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Themes

The main theme of this book is to take a good quality reflectmismic data set from the Gulf
of Mexico and guide you through the basic geophysical datagssing steps from raw data
to the best-quality final image. Secondary themes are todotre you (1) to cleaned up but
real working Fortran code that does the job, (2) to the conegfadjoint operator”, and (3)
to the notion of electronic document.

What it does, what it means, and how it works

A central theme of this book is to merge the abstract with trecete by linking mathematics
to runnable computer codes. The codes are in a consistdatugtiing nomenclature that
resembles the accompanying mathematics so the two illumaech other. The code shown
is exactly that used to generate the illustrations. Theliglesor no mathematics or code that
is not carried through with examples using both synthett i@al data. The code itself is in
a dialect of Fortran more suitable for exposition than séaddrortran. (This "ratfor" dialect
easily translates to standard Fortran). Some codes haneheerily tested while others have
only been tested by the preparation of the illustrations.

Imaging with adjoint (conjugate-transpose) operators

A secondary theme of this book is to develop in the reader a@enstanding of a universal

linkage beween forward modeling and data processing. Theis€ades here that incarnate
linear operators are written in a style that also incarntttesadjoint (conjugate-transpose)
operator thus enabling both modeling and data processitigtihé same code. This style of
coding, besides being concise and avoiding redundancyrenghe consistency required for
estimation by conjugate-gradient optimization as descrin my other books.

Adjoint operators link the modeling activity to the modetiestion activity. While this
linkage is less sophisticated than formal estimation th€onversion”), it is robust, easily
available, and does not put unrealistic demands on the dateponderable demands on the
interpreter.
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Electronic document

A goal that we met with the 1992 CD-ROM version of this book wagjive the user a full
copy, not only of the book, but of all the software that buik tbook including not only the
seismic data processing codes but also the word proceshmglata, and the whole super-
structure. Although we succeeded for a while having a boakridin on machines of all the
major manufacturers, eventually we were beaten down by adioacompatibilities. This
struggle continues. With my colleagues, we are now workawgards having books on the
World Wide Web where you can grab parts of a book that genedistrations and modify
them to create your own illustrations.
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Chapter 1

Field recording geometry

The basic equipment for reflection seismic prospecting @uace for impulsive sound waves,
a geophone (something like a microphone), and a multicHamesform display system. A
survey line is defined along the earth’s surface. It couldieepiath for a ship, in which case
the receiver is called a hydrophone. About every 25 meterstiurce is activated, and the
echoes are recorded nearby. The sound source and recaresglhest no directional tuning
capability because the frequencies that penetrate thie leave wavelengths longer than the
ship. Consequently, echoes can arrive from several direstat the same time. It is the
joint task of geophysicists and geologists to interpretrégilts. Geophysicists assume the
guantitative, physical, and statistical tasks. Their nggials, and the goal to which this book
is mainly directed, is to make good pictures of the earthsrior from the echoes.

1.1 RECORDING GEOMETRY

Along the horizontak-axis we define two points, where the source (or shot or sender) is
located, andy, where the geophone (or hydrophone or microphone) is Idcdtken, define
themidpoint y between the shot and geophone, and ddiite be half the horizontadffset
between the shot and geophone:

+

y = 23° (1.1)

2
g-—s
h = 1.2

5 (12)
The reason for usingalf the offset in the equations is to simplify and symmetrize ynater
equations. Offset is defined with— s rather than withs — g so that positive offset means
waves moving in the positive direction. In the marine case, this means the ship is presume
to sail negatively along the-axis. In reality the ship may go either way, and shot poingdy m
either increase or decrease as the survey proceeds. In goatess you can clarify matters
by setting the field observer’s shot-point numbers to negatlues.

Data is defined experimentally in the spacei). Equations (1.1) and (1.2) represent a

1



2 CHAPTER 1. FIELD RECORDING GEOMETRY

change of coordinates to the spaceyf{(). Midpoint-offset coordinates are especially useful
for interpretation and data processing. Since the data@saafunction of the travel time the
full dataset lies in a volume. Because it is so difficult to maksatisfactory display of such a
volume, what is customarily done is to display slices. Themes of slices vary slightly from
one company to the next. The following names seem to be welkrand clearly understood:

(y, h=0,1) zero-offset section

(Y, h=hmin t) near-trace section

(y, h=const,t) constant-offset section

(y, h=hmax,t) far-trace section

(y =const,h, t) common-midpoint gather
(s=const,g, t) field profile (or common-shot gather)
(s, g=const,t) common-geophone gather

(s, g, t =const) time slice

(h, y, t =const) time slice

A diagram of slice names is in Figure 1.1. Figure 1.2 showsdlslices from the data
volume. The first mode of display is “engineering drawing mbdThe second mode of
display is on the faces of a cube. But notice that althougliléta is displayed on the surface
of a cube, the slices themselves are taken from the intefittreocube. The intersections of
slices across one another are shown by dark lines.

A common-depth-point (CDP) gather is defined by the industry by common usage to
be the same thing as a common-midpoint (CMP) gather. Buisrbibok a distinction will be
made. ACDP gatheris aCMP gather with its time axis stretched according to some velocity
model, say,

(y = const,h, /t2—4h2/12) common-depth-point gather

This offset-dependent stretching makes the time axis ofétleer become more likedepth
axis, thus providing thB in CDP. The stretching is calletbrmal moveout correction (NMO).
Notice that as the velocity goes to infinity, the amount aétsfining goes to zero.

There are basically two ways to get two-dimensional infdramafrom three-dimensional
information. The most obvious is to cut out the slices defialedve. A second possibility is
to remove a dimension by summing over it. In practice, theedfaxis is the best candidate
for summation. Each CDP gather is summed over offset. Thetmeg sum is a single trace.
Such a trace can be constructed at each midpoint. The dolteftsuch traces, a function of
midpoint and time, is called a CDP stack. Roughly speakir@D®& stack is like a zero-offset
section, but it has a less noisy appearance.

The construction of a CDP stack requires that a numericateti® made for the moveout-
correction velocity. This choice is called tBacking velocityThe stacking velocity may be
simply someone’s guess of the earth’s velocity. Or the gussg be improved by stacking
with some trial velocities to see which gives the strongastlaast noisy CDP stack.

Figures 1.3 and 1.4 show typical marine and lgnaofiles (common-shot gathers). The
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Figure 1.1: Top shows field recording of marine seismogramms fa shot at locatios to
geophones at locations labelgd There is a horizontal reflecting layer to aid interpretatio
The lower diagram is called stacking diagram. (It is not a perspective drawing). Each
dot in this plane depicts a possible seismogram. Think o€ tirmning out from the plane.
The center geophone above (circled) records the seismagiested dot) that may be found
in various geophysical displays. Lines in thgd)-plane are planes in the,§, g)-volume.
Planes of various orientations have the names given in gte INR]
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Figure 1.2: Slices from within a cube of data. Top: Slicepkdiged as a mechanical drawing.
Bottom: Same slices shown on perspective of cube fad&scube [ER]
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6 CHAPTER 1. FIELD RECORDING GEOMETRY

land data has geophones on both sides of the source. Thgeamant shown is called an
unevensplit spread. The energy source was a vibrator. The marine data happeneety n
illustrate two or three head waves. The marine energy somasean air gun. These field
profiles were each recorded with about 120 geophones.

