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ROBUST MODELING WITH ERRATIC DATAt 

JON F. CLAERBOUT* AND FRANCIS MUIR1 

An attractive alternative to least-squares data determined by using the median rather than the 
modeling techniques is the use of absolute value arithmetic mean. Algorithms for absolute error 
error criteria. Unlike the least-squares techniques minimization are often approximately as costly 
the inclusion of some infinite blunders along with as least-squares algorithms; however, unlike 
the data will hardly affect the solution to an least-squares, they naturally lend themselves to 
otherwise well-posed problem. An example of inequality or bounding constraints on models. 
this great stability is seen when an average is 

INTRODUCTION 

The median and the mean are two kinds of 
statistical average. In a normal situation they 
behave in about the same way. At the present 
time physical scientists almost always use the 
mean and, hence, tend to be unaware of the 
dramatic ability of the median to cast off the 
effect of blunders in the data. As an example, 
consider an expensive, all-day experiment which 
yields only one number for a result. On the first 
day, the result is 2.17, on the second day it is 
2.14, and on the third and final day it is 1638.03. 
The mean of these results is 547.78 but the me- 
dian (middle value) is 2.17. If you suspect a 
blunder on the third day you will obviously 
prefer the median. Statisticians call this the 
“robust” property of the median. 

The objective of this paper is to show how 
many kinds of geophysical data fitting can be 
made to be robust. In particular, all the calcu- 
lations we now do in solving overdetermined 
linear simultaneous equations by means of 
summed squared error minimization can be made 
robust, instead, by minimizing summed absolute 
values of errors. A computer algorithm to do this 
will be discussed. Computer time is comparable 
to that of least-squares methods. The algorithm 
solves a slightly broader class of problems than 

minimizing the summed absolute errors. Positive 
errors may be penalized with a different weight 
factor than negative errors. W’e call such an 
arrangement an asymmetric norm. A special case 
of an asymmetric norm is an inequality constraint. 
Inequalities or bounds may be applied to model 
parameters as well as measurement errors. 

Perhaps we reveal a theoretician’s bias when 
we speak of erratic dater. An experimentalist 
could with equal validity claim that the data are 
fine, but the phenomenon they represent is far 
more complex than the theoretician either wants 
or is able to model. For example, when earth- 
quakes are located by an untended computer 
which is fed from 100 telephone lines to remote 
seismometers, then the seismologist may be un- 
able to make a noise model for all the various 
peculiarities of telecommunication difficulties and 
breakdowns. With robust modeling methods, we 
can often avoid the task of making a good noise 
model. The earthquake may be properly lo- 
cated even if it knocks down some of the tele- 
phone lines. 

FIRST PRINCIPLES 

First we will see why means and medians relate 
to squares and absolute values. Let xi be an 
arbitrary number. We define m2 by the value of 
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Robust Modeling 827 

m which minimizes the sum of squared differ- 
ences (called the L1 norm) between m and x. We 
have 

s 

m2 : = m C (m - xi)” is min. (1) 
I i-1 

It is a straightforward task to find the minimum 
by setting the partial derivative of the sum with 
respect to m equal to zero. We obtain 

0 = c 2(m2 - Xi), 
i=l 

or 

Obviously, m2 is given by the usual definition of 
mean. Kext let us define ml by minimizing the 
summed absolute values (called the L1 norm). We 
have 

) s 

ml : = m C ( m - xi / is min. (3) 
i=l 

To find the minimum, we may again set the 
partial derivative with respect to m equal to 
zero; 

.\ 
0 = Csgn(mi-- xi). (4) 

i=l 

Here the sgn function is +1 when the argument 
is positive, -1 when the argument is negative, 
and for the moment undefined when the argu- 
ment is zero. Equation (4) says that ml should 
be chosen so that ml exceeds xi for N/2 terms; 
ml is less than pi for N/2 terms; and if there is an 
~i left in the middle, ml equals that xi. This 
defines ml as a median. [For an even number N, 
the definition (3) requires only that ml lie any.. 
where between the middle two of the xi.] 

The number of additions required to compute 
the arithmetic mean of N numbers is N- 1, where 
N is the number of points. The number of com- 
parisons required to completely order a list of N 
numbers seems to be about 2N In N (Singleton, 
1969), but complete ordering is not required for 
finding the median. Hoare (1962) provided an 
algorithm for finding the median which seems to 
require only about (2+2 In 2)N comparisons. 

Two other commonly known averages, which 

are of little use with most geophysical data, are 
the mode mo, given by 

m. : = m C(m--Zi)O is min, (5) 
E 

where O”=O and cP= 1, cy#O, and 

the mid-range m,, defined by the Chebyshev 
norm L, as 

m, . * =m lim ( c (m-xj)p)l’p is min. (6) 
r-m z 

The midpoint m, bisects the distance between 
the extreme data points, thus minimizing the 
maximum error. In multiparameter problems, 
the L, norm gives rise to “equal-ripple” ap- 
proximations. Because L1 and L, stand on 
opposite sides of Lf, the philosophy behind L, is 
somewhat the opposite of the philosophy be- 
hind L1. 

r\;ow that we have seen the connection between 
means and squares and between medians and 
absolute values, it is natural to try to solve over- 
determined simultaneous equations by mini- 
mizing absolute errors rather than squared errors. 
First we consider weighted medians. They are 
analogous to weighted sums. 

Usually we take 2.17 as the median of the num- 
bers (2.14, 2.17, 1638.03) because we implicitly 
apply weights (1, 1, 1). If we applied weights 
(3, 1, 1) it would be like having the numbers 2.14, 
2.14, 2.14, 2.17, 1638.03 and the median would 
then be 2.14. A weighted median may be defined 
by the minimization 

ml : = m C / w; / / m - x; / is min. (7) 
z 

Obviously if the weight factors are all unity, this 
expression reduces to the earlier definition, where- 
as a weight factor equal to 3, for example, is 
just like including the same term three times 
with a weight of one. Figure 1 illustrates the defi- 
nition (7) for a simple case. From Figure 1, it is 
apparent that a minimum is always found at a 
corner so the median can be taken equal to one 
of the xi even if the weights are not integers. If 
the weights are all unity and there are an even 
number of numbers, then the error norm will be 
flat between the two middle numbers. Then any 
value in between satisfies our definition of median 
by minimizing the sum. D
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828 Claehout and Muir 

4 

I 2 5 m 

FIG. 1. iz sum of weighted absolute value norms. The 
function labeled A is .5/v- 1 j , B is .5 / vz -5 1, C is 
.I 1 HZ-~), and D is the sum of A, B, and C. The sum 
D is minimized at 11~ = 2, a point which exactly solves 
C=o=.11V-21. 

Let us rearrange (7) by bringing /wi/ into the 
other absolute value function. \Vc have 

I i 

WC will relabel the conventions of statistics to the 
usual conventions of simultaneous equations and 
linear programming. Let 

@a, b, 4 

and 

CT = m. 

R’ith these new definitions, equation (8) becomes 

n: : = .1: C j UiX - di \ is min. (9) 
1 

In other words, to solve the rank, one over- 
determined equations 

[a]x E [d], (10) 

for s by minimizing the L1 norm. This is, in 
effect, a weighted median problem. If (10) were 
solved by minimizing the L2 norm (least squares), 
x would be the weighted average X= (a.b)/(a.a). 

