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ABSTRACT

Title: Digital Filters and Applications to Seismic
Detection and Discrimination

Author: Joh F. Claerbout

Submitted to the Department of Geology and Geophysics
on January 14, 1963 in partial fulfillment of the
requirements for the degree of Master of Science at
the Massachusetts Institute of Technology

The first part of this thesis is concerned with the
mathematics of filtering in discrete time. Filters are
defined for the purposes of 1) condensing waveforms into
impulsive functions 2) wave shaping 3) noise suppression
4) signal detection according to the criterion of maximum
signal-to-noise output at an instant and 5) the same over
an interval. The behavior of the complex Fourier trans-
forms of some of these filters is considered and connection
is made with the theory of orthogonal polynomials. This
leads to the possibility of a feed back representation of
these filters.

In the second part, computational experiments are
described in which digital filters are applied to seismic
body waves to i) try to determine whether the first arrival
is up or down on a seismogram corrupted with microseismic
noise, 2) increase signal-to-noise ratio on seismograms
where noise has almost obliterated signal 3) assign polarity
to each of two seismic first motion wavelets so they can
be termed "same" or "opposite," 4) remove spectrum of
seismometer from data, 5) investigate the time varying
spectral structure of underground nuclear shot seismograms.

Thesis Supervisor: Stephen M. Simpson, Jr.

Title: Associate Professor of Geophysics
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INTRODUCTION

Although time is a continuous parameter it often

happens that observations are made at discrete time inter-

vals. Even when continuous observations are made, it is

often desirable to digitize them for computer processing.

This is strong reason to do some mathematics in discrete

time. An even stronger reason as we will see is that

things which are conceptually quite hard in continuous

time have analogues in discrete time which are easier to

understand.
Fortunately, in discrete time many general principles

can be observed with wavelets of very short time duration.
This enables us to consider some very simple examples before
launching off into the general theory. These simple examples,
however, will not forshadow the way in which we will connect
the theory of least squares filters with the general theory
of orthogonal polynomials.

We denote time functions bt with a subscript as the
time parameter. When the time function has finite time

durationwe may denote it as b or (bo b I **...bn). Any

time function which has finite energy is called a wavelet.

The memory functions of filter* too, are sometimes called

wavelets.

I. Introductory Examples
We introduce the main topics by means of some

examples. One is given in discrete time an input series
(bo,bl) of length (time duration) two, a filter (aoa l )
with an impulse response of length two, and the output
resulting from convolution to be (coc 1 ,c 2 ) of length
necessarily three. The c is determined from the a and the
b by convolution as is the usual procedure for linear

filters, i.e.

i C,(- CO 4-CIe



or

1) Spiking filter
To design a spiking filter one would choose (aopa1)

so that a comes out as closely as possible to a spike, i.e.

either (1,0,0) or (0,1,0) or (0,0,1).

2) Wave shaper
To design a wave shaping filter one would choose

(aoal) so that c comes out as closely as possible to some
prescribed waveform (dod 1d,2).

3) A matched filter

To design a matched filter one would choose (aoal)
so that cl comes out as large as possible while making the

unit energy constraint ( cCi = ) on the filter. In this

problem one doesn't care what c o and c2 turn out to be.

4) Maximum energy sum filter

To design a maximum energy sum filter one would

choose (ao,al) so that the energy output ( Cf -C C ' )

comes out as large as possible while making the unit energy

constraint ( c I+ = ) on the filter.

A quick sketch of the solutions to these problems is

as follows: Since the spiking filter is a special case of

the wave shaper it will be sufficient to work out the

solution for the wave shaper. Requiring c' to be as close

as possible to d is equivalent to minimizing the squared

distance between them

(C c -d o - C, + C

(OC t7 d ),+ ( a " hi +*0 b,(a -d



Setting the partial derivatives with respect to ao and a 1
equal to zero we get the simultaneous set for a.

(b +b ) a( + tb, b )a, b d eb, d

(b, b,) C7 b ) a+, b dt + hda

We mention the particular case &d(l,,OO) called the
zero delay spiking filter. The solution of the simultaneous
set is

Recalling that subscripts are the time variable we now
consider the Pourier transform of the solution

The only zero of this complex function is in the upper

half of the complex frequency plane, a fact which will be

shown true for all zero delay spiking filters. This has

considerable importance in feedback systems and in some

other connections to be discussed.

The solution to the matched filter problem posed in

3) above is most easily done by means of Lagrange muitipliers.
We Wish to maximize c under the constraint .

Lagrange's method is then to maximize

vnaxL C- o 0 :7- ( c

Setting the derivatives with respect to ao and a1 equal to

zero, one gets



C1 )

Thus the filter (aoa 1 ) is simply the signal input time-

reversed and multiplied by a scale factor.

The solution to the maximum energy sum problem 4)

is somewhat like the matched filter. Again one uses

Lagranges method and maximizes

C + C - ,\ a : o

by setting derivatives with respect to the components of a

equal zero. This results in the equations

bh,

which is the standard eigenvector (i), eigenvalue (N)

problem. The two solutions to this problem are

C and

It is notable that the fourier transform of these functions

have zeros on the real frequency axts. This will also

happen with longer filters.

II. Spiking Filters

A. Normal Equations

In the first introductory example we considered the

problem of building a two term filter which would condense



a two term input into a spike function. Now we would like

to build an m+l term filter to condense an n+l term input

into a spike.

A data wavelet is given by b=(bo,bl,...,bn). We

plan to construct a filter a = (aoal,...,am). Filtering

is defined in this way: When data b goes into a filter a,

an output wavelet c is produced according to the following

matrix multiplication.

C -

Y1 ': Le (II-1)

This operation is often called complete transient convolution.

This is more loosely written as

ZII bH i (11-2)
-J

Here a small amount of confusion can arise about the limits

of the summation because negative subscripts may appear

within the summation. What is meant is that one should

consider the terms "off-the-ends" of the wavelets to be zero.

With this consideration we might write the limits of the

summation as minus to plus infinity. The artifice of using

infinite limits on the sums turns out to avoid some need-

lessly cumbersome notation.

Now we introduce another wavelet d which will have

the same number of components as c. We call d the desired

output of the filter. We saw that c is the actual output.

The actual output c was seen to be a function of the input

b and the filter a. The problem now is to determine a so



that c and d are very much alike. Specifically we will choose
a so that the difference vector 1ed has minimum length

squared (in n+m+l dimensional space). In other words we
are minimizing

C2 - d) (11-3)

by varying the components of a. Inserting the expression

for c in terms of a and b we get
hl + 11

This function of m+l variables will be minimized if its

partial derivative with respect to each of (ao,al,...,am)

equals zero. Setting derivatives with respect to af equal

zero we get an expression for m+l equations

=1 bD (7. b a - ; ) (11-5)

where one equation is implied for each value of ( 0 - l h ).
These are called normal equations because they say

that the error vector, the quantity in brackets, will be

normal or perpendicular to the space spanned by the vector

set bi. (column vectors in the matrix of equation II-1).

We bring the equations into standard form by bringing
the homogeneous part (the part depending on t) to the left

side and the inhomogeneous part to the right

' b , b c 1 b, 9; (1-6)
t=n J i =e

In matrix form the normal equations become

(x-?)



_b. b. -- b,

which can be abbreviate&

BB a) = Bd~

Jfi I 0;l"-
be

at

cb, .. t b,
\be

bc b I,

and which is identically equal to

The matrix BT B can be written as

I1

roll*rc-

'I-

K l/
'8

where

J

h-J
L-

C

*C '4

IF

This r is called the unnormalized transient

autocorrelation of b.

dc

Iil

(Iz-8)

(II1-9)

7b , 3;t



We list three special cases of these equations.

1. Zero delay inverse filter - This is when ?=

(1,0,0,...,o).
2. Spiking filter - This is when the impulse is

chosen any where in d. It has been frequently observed

in practice that putting the impulse near the middle of d

results in an-actual output C which resembles d more

closely than if d had been chosen as in the zero delay case.

3. Waveshaping filter - This is when d is not chosen

to be an impulse at all, but is chosen to be some arbitrary

wavelet. The filter a then tries to convert the wavelet

b into the wavelet d.

It is worth noticing that the homogeneous part of

the normal equations (II-9) depends only upon the autocor-

relation of the input b and not on b itself. If the desired

output of the filter is an impulse with no delay (d = (1,0,

O,...,0)) then the inhomogeneous part becomes the column
vector

Now in this case we see that the waveform b does not enter

the inhomogeneous part either, except for the magnitude of

b o . Inspection of the normal equations shows that this

magnitude will not affect the waveform of the filter a except

as a scale factor.