1.1.1 Fast ship versus slow ship

For marine seismic data, the spacing between shets a function of the speed of the ship
and the time interval between shots. Naturally we lke small (which means more shots)
but that means either the boat slows down, or one shot foltbevmext so soon that it covers
up late arriving echos. The geophone spachwyis fixed when the marinstreamer is de-
signed. Modern streamers are designed for more powerfupaters and they usually have
smallerAg. Much marine seismic data is recorded wits = Ag and much is recorded with
As = Ag/2. There are unexpected differences in what happens in doegsing. Figure 1.5
showsAs = Ag, and Figure 1.6 showAs = Ag/2. WhenAs = Ag there are some irritating

S
Figure 1.5:Ag = As. The zero-offset
section lies under the zeros. Ob-
serve the common midpoint gathers.
Notice that even numbered receivers
have a different geometry than odd
numbers. Thus there are two kinds of
CMP gathers with different values of

thelead-in xp = x0 |fld-geqs [ER]

complications that we do not have fars = Ag/2. WhenAs = Ag, even-numbered traces
have a different midpoint than odd-numbered traces. Fomanmon-midpoint analysis, the
evens and odds require different processing. The wdedgl“in” describe the distance{ =
x0) from the ship to the nearest trace. Wh&a = Ag the lead-in of a CMP gather depends
on whether it is made from the even or the odd traces. In pedhie lead-in is about/Ss.
Theoretically we would prefer no lead in, but it is noisy nt#a ship, the tension on the cable
pulls it out of the water near the ship, and the practicalgafra smaller lead-in are evidently
not convincing.
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1.2 TEXTURE

Gravity is a strong force for the stratification of rocks, anédny places in the world rocks
are laid down in horizontal beds. Yet even in the most idegirenment the bedding is not
mirror smooth; it has somexture. We begin with synthetic data that mimics the most ideal
environment. Such an environment is almost certainly nearivhere sedimentary deposition
can be slow and uniform. The wave velocity will be taken to bastant, and all rays will
reflect as from horizontally lying mirrors. Mathematicaligxtureis introduced by allowing
the reflection coefficients of the beds to be laterally vdeialbhe lateral variation is presumed
to be a random function, though not necessarily with a wipecsum. Let us examine the
appearance of the resulting field data.

1.2.1 Texture of horizontal bedding, marine data

Randomness is introduced into the earth with a random fomatf midpointy and deptte.
This randomness is impressed on some geological “layer’ ¢aketion of depthz. This is
done in the first half of subroutingnnari ne() on this page.

subroutine synmarine ( data, nt,nh,ny, nz)

i nt eger nt, nh, ny, nz, it,ih/iy,is,iz, ns, iseed
real data( nt, nh, ny), | ayer, randOl
tenporary real refl (nz, ny), depth(nz)
i seed= 1992; ns = ny
do iz=1, nz { # 0 < rand0l() <1
depth( iz) = nt * rand01(iseed) # Refl ector depth
| ayer = 2. * rand01(iseed) - 1. # Refl ector strength
do iy=1, ny { # I nmpose texture on |ayer

refl(iz,iy) = layer * (1. + rand01(iseed))
}
}

call null( data, nt*nh*ny) # erase data space
do is=1, ns { # shots
do ih= 1, nh { # down cable h = (g-s)/2
do iz=1, nz { # Add hyperbol a for each | ayer
iy = (ns-is)+(ih-1) # y = mdpoint
iy =1+ (iy-ny*(iy/ny)) # periodic with mdpoint
it =1+ sqrt( depth(iz)**2 + 25.*(ih-1)**2)
if( it <=nt)

data(it,ih,is) = data(it,ih,is) +refl(iz,iy)
11}

return; end

The second half of subroutingnnari ne() on the current page scans all shot and geophone
locations and depths and finds the midpoint, and the reflecoefficient for that midpoint,
and adds it into the data at the proper travel time.

There are two confusing aspects of subroutiperari ne() on this page. First, refer to
figure 1.1 and notice that since the ship drags the long caloiaming the receivers, the ship
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must be moving to the left, so data is recorded for sequéntiacreasing/alues ofs. Second,

to make a continuousiovie from a small number of frames, it is necessary only to make the
midpoint axis periodic, i.e. when a valueigf is computed beyond the end of the axgsthen

it must be moved back an integer multiplengt

What does the final data space look like? This question hbesriieaning until we decide
how the three-dimensional data volume will be presenteldg@ye. Let us view the data much
as itis recorded in the field. For each shot point we see a framvhich the vertical axis is the
travel time and the horizontal axis is the distance from thip down the towed hydrophone
cable. The next shot point gives us another frame. Repetgiees us the accompanying
program that produces a cube of data, henewaie. This cube is synthetic data for the ideal
marine environment. And what does tevie show?

0 5 10 15 20 25 30 35 40 45

Figure 1.7: Output fromsynna-
ri ne() subroutine (with temporal fil-

tering on thet-axis). |fld-synmarine

[ER,M]

061 00T

002

synthetic marine data

A single frame shows hyperbolas with imposed texture. Ttwie shows the texture
moving along each hyperbola to increasing offsets. (I firad tito sequence of still pictures
can give the impression that tineovie gives). Really the ship is moving; the texture of the
earth is remaining stationary under it. This is truly whatstnmarine data looks like, and the
computer program simulates it. Comparing the simulated ttateal marine-dateovies, |
am impressed by the large amount of random lateral variaéquired in the simulated data
to achieve resemblance to field data. The randomness seergeett to represent lithologic
variation. Apparently it is the result of something not miede Perhaps it results from our
incomplete understanding of the mechanism of reflectiomftbe quasi-random earth. Or
perhaps it is an effect of the partial focusing of waves somegfter they reflect from minor
topographic irregularities. A full explanation awaits rasesearch.

1.2.2 Texture of land data: near-surface problems

Reflection seismic data recorded on land frequently displagdomness because of the irreg-
ularity of the soil layer. Often it is so disruptive that theismic energy sources are deeply
buried (at much cost). The geophones are too many for bialmost land reflection data,
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Figure 1.8: Press button for field data

movie. |fld-shotmovie [ER,M]

the texture caused by these near-surface irregularitieseebls the texture resulting from the
reflecting layers.

To clarify our thinking, an ideal mathematical model will peoposed. Let the reflecting
layers be flat with no texture. Let the geophones suffer rantime delays of several time
points. Time delays of this type are callsttics. Let the shots have random strengths. For
thismovie, let the data frames ®mmon-midpoint gatherghat is, let each frame show data
in (h,t) -space at a fixed midpoirt Successive frames will show successive midpoints. The
study of Figure 1.1 should convince you that the traveltimegularities associated with the
geophones should move leftward, while the amplitude ireifies associated with the shots
should move rightward (or vice versa). In real life, both #tode and time anomalies are
associated with both shots and geophones.

EXERCISES:

1 Modify the program of Figure 1.2 to produce a movie of syhitheidpoint gathers with
random shot amplitudes and random geophone time delayser@hg thismovie you

Figure 1.9 fld-wirecubg [NR]

will note the perceptual problem of being able to see theviaiti motion along with the
rightward motion. Try to adjust anomaly strengths so thahBeft-moving and right-
moving patterns are visible. Your mind will often see onlyepblocking out the other,
similar to the way you perceive a 3-D cube, from a 2-D progecbf its edges.