Next we observe that the absolute value func- 
tion is symmetric, i.e., ( e/ = 1 --el . This property 
will not be required, so we will define the more 
general asymmetric norm with arbitrary upslope 
g: and downslope gk shown in Figure 2. Kate that 

a different penalty function may be applied for 
each error eh in ek=dk- Cj Akj.YJ. Obviously, 
a sum of asymmetric penalty functions will be a 
piecewise linear function like the sum of absolute 
value functions in Figure 1. The IOXYV p~avtilc is 
like the median except that one-fourth of the 
data values lie below the quartile and three- 
fourths lie above. To find the louver quartile with 
an asymmetric norm, we would set ga = -3 and 
g: = + 1 for all k. Percentiles and other quantiles 
may be defined in a similar fashion. 

.\n important property. of the penalty functions 
vve arc dealing with is that they are convex 
downward. This means that sums oi these iunc- 
tions arc also convex. This property is sufficient 
to ensure that there is one unique minimum value 
for the error. The only possible nonuniqueness 
of solution arises if the bottom is flat. 

The next step up the ladder of complexity is 
to consider two unknowns. The obvious general- 
ization of (10) is 

a2 c? 
. . 

. . 
ak Ck 
. . 
. . 
. . 

s 

[I- II= 

Y 

We will assume the reader is familiar with the 
solution to (11) by the least-squares method. 
Solution by minimizing the sum of the absolute 
values of the errors begins in a similar way. We 
begin by defining the total error: 

E = 2 ) dk - akx - Cky j . (12) 
k=l 

FIG. 2. The error norm is the sum of asymmetric 
penalty functions depicted. D
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Robust Modeling 829 

Then we set the x derivative of the error equal to 
zero and the y derivative of the error equal to 
zero: 

o=G= 5 -ak SgIl (dk-UkX-Cky), (134 
k=l 

and 

o=:= ‘$ -ck sgn (dk-aakx-cky). (13b) 
dY k=l 

Now we run into a problem. If the sgn function 
always takes the value +l or - 1, then (13a) 
implies that the ak may be divided into two piles 
of equal weight. Clearly many, indeed most, 
collections of numbers cannot be so balanced 
(e.g., if all the ai except one are integers). The 
difficulty will be avoided if at least one of the 
equations of (11) is solved exactly so that sgn 
takes an indeterminate value for that term. Any 
algebraic confusion may be quickly dispelled by 
recollection of Figure 1 and the result that even 
with one unknown the minimum generally occurs 
at a corner where the first derivative is discon- 
tinuous. The same situation must again apply 
to (13b). The usual situation is that for N equa- 
tions and M unknowns, precisely M of the N 
equations will be exactly satisfied in order to 
enable the error gradient to vanish at the mini- 
mum. Indeed, in the words of Gauss’ Theoria 
Motus Corporum Coelestium which appeared in 
1809 (Plackett, 1972): 

Laplace made use of another principle for the 
solution of linear equations, the number of which 
is greater than the number of unknown quanti- 
ties, which had been previously proposed by 
Boscovich, namely that the differences them- 
selves, but all of them taken positively, should 
make up as small a sum as possible. It can be 
easily shown, that a system of values of unknown 
quantities, derived from this principle alone, 
must necessarily (except the special cases in 
which the problem remains, to some extent, 
indeterminate) exactly satisfy as many equa- 
tions out of the number proposed, as there are 
unknown quantities, so that the remaining equa- 
tions out of the number proposed, as there are 
unknown quantities, so that the remaining equa- 
tions come into consideration only so far as they 
help to determine the choice. 

Today common usage in the field of linear pro- 
gramming is to refer to any nonsingular subset of 
M out of the N equations as a set of basis aqua- 

tions. The particular set of M equations which is 
solved when the error is minimized is called an 
optimum basis. Figure 3 shows some upper bound- 

ting fits of sums of sinusoids to a step. \I’hcn J1 
terms are used in the expansion, then the curve 
precisely fits the step (at least) at M points. 
Successive values of M arc shown, odd values 
on the top row of graphs and even values on the 
bottom row. In each graph, precisely M points fit 
exactly (except the case M=l, which is de- 
generate and 20 points fit exactly). Surprisingly, 
where the model curve appears as a tangent to 
the data step there are always two adjacent points 
fitting exactly except at the ends of the interval. 

EXAMPLES AND APPLICATIONS 

Even the simplest solution in absolute value 
minimizations, namely, the median, can be ex- 
pected to have many practical applications in 
exploration. 1Ve have many applications in which 
we sum seismic traces. In all of these we might 
consider whether the median would be better. 
Presently, before summing we must have editing 
programs to eliminate the frequently- massive 
effects of air waves, ground roll, noise bursts, 
dead traces, ice breaks, etc. The editing is compli- 
cated enough and failures are not uncommon. 
Errors by the editors could be effectively elimi- 
nated if we used the median rather than the mean 
for trace averaging. In fact, with the median 
editors might not even be required. 

The median has the property of stretch in- 
variance. By this we mean that the pointer to 
the median points to the same place even if all 
numbers are scaled or are all exponentiated. If 
they are positive the numbers may all be squared, 
inverted, or have their logs taken. Essentially 
any monotonic transformation preserves order 
and leaves the median pointer unchanged. This 
property can be useful in experiments where the 
theory is unclear on how to average. For examp!e, 
if an average sound velocity of a heterogeneous 
mixture is determined with the median, then it is 
unimportant whether the problem is parameter- 
ized with velocity, velocity squared, or inverse 
velocity (time average). Of course, a good theory 
for sound would be preferable. 

The median may open some new possibilities 
in geophysical data analysis. In the past the 
forming of ratios of noisy data points was a com- 
monly forbidden operation because the sum of 
such ratios is infinite if any one of the divisors is 
zero. In reality the difficulty lies not with the 
ratios but in the assumption that averaging must 
be done with sums. If the ratios are averaged with 

D
ow

nl
oa

de
d 

06
/1

0/
16

 to
 1

71
.6

6.
20

8.
13

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



830 Claerbout and Muir 

FIG. 3. Upper bounding fits to a step. LVe minimize 

$ I 44 I 

where N=40, t=i-N/2--.5, e(i) negative for all i, and 
A- 1 AI-I 

e(i) = step (i - 20.5) - c ok cos d/N - c ak sin *f/N 

the median there is no problem. Notice also that 
the median of numi/deni is the same as the in- 
verse of the median of deni/numi. 

Running means are often used for smoothing. 
In a running median one replaces each data value 
by the median value of it and its neighbors. A 
running median can be excellent for removing 
spike- in a time series. One problem with the 
running median which is not shared by the run- 
ning mean is illustrated in Figure 1. In data which 
have a systematic variation, comparable to or 
greater than the random variatiot, the system- 
atic variation should be removed before doing 
the running median; then it may be restored. 

A problem not shared by the running mean 
arises when a desired smoothing window is 
wide enough that it includes trend or system- 
atic variation of larger amplitude than the 
fuzzy noise which is to be smoothed. Then the 
effective width of the smoothing window is 
reduced. If a wide smoothing window is desired 
then the trend should first be removed. 