Thus the normal equations in this special case (zero

delay inverse filter) depend upon the signal waveform, but

only through its autocorrelation. Since autocorrelations

contain no phase information it would be a curious point as

to what the phase spectrum will be of the solution a. We



will study this later and come to the curious conclusion

that the phase spectrum is such that as much as possible of

the energy in the waveform a is cramped up as close as

possible to a . This is called the property of minimum
phase delay of the waveform a.

To fix ideas we now give an example of the deter-

mination of a zero delay inverse wavelet. Suppose that

the signal we are dealing with is the waveform bm(2,l).

We want to design a three-term filter $a(ao,al,a 2 ). The

desired output must then be n+m+l = 1+2+1 terms long and->

is d = (1,0,0,0). From (II-10) r o = 5, rl = 2, r 2 = 0.

The normal equations are

©, 5 1

and the solution is a (42,-20,8)/85. To see how good the

filter is we compare:

actual output c (84,2,4,8)/85

desired output d = (1,0,00)

B. Minimum Phase
Discussions of minimum phase in the literature are

mostly in terms of continuous time. Here we wish to develop

its properties from the point of view of digital filters

which are not so well known. We begin by considering an

autocorrelation function of the type of equation (II-11)

where

-- ( L 1  -, )'J , 4) J v.... ,) h !  (11-13)

We wonder Vhat functions b might have this autocorrelation.

After we have found the class of functions b that have this

autocorrelation we can enquire which one has its energy as

r)



close as possible to b o and is, therefore, the minimum phase

delay wavelet. One thing which we know to begin with is

that more than one wavelet b may have autocorrelation r

(for example; the time reversed waveform, the negative

waveform, and the time reverse of the negative waveform).

We begin by spectral considerations. Let F denote

Fourier transform. It is commonly known that the energy

density spectrum of the wavelet may be expressed in two

equal ways:

F2(wQ) F F ((c-L (11-14)

Thus the problem is to factor P r ( , ) into Fb(L) and Pb(t k ) .

Then we can simply take the inverse transform of Fb(W)
to get the waveform b. The Fourier transform of T is

simply

a-i (11-15)

and letting z= e we get

- ±,+1 2 f + :Z + ' (11-16)

We notice that the spectrum has been represented as a poly-

nomial in z. The usual procedure in factoring a polynomial

is to find its zeros. Since rk=r.k, we notice that F(Z) is

unchanged if we replace z by z 1 Thus if Fr(Zo) is zero

then Fr(/Zo) will also be zero. Thus for every zero zo,
-1z is also a zero. Also since the coefficients of the

polynomial are real the zeros are either real or they occur

in conjugate pairs. Thus if zo is a zero then Z0 is a zero.

Most of the zeros will probably occur then in groups of

'4 -



four such as

i \z)

-1

Some of the zeros may occur in groups of two such as

One might wonder about the case

0-t

kr

! I Ii RECL~_

u

z,0 rd c



where there are two single zeros on the unit circle. It

turns out that this can't happen. What we are plotting

here is possible locations of zeros of energy density

spectra like equation (I-16). When zo iq on the unit

circle 'JJI is real by the relation Z= e . Thus we

are talking about the spectrum at some real frequency. A

function like the following

which has a single zero at (CQis not an energy density

spectrum because it is not positive for all frequencies.

More generally, energy density spectra cannot have zeros

of odd multiplicity on the unit circle in the .z-plane.

We now know that for every zero Z - c-'! of the

energy spectral polynomial that ~ L is another zero.

After we factor the spectral polynomial we will be able

to write the spectrum as

Fr7) ^7Z-Ir[()(i 2 *. - (1-1.)

or in terms of W

v-,( - er (II-19)

A (.)l~ M~k )



Now if we show A( ) e*B( LJ) then we have factored

the spectrum Fr(LJ) into the desired conjugate parts

But both are polynomials in e of order n and

both A(L ) and B(LJ) have the same zeros. Thus they must

be the same function except for a constant multiplicative

factor. This can be absorbed from the factor rn e
This is called factoring the spectrum.

We notice that the factorization could have been

done in many ways depending on which of the pair of zeros

is put into Fb (t) (the other one then going into Pb(L3)).

Normally, there would be 2n different ways of doing this,

the exception being the degenerate case when zeros occur

with multiplicity greater than unity. Then there would

be fewer than 2n wavelets with the same energy density.

One of these possible factorizations is of parti-

cular signifigance. The factoring is done so that all of

the zeros which are outsideI of the unit circle are put

into Fb(J ) and the opposite member of each pair which is

inside the circle then goes into Fb ( co ) . In this case the

wavelet must be real because each root is either real or

it occurs with its complex conjugate.

Combining all complex roots z with their complex

conJugates + )' -) we write for the wavelet's

transform

Taking the inverse transform and letting "*" denote con-

volution

1 The case with zeros exactly on the unit circle corresponds
to a spectrum which is exactly zero for some real LJ . In
any physical case one can usually perturb the spectrum slightly
to avoid this difficulty.



(II-19,1)

(II-19,2)

Thus we have a string of convolutions of many wave-

lets each of either 2 or 3 instants duration. Since all

of the roots were chosen outside the unit circle we have

A > > and >

This means that in each of the wavelets the first term is

larger in absolute value than the last. Thus in the

convolution of all terms, the energy will be compacted

toward the beginning. If any one of the zeros had been

chosen instead, from inside the circle, then the energy

would be spread further out on the time axis.

We will now prove that

-7- (6i)
the summed energy from 0 to any time t for the minimum

phase wavelet is greater or equal to that of anyother wave-

let with the same spectrum.

1k



Consider a two term wavelet (b,s) "bigger," "smaller,"
with its zero outside the circle. Convolve it into an

arbitrary wavelet p = (poP ...,P k). The result is

-1

(b b,, by, spol I .A)

If instead we had chosen the reversed wavelet (s,b) with

its zero inside the circle, we would get

A sNb>pl (SPC -4 &w bj)
Then we consider the partial energy from time = 0 up

to time = T and tabulate the difference between iand out
to time~ = T and tabulate the diffrence betwen Pin and Pout

ij7(p~-)
TTO

rc

T

-i hu- (51r) ±-hp"/ j- &s) TPL

- ()sy j bg)b
[by,,) (bpy, )a

- bt.p

Etc

(hkY
- (r' ) 15

T-- A~ (b PA) t-,L4 -0

_ _
= (6)- S- ) p.- (s ok

(b

(b y) + ( y)

- ~pl)"

-r Z- j

- (Sli~? -(b )--



_130
Thus we conclude that for any time T the wavelet pout

with the zero outside the unit circle contains (b2- 2~

more energy in the interval O0 t ~T than the wavelet Pin

with the zero inside, The exception is at the last lag

when they have both put out the same total energy. It is

not difficult to show that the above statements would still

be true if components of vectors were complex and squaring

were replaced with multiplying by conjugates.

To prove the minimum phase wavelet delays energy the

leasts one imagines that the convolution (11-192) had

been done so that k zeros were outside the circle and

n-k were inside, We have just shown that if one of the

zeros from inside were replaced with an outside zero, that

the new convolution would have less energy delay. This

algument is repeated until all zeros are outuide.

Finally, we show that zero delay spiking wavelets

determined by least squares will have all their zeros out-

side the unit circle.

We recall the following from previous portions of

this thesis:

1) The least-squares spiking wavelet is a wave-

let a which when convolved with a given wavelet b tries

to give an output equal in the least squares sense to

d = (do,O,0,...,O). Specifically, a is chosen to minimize

' e M h-r 

2) We recall that the choice of size of d affects

the solution vector a only as a scale factor. Thus do
could always be chosen so that ao a 1. We note that a

scale factor has no effect on a per cent total energy

graph,

3) We recall that if a zero of a wavelet is removed

from inside the circle and replaced by the conjugate inverse



zero outside, that the modified wavelet has a per cent

total energy curve which lies above that of the original

wavelet. The per cent total energy curves may touch one

another at points except for at time tmO where the curve

with fewest zeros inside the circle is definitely ab6ve.