2 Define recursive dip filters to pass and reject the varioxisites of shot, geophone, and
midpoint.
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Chapter 2

Adjoint operators

A great many of the calculations we do in science and engmgere really matrix mul-
tiplication in disguise. The first goal of this chapter is tomask the disguise by showing
many examples. Second, we see howdl@int operator (matrix transpose) back-projects
information from data to the underlying model.

Geophysical modeling calculations generally use linearafors that predict data from
models. Our usual task is to find the inverse of these caloufgti.e., to find models (or make
maps) from the data. Logically, the adjoint is the first ste@ a part of all subsequent steps in
this inversion process. Surprisingly, in practice the adjoint sometinessdch better job than
the inverse! This is because the adjoint operator toleratpsrfections in the data and does
not demand that the data provide full information.

Using the methods of this chapter, you will find that once yoasg the relationship be-
tween operators in general and their adjoints, you can mhbite adjoint just as soon as you
have learned how to code the modeling operator.

If you will permit me a poet’s license with words, | will offgrou the following table of
operators and theiradjoints:

matrix multiply conjugate-transpose matrix multiply

convolve crosscorrelate
truncate zero pad
replicate, scatter, spray sum or stack
spray into neighborhood sum in bins

derivative (slope)

causal integration

add functions
assignment statements
plane-wave superposition
superpose on a curve
stretch

upward continue

negative derivative
anticausal integration
do integrals
added terms
slant stack / beam form
sum along a curve
squeeze
downward continue

11



12 CHAPTER 2. ADJOINT OPERATORS

hyperbolic modeling normal moveout and CDP stack
diffraction modeling imaging by migration
ray tracing tomography

The left column above is often callednbdeling,” and the adjoint operators on the right
are often used in “datprocessing’

The adjoint operator is sometimes called thack projection” operator because informa-
tion propagated in one direction (earth to data) is progebtekward (data to earth model). For
complex-valued operators, the transpose goes togetheaweibmplex conjugate. IRourier
analysis taking the complex conjugate of expt) reverses the sense of time. With more po-
etic license, | say that adjoint operatonsdothe time and phase shifts of modeling operators.
The inverse operator does this too, but it also divides auttior. For example, when linear
interpolation is done, then high frequencies are smooth#dso inverse interpolation must
restore them. You can imagine the possibilities for noiseldimation. That is why adjoints
are safer than inverses.

Later in this chapter we relate adjoint operators to inveyserators. Although inverse
operators are more well known than adjoint operators, therge is built upon the adjoint so
the adjoint is a logical place to start. Also, computing theerse is a complicated process
fraught with pitfalls whereas the computation of the adj@sreasy. It's a natural companion
to the operator itself.

Much later in this chapter is a formal definition of adjointoator. Throughout the chap-
ter we handle an adjoint operator as a matrix transpose, éutardly ever write down any
matrices or their transposes. Instead, we always preparsuroutines, one that performs
y = Ax and another that perforn¥s= A’y. So we need a test that the two subroutines really
embody the essential aspects of matrix transposition.ofijh the test is an elegant and use-
ful test and is itself a fundamental definition, curioushattdefinition does not help construct
adjoint operators, so we postpone a formal definition ofiatjntil after we have seen many
examples.

2.1 FAMILIAR OPERATORS

The operationy; = Zj bij x; is the multiplication of a matri8 by a vectorx. The adjoint
operationis; =) _; by; yi. The operation adjoint to multiplication by a matrix is mplication
by the transposed matrix (unless the matrix has complexeziesnin which case we need the
complex-conjugated transpose). The followpsgudocoda&loes matrix multiplicatioy = Bx
and multiplication by the transpoge= B'y:
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if operator itself
then erase y

if adjoint
then erase x
doiy=1,ny{

doix=1, nx{
if operator itself
y(iy) = y(iy) + b(iy,ix) x x(ix)
if adjoint
x(ix) = x(ix) + b(iy,ix) x y(iy)
} }

Notice that the “bottom line” in the program is thatandy are simply interchanged. The
above example is a prototype of many to follow, so observefally the similarities and
differences between the operation and its adjoint.

A formal subroutiné for matrix multiply and its adjoint is found below. The first step
is a subroutineadj nul | (), for optionally erasing the output. With the optiaad=1, results
accumulate likg=y+B* x.

subroutine adjnull( adj, add, x, nx, vy, ny)

integer ix, iy, adj, add, nx, ny
real x( nx), y( ny)
if( add == 0 )
if( adj == 0)
do iy= 1, ny
y(iy) = 0.
el se

do ix= 1, nx
x(i x)

1
©

return; end

The subroutinerat mul t () for matrix multiply and its adjoint exhibits the style thaewvill
use repeatedly.

# matrix multiply and its adjoint

#

subroutine matnul t ( adj, add, bb, X, NX, Yy, ny)
integer ix, iy, adj, add, nx, ny
r eal bb(ny, nx), x(nx), y(ny)
call adjnull( adj, add, X, NX, Yy, ny)

do ix=1, nx {
do iy=1, ny {
if( adj == 0)
y(iy) =y(iy) + bb(iy,ix) * x(ix)

1The programming language used in this book is Ratfor, a clialé Fortran. For more details, see
Appendix A.
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el se
x(ix) = x(ix) + bb(iy,ix) * y(iy)
}}
return; end
Sometimes a matrix operator reduces to a simple row or a ¢olum
Arow isasummation operation.

A columnis an impulse response.

If the inner loop of a matrix multiply ranges within a
row, the operator is callesumor pull.
column, the operator is callesprayor push

A basic aspect of adjointness is that the adjoint of a rowimafrerator is a column matrix
operator. For example, the row operatay]

y = [am[il] — ax+bx 2.1)

has an adjoint that is two assignments:
)’Zl _ a
[ %o } a [ b ] Y (2:2)

The adjoint of a sum oN terms is a collection oN assignments.

2.1.1 Adjoint derivative

Given a sampled signal, its tingerivative can be estimated by convolution with the filter
(1,—1)/At, expressed as the matrix-multiply below:

B T -1 1 . . . T X
Y2 .o -1 1 . . X2
Y3 . . -1 1 . . X3
_ 2.3
Ya . . . -1 1 . X4 ( )
Y5 . . . . -1 1 X5
L Y6 _ | . . . . . 0_ | X _|

Technically the output should be 1 points long, but | appended a zero row, a small loss
of logical purity, so that the size of the output vector wilatoh that of the input. This is a
convenience for plotting and for simplifying the assembiypther operators building on this
one.
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The filter impulse responseis seen in any column in the middle of the matrix, namely
(1,-1). In the transposed matrix, the filter-impulse respongens-reversed to{1,1). So,
mathematically, we can say that the adjoint of the time @#ke operation is the negative
time derivative. This corresponds also to the fact that tmeplex conjugate of-iw isiw. We
can also speak of the adjoint of the boundary conditions: vghtsay that the adjoint of “no
boundary condition” is a “specified value” boundary coruatti

A complicated way to think about the adjoint of equation J2s3to note that it is the
negative of the derivative and that something must be dooatahe ends. A simpler way to
think about it is to apply the idea that the adjoint of a suniNoferms is a collection ofN
assignments. This is done in subroutingadi(), which implements equation (2.3) and its
adjoint.

subroutine igradl( adj, add, xx,n, yy )

integer i, adj , add, n
real xx(n), yy(n)
call adjnull( adj, add, xx,n, yy,n)
doi=1, n-1¢{
if( adj == 0)
yy(i) =yy(i) + xx(i+1) - xx(i)
el se {
xx(i+1) xx(i+1) + yy(i)

xx(i )

}

xx(i) - yy(i)

}

return; end

Notice that the do loop in the code covers all the outputstferaperator itself, and that in the
adjoint operation it gathers all the inputs. This is natlaetause in switching from operator
to adjoint, the outputs switch to inputs.