Running medians may also be applied to com- 
1Jex data, but thtre are several options on how 
to proceed and should be tailored to the appli- 
cations. Let Ml(x,) denote a running median on 

k=, 
odd 

x,, and M2(.r,) denote a running mean. If complex 
data are actually observed (as Nt+iWl where 
N1 and lVt are the north component and the 
west component of earth tilt), then it may be 
suitable to apply the running medians directly to 
the real and imaginary parts, i.e., M1(Nt) 
+iMr(W,). On the ether hand, in an applica- 
tion where akfihk represents a complex im- 
pedance as a function of frequency wk then it 
may be more suitable to take the logarithm first 
obtaining log amplitude and phase, i.e., log (uk 
+ibk) = log / rkl +ic$~. Now the running median 
could be done separately on log rk and the 
angles &. 

Notice that the same result is achieved if you 
smooth log T, r, 9, 1,/v, or l/r2 with a running 
median, although drastically different results may 
occur if you smooth with a mean. For example, in 
magnetotellurics one observes a long time series 
of electric field El and another of perpendicular 
magnetic field Ht. These are Fourier transformed 
to complex numbers Ek and Hk, and the desired 
result is the ratio of the two. The problem is that 
because of randomness and noise some smoothing 
is necessary. Least squares leads one to the 
two different averages MP(EkEk/Mf(E&k) and 
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Robust Modeling 831 

t- 

EFFECTIVE 
WINDOW 

FIG. 4. Running median on fuzzy treading data. 

M2(E&~)/M,(H~~J. Without noise these two 
would be inverses of one another and would 
relate to the electrical conductivity being mea- 
sured. In the presence of noise the averages be- 
come biased differently and it is not clear how 
either relates to earth conductivity. 

Alternately, one could consider smoothing 
log Hk/Ek with a running median and the exact 
inverse would be attained as from smoothing log 
Eh/Hk. A problem here is that when the data are 
sufficiently noisy, the 2~ ambiguity in the phase 
may cause difficulty. A solution to this is to form, 
by finite differences, an approximation to d/dw 
log E/H = EJE-HJH and smooth it with a 
running median. As before, if there are any a 
priori or clearly observed trends, these should be 
removed before smoothing. 

We have noted a curious fact about running 
medians. As indicated in Figures 5 and 6, the 
running median of a sin (X)/X function has no 
side lobes at all if the window length is chosen 
equal to twice the zero crossing separation. This 
is not a special property of sin (X)/X, but a 
property stemming from the uniform spacing of 
zeros. 

The asymmetric-linear norm can be special- 

4 

FIG. 5. Running median of sin (X)/X. Top is the 
sin (X)/T function. Middle is the window of uniform 
weights used in a running median on the sin (X)/X to 
give the running median at the bottom. 

ized to the symmetric absolute value norm L1 or 
it can be specialized to inequalities. In the first 
case, we have the usual least-squares applica- 
tions, and in the second case we have the usual 
linear programming applications. An example 
of linear programming in GEOPHYSICS is in the 
editing of map data (Dougherty and Smith, 
1966). There will undoubtedly be many important 
mixed applications (e.g., the location of earth- 
quakes by minimizing summed absolute residuals 
with the inequality constraint that the earth- 
quake must occur at a positive depth). 

We should not overlook the possibility that 
there may be geophysical problems which de- 
serve an asymmetric norm because they really do 
not fit into a least-squares, linear programming, 
or mixed framework. For example, consider the 
problem of determining the time of first arrival 
of a seismic wave on a seismogram as illustrated 
in Figure 7. Because of the pLesence of noise, the 
determination of the first arrival has a higher 
probability of being late than early. Thus, an 
asymmetric norm would be natural. 

Another example is in the construction of 
depth to magnetic basement maps as indicated in 
Figure 8. The radii (diameters) of curvature of 
magnetic fields seen on the earth’s surface are 

FIG. 6. Running median of sin (x)/x 
with trian ,le weights. 
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832 Claerbout and Muir 

FIG. 7. In the presence of high ambient noise, a pick 
of first arrival time has a greater probability of being 
late than being early. This is a natural application for 
an asymmetric norm. 

assumed to overestimate the depth to the top of 
magnetic monopole (dipole) sources. On first 
sight, this seems like a linear programming prob- 
lem; however, the presence of nonbasement 
magnetic sources means that the field radius can 
be less than the depth to basement. Hence, depth 
should be taken as some low quantile rather than a 
lower bound of radii. This, incidentally, indicates 
how linear programming problems can be made 
more robust, namely, replace inequalities by a 
highly asymmetric norm. 

Figure 9 illustrates the fitting of a sum of 
sinusoids to a step with norms of various asym- 
metries. Notice that even with infinite skewness 
the sinusoids still fit the step quite reasonably. 

An illustrative example is the fitting of a 

straight line to scattered points. If there are only 
three points, we can quickly obtain a graphical 
solution. Let the points be denoted by (si, yl), 
i= 1, 3. Then we have three equations of the 
form y;=mxi+b for the unknown slope m and 
unknown intercept b. If the absolute error is 
minimized, we know that there will exist an 
optimum basis, which means that two of the 
three equations will be exactly satisfied at the 
error minimum. In other words, the best line 
passes through two of the three points. Graphical- 
ly we may connect all possible pairs of points by 
straight lines. Then we pick the line with the 
least error as illustrated in Figure 10. 

From this example WC see that when a traveler 
reaches a fork in the road, the L, norm tells him 
to take either one nay or the other, but the LZ 
norm instructs him to head off into the bushes. 
Likewise, a hunter when seeing tTvo birds in the 
sky might not choose to shoot at the midpoint 
between them, especially if they- are far apart. 
This is not to say that the Lr norm is better than 
the Lz norm; the L1 norm is very different and 
can be much better than least-squares in some 
applications. The ubiquity of the square norm is 
explained by widespread acceptance of two ques- 
tionable assumptions: 1) that the square norm is 
the only tractable norm, and 2) that most sensible 
(convex) norms can be expected to give about the 
same practical results. The latter assumption may 
be true when errors are small, in other words, 
when the signal-to-noise ratio is high. 

Inconsistent data values are treated quite 
differently by the L1 and Ls norms. .A common 
problem is the shifting of seismograms or cross- 

EARTH SURFACE 

NON-MAGNETIZED ROCKS OR SOILS 

MAGNETIC BASEMENT 

FIG. 8. The magnetic depth to basement may be found as a lower bound on the radius (diameter) of curvature 
of surface magnetic fields generated from basement monopole (dipole) sources. The source at A gives the correct 
depth. A distributed or deeper source at B causes an overestimate. .4 noise point at C indicates that the depth 
should be fit to a low quantile rather than a lower bound. 
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Robust Modeling 833 

FIG. 9. Fitting of a few sines and cosines to a step by norms of increasing skewness. On the left the summed 
absolute error is minimized. On each step to the right the skewness is doubled. On the rightmost plot there are no 
model points below the step so the result is the same as if there were infinite skewness. In other words, the rightmost 
frame minimizes the area between model and data subject to theconstraint that the model is always above the data. 

correlation functions into best alignment. As 
illustrated in Figure 11, it is quite common to 
discover that the maximum of a crosscorrelation 
function cannot be unambiguously picked. As- 
sume that the traces or crosscorrelations are to be 
aligned by placing a best fitting line through the 
maxima. Which of two ambiguous maxima should 
be included in the overdetermined set of equa- 
tions? One answer is to include both (or all) of 
the ambiguous maxima. The L, norm will choose 
a line which picks either one or the other, or 
neither, when neither is consistent with the rest 
of the data. Least squares, on the other hand, 
when faced with two inconsistent data values 
(two linear equations which are the same except 
for the inhomogeneous part) effectively regards 
the two data values as one of double weight 
placed at the midpoint between the two. For 
the example at hand this is inappropriate because 
the midpoint is quite clearly not a maximum. 