We can view the normal equations a minimizing the

energy in a convolve b after time t=O subject to the con-

straint that the energy at t=O be equal to (aobo) 2(b) 2

That is, we could view the normal equations as minimizing

the per cent energy after t=O. But this is the same as

maximizing the per cent energy at t=0. But if the per-

centage energy at t=O is to be maximized for the wavelet

a convolve b, then there must be as few as possible zeros

inside the circle. This happens if a has none inside and

hence is minimum phase.

C. Connection of Least Squares Inverse Filter with Orthogonal

Polynomials

Given an energy density function

T )= (2 )V2 Ah , 4 I, + + , +--- 4 Z ii t-A4

one could take that function and use it as a weighting

function to define a set of orthogonal polynomials. We

choose the interval of orthogonality to be the unit circle

in the z plane which corresponds to the real frequency

axis from -4 to + I in the Go plane. Thus we would con-

struct a set of polynomials fk

so that

U-10

Tr f * T Y kh ( -- Lc



on the real axis. Expressing the same thing with complex
polynomials on the unit circle one gets

h -c (I1-21)

We illustrate the construction of these polynomials

in such a way that it will be seen to be equivalent to the

least squares normal equations. Consider the construction

of f2' Let nfr_.1f denote the dot product defined by

equation (11-20). The vector f2 is of order two say

C t +C -

and must satisfy the orthogonality conditions

f(11-22)

Since f2 perpendicular to any linear combination of

fo and fl it is perpendicular to any polynomial of order

less than 2. Thus the orthogonality relations could be

written

(11-23)

This set of orthogonality requirements (II-23) can

be written out in full as

[I, il c' + C1J c, [(4- t-i) 0

[L J 4- ] coC+ , z Fzi[7 c c
[I)i % c ,Jc, I i (11-24)



We now examine the coefficients in this simultaneous

set. Consider [Z n ZmI

Hence the orthogonality relations (II-24) can be

written

S r c (11-25)

This is almost exactly the same as the normal equa-

tions (11-7) for the least squares inverse filter. The

only differences are a scale factor in the inhomogeneous

part and "time reversal" of the solution. But this will

not affect the waveform c except by a scale factor and

time reversal.

Thus we have shown the important result that follow-

ing two problems are equivalent:

1) Find polynomials which are orthogonal on the

unit circle with weight )

2) Find least squares zero delay spiking filters

of different lengths for the spectrum ~tr(t )

This result is important because it allows us to

apply many results in the classic field of orthogonal



polynomials to least squares filter theory.

One application is to use the recurrence relation between

successive orthogonal polynomials to generate the filter of length

n+l from the filter of length n. This trick greatly facilitates computing

the solution of the normal equations. The relationship for getting

fm+l (Z) from fm(Z) is the recurrence relation (Geronimus 1960)

o(, I,-F (n)=- oXi,+ T.i; 2~ +tc mr1  (11-26)

where the two side conditions used to get c(Ivl ~ and i

are first

and second

( '1 .1 ) - + h (II- 28)

The choice of sign for the square root is immaterial as far as

polynomial orthogonality is concerned. It is customary to choose it

so that the first term in the spiking wavelet is positive. The

recurrence relation can be started off by choosing any value whatever

for 4 . The result is just a scale factor in the inverse wavelet.

From equation (11-20) it is evident that the recurrence formula can be

started off at (A", = () l .

These relations appear to have first been derived by Szego (1939).



Another readable account is Geronimus (1960). Levinson (1939) also

derived similar, but not identical relations for the filter problem,

although he does not mention any connection with orthogonal polynomialso

Levinson's scheme is even more useful than the polynomial recurrence

relations because it allows solving the normal equations for arbitrary

inhomogeneous part.

Another valuable result of the connection of filter and poly-

nomial theory is the following. All the zeros of all the polynomials

generated by the recurrence relation above are known to lie inside

the unit circle (Geronimus 1960" This means that the time reverse of

the associated filter is minimum phase. Because of this we can

invert the wavelet, i. e. take the inverse of its spectrum.

S-- b 1 -_ " 7 +~ '

Since the polynomial a(z) has no zeros inside the unit circle,

the infinite series b(z) converges at least up to and including the unit

circle. This means that the wavelet bk has finite energy and is mini-

mum phase. The wavelet a has a spectrum which is in a least squares

sense* equal to l/ ). The spectrum of the infinitely long wavelet b

is exactly the inverse of the spectrum of a. Hence we conclude that

the spectrum of b is equal in a least squares sense to { ( ) . Thus

we have found a way to compute in a least squares sense the minimum

phase wavelet of a given autocorrelation function. Futhermore, the

*Least squares in the sense that fi b) -1 is minimized
where b(L) has power spectrum .)

AIi



computation is quite easy because of the recurrence relation. It is the

most efficient method known to the author who has computed 500 terms

of the minimum phase wavelet in about a minute on an IBM 7090 com-

puting machine.

D. A Comment on Autoregressive vs Moving Average Representations

A question arises whether it is more efficient to characterize

a stochastic process by the first n terms in its "autoregressive operator"

or by the first n terms of its "moving average operator. " What is meant

by this is the following: Usually filtering is thought of in terms of

convolving filter coefficients b with a data series. This might be called

"moving weighted averages" or more commonly, "moving averages. "

This is equivalent to multiplying the Fourier transform of the data

by that of the filter. Substituting z= e it is equivalent to multiply-

ing z-transform polynomials which convolves their coefficients.

Filtering could be done in another way called "autoregression. " Instead

of multiplying the data polynomial by b(z) one divides it by the poly-

nomial a(z). This is called 'feedback" filtering for reasons which

should be apparent to anyone who has ever divided polynomials by the

method of synthetic division (see Lanczos 1956).

By "efficiency" we mean the following: suppose we want a

filter to representi) and it is easy for us to compute both a and b

quite accurately; in fact, we wish to use many fewer terms than we can

compute. Which characterizes (0) more accurately for small p,

the moving average approximation b, +- b,z -'4-" bor the



autoregression approximation 1/(ao+a, z+.. +ap z ) ? Whittle (in

press) observes that the autoregressive coefficients seem more

efficient and suggests that the reason is that for the series he deals

with -(economic), autoregression is a more realistic physical model.

The author has also observed that the autoregressive coeffiscients

seem more efficient in geophysical time series, but suggests a different

reason. When we digitize continuous functions we usually digitize

at a rate high enough to avoid appreciable frequency fold over. A

typical spectrum looks like

\1

The inverse spectrum looks like

Since the inverse spectrum tends to have much more band-

width, its wavelet tends to be shorter. This would indicate that when

these conditions apply a filter using feedback can do a better job for

the number of components than a filter which doesn't.



III Generalized Wave Shaper with Noise

A. Derivation of Normal Equations

Here we imagine the following model of a physical

system to apply

Physical System

white light - linear filter b information
Sin o m a i n adde

white light linear filter uk -- noise

constructed
filter

desired output

We want to design a filter to operate on the output of the physical

system to give us some preferred output. One set of formulas will

enable us to handle the following problems.

Problem 1. Given the information wavelet bk , the power of the infor-

mation, and the power spectrum of the noise, convert each information

wavelet bk which comes out of the system to some other waveform dk.

For example we may be converting a long drawn out function bk into a

nice short one like a spike or a minimum phase wavelet. Of course, we

do not want the filter to respond very much to noise.

Problem 2. Given the information power spectrum and the noise power



spectrum design a filter so that just the information comes out as

uncorrupted as possible. The information might be allowed to come out

with some time delay. On the other hand we might want to predict the

information before it comes out of the physical system. To see that

prediction is a reasonable thing to doconsideri f an extreme case where

noise is absent, the linear filter bk "rings" for a long while, and the

information white light series consists of impulses widely spaced in

time. Of course we cannot predict the onset of a ring, but once a

ring starts we can easily predict the rest of it.

Problem 2 was treated by Levinson and Problem 1 was solved

by the author in connection with some geophysical problems. They

are very little different. It will be seen that Problem 2 is a special

case of Problem 1 so we begin with Problem 1 and specialize the

results later.

Let b be the signal wavelet of length n+l.

Let Cl be the optimum filter of length m+l.

Let d be the desired convolution of a and b of length n+m+l.

Let U be any noise wavelet.

Let be a white light series which is convolved with u to give a

statistical model of the noise process.

Let A be a white light series of signal wavelet (b) arrival times.

Let - denote convolution.

The input to the filter is the signal plus noise, i. e., (b-w + u. t ).

The actual output will be this convolved with the filter, i. e. (b x- t A YU )*a.