As you look at the code, think about matrix elements bejigor —1 and think about the
forward operator “pulling” a sum intgy(i ), and think about the adjoint operator “pushing”
or “spraying” the impulsgy(i) back intoxx() .

You might notice that you can simplify the program by merding “erase output” activity
with the calculation itself. We will not do this optimizatidhowever because in many applica-
tions we do not want to include the “erase output” activitiisToften happens when we build
complicated operators from simpler ones.

2.1.2 Zero padding is the transpose of truncation

Surrounding a dataset by zeragfo padding) is adjoint to throwing away the extended data
(truncation). Let us see why this is so. Set a signal in a vegiand then to make a longer
vectory, add some zeros at the end»of This zero padding can be regarded as the matrix
multiplication

y = [(I)}x (2.4)
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The matrix is simply an identity matrik above a zero matri®. To find the transpose to
zero-padding, we now transpose the matrix and do anotheixmatltiply:

X = [1 0]y (2.5)

So the transpose operation to zero padding data is sitnpigatingthe data back to its orig-
inal length. Subroutinepad1() below pads zeros on both ends of its input. Subroutines for
two- and three-dimensional padding are in the library nampad2() andzpad3() .

# Zero pad. Surround data by zeros. 1-D
#
subroutine zpadl( adj,add, data,nd, padd,np)

i nt eger adj , add, d, nd, p, np

r eal dat a(nd), padd(np)

call adjnull( adj ,add, data,nd, padd, np)

do d= 1, nd { p=d+ (np-nd)/2
if( adj == 0)

padd(p) = padd(p) + data(d)
el se
dat a(d)

data(d) + padd(p)
}

return; end

2.1.3 Adjoints of products are reverse-ordered products oadjoints

Here we examine an example of the general idea that adjdipt®ducts are reverse-ordered
products of adjoints. For this example we use the Fouriersfoamation. No details of
Fourier transformation are given here and we merely use it as an example of a squarni& mat
F. We denote the complex-conjugate transposaoint) matrix with a prime, i.e.F’. The
adjoint arises naturally whenever we consider energy. Tdtersent that Fourier transforms
conserve energy iy = X'’x wherey = Fx. Substituting give§’ F = |, which shows that the
inverse matrix to Fourier transform happens to be the coxgbajugate of the transpose of
F.

With Fourier transformszero padding andtruncation are especially prevalent. Most
subroutines transform a dataset of length bf ®hereas dataset lengths are often of length
m x 100. The practical approach is therefore to pad given datazeiros. Padding followed
by Fourier transformatioR can be expressed in matrix algebra as

Program = F [ IO} (2.6)

According to matrix algebra, the transpose of a productAday= C, is the producC’ = B'A’
in reverse order. So the adjoint subroutine is given by
Program = [ O ]F (2.7)

Thus the adjoint subroutineuncatesthe dataafter the inverse Fourier transform. This con-
crete example illustrates that common sense often regetbermathematical abstraction that
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adjoints of products are reverse-ordered products of @idjoilt is also nice to see a formal
mathematical notation for a practical necessity. Makingapproximation need not lead to
collapse of all precise analysis.

2.1.4 Nearest-neighbor coordinates

In describing physical processes, we often either spectgets as values given on a uniform
mesh or we record data on a uniform mesh. Typically we havenatifon f of timet or
depthz and we represent it by(i z) corresponding td (z) fori =1,2,3...,n; wherez; =
o+ (i —1)Az. We sometimes need to handle depth as an integer countiraplar and
we sometimes need to handle it as a floating-point variabfgonversion from the counting
variable to the floating-point variable is exact and is offeen in a computer idiom such as
either of

z0 + (iz-1) * dz
03 + (i3-1) * d3

do iz=1, nz { z
doi3=1, n3{ x3

The reverse conversion from the floating-point variablé&odounting variable is inexact. The
easiest thing is to place it at the nearest neighbor. Thisng dy solving for z, then adding
one half, and then rounding down to the nearest integer. dindiar computer idioms are:

iz= .5+1+(z- z20) / dz
iz =1.5 + (z-20) [/ dz
i3 =1.5 + (x3 - 03) / d3

A small warning is in order: People generally use positivantmmg variables. If you also
include negative ones, then to get the nearest integer, yauids do your rounding with the
Fortran functior NT() .

2.1.5 Data-push binning

Binning is putting data values in bins. Nearest-neighboninig is an operator. There is both
a forward operator and its adjoint. Normally the model cstssof values given on a uniform
mesh, and the data consists of pairs of numbers (ordinate®edinates) sprinkled around in
the continuum (although sometimes the data is uniformlgegand the model is not).

In both the forward and the adjoint operation, each datadinate is examined and the
nearest mesh point (the bin) is found. For the forward operttie value of the bin is added
to that of the data. The adjoint is the reverse: we add theevafithe data to that of the bin.
Both are shown in two dimensions in subroutipei n2() .

# Dat a- push binning in 2-D.
#
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subroutine dpbin2 ( adj, add, ol,d1,o02,d2, xy, mm i, n2, dd, nd)
i nt eger il1,i2, adj, add, id, mL, 2, nd
real ol,d1, 02,d2, xy(2,nd), mm(nil, n2), dd( nd)
call adjnull( adj, add, mm ml*n2, dd, nd)
do id=1,nd {

il=15+ (xy(1,id)-o01)/d1
i2 =15+ (xy(2,id)-02)/d2
if( 1<=il && i l<=nl &&
1<=i 2 && i2<=nP )
if( adj == 0)
dd( id) = dd( id) + mmil,i2)

el se

m(il,i2) = m{il,i2) + dd( id)

}

return; end

The most typical application requires an additional stageiision. In the inversion appli-

cations each bin contains a different number of data valddter the adjoint operation is

performed, the inverse operator divides the bin value byntiraber of points in the bin. Itis

this inversion operator that is generally called binning.fihd the number of data points in a
bin, we can simply apply the adjoint epbi n2() to pseudo data of all ones.

2.1.6 Linear interpolation

Thelinear interpolation operator is much like the binning operator but a little fanciWhen
we perform the forward operation, we take each data coaeliaad see which two model
mesh points bracket it. Then we pick up the two bracketingehedlues and weight each of
them in proportion to their nearness to the data coordimaie add them to get the data value
(ordinate). The adjoint operation is adding a data valu Io&o the model vector; using the
same two weights, this operation distributes the ordinateevbetween the two nearest points
in the model vector. For example, suppose we have a data peémteach end of the model
and a third data point exactly in the middle. Then for a mogeake 6 points long, as shown
in Figure 2.1, we have the operator in (2.8).

d d
Figure 2.1: Uniformly sampled m E

model space and irregularly sampled
data space corresponding to (2.8).