In many problems the square norm is the 
natural norm. This is often the case when mea- 

. / 

FIG. 10. The best fitting straight line passing through 
points A, B, and C under absolute error minimization 
(error measured along the vertical in this case) passes 
through points A and C. 

surements and errors have physical dimensions 
like voltage, current, force, or velocity. On the 
other hand, it is often unnatural to square 
things which are already positive like energy, 
power, mass density, compressability, probability, 
geometrical area, temperature, entropy, mer- 
chandise, etc. When such quantities occur as 
measurements, the asymmetric linear norm may 
well be the natural norm. 

Now let us consider a numerical example in 
digital filter theory. Let the sampled waveform 

(0, 0, * * . , 0, 1, -l/2, 0 * . . ) be input into a 
filter with the two-point memory function (f,,, II). 
Then the output (omitting preceding and trail- 
ing zeros) is (fO, fi--f0/2, --fJ2). Suppose the 
filter is designed (numbers chosen for fo and fi) 
so the output is a good approximation to (1, 0, 0). 
Then the filter (,fo, fi) is called a zero delay in- 
verse filter to the filter (1, -112) and equations 
for choosingjo andfi are. 

\ 

Ll 

0 
----- _--- hsz 0 

FIG. 11. Treatment of inconsistent data points. The 
maxima on each trace are picked. On the right-hand 
trace the maximum is ambiguous so two maxima are 
picked. Then LI and LZ best fitting lines are made to 
pass through the picked points. The least-squares line 
LZ tries to fit the midpoint between the ambiguous 
maxima. The least absolute value error line d tends to 
pick the one of the ambiguous points which is most con- 
sistent with the rest of the data. 
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834 Claerbout and Muir 

1’1~. 12. Best fitting LI and LP sums of 4 sinusoids to a step. The Ls fit is best near the discontinuity >vhere 
squared error is high. The LI fit minimizes the area in error and is better than the L? fit away from the discontinuity. 
The LI approximation fits exactly at the points in the squares. 

[-.f _,$I = [;I. 
The least-squares solution is readily found to be 
(j,,, f,) = (20, 8)/21, and the error is found to be 
(1, -2, -A)/21. The sum squared error is l/21 
and the sum of the absolute values of the error 
is l/3. To obtain the least absolute values solution 
we solve each pair of equations and then find the 
one with minimum error. This is tabulated as 

pair (lo, fl) ewor terms 

1 and 2 (1, .5) (0, 0, +.25) 
1 and 3 (1, 0) (0, +.5, 0) 
2 and 3 (0, 0) (I., 0, 0) 

Thus we see that the best answer is (1, .5) which, 
surprisingly, turns out to be the truncation of the 
exact transform answer 

l/(1 - AZ) = 1 + .5z + .25z* +.... 

Now let us look at the two-term zero delayed 
inverse to the nonminimum phase filter (1, - 2). 
This is defined by 

[-; _$I -[;I. 
The least-squares solution is (j,,, j,)=(5, 2)/21 
with an error sequence (16, -8, 1)/21, whereas 
the least absolute values solution is (j”, f,) = (0, 0) 
with an output (0, 0, 0). The zero answer for the 
L1 filter could be interpreted as a failure to at- 
tempt to solve the problem. This is not unreason- 
able in view of the theoretical impossibility of 
finding a convergent realizable inverse to a non- 
minimum phase filter. 

Besides model fitting, the method of least 
squares has considerable theoretical importance. 
For example, it may be used to expand a step 
function into a linear combination of sinusoidal 
functions. The L1 norm can be used in the same 
way. The results are somewhat different. Figure 
12 illustrates that there is less propagation of 
error away from the discontinuity with the L1 
norm. 

To the extent that a sum approximates an 
integral, the total error for L1 in an example like 
Figure 12 is represented by the area between the 
data curve (the step) and the model curve. D
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Robust Modeling 835 

Geometric area is invariant under rotation and greater than all possible combined upslopes in A. 
translation. Thus, to the extent that summation In our program the upslope error gradient for 
approximates integration, the Lr solution is in- the inequality ~~20, g+(N) cannot be set pre- 
variant to physical translations and rotations of cisely equal to zero, although any small value as 
data and models. This property is not shared by 10e30 will do. The reason is that if g+(N) is set 
LB. L:! has the property of invariance under equal to zero, the last equation, when the in- 
rotations in the N-dimensional observation vec- equality is slack, is confused with other equations 
tor space. In Figure 12 we have a two-dimensional which are candidates for entry into the basis. 
physical space and an N= 20-dimensional ob- The last equation should be in the basis if x3=0, 
servation vector space. but not if x3>0. 

Presently the design of deconvolution filters is 
based on least squares. They could be designed 
with an absolute value criterion. If this were 
done the filter design would be far less affected 
by patches of highly unpredictable signal. When 
some event is unpredictable, and gives a big 
prediction error, least-squares tries harder to 
predict this event than the more predictable 
portion of the data. This is undesirable. The 
absolute value error criterion ensures an equal 
effort on predictable as on unpredictable portions 
of the trace. Thus, unpredictable events of inter- 
est, like primaries, can be expected to stand out 
larger after absolute value deconvolution. Since 
the L1 method does not use an autocorrelation, as 
does least squares, we note that the stationarity 
assumption, always a questionable one with re- 
flection data, is not implicit. 

With some special preparation equations which 
are underdetermined may also be solved. To 
Ax=d we append some equations which ensure 
that the columns of A are linearly independent. 
For the 3 X 3 case, 

I A 

I 0 a1 0 a2 0 0 

0 0 u3 

l- = 

Before going any further, let us see how a 
model parameter may be kept positive. Consider 
for example the problem Ax=d and xQhO where 
the number of unknown M is 3. It may be set 
up as 

The last 3 equations will tend to drive x to zero. 
We will choose al, up, and a3 very small so that 
the tendency toward zero is very weak and only 
strong enough to overcome the fact that A is not 
of sufficient rank to uniquely determine x all by 
itself. For example, if the first two columns of A 
are identical, we have equality in 

Asymmetric weights will be set up for the error 
in the last “equation.” The downward gradient 
for the error on the inequality when xa<O is 
R& It cannot be set equal to minus infinity in a 
computer program, but any arbitrarily large 
number, say -1030, will do. Actually all that is 
required is that 

