previous up next print clean
Next: Lateral velocity variation Up: WAVE-EXTRAPOLATION EQUATIONS Previous: Depth-variable velocity

Retardation (frequency domain)

It is often convenient to arrange the calculation of a wave to remove the effect of overall translation, thereby making the wave appear to ``stand still.'' This subject, wave retardation, will be examined more thoroughly in chapter [*]. Meanwhile, it is easy enough to introduce the time shift t0 of a vertically propagating wave in a hypothetical medium of velocity $ \bar v ( z )$, namely,  
 \begin{displaymath}
t_0 \eq \int_0^z \ { dz \over \bar v (z) }\end{displaymath} (14)
A time delay t0 in the time domain corresponds to multiplication by $\exp ( i \omega t_0 )$ in the $\omega$-domain. Thus, the wave pressure P is related to the time-shifted mathematical variable Q by  
 \begin{displaymath}
P(z, \omega ) \eq 
Q(z, \omega ) \ \exp
\left( \ i \omega \int_0^z \ {dz \over \bar v (z)} \ \right)\end{displaymath} (15)
which is a generalization of equation (3) to depth-variable velocity. (Equations (15) and (17) apply in both x- and kx-space). Differentiating with respect to z gives
   \begin{eqnarray}
{\partial P \over \partial z } &=& { \partial Q \over \partial ...
 ...over \partial z} \ +\ 
{ i \omega \over \bar v (z) } \ \right) \ Q\end{eqnarray} (16)
(17)
Next, substitute (15) and (17) into Table [*].3 to obtain the retarded equations in Table [*].4.

 
Table 4: Retarded form of phase-shift equations.
     
$5^\circ$ $\displaystyle {\strut\partial Q\over
 \partial z} \eq $ zero $+\ i\omega \left( \displaystyle {1\over v} - 
 {\strut 1\over\overline{v}(z)} \right) Q$
     
     
$15^\circ$ $\displaystyle {\strut\partial Q\over
 \partial z} \eq - \,i\, {\displaystyle 
 {\strut v k_x^2\over 2\omega}} \ Q$ $+\ i\omega \left( \displaystyle {1\over v} - 
 {\strut 1\over\overline{v}(z)} \right) Q$
     
     
$45^\circ$ $\displaystyle {\strut\partial Q\over
 \partial z} \eq - \,i\, {\displaystyle 
 ...
 ...over\displaystyle 
 {2\,{\omega\over v} - {\strut v k_x^2
 \over 2\omega}}} \ Q$ $+\ i\omega \left( \displaystyle {1\over v} - 
 {\strut 1\over\overline{v}(z)} \right) Q$
     
     
general $\displaystyle {\strut\partial Q\over
 \partial z} \eq $ diffraction + thin lens
     


previous up next print clean
Next: Lateral velocity variation Up: WAVE-EXTRAPOLATION EQUATIONS Previous: Depth-variable velocity
Stanford Exploration Project
10/31/1997