[conihelgerudiNR mg ' m) ) [mym) g

- o
do 8 2 M
mp
dx ~ 1 . m (2.8)
dy 5 5 3
My
L M5 |
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The two weights in each row sum to unity. If a binning operatere used for the same data
and model, the binning operator would contain a “1.” in eamk in one dimension (as here),
data coordinates are often sorted into sequence, so thaiatn is crudely a diagonal matrix

like equation (2.8). If the data coordinates covered theehsgdace uniformly, the adjoint

would roughly be the inverse. Otherwise, when data valuesyp in some places and gaps
remain elsewhere, the adjoint would be far from the inverse.

Subroutina i nt 1() does linear interpolation and its adjoint.

# Linear interpolation 1-D, uniformnodel nmesh to data coordinates and val ues
#

subroutine lintl( adj, add, ol,dl, coordinate, mm nml, dd, nd)
integer i, im adj, add, id, L, nd
real f, fx,gx, ol, d1, coordi nate(nd), mv(nl), dd( nd)
call adjnull( adj, add, mm ml, dd, nd)
do id=1, nd {
f = (coordinate(id)-o01l)/d1; i=f; ime 1+
if( 1<=im&& inxkml) { fx=f-i; gx= 1.-fx
if( adj == 0)
dd(id) =dd(id) + gx * m(in + fx * m(iml)
el se {
m(im ) mr(im ) + gx * dd(id)

m(i me1)
}

mr(i mrl) + fx * dd(id)

}

return; end

2.1.7 Causal integration

Causal integration is defined as
t
yit) = f X(t) dt (2.9)
—00

Sampling the time axis gives a matrix equation which we ghaall causal summation, but
we often call it causal integration.

Yo 1 00 00000O0O0 O] [ x
Vi 1100000000 X1
¥ 1110000000 X2
Ve 1111000000 X3
Ya 1111100000 X4
Vs - 1111110000 X5 (2.10)
Ve 1111111000 X6
V7 1111111100 X7
Vs 1111111110 Xg
Yo 1111111111 Xo
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(In some applications the 1 on the diagonal is replaced by 1Aausal integration is the
simplest prototype of a recursive operator. The codingakier than operators we considered
earlier. Notice when you computg that it is the sum of 6 terms, but that this sum is more
quickly computed ags = y4+ Xs. Thus equation (2.10) is more efficiently thought of as the
recursion

Vi = Y1+ X% for increasing (2.11)

(which may also be regarded as a numerical representatitbedifferential equation dy/dt =
X.)

When it comes time to think about the adjoint, however, itasier to think of equa-
tion (2.10) than of (2.11). Let the matrix of equation (2.b@)calledC. Transposing to get’
and applying it toy gives us something back in the spacexphamelyX = C'y. From it we
see that the adjoint calculation, if done recursively, sdede done backwards like

Xi—1 = X+ Vi-1 for decreasing (2.12)
We can sum up by saying that the adjoint of causal integragianticausal integration.

A subroutine to do these jobsdausi nt () on the current page. The code for anticausal
integration is not obvious from the code for integration #redadjoint coding tricks we learned
earlier. To understand the adjoint, you need to inspect #taildd form of the expression
X = C'y and take care to get the ends correct.

# causal integration (1's on diagonal)
#

subrouti ne causint( adj, add, n, xx, vyy )
integer i, n, adj, add; real xx(n), yy(n)
temporary real tt( n)
call adjnull( adj, add, XX, n, yy,n)
if( adj == 0){ tt(1) = xx(1)
doi=2,n
tt(i) =tt(i-1) + xx(i)
doi=1, n
yy(i) =yy(i) + tt(i)

}

el se { tt(n) = yy(n)

doi=n, 2, -1
tt(i-1) =tt(i) + yy(i-1)
doi=1, n
xx(i) = xx(i) + tt(i)

}

return; end

Later we will consider equations to march wavefields up tolwahe earth’s surface, a
layer at a time, an operator for each layer. Then the adjaihstart from the earth’s surface
and march down, a layer at a time, into the earth.

EXERCISES:

1 Modify the calculation in Figure 2.2 to make a triangle wiaven on the bottom row.
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inl I
Figure 2.2:i n1 is an input pulse.c ¢ int trrees
inl is its causal integral.c in1is
the anticausal integral of the pulse. c int sstesrreerreees

i n2 is a separated doublet. Its causal

integration is a box and its anticausal e W

integration is the negative.cc i n2 Cino rrees

is the double causal integral oh2.
How can an equilateral triangle be ¢ in2

it? [conj-causinf i rrerrerrnns
built? |conj-causint[ER] e i

2.2 ADJOINTS AND INVERSES

Consider a modeh and an operatdf which creates some theoretical ddtgor
dtheor = Fm (2.13)

The general task of geophysicists is to begin from obseratddi,s and find an estimated
modelmeg;that satisfies the simultaneous equations

dobs = FmMest (2.14)

This is the topic of a large discipline variously called “@mgion” or “estimation”. Basically,
it defines a residual = dops— dineorand then minimizes its length r. Findingmes;this way
is called thdeast squaresnethod. The basic result (not proven here) is that

Mest= (F'F) " 1F dops (2.15)

In many cases including all seismic imaging cases, the riffi is far too large to be invert-
ible. People generally proceed by a rough guess at an appatirn for € F)~1. The usual
first approximation is the optimistic one th&'F)~! = |. To this happy approximation, the
inverseF1 is the adjoint'.

In this book we’ll see examples wheffé- ~ | is a good approximation and other examples
where itisn’t. We can tell how good the approximation is. \Akeetsome hypothetical data and
convert it to a model, and use that model to make some recotstr datalecon= FF'dhypo.
Likewise we could go from a hypothetical model to some dat then to a reconstructed
modelMrecon= F'Fmnypo. Luckily, it often happens that the reconstructed diffemsf the
hypothetical in some trivial way, like by a scaling factarby a scaling factor that is a function
of physical location or time, or a scaling factor that is adiion of frequency. It isn’t always
simply a matter of a scaling factor, but it often is, and whas,iwe often simply redefine the
operator to include the scaling factor. Observe that thexeveo places for scaling functions
(or filters), one in model space, the other in data space.
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We could do better than the adjoint by iterative modelinghmds (conjugate gradients)
that are also described elsewhere. These methods gerdeaignd that the adjoint be com-
puted correctly. As a result, we'll be a little careful abadijoints in this book to compute
them correctly even though this book does not require thelpe exactly correct.

2.2.1 Dot product test

We define an adjoint when we write a program that computes dmean abstract logical
mathematical sense, however, every adjoint is defined ¢yt oroduct test. This abstract
definition gives us no clues how to code our program. After exeelfinished coding, however,
this abstract definition (which is actually a test) has coesible value to us.

Conceptually, the idea of matrix transposition is sirmﬂy: ai. In practice, however, we
often encounter matrices far too large to fit in the memoryryf @mputer. Sometimes it is
also not obvious how to formulate the process at hand as axmatitiplication. (Examples
are differential equations and fast Fourier transformshja¥Wve find in practice is that an ap-
plication and its adjoint amounts to two subroutines. Tret §ubroutine amounts to the matrix
multiplication Fx. The adjoint subroutine comput&$/, whereF’ is the conjugate-transpose
matrix. Most methods of solving inverse problems will fdithhe programmer provides an
inconsistent pair of subroutines férandF’. The dot product test described next is a simple
test for verifying that the two subroutines really are adjdo each other.