.v-1 

-g-LV > c g’(i) 1 a3i 1 ) 

i=l 

because this will make the inequality downslope 

More generally, we are discussing matrices A for 
which Ay = 0 has a nonzero solution for y. In such 
cases algorithms which have not prepared for 
underdetermined sets tend to have a very large 
amount of y mixed in with their solution x to 
AxEd. This is because although columns of A 
may be linearly dependent, they generally ap- 
pear to be independent (though just barely) 
when viewed with the finite precision of a com- 
puter. Hence, the values al, ~2, and a3 cannot 
be chosen to be arbitrarily small because they 
must overcome calculation precision errors in 
manipulation of A. We should choose D
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836 Claerbout and Muir 

UJ = 10-j C ( -4tj( 
E 

Perhaps we should solve all sets of equations 
as though they were underdetermined. Under- 
determination can be observed by seeing some 
a,xj=O equations in the final basis or by the 
occurrence of some zero components in the solu- 
tion x-vector. These zero components suggest 
that certain physical parameters cannot be deter- 
mined with the given precision of A. Indeed, 
instead of using lop5 in defining the Uj, there 
may be some other numbers which are indicative 
of the known precision of Aij. In earthquake 
epicenter location, the Aij derive from travel- 
time tables which, in turn, come from either long 
experience or theoretical velocity models. In 
either case, a precision can be assigned and it 
isn’t as great as single-precision arithmetic. 

Step-wise regression is a method of iteratively 
eliminating those model parameters which con- 
tribute least to fitting the data. A similar opera- 
tion can be done simply by increasing the a3 in 
unison until the desired number of parameters 
Xj become zero (they become zero because as the 
aj are increased, more of the njxj=O equations 
come into the basis). We have used this to deter- 
mine which coefficients in a prediction filter are 
the really important ones. 

Many people contend that all geophysical 
problems are underdetermined because the earth 
is described by a continuum of unknowns, where- 
as we have only a finite number of measurements. 
In this point ,of view, the observations repre- 
sent constraint equations, and some type of 
smoothness criterion is required to obtain a 
unique solution. Xeedless to say, the selected 
smoothness criterion has a profound effect on 
the results. The choice of the norm also has a 
strong effect on the results and the interpreted 
resolution of the results. The simplest smoothness 
criterion is that the solution x vector have mini- 
mum length. We set up the overdetermined 
simultaneous equations 

Here ~1 is a small constant times the identity 

matrix. Obviously, the bottom block of equations 
is trying to say x=0. If t is taken small enough, 
all of the equations of A, if they are consistent, 
will be in the final basis. From the point of view 
of a computer program, e is irrelevant; the con- 
straint equations can simply be kept in the basis. 
Upon solving the set of overdetermined equations, 
generally there are exactly 2M equations in the 
final basis. Among these must be all K of the 
constraint equations. Among the equations 
Jx =O there must be M-K in the basis and K 
not in the basis. This means that many, at least 
M-K, of the components of x vanish; at most 
K do not vanish. The situation is depicted in 
Figure 13a for K=3. 

In deconvolving any observed seismic trace, it 
is rather disappointing to discover that there is a 
nonzero spike at every point in time regardless 
of the data sampling rate. One might hope to 
find spikes only where real geologic discontinuities 
take place. Perhaps the Li norm can be utilized 
to give an output trace like Figure 13a. 

Another smoothness criterion is that the solu- 
tions -pi tend to a constant (as much as the con- 
straint equations will allow). This is implemented 
by replacing the matrix I in e1 by a matrix with 
the first difference operator (1, - 1) along its 
main diagonal. This means that for all smooth- 
ness equations in the basis ~i=.ri+i, but for 
those K not in the basis, x<Zs;+i, as illustrated in 
Figure 13b. Likewise having the second differ- 
ence operator (1, -2, 1) on the main diagonal 
will amount to finding piecewise linear functions 
which satisfy the constraint equations as illus- 
trated in Figure 13~. 

Of course we can use any difference equation we 
wish to define the class of functions which we 
are fitting to our data. Inequalities may be used 
to ensure that the discontinuities are of appro- 
priate sign, for example, with (1, -2, l), in- 
equalities on the discontinuities would ensure a 
convex or concave solution. Notice that there 
seems to be no intrinsic limit to the resolution 
attainable. This result stands in stark contrast 
to the L2 norm in which x is made up of a linear 
combination of the rows of A. In the view of 
Backus and Gilbert (1967) these rows are re- 
garded as the windows through which one can 
see x. If these windows, or more precisely, all 
linear combinations of the rows, lack deltaness 
(the ability to concentrate at one spot), the 
resolution is said to be poor. This measure of 
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Robust Modeling 837 

‘i 

ILL l- 
i 

$ xi 

(dl 

FIG. 13. Solutions to highly underdetermined asym- 
metric-linear norm problems where the smoothness 
criterion is taken to be minimization of the magnitude 
of (a) components of x, (b) first differences on x, (c) 
second differences on X, and (d) Chebyshev norm of .T. 

resolution is independent of the data. 1Vith 
asymmetric linear norms, the resolution is data 
dependent. 

Let us consider an example in which the resolu- 
tion becomes infinitely good if certain data values 
occur. Suppose the mass density as a function of 
radius inside a sphere is to be determined from 
the measured values of total mass, radius, and 
moment of inertia. If a data value of zero is 
found for the moment of inertia, then all the 
mass would be driven to the center of the sphere. 

be a result of the inequality constraints which 
computationally are a natural subset of as>-m- 
metric norms. The same resolution would result 
from least squares augmented by inequalit) 
constraints (quadratic programming); however, 
here again the resolution of the experiment be- 
comes data dependent. 

The Chebyshev norm L, was not recommended 
for use on geophysical data; holrever, it might 
sometimes be appropriate for smoothing geo- 
physical models. Recall that the Chebyshev norm 
of a vector (the infinite root of the sum of infinite 
powers of components) is the absolute value of 
the component of maximum magnitude. There- 
fore, \ve can easily solve L, problems with asym- 
metric linear norm methods. This \vill be illus- 
trated b,- the minimization of 

We begin by defining a new variable b (for 
biggest). We can arrange things ho that h is the 
Chebyshev norm of x by setting up the in- 
equalities 

and 

n-i-b<< - 

and then minimizing b. For the example where x 
has two components, the undcrdetermined set 
looks like 

A o 

1 0 1 

0 1 1 

1 0 -1 

0 l-l 

-0 0 x 

‘d- 

0 . 

As with LI norm-smoothing criteria, if there are 
more smoothing equations than constraint equa- 
tions, many of the smoothing equations will be 
in the final basis. This is illustrated in Figure 
13d where most of the ~~ are at the bounds b; 
typically only K would lie in between the bounds. 

In time series analysis 1Vidrolv et al (1967) 
developed a simple method for least-squares filter 
adaptation to changing input data. Their method 
becomes even simpler with the absolute value 

In this example, the high resolution appears to norm. Instead of adjusting filters by a correction 
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838 Claerbout and Muir 

which is proportional to the previous input times 
the present error, the correction is proportional 
to the previous input times the sign of the present 
error. Naturally this desensitizes the correction 
to large bursts of error. 