The desired output is the wavelet d, occurring every time a signal

wavelet arrives, i. e., G~ . The expected sum squared error

is defined as: expected sum squared error = expectation of

(actual output-desired output)"

Since convolution is associative and commutative it is valid

and will be convenient to drop all asterisks in the expansion of the

above square.

By taking the expectation inside, it is seen that the last two

terms depend on E( ). We will assume this to be zero. This

means that the signal wavelets arrive at times which are uncorrelated

with the noise wavelets.

We recollect the remaining terms.

(b A - ) 7E -t (11 -3)

From here on the derivation will algebraically resemble that of

the spiking filter. It is convenient to rewrite these convolutions in

subscript summation notation, i. e.

(b -d)'--J (j.; -- ")(b -.Oj- -)
(IC) C

Cilb;Q;) jAr k i



Since we hope to minimize the expected sum squared error we

will take its derivative with respect to each ofithe independent variables

ai and set each one equal to zero. Hence

0 - (III 5)

This can be expressed in more compact form

R~q R:_ b , hk-
(III. 6)

having noticed that R and W thus defined are autocorrelation matrices

or Toeplitz matrices. The expression simplifies to:

o=C~lr~ r E) 7)a ~(c'ci
C) (isp

CA , - t C,J CrI1{ Ci 0Cr i t -

(111- 7)

where (S ' is the kronecker delta.
J

Utilizing the symmetry of the quantities in the left hand

square brackets we can write:

E ( d = E (y b (111-8)



These equations can easily be rewritten as a matrix

equation in the same way as with the spiking filters.

If the desired output dk were just the signal bk
possibly with some lag or some negative lag (prediction)

then the right hand side no longer contains the waveform

bk but only its autocorrelation. This would be the

specialization to Levinson's problem.
We now give some examples writing equation (III-8)

in matrix form.

Example 1 The signal waveform bk = (2,1). The signal

arrives with a frequency which gives it an average power

C , . The noise is white and has unit power. The filter

should have 3 terms. The desired output is a spike after

unit delay, d = (0,1,0,0). The normal equations become

S7 :Z 0 0 C\ , OIF s- a I+ 

Example 2 Like example 1 except the desired output is

the same as the signal input with no delay. The normal

equations are like example I except the right hand side

becomes the column vector (5,2,0)T .

Example 3 Like example 2 except that the signal should

be predicted by one time unit. The normal equations are

like example 1 except the right hand side because the

column vector (2,0,)T.

IV Matched Filter

Suppose one is given an autocorrelation function of

a noise process and also a signal wavelet. It is desired

to detect the arrival of the signal wavelets in the pre-

sence of the noise. The method to be used is to filter

the incoming mixture of signal and noise and then say that

signals arrive where there are maximums in the output.



How should the filter be designed? If the noise were white

and the filter memory wavelet had unit energy, then the

power output of the filter with noise as input would be

unaffected by the frequency characteristics of the filter.

Then the filter need concern itself only with the signal.

Thus the introductory example (Section I, no. 4) gives

the whole story when the noise is white. The result is

simply that the signal filter coefficients are just the

time reverse of the wavelet and the actual filtering

operation then amounts to crosscorrelation of the signal

wavelet with the incoming data. If the noise is not white

we must do something a bit more complicated.

Using the same notation as the previous section, the

power output of the filter with noise input will be the

quadratic form £_) Vj i yc j We can choose the magni-

fication constant of the filter to be such that this power

is unity. This leads to the constraint

For simplicity we choose to make the filter have

the same length as the signal wavelet and we choose to

have the maximum output come when the wavelet is exactly

in the middle of the filter, i.e., the nth lag of the

convolution where both a and b have length n. Thus we

maximize

L (sum on i)

subject to the constraint equation (IV-1). Using Lagrange

multipliers one maximizes

v4' n + /\ ( U> ; -t -+.I (IV42)L LL

~jb



We have differentiated terms exactly like this in previous

sections. Letting br represent the time reverse of the

signal wavelet and U represent the noise autocorrelation

matrix, we write the result

+ N (Iv-3)

solving for a we get

A LeTHe

CITr-, /~
(iv-4)

We can usually ignore 2 X E( V) since it just amounts

to a magnification factor in the filter.

In practice one may prefer not to invert the matrix

in (IV-4) or solve the simultaneous set (IV-3) since there

is an easy way around it. One might simply prefilter the

data to whiten the noise and then filter with br . The

results would be similar, the difference arising from end

effects.

More is known about the matched filter. Suppose one

wants to choose a threshold value for the output and

announce "signal" whenever the threshold is exceeded and

"no-saignal" when it is not. Then one would like to maximize

the probability of guessing correctly. It can be shown that

if the noise is gaussian, then the matched filter and pro-

per choice of threshold will maximize this probability.

V. Maximum Energy Sum Filter

Consider the following physical problem. A trans-

ient signal waveform is sent through a dispersive media.

The media is such that it may badly disperse the wave

without altering its spectral content a great deal. We

know what spectrum to expect of the signal and we know the

spectrum of the ambient noise. We would like to design an

VJ
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apparatus or procedure to enable us to make a best guess

as to when the signal arrives. The matched filter is not

the answer because we do not know the exact signal shape,
only its spectrum. The spiking filter is not appropriate

for the same reason. The Wiener-Levinson filter tries to

make the output look like the signal input. In this case

we don't even know what the input waveform should be, we

would Just like to try to decide approximately when it

arrives.

A solution to this problem is to design a filter

which puts out lots of energy when the signal comes in

and minimum power when only noise comes in, Thus our

decision would be based on a system like the following:

signal and filter squarer output
noise -

We would search for the time t m when the output was

maximum and then we would say that signal arrived between

time tm and time tm-T.

Taking this model then, we seek to maximize

energy output of filter due to signal in interval T
expected power output due to noise

(V-l)

Notice the similarity of this problem to introductory

example 4,. It will be seen that it turns out to be exactly

the same if the noise is white.

Since we are interested in a computer application,

we again specialize ourselves to filters and signals which

are discrete in time, and spectra which whose autocorrelations

are of finite time duration.



Using the finite autocorrelations of the signal and

noise we define two wavelets bit a signal wavelet, and u i ,

a noise wavelet. This can be done be the proceduresdq-

cribed earlier. These two wavelets may have different

phase spectra than those of our physical problem, but they

will have the correct autocorrelation. Thus we begin with

the definitions used earlier:

a i - "ideal" filter coefficients (ai = 0 if iO or i>M)

bi = signal wavelet (b i = 0 if iO or i>N)

u i = noise wavelet (ui = 0 if i<O or i>N)

S = white light series associated with noise process

-has variance 1i.

We use subscript summation notation; the expression

has an implied summation over all values of the repeated

index J3 3 goes from minus to plus infinity. Thus the

given expression is a vector with free index k and i6 the

complete transient convolution of a and b.

Expression (V-l) for % with this convention now

becomes

S- (v-2)

We notice that a quantity like bk-.bk*i is the

autocorrelation matrix Bi j of the signal bi and denoting

likewise Ui. j 0 Uji as the autocorrelation matrix of ui,
the expression (V-2) becomes

B/\ o ; (v-3)
(J°4,c n, C '



To try to maximize this ratio, we take its partial

derivatives with respect to each of the independent variables

a) and set them equal to zero.

S-0 nm, n (-4)

Multiplying by (Um.naman) we get

The derivative operations are the same in each term,

working only with the first we get

-2, c,,, aci o

where S-is the Kronecker delta, Now utilizing the

symmetry of Bi. j and the fact that i and J are dummy vari-

ables, this becomes

tC K0 L (v-6)

Applying this result in equation (V-5), we obtain

o *- n a(v-7)



This is the generalized eigenvalue problem. Further-

more, since B and U are positive definite*, this problem

is known to have M distinct eigenvector solutions for the

a i associated with M eigenvalues A m. The eigenvalues
must be real and positive. Assuming that the eigenvalues

are distinct we select for our solution ai that eigenvector

which is associated with the maximum eigenvalue. We note

that eigenvectors are determined only to within a scale

factor. This corresponds to the physical fact that the

energy power ratio (V-l) will not depend on the amplifica-

tion of the filter.

Looking bask to equation (V-2), we see that the numer-
ator is the energy in the complete transient convolution

of ai and bi , and denominator is likewise for ai and ui.
The energy in the convolution of two transients is well

known to be the integral of the product of their energy

density spectra. Therefore, if we were able to find

another wavelet ai which had the same amplitude spectrum

as a i , we would have another solution to our maximiration

problem.