The matrix expressiog’Fx may be written with parentheses as eithgF)x or y'(Fx).
Mathematicians call this the “associative” property. luyarite matrix multiplication using
summation symbols, you will notice that putting parentBesm®und matrices simply amounts
to reordering the sequence of computations. But we soon getyauseful result. Programs
for some linear operators are far from obvious, for exampigi nt () on page 20. Now we
build a useful test for it.

Y(FX) = (YF)x (2.16)
Y(FX) = (Fy)x (2.17)

For the dot-product test, load the vectgrandy with random numbers. Compute the vector
¥y = Fx using your program foF, and comput& = F'y using your program foF’. Inserting
these into equation (2.17) gives you two scalars that shoeikelqual.

YFX) = yy = &x = (Fy)x (2.18)

The left and right sides of this equation will be computaditynequal only if the program
doingF’ is indeed adjoint to the program doirg(unless the random numbers do something
miraculous). Note that the vectorsandy are generally of different lengths.

Of course passing the dot product test does not prove thahpwter code is correct, but
if the test fails we know the code is incorrect. More inforioatabout adjoint operators, and
much more information about inverse operators is found irother books, Earth Soundings
Analysis: Processing versus inversion (PVI) and Geoply&istimation by Example (GEE).



Chapter 3

Waves in strata

The waves of practical interest in reflection seismologyusally complicated because the
propagation velocities are generally complex. In this hoe& have chosen to build up the
complexity of the waves we consider, chapter by chapter. siinglest waves to understand
are simple plane waves and spherical waves propagatingghi@ constant-velocity medium.
In seismology however, the earth’s velocity is almost nevelt approximated by a constant.
A good first approximation is to assume that the earth’s vgloncreases with depth. In
this situation, the simple planar and circular wavefromtsraodified by the effects af(z).

In this chapter we study the basic equations describingeplixe and spherical-like waves
propagating in media where the velocit{z) is a function only of depth. This is a reasonable
starting point, even though it neglects the even more caa@d distortions that occur when
there are lateral velocity variations. We will also examalaga that shows plane-like waves
and spherical-like waves resulting when waves from a paatce bounce back from a planar
reflector.

3.1 TRAVEL-TIME DEPTH

Echo soundings give us a picture of the earth. A zero-ofiesti@n, for example, is a planar
display of traces where the horizontal axis runs along tisasurface and the vertical axis,
running down, seems to measure depth, but actually measwéao-way echo delay time.
Thus, in practice the vertical axis is almost never depihis thevertical travel timez. In a
constant-velocity earth the time and the depth are relateddimple scale factor, the speed of
sound. This is analogous to the way that astronomers medistaaces in light-years, always
referencing the speed of light. The meaning of the scal@factseismic imaging is that the
(x,7)-plane has a vertical exaggeration compared toxh®-plane. In reconnaissance work,
the vertical is often exaggerated by about a factor of five.tli&ytime prospects have been
sufficiently narrowed for a drill site to be selected, thetieatt exaggeration factor in use is
likely to be about unity (no exaggeration).

In seismic reflection imaging, the waves go down and thenahetraveltime depth ¢

23
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is defined as two-way vertical travel time.
T o= — . (3.1)
v

This is the convention that | have chosen to use throughaubtiok.

3.1.1 \Vertical exaggeration

The first task in interpretation of seismic data is to figuretba approximate numerical value
of the vertical exaggeration The vertical exaggeration iy because it is the ratio of the
apparent slopé\z/Ax to the actual slop&\z/Ax whereAt =2 Az/v. Since the velocity
generallyincreaseswith depth, thevertical exaggerationgenerallydecreasesvith depth.

For velocity-stratified media, the time-to-depth convendiormula is

¢ 2dz dr 2
T(Z) = '/(; ﬁ or d_Z = ; (32)

3.2 HORIZONTALLY MOVING WAVES

In practice, horizontally going waves are easy to recogb&zause their travel time is a linear
function of the offset distance between shot and receiveerd are two kinds of horizontally
going waves, one where the traveltime line goes throughrigewpand the other where it does
not. When the line goes through the origin, it means the raly [gaalways near the earth’s
surface where the sound source and the receivers are lo¢3teth waves are callegfound
roll” on land or “guided waves” at sea; sometimes they are just callddéct arrivals ”.)

When the traveltime line does not pass through the origineiamns parts of the ray path
plunge into the earth. This is usually explained by the w@hjikooking rays shown in Fig-
ure 3.1 which frequently occur in practice. Later in this piea we will see that Snell’'s law

Figure 3.1: Rays associated with ///
head wave. |wvs-headra}[ER]

predicts these rays in a model of the earth with two layergresthe deeper layer is faster and
the ray bottom is along the interface between the slow medindithe fast medium. Mean-
while, however, notice that these ray paths imply data withear travel time versus distance
corresponding to increasing ray length along the ray batt@here the ray is horizontal in
the lower medium, its wavefronts are vertical. These wavesalled ‘head waves,” perhaps
because they are typically fast and arraleeadof other waves.
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3.2.1 Amplitudes

The nearly vertically-propagating waves (reflectionslesgrout essentially in three dimen-
sions, whereas the nearly horizontally-going waves negedgep into the earth because, as
we will see, they are deflected back upward by the velocitdigra. Thus horizontal waves
spread out in essentially two dimensions, so that energyswation suggests that their ampli-
tudes should dominate the amplitudes of reflections on raa déiis is often true foground
roll. Head waves, on the other hand, are often much weaker, afiag bisible only because
they often arrive before more energetic waves. The wealofdssad waves is explained by
the small percentage of solid angle occupied by the wavesniga source that eventually
happen to match up with layer boundaries and propagate ds¥eeees. | selected the exam-
ples below because of the strong headwaves. They are neastyoag as the guided waves.
To compensate for diminishing energy with distance, | stdita displays by multiplying by
the offset distance between the shot and the receiver.

In data display, the slowness (slope of the time-distanceegus often called thetepout
p. Other commonly-used names for this slopetane dip andreflection slope The best way
to view waves witHinear moveoutis after time shifting to remove a standard linear moveout
such as that of water. An equation for the shifted time is

T = t—px (3.3)

wherep is often chosen to be the inverse of the velocity of water, elgnabout 1.5 km/s, or
p = .665km andx = 2h is the horizontal separation between the sound source api/ee,
usually referred to as thaffset

Ground roll andguided waves are typically slow because materials near the earth’s sur-
face typically are slow. Slow waves are steeply sloped ome-tiersus-offset display. It is not
surprising that marine guided waves typically have speedsparable to water waves (near
1.47 km/s approximately 1.5 km/s). Itis perhaps surprisitagground roll also often has the
speed of sound in water. Indeed, the depth to undergrounel wgabften determined by seis-
mology before drilling for water. Ground roll also often heaspeed comparable to the speed
of sound in air, 0.3 km/sec, though, much to my annoyanceltamot find a good example of
it today. Figure 3.2 is an example of energefiound roll (land) that happens to have a speed
close to that of water.

The speed of a ray traveling along a layer interface is thk speed in the faster layer
(nearly always the lower layer). It is not an average of tlyelabove and the layer below.

