, 135
fold, 25, 52
Fortran, 38, 142, 151, 152, 287, 288, 291,

294
Fourier integral, 12
Fourier integral

inverse, 13
Fourier sum, 8, 12, 21
Fourier transform, 8, 34
Fourier transform

and Z -transform, 8
discrete, 21
fast, 35, 43
two-dimensional, 39, 42

Fourier-transform, 301
ft1axis subroutine, 38
ft2axis subroutine, 38
Ft3d program, 292
ftderivslow subroutine, 28
fth subroutine, 37
ftlagslow subroutine, 27
ftu subroutine, 35

Gabor, 258
gap, 164, 168, 175, 178, 205
Gauss, 85
Gaussian, 10, 17, 52, 161, 162, 180, 239,

256, 276, 278
geometric inequality, 282
geophysical inverse theory, vi, 209
ghost, 146, 160
Gibbs ripple, 28

Gibbs sidelobes, 15
gradient, 139, 186, 189
gradient vector, 208
Graph program, 292
great circles, 111
group delay, 245, 247, 250
group velocity, 245, 246

halfdifa subroutine, 218
halo, 217
Harlan, 88, 152
harmonic mean, 282
Helmholtz equation, 56
Hertz, 7, 23
Hestenes, 150, 151, 153
hestenes subroutine, 151
Hilbert transform, 33, 227, 228, 239, 301
history file, 293
hope subroutine, 207
hydrophone, 146, 160
hyperbola, 213
Hz, 7

ice, 156
idempotent, 126
ident subroutine, 147
IE filter, 175
IEI, viii
imaging, 108
imo1 subroutine, 119
imospray subroutine, 119
impedance, 69, 74
impulse response, 2, 303
In program, 292
inconsistency, 120
indeterminate, 208
index, 307
inequality, 256, 281
iner subroutine, 176
instability, 64, 244
instantaneous energy, 231
instantaneous frequency, 231, 232, 250
integration

accuracy, 55
causal, 54

310 INDEX

leaky, 48, 56
numerical, 48
two-sided leaky, 56

interference, 246
interlace, 190, 196
interpolation, 185
interpolation, nearest-neighbor, 113
interpolation-error filter, 164, 178, 188
inverse Z -transform, 13
inverse filter, 66, 86, 135
inverse Fourier transform, 36
inverse theory, 210
inversion, v, 101, 131, 144, 182
invstack subroutine, 145
iterative method, 137

Jacobian, 128
Jensen average, 284

Kirchhoff, 108
Kolmogoroff, 235, 237
kolmogoroff subroutine, 237

lag, 175
Lagrange multiplier, 211
languages, programming, 151
Laplacian, 84
Laurent expansion, 69
leak subroutine, 48
leaky integration, 48, 56, 162
leaky subroutine, 57
least squares, 115, 131, 210
least squares, central equation of, 133
least squares, stabilizing, 176
least-squares method, 185
line search, 139
linear interpolation, 121
linear inverse theory, vi, 190
linear-estimation, 80, 89, 90
linearity, 2
linearized regression, 191
log spectrum, 237

magnetic field, 240
matched filter, 19, 86, 159
matmult subroutine, 103

matrix multiply, 102
mean, 190, 263, 264
median, 82
Merge program, 292
mesh, 7, 23, 30, 196, 214
metastable, 90
migration, 108, 109, 182
migration, Stolt, 128
minimum phase, 68, 167, 248, 250
minimum-phase, 237, 239
misfip subroutine, 192
miss1 subroutine, 186
miss2 subroutine, 200
missif subroutine, 189
missing data, 182, 183
modeling, 102, 109, 131
Movie program, 292
mpwave subroutine, 237
mudstone, 157
multiple, 220
multiple reflection, 156, 157, 164
multiplex, 77

narrow-band filter, 62
nearest-neighbor interpolation, 113
nearest-neighbor normal moveout, 117
negative frequency, 11, 27, 230
NMO, 115
NMO cascade, 121
NMO pseudounitary, 126
NMO stack, 118
NMO stretch, 115
NMO with multiple regression, 222
nmo1 subroutine, 117
noise, 89
Noise program, 292
nonlinear, 180, 189, 191, 193, 201, 202,