From the z-transform analysis described in Section

II, we know that many finite wavelets may have the same

spectra. These different wavelets are obtained (by a

method due to Wold and also Fe/jer) in the following way:
1) Compute the autocorrelation of the given wavelet.
2) Factor its z-transform. 3) Its zeros must occur in
pairs, specifically if Z i is a zero, then 1/1i is a zero.

Select either one from each pair and form (EZ- 1 )(Z-Z 2 )(ZZ 3 ).
This is the z-transborm of a wavelet with the same auto-
correlation as the given wavelet. 4) Normally there are

2n possible different wavelets. By the reasoning of the

preceding paragraph, these should all be solutions of our

maximization problem.

This is an apparent contradiction to the fact that

the eigenvalue problem (V-7) is known to possess a unique
*To see that B is positive definite recall that BBA is a
quadrati form representing the energy of output when the
wavelet b goes into the filter a. Clearly this energy is
positive for any real values of a. This means that B is
positive definite.
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eigenvector solution a i for the maximum eigenvalue t\ a

The contradiction is resolved if and only if all of the zeros

of the z-transform of each solution eigenvector lie on the

unit circle. Then the zeros z i equal their inverse conju-

gates i.e.

and the 2n different selections of one from each of the n

pairs of zeros all generate the same wavelet.

There is a curious consequence of the fact that the

zeros of the z-transform of this filter must be on the unit

cirble. It is that the eigenvectors must be either sytmmetric

or antisymmetric (for example (2,3,2) or (4,0,-4) respec-

tively). Whether it is symmetric or antisymmetric depends

upon whether there are an even or an odd number of zeros

at the point Z=I.

This is a simple consequence of the fact that the

eigenvectors are real, and any roots of the z-transform

which are complex must occur in conjugate pairs. By the

main theorem, they must also lie on the unit circle. For

the root 3 2 ~j we may then state

and

Hence, the coefficients of the second order and the zero

0 1 ) ;



order terms in z are identical for all C and and the

wavelet is symmetric. The same is evidently tribe for all

the complex roots. The net convolution of all these

symmetric wavelets is symmetric. Hence, the eigenvector

would have to be symmetric if all the zeros were complex.

However, we also have the possibilitV of zeros at two

places on the real axis, -1, and +1. The -1 corresponds

to slymetric wavelet (1,1), and the +1 corresponds to the

antisymmetric wavelet (-1,1). Convolution by the first

leaves the eigenvector symmetric, but an odd number of con-

volutions by the second leave the eigenvector antisymmetric.

Numerical Examle

Let

b( 2 I) ~

U,; (tI)(3 i)

and

6 ~-s/L

I Cj = I -) I )

: O ( I?

N -~

Jo

LI

l0

solving

we get

Xia7y

I-XU=a=

( I -I)



The eigen-values are distinct. The eigenvector
solutions for the maximum and minimum eigen-values are seen

to be symmetric, and the remaining eigen-value has an anti-

symmetric eigen-vector. The zeros of the z-transform of
the eigen-vectors are then computed and plotted:

F1 ) /+ = /,7L/C2+L4(57j- )-(7-2)(.7 (57 -7)

F4c)

The magnitudes of all the zeros are seen to be

equal to I

X41ax

AX "1;Jt le

-~

B. Maximum Energy Sum Filter from Spectral Considerations

We consider the same problem of determining a filter

ai of finite length in discreet time which is optimum in

the sense that it maximizes the ratio:

I -a +, .i -- -z - -,:~sL i- 7

X -M *.'



(energy output of filter due to sinal)
I (expected power output due to noise)

This time we solve it in the frequency domain rather
than the time domain. Define the filter energy spectrum
as A(Wt), the signal energy spectrum as B( w) and the
noise power spectrum as G(W). Then the above ratio may

be written:

f - A(V.B*1)

If the maximum of this ratio is finite then it is
necessary that for perturbations in A( ) we will have I = O.

Since A( ) appears in both numerator and denominator

it is clear that a multiplicative scale factor in A( )
will be unimportant, in other words we can choose the scale
factor as we wish. In fact, we can choose it so that the

integral in the demoninator is some constant, i.e.

-1

Then the problem can be restated as maximizing the
numerator

S- (V.B.3)

subject to the constraint equation (2).

This is a classic problem in the calculus of varia-

tions (see for example Hildebrand, Methods of Applied Math,

section 2,6). The pro4edure is to maximize the quantity



+ff A4

-T -IT
(V.B.4)

subject to no constraint. And then later X can be

determined by (2). - is called the Lagrange multiplier.

Thus we solve the problem:

-T
(V.B.5)

Since we are dealing with functions in discrete time,

the spectra in equation (5) will all be periodic with

period 2 (Nyquists). The spectra are also even functions

of (I. Therefore, A, B, and G can always be written as

iqi~ 4 x C -.eQ h* Ii4l

F)EQ')c r>O

Z
tel -- I~I--
jc'

r; C c-z h L

i C-t- h t
(VB.6)

Fourier cosine series whose coefficients, the Greek letters,

can be recognized as the autocorrelation functions of the

respective time functions. The limit onl the summation for

A(Lu) is finite because the filter ai was chosen to have

finite length and hence so must its autocorrelation. We

apply these forms to equation (5).

L+#>r! s a'2:-oO (V.B.7)

hj
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The variation is intended to be over the correlation

function X of the filter impulse response a i . The 0I(

are not, however, allowed to be varied arbitrarily, they

must only be varied in such a way as to keep the energy

density A(U1W) positive for all L- . In other words an

arbitrary selection of the numbers 0(' may not really be

an autocorrelation function. Therefore, we will express

the 0(' in terms of the impulse response ai and do the

variation in terms of the ai instead, because any set of

numbers ai is a valid impulse response. The expressions

relating ns; and a i are:

o a 2 2

(O0 = a + a + a + . . . . . + a

o 1 = a0al + ala2 + a2a . .. + aN-laN

o(2 = a0 a 2 + ala3 + a2a 4 + . . . + aN-2aN

(v.B.8)

N = ao0aN

Performing the variation merely amounts to writing

the Euler equations in terms of the ai , the ai being

completely independent variables. Our integral is of a

particularly simple form, therefore, we can obtain greater

insight by performing the integration directly. Then we

can set the variations (derivatives) with respect to the

ai equal to zero.

The integrand is the product of two cosine series.,

Using the orthonormality of these cosines over the interval

+ i to -it equation (7) becomes on integration

N _ (VB.9)
C1. C
j ~



It is noteable that the formulas (9) no longer
contain the infinite sum which is in formula (7). This
important result will be referred to later. It means

that only N lags of the signal and noise autocorrelations
are needed for the solution, N+l being the length of the
impulse response of the filter ai which we are construct-
ing.

We now differentiate the Ch in equation (8) with

respect to the independent variables a . This may be

written:

J aj-n + a +n

where O0 4  N
O~n N

and aiO 0 if

ai 0 If
i<0
i>N

We now insert this into formula (9) and reorder

terms according to increasing subscripts of aj. This

step, although it is complicated amounts to straight-

forward symbol manipulation. The final result can be

written as the following matrix equation:

q.~

6~c
~ ~)o

9

C

t~k) Q'c, clN

(V.B 11)

Thus we are led to the same

considerations (V-7). One wonders
result as the time domain

whether there might

1.4



be a useful connection here with the general theory of
eigenfunctions as there were useful results of connecting
least squares filters with the theory of orthogonal
polynomials.

It is possible and seems likely that some of the
statements about decision rules, maximum likelihood, etc.
which are made about matched filters in Gaussian noise
could also apply to the maximum energy sum filter*.
This is a topic which does not appear to have been inves-

tigated,

* This possibility was suggested to the author by both
Professor E. M. Hofatetter and Professor T. R. Madden.