Another application to time series analysis is a 
modification of the Burg algorithm (Ulrych, 
1972) of spectral analysis by fitting prediction 
filters without end effects to finite data segments. 
The essence of the algorithm is computing a 
reflection coefficient c (in statistics called the 
partial autocorrelation coefficient) by the solu- 
tion of the overdetermined set 

Here e+ and e- are predicti n error sequences in 
the forward and backward direction for filters of 
length M, and c is used with the Levinson recur- 
sion to generate a filter of length Mfl. Burg’s 
method is to solve the overdetermined set by 
means of least squares, obtaining 

2(e+.e-) 
C= _. 

e+.e+ + e-.e- 

We propose to solve the overdetermined set using 
instead the absolute value norm. We have es- 
tablished that the absolute value norm also 
ensures - 15 c 2 + 1, thereby preserving mini- 
mum phase. If the data consist of somewhat 
predictable noise along with occasional unpre- 
dictable bursts of signal, we expect L1 to exhibit 
improved noise predictability. Also, we expect 
the estimated spectrum to be more related to the 
noise than to the signal plus noise. 

The “flat bottom” nonuniqueness of skew 
norms is delightful for problems whose answers 
may not be uniquely determined from the data. 
Least squares would force such problems to have 
unique answers. A one-dimensional, everyday life 
example would be someone, a poor adder, who 
decides to verify his financial balance by working 
it out in four separate tries and then taking the 
median. If he obtains the same answer three or 
more times, then the median of the four numbers 
has a unique value. If he obtains four different 
answers then he knows he does not yet have 
enough information for a unique median and he 
can take appropriate action. 

An important higher-dimensional example in 
seismology is the estimation of source and re- 

ceiver time corrections. Here one has a set of 
observed traveltimes from the ith source to the 
jth receiver. After known systematic geometrical 
and velocity effects are removed, one has the 
time residual matrix tij. Then, near-source travel- 
times Xi and near-receiver traveltimes rj are 
estimated from the lij by minimizing the error 
f?ij in 

eij = tij - Si - Y,. 

It is readily apparent that a trivial nonunique- 
ness arises in that an arbitrary constant added to 
all the si and subtracted from all the rj will give 
the same residuals. What is not apparent (in fact 
its discovery amazed us), is that there is more 
nonuniqueness lurking in this problem. This will 
be illustrated numerically. Absolute error mini- 
mization could have reduced a 3-by-3 matrix of 
tii to the e,j residual matrix 

O-12 4 

eij = [ 17 0 0 1 . 

0 10 0 

As expected, there are 5 zeros representing the 5 
independent unknowns of the 6 unknowns. P\;ote 
that c 1 eijl =43. Now modify source and re- 
ceiver times by applying + 12 to row 1 and - 12 
+o column 1. We have 

ro 0 161 

1 -12 5 10 0 0, 0 J 

still with xle;,I =43. Now apply +12 to row 3 
and - 12 to column 3. We have 

t-0 0 41 

1;: 2:’ A 

Furthermore, we can generate an infinite set of 
eij (and hence source and receiver corrections) all 
with the same c 1 eijl by taking the given 3 and 
forming any convex combination (weighted com- 
bination where each weight is positive and the 
weights sum to one). From this example, one 
might conclude that it is better to use least 
squares to ensure a unique answer. 

On the other hand, the existence of a sizeable 
nonuniqueness with absolute error minimization 
leaves the uncomfortable feeling that the unique- D

ow
nl

oa
de

d 
06

/1
0/

16
 to

 1
71

.6
6.

20
8.

13
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



Robust Modeling 839 

ness of least squares is not real; perhaps it is only 
an artifact of the worst data point. The more 
prudent procedure would seem to be to examine 
the size and shape of the space of nonunique 
solutions. Then if it is unacceptably large, perhaps 
additional data can be found or perhaps further 
assumptions (like spatial smoothness or minimum 
2 1 ui( + 1 vi/) will make it unique. 

Generally, if a system of equations has a 
unique L2 solution, then the L1 solution set is a 
bounded convex polyhedron whose vertices or 
extreme points correspond to particular subsets of 
equations in the system. The volume of this poly- 
hedron gives some information on the resolvabil- 
ity of the solution which will be useful when the 
data consist of nearly correct values mixed with 
incorrect values (outliers). Then the polyhedron 
will be tiny if none of its vertices involve outliers. 

Usually, however, the volume of the poly- 
hedron will be far too optimistic an estimate of 
resolvability. For example, the standard error 
for an average of N Gaussian random numbers is 
expected to be much larger than the separation 
between the middle two numbers. Another exam- 
ple would be if the time residual matrix had 
turned out to be 

[ 0 0 o-3 0 7 -11 0 8 1 . 

Then it would be unique, as the median of an 
odd number of points is unique. Just because it is 
unique you wouldn’t say that the resolution of 
Ui and ZJ; is good. Estimates of the L1 norm equiva- 
lent of standard error, the practical measure of 
uniqueness, are considered in the next section. 

STATISTICAL ASPECTS 

A property of the median is that for random 
variables with a symmetrical probability density 
function, the median ntl coincides with the mean 
m2. Also, the expected value of the sample median 
(the average value of many medians each esti- 
mated from a finite sample of data) equals the 
mean. Another important item is the expected 
variance of the sample median. In other words, 
for a sample of N points, the estimated median 
lit1 is likely to differ from the true median ml. As 
N tends to infinity, fiitl gets closer to ml. This is 
made specific and quantitative by defining the 
variance of the sample median V(&-m) by the 

following expectation G: 

This is a standard calculation in statistics. 
Asymptotically for Gaussian random variables 
and large N it becomes 

This is just slightly worse than the variance of 
the sample mean which is 

The best situation for the method of least 
squares is known to be when the errors have a 
Gaussian distribution. Then the median requires 
7r/2 times as many data points to achieve the 
same standard deviation (T as the mean. In 
other words, for the same number of data points 
the standard deviation u of the sample median 
will be about 25 percent greater than that of the 
mean. On the other hand, for non-Gaussian errors 
the standard deviation u for the estimated median 
can be infinitely smaller than that of the mean. 

Another interesting statistical property associ- 
ated with L1 is that the total error function con- 
tains everything in the probability function. By 
this we mean the following: Suppose the random 
numbers xi are drawn from an amplitude density 
function P(x). We previously defined the error 
norm function for the median as 

Now to avoid any confusion, let us redefine this 
as &), because it is estimated from a finite 
sample of data points 

Now we will define E(p) as an integral over the 
ensemble rather than a sum over the sample: 

E(p) = r’” ) p - x 1 Y(x)dx. 
J -cc 

Differentiating this twice we obtain 

dE 
_= 
+ s 

P(x) sgn (p - x)dx, D
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840 Claerbout and Muir 

n-hich shows that differentiating the error norm 
enables one to calculate the probability function. 
It doesn’t work this way with least squares. 
Then it is easy to show that the error norm may 
be deduced solely from the mean and variance 
of the probability density-. Obviously, then, the 
probability density cannot be deduced from the 
error norm. A consequence of this is that surfaces 
of constant error, E(p) = const, are always ellip- 
soils with least squares but they will be some- 
what more elaborate, perhaps highly skewed 
prismoids with asymmetric linear norms. 