Figures 3.3 and 3.4 are examples of energetic marine guideds~In Figure 3.3 at=0
(designated -t _wat er ) at small offset is the wave that travels directly from thetsto the
receivers. This wave dies out rapidly with offset (becatgderferes with a wave of opposite
polarity reflected from the water surface). At near offsgghgly later thanr = 0 is the water
bottom reflection. At wide offset, the water bottom reflentis quickly followed by multiple
reflections from the bottom. Critical angle reflection is defl as where thieead wavecomes
tangent to the reflected wave. Before (abave)0 are thehead waves. There are two obvious
slopes, hence two obvious layer interfaces. Figure 3.4 ishnlike Figure 3.3 but the water
bottom is shallower.
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Offset(km) Offset(km)
0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2
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>

Figure 3.2: Land shot profile (Yilmaz and Cumro) #39 from thieltle East before (left) and

after (right) linear moveout at water velocitjwvs-wzl.34 [ER]

Offset(km) Offset(km)
0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

098 ‘IajeM )}

Figure 3.3: Marine shot profile (Yilmaz and Cumro) #20 frone tAleutian Islands.

[ER]
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Offset(km) Offset(km)
0.4 0.8 1.2 1.6 2 2.4 0.4 0.8 1.2 1.6 2 2.4

098 ‘I9jeM

Figure 3.4: Marine shot profile (Yilmaz and Cumro) #32 frore thorth Sea.
[ER]

Figure 3.5 shows data where the first arriving energy is mmgh few straight line seg-
ments, but is along a curve. This means the velocity inceeas®othly with depth as soft
sediments compress.

3.2.2 LMO by nearest-neighbor interpolation

To dolinear moveout (LMO ) correction, we need to time-shift data. Shifting data nespuus

to interpolate it. The easiest interpolation method is tharast-neighbor method. We begin
with a signal given at times = t0+dt *(i t- 1) whereit is an integer. Then we can use equa-
tion (3.3), namelyr =t — px. Given the location au of the desired value we backsolve for
an integer, sayt au. In Fortran, conversion of a real value to an integer is donguncating
the fractional part of the real value. To get rounding up a#i a&down, we add. 5 be-
fore conversion to an integer, namehlyau=i nt (1. 5+(t au-t au0)/ dt) . This gives the nearest
neighbor. The way the program works is to identify two paiotse in €, X)-space and one in
(r,x)-space. Then the data value at one point in one space ied&orthe other. The adjoint
operation copies space back td space. The subroutine used in the illustrations above is
I mo() on the current page witidj =1.

# |inear noveout
#

subroutine I no( adj,add, slow, tauO, tO,dt, xO0,dx, nodl,nt,nx, data )
i nt eger adj , add, nt, nx, it,ix,iu
real t, x, tau, slow, tau0, tO,dt, xO,dx, nodl(nt,nx), data(nt, nx)
call adjnull( adj , add, nodl , nt*nx, data, nt *nx)

do ix=1, nx { x=x0 + dx * (ix-1)
doit=1, nt { t=1t0 +dt * (it-1)
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Figure 3.5: A common midpoint gather from the Gulf of Mexicefdre (left) and after (right)
linear moveout at water velocity. Later | hope to estimatecity with depth in shallow strata.
Press button fomovie over midpoint. [ER,M]

t - x * slow
1.5001 + (tau-tau0)/dt
<iu && iu <= nt)
if( adj == 0)
data(it,ix) = data(it,ix) + nodl(iu,ix)

tau
iu
if(

o I

el se
modl (iu,ix) = nodl (iu,ix) + data(it,ix)

1}

return; end

Nearest neighbor rounding is crude but ordinarily veryafgi. | discovered a very rare
numerical roundoff problem peculiar to signal time-shifti a problem which arises in the
linear moveout application when the water velocity, abod8km/sec is approximated by
1.5=3/2. The problem arises only where the amount of the sinifeis a numerical value (like
12.5000001 or 12.499999) and the fractional part shoulcaetly 1/2 but numerical rounding
pushes it randomly in either direction. We would not carenifemtire signal was shifted by
either 12 units or by 13 units. What is troublesome, howaseérsome random portion of the
signal shifts 12 units while the rest of it shifts 13 units.eflthe output signal has places which
are empty while adjacent places contain the sum of two valugsar moveout is the only
application where | have ever encountered this difficultysifple fix here was to modify
thel no() on the preceding page subroutine changing the “1.5” to ‘0150 The problem
disappears if we use a more accurate sound velocity or if weelsvirom nearest-neighbor
interpolation to linear interpolation.



3.3. DIPPING WAVES 29

3.2.3 Muting

Surface waves are a mathematician’s delight because tindyitaxany complex phenomena.

Since these waves are often extremely strong, and sincefibi@niation they contain about

the earth refers only to the shallowest layers, typicaltyyssderable effort is applied to array
design in field recording to suppress these waves. Nevesghein many areas of the earth,
these pesky waves may totally dominate the data.

A simple method to suppregsound roll in data processing is to multiply a strip of data by
a near-zero weight (the mute). To reduce truncation atifadbe mute should taper smoothly
to zero (or some small value). Because of the extreme véityatstom place to place on the
earth’s surface, there are many different philosophiesiathesigning mutes. Some mute pro-
grams use a data dependent weighting function (such as atitogain control). Subroutine
nut t er () on the current page, however, operates on a simpler ideas#resupplies trajecto-
ries defining the mute zone.

# Data is weighted by sine squared inside a nute zone
# The weight is zero when t < x * sl opeO
# The weight is one when t > tp + x * slopep
# Suggested defaults: slopep = slopeO= 1./1.45 sec/km tp=.150 sec
#
subroutine nutter( tp, slope0O,slopep, dt,dx, tO,x0, data,nt, nx)
integer it,ix, nt, nx
real t,x, w, tp, slopeO, sl opep, dt,dx, t0,x0, data(nt, nx)
do ix=1,nx { x= x0+(i x-1)*dx; x = abs( x)
do it=1,nt { t= t0+(it-1)*dt;

i f (t < x * sl ope0) w =0

elseif(t >tp + x * slopep) w = 1.

el se wt = sin(

0.5 * 3.14159265 * (t-x*slope0)/(tp+x*(slopep-sloped))) ** 2
data(it,ix) = data(it,ix) * wt
1}

return; end

Figure 3.6 shows an example of use of the routina er () on this page on the shallow
water data shown in Figure 3.5.

3.3 DIPPING WAVES

Above we considered waves going vertically and waves goorgzbntally. Now let us con-
sider waves propagating at the intermediate angles. Faatkeof definiteness, | have chosen
to consider only downgoing waves in this section. We wiletaise the concepts developed
here to handle both downgoing and upcoming waves.
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Figure 3.6: Jim’s first gather before and after mutingivs-muttet [ER]

3.3.1 Rays and fronts

It is natural to begin studies of waves with equations thatdbe plane waves in a medium of
constant velocity. Figure 3.7 depicts a ray moving down theearth at an angkefrom the
vertical. Perpendicular to the ray is a wavefront. By eletagngeometry the angle between

O
ps
N\

D

o

Figure 3.7: Downgoing ray and

wavefront. INR]

the wavéront and the earth’s surface is al8oTheray increases its length at a speedThe
speed that is observable on the earth’s surface is the éptof the wavefront with the earth’s
surface. This speed, namalysind, is faster than. Likewise, the speed of the intercept of
the wavefront and the vertical axisig cos9. A mathematical expression for a straight line
like that shown to be the wavefront in Figure 3.7 is

Z = Zyp — X tané (3.4)

In this expression is the intercept between the wavefront and the vertical &xsnake
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the intercept move downward, replace it by the appropriatecity times time:

t
z = 2 _ xtano (3.5
coso
Solving for time gives
z X .
t(x,z) = — cosf + — sinf (3.6)
1)) 1))