SECTION VI First Motion Spiking

A. Object and Motivation

The direction of first mction of the ground at a
seismic station has received considerable attention in

nuclear detection. The essential idea is that the first
motion resulting from an explosive blast should always

be upward and away from the epicenter while this would
probably not be true for more than half of the time for

naturally occurring seismic events. This criterion has

been shown to be a reasonable one for the Logan and

Blanca test shots for distances less than about 700 km

(Romney, 1959). The primary difficulty in considering

seismograms taken at greater distances was the reduced

signal-to-noise ratio further aggravated by the fact
that the first motion was in almost all cases smaller
than the immediately following oscillations. On some of

the seismograms taken at greater distances the first
motion appeared to be in the wrong direction despite a
fairly strong signal-to-noise ratio. The motivation of
the experiment to be discussed is that perhaps the oscilla-
tions immediately following the first motion also contain

information about the polarity of the first motion, but

contain this information in some latent way. This idea

is not new, but no effective method has yet been applied

to extract this information.
A mathematical technique for extracting this type

of information is the spiking filter,

B. Method and Philosophy of the Experiment

First a wavelet, the first motion and several sub-

sequent wiggles, is selected from a relatively near-shot,

low-noise, seismogram. Then a filter is designed such

that with the wavelet as input, it will produce little

or no output before and while the wavelet is entering the

filters a large positive spike when the wavelet has fully

42;



entered the filter, and little or no output thereafter.

The filter is also designed to have little output when

naturally occurring microseisms are its only input. In

practically all cases, a filter cannot be designed to do

these simultaneous tasks exactly, but the one designed

does them in the least-squared-error sense. That the

ultimate error will be sufficiently small for practical

purposes must be tested computationally.

The filter is then applied to a seismogram with

a poorer signal-to-noise ratio which may be at a differ-

ent orientation to the seismic event and at a greater

distance. If the filtered seismogram consists of low

level noise preceding the abrupt arrival of a spike of

positive polarity we might then infer that the direction

of first motion is the same at the second station as it

was at the first, If the impulse had negative polarity

we would infer that the second signal had undergone a

180 phase shift with respect to the first signal. If

no impulse showed clearly through the background noise,

we would infer that this experiment was not successful.

To be more precise, in least-squares fitting to

a positive impulse we are assigning a polarity to a

clear first arrival wavelet; then we produce a filter

which can be applied to wavelets from other seismograms

of the same event which assigns a polarity to each of

these.

Finally, we are in a position to examine the

possibility that the polarity is the same at all orien-

tation ifrom the source. If it is, we infer that the

source has rotational symmetry and is probably not of

natural origin. If the polarity on the first clear

arrival wavelet is assigned according to the direction of

first motion, and if wiggles subsequent to the first

motion really do contain latent information about the

first motion, then the hypothesis tested by this experi-

ment is very similar to, although not exactly the same



as, the hypothesis that the first motion caused by a

nuclear explosion must be up and away at all source orien-

tations, To point out this difference more clearly, con-

sider the seismograms mentioned earlier on which the first

motions appeared to be in the wrong direction. Possibly

the first motion was in the right direction and obscured

by the noise, but it might actually have been in the

wrong direction. Even if it was, its polarity as deter-

mined by the first few wiggles might have been the same

as that of other seismograms of the same nuclear event.

C, Choice of Parameters

Several of the seismic records from the Logan under-

ground nuclear explosion:were picked by eye, that is, the

first motions were.identified approximately and the first

3.5 to 4.0 seconds of the seismic trace were considered

to be the essence of the signal wavelet. The section was

then tapered smoothly to zero on each end. The exact

way in which this was done is depicted in Figure 1. Only

the shorter of the two wavelets shown (the bottom in each

frame) was used. The wavelet length, about 3.75 seconds,

was selected because it is long enough to include the

requisite "first few wiggles" but not so long as to make

the solution of the simultaneous equations excessively

time consuming. A sixty point inverse wavelet which is

three seconds in length at our standard digitization rate

requires about one minute of IBM 709 time to compute.

The choice of a method of tapering the ends of the

wavelet was rather arbitrary. It was motivated by two

considerationst i) The time of the first motion arrival

could not be determined exactly, and to be sure that the

first motion arrival was included, about 3/4 second of the

seismic trace before the apparent arrival was included in

the wavelet. Since it was also felt that the wiggles

nearest the first motion probably contain the most infor-

mation, wiggles further away were also tapered in amplitude.



2) If the wavelet were just extracted from the seismogram,

it would be likely that there would be strong discontin-

ulties in both the function and its derivatives at these

ends. It would be undesirable if the spiking filter

turned out to be particularly sensitive to these artifi-

cially caused discontinuities; hence, they, too, were

removed by tapering.

To select the coefficients of the spiking filter,

the following quantity was minimized:

sum of square error =

(delta function minus the convolution of the filter

with the wavelet)2

+ 2(the convolution of the filter and the noise)2

The noise referred to in this expression is the

microseismic noise which just preceded the arrival of the

signal wavelet. The 2 in the second term on the right in

the above expression was selected on the basis of results

of earlier crude computational experiments. The choice

of the delay in the delta function in the first term on

the right in the above expression was made such that the

filter would be acting on all of the terms in the wavelet

at the time of the filter's spike output.

The length of the spiking filter was chosen to be

equal to the length of the wavelet, not because of theoret-

ical necessity, but because it was thought, for various

reasons, to be a reasonable choice.

The choice of practically all of the parameters in

the above discussion is somewhat arbitrary. They were all

selected initially on intuitive grounds, Some have been

more or less justified by simple couputational tests, others

remain to be investigated.

D. Results

As a check on the computations and a check that the
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sum-square-error would be small enough to make the scheme

useful, the spiking filter was applied to the seismogram

from which it was derived. This is presented in the upper

left and lower right frames on Figure 2 and Figure 3. It
is seen that the noise preceding the first motion is in

all cases reduced and that the first motion is condensed
to a neat spike, just as it should be. The "hash" which

is near the beginning and end of some of the convolution

traces is the result of applying a filter onto the ends of
a finite segment of data.

The conclusion to be drawn from the first part of

the experiment is that a least squares error filter can be

determined with the resulting error small enough that it
will be useful in simultaneously reducing noise energy
and condensing a particular waveform into a spike.

The next part of the experiment was to apply these

spiking filters to other seismograms. The spikes still

seem to be present although they are almost down to the

level of the noise. This is shown in the lower left and
upper right frames in Figure 2 and Figure 3. In some
cases the noise before the first motion appears to have
increased after filtering. This is because all of the

traces on the figures were scaled to have a certain maxi-
mum amplitude amenable to scope display, Since the spike

was always smaller in cases when the spiking filter was

applied to other records, the resulting displays were

amplified. The spikes generated from the application

of spiking filters upon other seismograms are not clearly

distinguishable from the noise in all cases. The conclu-

sion to be drawn from this is that the first motion

wavelet loses much, but not all, of its character in going

from the station at 1800 km to the station at 1900 km.
This must be qualified, however, for the loss of character
might not be quite as great as it would first appear; it

sh~Wt be remembered that the wavelet as determined at one



station also includes the noise at that station, hence even

if there were no change in the wavelet at all during trans-

mission from one station to the next, there will be a

double corrupting effect in this computation due to the

different noise at the two stations which cannot be com-

pletely eliminated.

F. Possible Modification to and Experimentation on this

Mathematical Technique

The operation of the spiking filter in this experi-

ment had the undesirable effect of increasing the high fre-

quency noise. As a result of this, the filtered data looks

much more spiky than the unfiltered data making it more

difficult to observe a true spike in the filtered data.

Heuristically the reasons for this are as follows. The

energy in the spectra of the signal wavelet and the noise

tends to be primarily at low frequencies, If we were

ignoring noise and considering an infinitely long inverse

wavelet, its spectrum would be Just the inverse of the

spectrum of the signal wavelet and in this case would con-

tain very high frequencies, Since the filter is also expected

to reject noise of low frequency, the result is a filter

which is very sensitive to high frequeroies and hence high

frequency noise. An important conclusion of this experiment

is that something should also be done about high frequency -

noise. The analysis suggests how to make the filter insen

sitive to any type of noise of known autocorrelation.

Another approach is not to require an impulse to be the

output of the filter, but instead, some wider burst. Reason-

ing again from the limiting case of filters and signals of

infinite extent, this would be advantageous because the pro-

duct of the spectra of the filter with that of the wavelet

must equal the spectra of the desired response. By desiring

a response of a wide burst instead of a spike we may expect

to get a filter less sensitive to high frequency noise,
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G. More Possible Applications to Nuclear Detection

One could try the following different though similar

experiments:

1) On records taken at the same distance and at the
same station try filters generated from a wavelet from one

nuclear event on a seismogram from another nuclear event.
2) On a record with a clear first motion, compute

the spiking filter and then convolve the whole record with
it, in search for later arrivals of the same waveform. (If
later arrivals are detected their time delays can be deter-
mined to the accuracy of the digitalization sampling. Since
this is 1/20 of a second, it may lead to improvements in
depth determination accuracies.)