Integrating Poisson’s equation a*E/ap*=aP 
once, \vc see that the integral of the probability 
function is half the error gradient. This would 
seem to imply that a confidence region (integral 
of probability) could be defined as any region in 
\vhich the error gradient has a magnitude less 
than a certain value. n-e might \vell suspect 
that in a multiparameter problem as Ax=d 
the confidence region for s is where the error 
gradient vector has a magnitude less than a 
certain value. 

In earlier examples, we expressed the idea that 
the solution is nonunique if the error function has 
a flat bottom. Then the region of uncertainty is 
where the error gradient vanishes. Xow we are 
saying that the region of uncertainty is really 
the larger region in which the error gradient mag- 
nitude is sufficiently- small. How small is suffi- 
ciently small? For the median of a sample of 
100 random numbers, we expect about 50 percent 
probability that the true ensemble median lies 
bet\\-ecn the 40th and 60th percentile. The reason 
is that the square root of 100 is 10 and SO+ 10 
is 40 or 60. Thus in the absence of a rigorous 
theory we believe that the 50 percent confidence 
region in a multiparameter problem is where the 
error gradient vector has a length less than the 
square root of the number of degrees of freedom, 
namely (N,‘M)112. 

Sow let us determine the size, orientation and 
shape of the confidence region thus defined. In 
the problem of Ax = d, IThere one minimizes the 

sum of absolute values of d-Ax, let us suppose 
that we wish to discover the likely error in the 
first component ~1 of the unknown vector x. To 
do this we solve two separate problems, one where 
we append Ax =d with arxr = + m , and one where 
we append it with urzr= - 00. The numerical 
value of a, should be typical of the elements of 
Ail. The weight factors in the appended equations 
would be chosen g+=(N/M)r/* and g-= 
-(N/M)“*. In other \vords, we would solve the 
+ problem and the - problem: 

L 

where 

g-t = 

_I 

1 

1 

s 

d- M 

, and g- = - g+. 

We obtain vectors x+ and x-. From these vec- 
tors we see not only a range in the first com- 
ponent X, but also how the other components have 
reacted to the statistical force we have applied 
to xi. Likewise we may apply d/N/M forces to 
the other components of the x vector to see how 
far they move. 

ALGORITHM 

An algorithm for L1 norm minimization was 
given by Barrowdale and Young (1965). Their 
program seems to require computer time which 
is dependent on at least one term proportional to 
N squared, where N is the larger dimension of the 
coefficient matrix. This makes it more uneconomi- 
cal than least squares in situations where N is 
large. We therefore developed the algorithm pre- 
sented here. 

We first considered an iterative weighted 
least-squares method with weights at the kth 
stage proportional to the inverse of the absolute 
values of the residuals at the k- lth stage. A 
problem with such an approach is that M of 
the weights must tend to infinity as a basis is D
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Robust Modeling 841 

Table 1. Number of iterations required to fit N 
pseudorandom points in a plane to a straight 

where gradient computation with the sgn func- 

line. The number of iterations seems to be tion becomes ambiguous; the gradient then 
increasing more slowly than log, N. The coincides with the edge. This led to the method to 

computed time is in seconds on 
the IBM 360-67 

be described, which geometrically is to follow an 
edge (intersection of hyperplanes) to the point 
where the error is minimum (intersection with a 

N ITERATIONS LOG2N time new hyperplane). We then drop one of the old 
planes and make a new line out of the intersection 

16 4 4 .06 of the remaining old hyperplanes and the new 
32 4 5 .I0 hyperplane. We follow this new line to a new 
64 3 6 .I6 
126 5 7 .50 

minimum and repeat until motion ceases. The 

256 5 6 .94 
calculation takes a finite number of steps, but 

512 7 9 2.63 
the number will not be known until the solution 

1024 6 IO 5.43 is found. The operation of forming a line and 

2048 8 II I I.13 moving on it to a local minimum takes about 
NM+M2+4N operations and about 3M lines 
or iterations is typical for the cases we have 

attained. It was not clear how to do this in a studied. See Table 1 and Figure 14. 
rapid manner leading to the unique solution. This 3NW for asymmetric linear norms may 
Another method we considered and tried is a be compared to NW for the squared norm. We 
gradient descent method. The difficulty with this will now construct an algebraic description of 
is that descent quickly brings one to an edge the geometric operations. The position x on a line 

.-_. 
. . _ . . -1 
._ . - 

FIG. 14. The best fitting straight line to 2048 pseudorandom points. The absolute error minimized is measured 
vertically from each point to the line. 
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842 Claerbout and Muir 

through x0 can be indicated by a scalar parameter 
t. The direction of the line can be specified by an 
M-component vector g. Then any point x on the 
line may be represented as 

x = x0 + gt. (14) 

Inserting (14) into the overdetermined set 

Ax r d, (15) 

we obtain 

and 

A(xo + gt) z d (164 

(A&t ” d - Ax,. 

Defining w and f by 

w = Ag 

and 

(16b) 

(174 

e = d - Axe, 

equation (16b) becomes 

(17b) 

[w]t Z [e]. (17) 

If we solve (17) by minimizing the summed abso- 
lute errors, we also obtain the minimum error 
along the line in (16a). But (17) is the weighted 
median problem discussed earlier. 

Our method of solution to the median problem 
follows Hoare’s (1962). A trial basis equation is 
picked, say wkt =ek. Then 1 is taken to be ek/wk. 
The equations are split into three groups, those 
with positive, negative, and zero residuals. If 
weights in the zero group can swing the balance 
of positive versus negative either way, t is the 
median. Otherwise we must pick a new trial basis 
equation from the stronger of the positive or nega- 
tive group. The size of the group being inspected 
rapidly diminishes. When the right value for k is 
found, the kth eduatidn in both (17) and (15) is 
satisfied. The kth equation is now considered to 
be a good candidate for the basis and we will 
show how to pick the vector g and continue to 
satisfy the kth equation (stay on the kth hyper- 
plane) as we adjust t in the next iteration. 

Now we need a set of basis equations. This is a 
set of M equations which is temporarily taken to 
be satisfied. Then as new equations are introduced 
into the basis by the weighted median solution, 
old equations are dropped out. The easiest strat- 

egy is merely to drop out the one which has been 
in longest. Let us denote our basis equations by 

A’xo = d’. (18) 

A’ is a square matrix. The inverse of the matrix 
A’ will be required and will be denoted by B. Now 
suppose we decide to throw out the pth equation 
from the basis matrix A’. Then for g we select the 
pth column of B. To see why this works, note that 
since A’B=I, the M-vector A’g will now be the 
pth column from the identity matrix. Therefore, 
in the N-vector w=Ag, there is a component equal 
to + 1, there are M- 1 components equal to zero, 
and there are N-M other unspecified elements. 
If the kth equation in (15) or (17) has been kept 
in the basis (18), then the kth equation in Agt 
= d-Ax now reads 

zero t = zero. (19) 

The left zero is an element from the identity ma- 
trix, and the right zero is from the statement that 
the kth equation is exactly satisfied. Clearly we 
can now adjust t as much as we like to attain a 
new local minimum and the kth equation will 
still be exactly satisfied. There is also one equa- 
tion of the form 

one t = zero. (20) ’ 

It will be satisfied only if t is zero. Geometrically 
this means that if we must move to get to a mini- 
mum then this equation is not satisfied so we are 
jumping off from this hyperplane. This equation 
is the one leaving the basis. Of course if t turns 
out to be zero then it reenters the basis. The fore- 
going steps are iterated until such a time that for 
M successive iterations the equation thrown out 
of the basis by virtue of its age has immediately 
reappeared because t= 0. This means that the 
basis can no longer be improved and we have ar- 
rived at the optimum basis and the final solution. 