204, 206
nonlinear optimization, 150
nonlinear-estimation, 80
nonlinearity, 2
nonrealizable, 6
nonstat subroutine, 91
nonstat2 subroutine, 92
normal, 135

INDEX 311

normal moveout, 115
notation, 297
notch filter, 71
null space, 120, 201
null subroutine, 288
Nyquist frequency, 7, 12, 22, 24, 30
Nyquist frequency

straddle, 27

object-oriented programming, 152
odd function, 17
odd-length transform, 31
OOP, 152
operator, 101
operator, adjoint, 111
orthogonal, 77, 79

pack, 189, 199
pad2 subroutine, 34
partial derivative, 132
Pascal’s triangle, 10
PE filter, 165, 167, 168
pe2 subroutine, 199
phase, 231, 239, 245, 249
physics, 232, 284
picking, 94
piecewise linear, 95
pitfall, 80, 90, 109, 174, 181, 241, 268, 288
pixel precise, 214
pixel-precise, 214
plane wave, 3, 194
plane-wave destructor, 94
polarity, 19, 29, 87, 146, 156
pole, 49, 50, 230, 303
polydiv subroutine, 61
polyft subroutine, 31
polynomial division, 60
polynomial multiplication, 3, 196
posterior distribution, 284
power spectrum, 268
precision, 34, 73, 238
preconditioning, 144
prediction filter, 164
prediction-error filter, 164, 165, 167, 171,

193, 235

prediction-error filter
2-D, 194, 204
3-D, 205
gapped, 205
spatial, 196

preprocessor, 287, 288
pressure wave, 77
prewhitening, 170
prior distribution, 284
probability, 264, 277
processing, v, 102, 131
programming languages, 151
pseudocode, 102, 213
pseudoinverse, 120
pseudounitary, 126
pseudounitary NMO, 126
puck subroutine, 95

quadratic form, 132, 135, 137, 210
quadrature filter, 229, 230, 234
quantile subroutine, 289
quantum mechanics, 232, 258
quefrency, 17

radian, 7, 12
rand01 subroutine, 289
random, 17, 162, 261, 277
random walk, 56
Ratfor, 152, 287, 288, 291
rational filter, 64, 250
realizable, 6, 47
rectangle function, 15
recursive, 61
reflection coefficient, 87
regression, 134, 146, 208
regression

linearized, 191
regressor, 131, 132
relative error, 80, 89
residual, 79, 96, 135, 138, 186, 209
resolution, 23, 24, 255, 273
Reverse program, 292
rho filter, 217
Ricker wavelet, 11
ripple, 28

312 INDEX

rise time, 255, 258, 259
Robinson, 235, 251
root, 9
root

two, 11
Rothman, 206, 211
ruffen1 subroutine, 122

sample mean, 263
sampling, 1
sat, iv, 288, 294, 295
saw, 294, 295
scale factor, 26
scaleit subroutine, 288
scatter, 108
seismogram

multiple-free, 222
one-dimensional, 222

self-adjoint, 111
SEP, 291, 295, 302, 305
seplib, 291
sgn, 229
shaper subroutine, 159
shaping filters, 159
shear wave, 77
shifting, 106
shrink, 114
sign convention, 12, 41
signal , complex-valued64

complex-valued, 17, 18
sparse, 161

signature, 150
signum, 58, 229
signum subroutine, 289
simulated annealing, 206
sinc, 15, 258
slant stack, 217
slider subroutine, 98
slowft subroutine, 26
smoothing, 51, 231, 232, 275
Snell parameter, 94
soil, 96, 167, 220
sparse signal, 161
spatial alias, 39, 42, 96, 181
spectral factorization, 237, 238

spectral logarithm, 237
spectral ratio, 19
spectral-factorization, 239
spectrum, 7, 14, 17, 171, 188, 236, 239,