SECTION VII Prediction Error Experiment

I. Philosophy

Microseismic noise can be predicted. For example,

it was found that given past values on our noise seismograms,
one can easily predict 1/10 of a second into the future
with an error in power of less than 5%. Suppose we form a
new signal by subtracting the predicted seismogram from the
actual seismogram, This new signal is called the prediction
error signal. The amplitude of the prediction error signal
is expected to be small. If, however, at some time in the

microseismic trace a real signal arrives, it cannot, of

course, be predicted from the noise. Hence, at that time
the prediction error signal should suddenly attain a large
amplitude. For example, during the digitization of our

seismograms one of the timing marks was accidentally traced,,

Naturally the timing mark could not be predicted on the
basis of the noise which preceded it. The result was a
large prediction error at that time. This is depicted in

Figure 1.

The mathematical theory of predicting stationary time
series at unit prediction distance also shows that the pre-

diction error of a pure noise signal will be a white-light

~ ..-----mr y __~__~~___~~___~ ~__





series. The arrival of a signal, if it has a different

spectrum than the noise, will result in non-white series.

Thus a person attempting to find a seismic signal

arrival by examining the prediction error will look for:

i) large increase in amplitude

2) change in white character of trace.

There is another peculiarity of the prediction error

signal. Its power spectrum is independent of the seaimometer

and recording system. This is true both before and after

P wave arrival. Before, the spectrum is simply white. After,

it is a function only of earth motion power spectra.

Another property of the prediction error trace is that

the ratio of power after to power before signal arrival must

be an improvement from the original seismogram.

All of these properties will now be derived.

II. Mathematical Derivation

The concept of prediction is treated in greater

detail elsewhere (Robinson 1954). The formulas are briefly

derived here in an heuristic manner.

First we make the following definitions. Let

s be the given stationary series

w be the one sided wavelet with the same

spectrum as s, of length n

x be the white light series which when

convolved with w gives s

v be the wavelet which is inverse to w of

length m

d be the predicted s at d time intervals

in the future

m or n or both may be infinite.

Let negative subscripts refer to the past, the zero sub-

script to the present, and positive subscripts refer to

the future. Let "*" denote convolution. The white light

series x can be generated for all past time, up to and



including the present instant by the convolution of s with
v; i.e.,

X V - 2 s = vs v1(1)

The white light series corresponds to arrival times

of the wavelet w. The situation is depicted in the sketch

below.

WAVLE TS

SF

iTE LIGHT SPIKES WNOW T\ME + Nobl+d

To find the predicted value of the series at the

time (now+d) we sum up the effect of all wavelets arriving

in the past. Those wavelets which may arrive between now

and the time we are predicting will contribute to the

error of the prediction,

Referring to the sketch above, our prediction now

pO, for the value of s i at the future time L=d is thus
written:

P.. .- / ,,, +x. ,,.. .......

alo

More generally, the prediction p (d) for the value

tJ'
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of the series sj+d at time J+d is written:

"-'I

We write this symbolically as

P(A) = x ,

where wT is the wavelet w, truncated of its first d terms,

Utilizing (1) and the commutivity of convolutions we get

P (A) = s (v=s

and we can identify v*wt as the predicting filter.

The prediction error ej is defined as

ej (d) = actual series - prediction of series.

It is a function of the prediction distance d. We

will now show that if d=1, the operator which generates

ej(1) from sj takes on a particularly simple form, and ej(l)
must be a white light series.

Denoting z-transforms by capital letters, the z-trans-

form of the truncation of wt corresponding to d=l is

w ()- (.

The z-transform of the predicting filter is then

v (Z) (V (z) -w)

The z-transform of the prediction error filter is

Just

I -V() (w () -W)
=\ - V (Z- C) + Wo V(i)

U)



But w and v are inverses and also, wo = l/v o , hence

the z-transform of the prediction error filter is

-/ v )

Hence, the prediction error filter is just the

inverse wavelet, scaled so that the first term of the

filter is +1, Since the prediction error filter is the

inverse to the wavelet of the stationary series, it must

whiten the series.

What happens to the spectrum if a signal arrives

somewhere on the noise record? Letting S denote spectrum,

the condition that the noise be whitened is:

3 (earth noise) S (seism. system) S (prediction error filter) = i

The spectrum of our final graph is then:

S(graph) : S (earth signal + noise) S (seism. system) S (pre-

diction error filter)

Combining the above two expressions we get:

SS earth signal + noise)
S (graph) s. (earth noise)

which is independent of the transfer function of the seismo-

graph.

This derivation contains some hidden mathematical

assumptions which should be valid in any real case.

(Seismograph system is linear and dissipative, Ground motion

satisfies Paley-Wiener criterion.)

The proof that the prediction error filter must

improve the signal-to-noise ratio is omitted, It is based

I Ir



on the fact that the prediction filter can be derived from

the point of view of minimizing the variance of the difference

between the predicted and actual noise, and that this vari-

ance must be higher for any signal with autocorrelation

different from that of the noise.

III. Computational Method
One knows approximately the signal first arrival time

on all of our seismograms. In some cases it is directly

observable, in others one needs to use travel-time curves.

The autocorrelation of the noise before the first motion is

first computed. From this the inverse wavelet is computed

by the method described in our previous report Appendix F

part III. This is a least Squares method. The length of

this filter was chosen to be 70 points. This is near the

limit of computational feasability of least square proce-

dures at the present time. A method for computing longer

prediction operators was programmed but not used because in

most cases we did not have a very great amount of data

digitized before the first motion and also because exper-

ience has shown that great increases in operator length do

not improve predictability proportionately. Our data has

1/O second digitization intervals, however, we have dis-

covered that our seismograms have little energy in the

spectrum above 5 cps. Therefore, only alternate digitized

points were used. The resulting prediction operator length

is 7 seconds.

The finiteness of this operator caused our actual

output to deviate from the theoretical output in the follow-

ing way: The operator cannot successfully use noise with

wavelength of the order of 7 seconds and longer in predic-

tion, since it is only 7 seconds in length. Reference to

graphs in our previous reports indicates th t 5% to 20%

of the power in the spectrum may fall within this range.

Although this low frequency is apparent in some of the

boy la e pm enrovere hf see sec;oK.]



prediction error traces, the visual quality of the records

is not impaired, however, due to the very lowness of this

frequency.

IV. Results

Results are presented in the form of the following

figures. The results are good in every case and sometimes

quite remarkable.

(3 'j



Figure IV-1-2 Prediction Error Filtering Examples Notice particularly on

the UP component. The filtered trace becomes markedly non-white at 209.8 seconds.

The first break on the unfiltered trace is not readily apparent until 210.8.

Considerable signal to noise energy improvement is noticed on all traces. It is

very difficult to pick out the first break on the left component, but the filtered

left component is markedly non-white by 211.5 sec.

LEFT AwAY P



Figure VII-3 Prediction Error Filtering Examples The signal-to-noise ratio is
approximately the power in the seismogram after the first break divided by the power
before the first break. It is noted to be increased for all 3 components and markedly
so for the UP and TOWARD components. The first break is difficult to pick on the LEFT
trace. The filtered LEFT, however, becomes markedly non-white at 231.2 seconds, which
we know from the vertical component to be the correct first break time.

LE T TO\4AI D UP



Figure IV-1-4 Prediction Error Filtering Example Again a marked improvement in
signal-to-noise ratio is noted on all components. The magnitude of the first motion is
often increased with respect to the noise. In some cases it is not increased. If it is
not increased this reflects the fact that the original seismogram is a bit misleading.
The noise trace was just about to move abruptly up or down when the signal came along
and reinforced this motion. Thus the first motion is not as big as it might seem on the
original data.

LEFT TO\wARD UP
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Figure VII-5 Prediction Error Examples Again a marked improvement is noted
in signal-to-noise-energy ratio, especially on the left trace. The first break is
difficult to determine on the UP component in either the filtered or the unfiltered
trace.

LEFT TowAIW UP
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Figure VII-6 The p-wave is clearly located at 425
seconds. This is an example where all but perhaps a
skilled seismologist would not be able to pick p from
the original record, but where it is quite clear from the
prediction error record.
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SECTION VIIIt Travelling Auto-Spectra of Nuclear Shot
Seismograms

A travelling spectrum is a succession of spectral

estimates of a time function taken at successive time
intervals. Thus it is a function of both frequency and
time. This concept, although is is a mathematical
amalgam, may be useful in the analysis of non-stationary
time series where the successive spectral estimates change
in some physically meaningful way.