One of the peculiarities of the FIFO (first in 
first out) method just described of removing 
equations from the basis is that the error may 
stay constant over several iterations because the 
equation being removed from the basis immedi- 
ately reenters. A gradient method was devised to 
pick the best equation to remove from the basis. 
Although the gradient method reduces the num- 
ber of iterations required, unfortunately it approx- 
imately doubles the effort per iteration. The value 
of the gradient method thus becomes more ap- D
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Robust Modeling a43 

parent in problems in which after a solution is 
obtained, the problem is perturbed and solved 
again. With the FIFO method, at least M itera- 
tions are required to be sure that none of the basis 
members must be replaced. This would make it as 
costly as least squares even if the perturbation 
did not introduce new basis equations. 

With the gradient method, the fact that the 
basis remains the same is determined and the new 
exact solution may be found in one iteration. If 
only one basis equation needs to be changed this 
will often proceed and become verified in just two 
iterations. The gradient method for choosing a 
basis equation to be eliminated proceeds as 
follows. 

First we will develop an expression for the error 
gradient in the vicinity of a point x0. Define t as a 
vector with all zero components except for the 
value tk in the Kth component corresponding to 
the equation leaving the basis. Moving from x,, 
in a direction and distance given by t, we have 
x=x0+ (A’)-‘t. Now we develop an expression for 
c3E/&, in order to see which equation to drop from 
the basis for fastest descent. We write out E(t) 

= c 1 ei] = c (sgn eJei in an expanded matrix 
form using the convention that double prime 
refers to those equations which are not in the 
basis: 

E(t) = (h, sgn e”) 

’ {[ ;:,I - [ ;:,I bo+A"t/l} . (21) 

If t=O then h is ambigbous, since e’=o, 
and irrelevant, since it forms an inner product 
with the zero vector d’-A’xo. If we take 
t=(t-t,, 0, 0, . . * ) where tl>O, there is error in 
the first component of d’-A’xo, so we may take 
h to be h=(Tl, 0, 0, . . . )= r&(l). Thus, for 
tk small and positive we have the gradient row 
vector (with a component for each k) : 

= [-6(Z), sgn (e”)] [_A”;“] 9 (22) 
or more simply 

6 = 1 - [sgn (e”)]A”(A’)-I, (23) 

and a like expression for negative tk, 

gk = - 1 - [sgn (e”)]A”(A’)-I. (24) 

The optimum basis will be finally attained when 
for each k it is found that #k+ has the opposite sign 

as 6. This is achieved when - 15 sgn (,“)A”(,‘)-I 
6 + 1. To reach the optimum as quickly as possi- 
ble it seems reasonable to start elf in the direction 
of greatest slope. First, exclude those directions 
with gk+ and gc of opposite sign. Then, of each 

pair 1g.C and (61, exclude the larger because 
convexity implies descent in th<, direction of de- 
creasing gradient. Select the direction of the 
largest remaining magnitude for fastest desceht. 

In programming this method we quickly dis- 
covered a degenerate case. Occasionally, when 
the M basis equations are satisfied there will be a 
few other “tag-along” equations which are satis- 
fied too because they are linear combinations of 
basis equations. It is necessary to note that mov- 
ing from x0 not only gives an error gradient from 
the dropped basis equation but may also intro- 
duce an addition to the gradient from the “tag- 
along” equations. 

Degeneracy comes about when more than the 
expected M basis equations turn out to be satis- 
fied. Of course this should never happen with 
“real” data but it happens very quickly, as in 
Figure 3, with integer test cast data. Let us see 
how this creates a problem. Suppose we are iterat- 
ing along with M basis equations. By casting out 
one equation at a time we have M directions in 
which to try to descend. If descent does not occur 
then we are at the bottom. ;“\;ow if we discover 
that we are at an x0, where M-+1 equations are 
exactly satisfied, then we must cast out all possi- 
ble pairs of 2 from the M+ 1 equations to ensure 
descent if possible. In general, this can become 
quite involved and in practical cases may nearly 
always be unnecessary. Degeneracy is treated in 
all the standard linear programming texts. 

In the hope of developing a fast general-purpose 
algorithm, we finally came to the following con- 
clusions: Each application is likely to be best 
served by a different algorithm. .I sure, but ineffi- 
cient, method is to use standard linear program- 
ming packages as described in the next section.1 

1 One of the authors (JFC) expects to make available 
his program on receipt of a stamljed, self-addressed 
envelope. D
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a44 Claerbout and Muir 

RELATION TO LINEAR PROGRAMMING 

Any linear programming (LP) problem can be 
reposed as an asymmetric-norm problem. Like- 
wise any asymmetric-norm problem can be posed 
in LP form. To see this, we split the unknowns x 
into two positive parts X=X+--X, likewise the 
errors e = ef- e-. The overdetermined simultane- 
ous equations are now written as equality con- 
straints; = [cl], (254 

with the positivity constraints 

X+ 

X- [I e+ 
> 0. (25b) 

e- 

From the point of view of LP, equations (25a) 
and (25b) are constraint equations in the un- 
knowns x+, x-, e+, and e-, and the objective 
function to be minimized is 

X+ 

X- 
min = (0, 0, g+, g-) 11 e+ ’ 

(254 

e- 

The asymmetric-norm description may be un- 
natural when there are many positivity con- 
straints; the LP form may be unnatural when 
variables need not be positive and hence must be 
doubled up. Barrowdale and Young’s program 
(1965) is mainly an adaptation of LP so that the 
big sparse identity matrix and the --A matrix 
need not be stored or manipulated. The cost of 
solving an LP problem with an N-by-A4 coeffi- 
cient matrix is dominated by N2M or M*N de- 
pending on whether one works with the primal 
or with the dual.2 Since least-squares costs are 
domimtingly NM2 where N>>M, one expects 

costs for LP to be about the same. Of course the 
authors cannot speak for all possible methods of 
LP; however, it appears that the lowest LP costs 
are actually more accurately of the order NM2 

* A discussion of duality is found in Wagner (1959). 

+N2+M2. The N2 term is not shared by least 
squares and will dominate when N>M2. The 
extreme case is finding a median. Here LP is much 
slower than Hoare’s algorithim. In such cases \ve 
expect our asymmetric-norm algorithm to be 
much faster than an LP formulation of the asym- 
metric-norm problem. 

CONCLUSION 

In any application where averages are being 
formed or where the least-squares method is being 
used, there is a good chance that the job can be 
done better and perhaps more rapidly with robust 
methods and the asymmetric linear norm. 1Vhen 
the computer cost does turn out to be greater, 
rarely will it exceed 2 or 1 times greater, which 
will often be justified by the better results. In 
studying numerous examples of data modeling, 
we have found no case in which the asymmetric 
norm method gave notably poorer results and 
many cases in which the results are very much 
better. 
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