285, 303
spectrum

amplitude, 7, 49
cross, 19
spatial, 83
velocity, 126

spike, 161
Spike program, 292
Spitz, 181, 193, 211
spot0 subroutine, 112
spot1 subroutine, 121
spray, 108
spread, 255
stabilize, 159, 190, 201
stack, 118, 144, 145
stack1 subroutine, 118
stacking, 181
standard deviation, 264
Stanford Exploration Project, 291
stationarity, 91, 155, 172, 285
statistic, 263
statistical independence, 264
steepest descent, 139
Stolt migration, 128
straddle, 27
stretch, 113
subroutine

adjnull, erase output, 26, 103
advance, time shift, 106
boxconv, convolve w. rectangle, 51
butter, Butterworth filter, 243
causint, causal integral, 124
cgmeth, demonstrate CG, 143
cgstep, one step of CG, 142
cinjof, 2-D convolution, 198
cinlof, 2-D convolution, 207
cinloi, 2-D convolution, 199
contran, transient convolution, 105
contrunc, convolve and truncate, 106
convin, convolve internal, 107
convolve, convolve, 5

INDEX 313

copy, copy a vector, 288
deghost, deghost by CG, 147
diag, diagonal matrix, 201
ft1axis, FT 1-axis, 38
ft2axis, FT 2-axis, 38
ftderivslow, Fourier derivative, 28
fth, FT, Hale style, 37
ftlagslow, shift fractional interval, 27
ftu, unitary FT, 35
halfdifa, half-order derivative, 218
hestenes, classic CG, 151
hope, 2-D nonlinear missing data, 207
ident, identity operator, 147
imo1, inverse moveout, 119
imospray, inverse NMO spray, 119
iner, interpolation error, 176
invstack, inversion stacking, 145
kolmogoroff, factor spectrum, 237
leaky, tridiagonal smoothing, 57
leak, leaky integration, 48
matmult, matrix multiply, 103
misfip, miss. data w. training, 192
miss1, 1-D missing data, 186
miss2, 2-D missing data, 200
missif, missing input and filter, 189
mpwave, minimum phase, 237
nmo1, normal moveout, 117
nonstat2, moving window, 92
nonstat, moving window, 91
null, erase a vector, 288
pad2, round up to power of two, 34
pe2, 2-D prediction error, 199
polydiv, polynomial division, 61
polyft, FT by polynomial mult., 31
puck, picking on continuum, 95
quantile, find quantile, 289
rand01, random numbers, 289
ruffen1, first difference, 122
scaleit, scale a vector, 288
shaper, shaping filter, 159
signum, math function, 289
slider, dip pick, 98
slowft, slow FT, 26
spot0, nearest-neighbor, 112
spot1, linear interp, 121

stack1, NMO stack, 118
triangle2, conv. w. tri. in 2D, 53
triangle, conv. with triangle, 52
tris, tridiagonal equations, 57
vspray, velocity spectrum, 217
wavekill1, zap plane wave, 94
wcontrunc, weight and convlv, 174
zero, erase a vector, 288

superpose, 2, 8
symmetry, 32
synthetic data, 79

Ta2vplot program, 292
thermodynamics, 282
Thplot program, 292
time-domain conjugate, 18
time-series analysis, 134, 155, 274
time-series analysis

multi-channel, 274
Toeplitz, 74, 173, 275
tolerance, 255
tomography, 101, 127, 208
Tpow program, 292
training data, 191
transient, 30
transpose matrix, 114
Transpose program, 292
traveltime depth, 115
triangle, 111
triangle smoothing, 52
triangle subroutine, 52
triangle2 subroutine, 53
tris subroutine, 57
truncation, 105–107, 110, 177, 182
Tube program, 292
two-dimensional filter, 196

uncertainty principle, 255, 256, 258
uniqueness, 191
unit circle, 22, 55, 64, 66
unit-delay operator, 2
unitary, 125
univariate, 77
unwinding, 249

variance, 82, 89, 190, 255, 264

314 INDEX

variance of the sample mean, 263, 266
variance of the sample variance, 267
velocity spectrum, 126
vplot, 291
vspray subroutine, 217

wavekill1 subroutine, 94
wavelet, 3
wavelet

Ricker, 11
wcontrunc subroutine, 174
weighting function, 80, 155, 177, 201
weighting function

nonfactorable, 150
white, 167, 168, 170, 205
Wiggle program, 292
Window program, 292

zero, 9, 49, 58, 303
zero divide, 86
zero frequency, 9, 10
zero pad, 34, 105, 106
zero phase, 170
zero slope, 52, 56
zero subroutine, 288

315

316 INDEX

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