It was not certain what could be learned by taking
the travelling spectra of a6ismograms of p- and s-waves
from nuclear shots since simple theory predicts no dis-
persion for these phases in a homogeneous isotropic

medium. But considerable change of waveform (i.e. dis-
persion) is known to occur in the real earth. Therefore,
although one has no detailed ideas of what information
it might be able to extract in regard to nuclear detec-
tion, it was thought there might be value in computing
the travelling spectra, especially since by utilizing a

special technique (Simpson et al., 1961a, Appendix J)
it was possible to compute a travelling 24-point spectrum
of a typical seismogram on the IBM 709 in the amount of
time it takes to read this sentence. In fact, it is too
easy to use the computer to generate many more numbers
and curves than are readily interpretable. For the first

investigation travelling spectra was computed for all
the digitized data which was available.

Since the travelling spectrum is a function of two

parameters, frequency and time, and since our program can
compute values almost as fast as they can be printed,

there was a significant problem in data presentation.

I took two approaches. The first was to print twelve

numbers per line of printed page these being the spectral
amplitude estimates scaled to a maximum of 5, rounded to

an integer, and then taken to the 10th power. The result

a.



is intended to resemble 13 bar graphs running down the page,
representing spectral estimates at 13 frequencies as a
function of time. Time of p-wave and s-wave arrival is
indicated. The second approach to the data presentation
problem is to make these bar graphs on the scope. This

allows finer presentation of amplitude.
A selected few of the results are presented in the

figures. Some things are notable. On Figure 11-3-1 is

presented the travelling spectra from two nuclear shots

over almost identical paths. The spectra are similar,

but far from being identical. On Figure 11-3-5 the s-wave

arrival is apparent on the travelling spectra as an

increase in high-frequency energy. On Figure 11-3-6 a phase

arrival is noted in which there appears to be some disper-

sion. This phase has not yet been identified.
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SECTION IX Filtering for Signal-to-Noise Improvement

Abstract

A filter is derived which can remarkably increase

the signal-to-noise energy ratio on seismic records. In

the examples considered the ratio was increased by

factors of up to about 20. The construction of this

filter is based on assumptions about signal spectra and

noise spectra. The filter distortion, however, is severe

and the method is not expected to be useful when applied

to first motion studies. Thus the method should be use-

ful for determining the existence of very weak arrivals.

A possible application of this is in the detection of

Leet's (Leet 1962) "lonesome P" phase. This application

was tried but results were inconclusive due to inadequate

relevant digitized data. Other experiments, perhaps

less directly relevant to nuclear detection, gave excellent

results.

I. Introduction
In the previous subsection we have seen filtered

seismograms in which the signal-to-noise ratio was sub-
stantially enhanced. The filter in that subsection was
based only upon a knowledge of the noise power spectrum.
In many geophysical problems, some knowledge of the signal
may reasonably be assumed. One might make the relatively
weak assumption that the energy-density spectrum of the
signal is known, or one could make the stronger assumption
that both amplitude and phase spectrum (and thus the wave-
form) were known. It is advantagebus to make the strong-
est realistic assumption possible because then the solution
filters are "tailor-made" to the problem. It is dangerous,
however, to make strong assumptions which are not Justi-
fied, since we may not know how sensitive our solutions
will be to small deviation from the assumptions. On the
other hand, any sensible assumption is probably good if



the solution is not particularly sensitive to deviations

from the assumption,

II. Feasibility Experiment

In the examples considered in this subsection we

assume knowledge only of the noise spectrum and the signal

spectrum although the method which will be applied is

generally applicable to the stronger assumption of noise

spectrum and signal waveform. The mathematical method

is to take our assumed noise and signal spectra and

construct a filter which is optimum in the Wiener sense.

The details of the method are explicitly developed in

Appendices B and C. The general idea is that the square

error will be minimized, error being both 1) filter out-

put when the only input is noise and 2) filter output

other than signal when only signal is input. It was

further assumed that at a given seismic receiver noise

is present most of the time and signal is by comparison

rarely present.

One might wonder how sensitive this filter is to

small perturbations in the assumed signal and noise spectra.

The answer is that it depends upon the spectra. This can

be seen by examining Figure (~.l-) in which is displayed

the spectra from one of the test cases. The filter, as

might be expected, has greatest spectral components in

the regions of high signal-to-noise ratio. It can be

noted that high ratios at frequencies where both signal.

and noise have low energies do not strongly affect the

filter. Thus the filter seems to have a sensible spectrum

and although it is peaked rather sharply, it does not

appear that any minor alteration in assumed signal and

noise spectra would cause major alterations in the filter

spectra.

The particular filter used in the examples tries to

reproduce the signal after a 3 second delay. To facilitate

comparison, however, the time scale was relabled in such



a way as to remove the delay. Distortion of the signal

(caused by trying to suppress noise) now may cause

precursers to the signal as soon as 3 seconds early. In

fact, the filter will have considerable distortion since

we have set up the problem so that the filter should

suppress noise and then we have also said that noise will

be the most frequent input, Thus the filter will try

very hard to suppress noise, and much signal distortion

will almost always result. For this reason the filter is

not a good one for first motion studies.

This part of the experiment is based on the foll4

ing assumptionst

1) The spectrum of a p-wave signal from a nuclear

blast arriving on the LEFT-RIGHT component will be similar

to that on the more clearly observable UP component.

2) The microseisms noise spectrum does not change

significantly from the minute before to the minute after

a p-arrival.

The results in the particular examples studied which

are displayed in Figures (~l2'-2 to E '6) indicate that
these assumptions cannot be too bad. In them the signal
spectrum was determined from the first 25 seconds of p-wave

on the vertical component. The noise spectrum is computed

from the horizontal component before the p-arrival time.

(This time is known from the vertical component.)

III Detection Experiment
In the prediction error experiment (Section ]J. of

this report) one of the prediction error filters increased

the signal-to-noise energy ratio to such an extent that

the p-wave was easily recognizable where it had previously

required a good deal of imagination to recognize (see

Figure 1J-*6). Since this phase is what Leet calls

"lonesome-p" (more than 2500 kilometers distant and no

observable s-waves or surface waves) and its presence may

'4



be quite significant for nuclear detection we considered

the general problem of trying to increase our ability to

detect Just the existence of a signal in a very high

relative noise level. This led to an elaborate mathe-

matical scheme written up in SECTION V. The final

equations would be difficult to program satisfactorily

using standard methods and it was felt that further

theoretical study would lead to simplifications both

theoretically and computationally; therefore, its use is

not included.

The symmetrical Wiener-Levinson filter is quite

similar in concept and in simple numerical examples gave

similar numerical answers. Furthermore, one feels that

the Wiener-Levinson symmetrical filter should be able to

do a better Job of increasing the signal-to-noise ratio

than the prediction error filter because the former is

derived from both signal and noise information whereas the

latter is derived only from noise information.
The essential assumption in this experiment is that

we have some means of getting knowledge of the lonesome-p
spectrum. The various possible means of getting this
knowledge represents a big study in itself, In order to

proceed, we make the following assumptions the spectrum

will not change radically from Logan to Blanca for similar

distances and similar paths. Since Blanca was a stronger

blast than Logan it was hoped that we would be able to

find a distance at which the p-phase could be observed on

Blanca, but nc*on Logan. Then we would compute spectrum

of the p-phase on Blanca and the spectrum of the noise

before Logan and construct a filter. This filter would

then be applied to Logan in the hopes of observing p on

Logan. Unfortunately, our available digitized data did

not allow even this experiment. The closest approximation

was Blanca 2208 km UP and Logan 2111 km UP. Unfortunately,

i) this is nearer than the distances Leet specified for



lonesome-p (2500 km on out), 2) the distances may be
different enough to cause a change in the spectrum, 3) the
phase is clearly evident on the Logan record even without
any filtering. The best we can hope for is that we can
show improvement in the signal-to-noise ratio. Unfortun-
ately, the amount of noise digitized before the signal
arrival was so small as the make unrealastic an estimate
of the improvement ratio. Nevertheless, the experiment
was performed and is depicted in Figure (7 -- 7),
Better data was clearly needed.

IV Conclusion
Given noise spectra and signal spectra which are

as different from each other as is typical with microseisms
and p-waves, we can construct a filter which substantially
improves signal-to-noise energy ratio. Because of distor-
tion, this filter is not useful if a detailed study of the
waveform is to be made.
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