Equation (3.6) tells the time that the wavefront will pasy particular location X,z). The
expression for a shifted waveform of arbitrary shapd (5— tg). Using (3.6) to define the
time shiftty gives an expression for a wavefield that is some waveform mgown aray.

moving wavefield = f (t _X sing — z cose) (3.7)
v v

3.3.2 Snell waves

In reflection seismic surveys the velocity contrast betws®allowest and deepest reflectors
ordinarily exceeds a factor of two. Thus depth variation@beity is almost always included
in the analysis of field data. Seismological theory needtwsicler waves that are just like
plane waves except that they bend to accommodate the wesbatificationv(z). Figure 3.8
shows this in an idealized geometry: waves radiated fronmdinzontal flight of a supersonic
airplane. The airplane passes locatioat timetp(x) flying horizontally at a constant speed.
Imagine an earth of horizontal plane layers. In this modelehs nothing to distinguish
any point on thex-axis from any other point on the-axis. But the seismic velocity varies
from layer to layer. There may be reflections, head wavesrsivaves, converted waves,
anisotropy, and multiple reflections. Whatever the pictsiré moves along with the airplane.
A picture of the wavefronts near the airplane moves alondp wie airplane. The top of
the picture and the bottom of the picture both move laterailthe same speed even if the
earth velocity increases with depth. If the top and bottodntligo at the same speed, the
picture would become distorted, contradicting the preshisyemmetry of translation. This
horizontal speed, or rather its invergg/dx, has several names. In practical work it is called
thestepout. In theoretical work it is called theay parameter. It is very important to note that
dtp/dx does not change with depth, even though the seismic veldogyg change with depth.
In a constant-velocity medium, the angle of a wave does rext@é with depth. In a stratified
medium,dty/dx does not change with depth.

Figure 3.9 illustrates the differential geometry of the wiaMotice that triangles have their
hypotenuse on the-axis and thez-axis but not along the ray. That’'s because this figure refers
to wave fronts. (If you were thinking the hypotenuse wouldaswevAt, it could be you
were thinking of the tip of a ray and its projection onto thandz axes.) The diagram shows
that

ot ino
CAE L (3.8)
aX v

ot 9

M _ cos 3.9

0Z v
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Figure 3.8: Fast airplane radiating a sound wave into thia eBrom the figure you can deduce
that the horizontal speed of the wavefront is the same ahdgats it is at deptlz,. This leads

(in isotropic media) to Snell's law|wvs-airplang[NR]

Figure 3.9: Downgoing fronts and rays in stratified medix(z). The wavefronts are horizon-

tal translations of one anothewvs-frontz [NR]
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These two equations define two (inverse) speeds. The firshaiaontal speed, measured
along the earth’s surface, called therizontalphase velocity. The second is a vertical speed,
measurable in a borehole, called trextical phase velocity. Notice that both these speeds
exceedhe velocityv of wave propagation in the medium. Projection of wdrants onto
coordinate axes gives speeds larger thawhereas projection afays onto coordinate axes
gives speeds smaller than The inverse of the phase velocities is called stepout or the
slowness.

Snell's law relates the angle of a wave in one layer with the angle in amotfihe con-
stancy of equation (3.8) in depth is really just the statanoéisnell’s law. Indeed, we have
just derived Snell’s law. All waves in seismology propagat@ velocity-stratified medium.
So they cannot be called plane waves. But we need a name fe@swvilaat are near to plane
waves. ASnell wave will be defined to be the generalization of a plane wave toatif&d
mediumuv(z). A plane wave that happens to enter a medium of depth-vanadocity v(z)
gets changed into a Snell wave. While a plane wave has an afyglepagation, a Snell wave
has instead &nell parameter p = dtp/9X.

It is noteworthy that Snell's parametgr= dtp/dx is directly observable at the surface,
whereas neither nor 6 is directly observable. Singe = dtp/dx is not only observable, but
constant in depth, it is customary to use it to eliminateom equations (3.8) and (3.9):

oto sing

- = = 3.10
™ . p (3.10)
ato cosd 1 5

-0 _ — — 3.11
0z v v(2)2 P (3.11)

3.3.3 Evanescent waves

Suppose the velocity increases to infinity at infinite defdthen equation (3.11) tells us that
something strange happens when we reach the depth for yhietuals Jv(2)?. That is the
depth at which the ray turns horizontal. We will see in a lateapter that below this critical
depth the seismic wavefield damps exponentially with irgirepdepth. Such waves are called
evanescentFor a physical example of an evanescent wave, forget thiaag and think about
a moving bicycle. For a bicyclist, the slownegss so large that it dominates/d(z)? for all
earth materials. The bicyclist does not radiate a wave, tmgdyres a ground deformation that
decreases exponentially into the earth. To radiate a was@ayiee must move faster than the
material velocity.

3.3.4 Solution to kinematic equations

The above differential equations will often reoccur in tatealysis, so they are very important.
Interestingly, these differential equations have a singplation. Taking the Snell wave to go
through the origin at time zero, an expression for the drtinee of the Snell wave at any other
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location is given by
tO(X! Z) =

— X + dz
v v
z l 5
t = — — A
o(X,2) px+/0 2P p? dz (3.13)

The validity of equations (3.12) and (3.13) is readily clestlby computingdty/d9x and
dtp/dz, then comparing with (3.10) and (3.11).

sin® Z cos6
f (3.12)
0

An arbitrary waveformf (t) may be carried by the Snell wave. Use (3.12) and (3.13) to
definethe timety for a delayed wavd [t — to(X, )] at the location X, z).

SnellWave(,x,z) = f (t — pX — fz vé)z - p? dz) (3.14)
o\

Equation (3.14) carries an arbitrary signal throughoutthele medium. Interestingly, it does
not agree with wave propagation theory or real life becagsaton (3.14) does not correctly
account for amplitude changes that result from velocitynges and reflections. Thus it is
said that Equation (3.14) is “kinematically” correct butytfdmically” incorrect. It happens
that most industrial data processing only requires thingset kinematically correct, so this
expression is a usable one.

3.4 CURVED WAVEFRONTS

The simplest waves are expanding circles. An equation faccke@xpanding with velocity
is

vt2 = x4 722 (3.15)

Considering to be a constant, i.e. taking a snapshot, equation (3.1Batf a circle. Con-
sideringz to be a constant, it is an equation in thet(-plane for a hyperbola. Considered in
the ¢, x, z)-volume, equation (3.15) is that of a cone. Slices at varialues ot show circles
of various sizes. Slices of various valueszahow various hyperbolas.

Converting equation (3.15) to traveltime deptlve get

vt2 = 22+ x? (3.16)
2 2 X
=+ (3.17)

The earth’s velocity typically increases by more than adaof two between the earth’s sur-
face, and reflectors of interest. Thus we might expect thaatan (3.17) would have little

practical use. Luckily, this simple equation will solve nggaroblems for us if we know how

to interpret the velocity as an average velocity.
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3.4.1 Root-mean-square velocity

When a ray travels in a depth-stratified medium, Snell’s patar p = v=1sind is constant
along the ray. If the ray emerges at the surface, we can nedserdistance that it has
traveled, the time it took, and its apparent spedd/dt = 1/p. A well-known estimate for
the earth velocity contains this apparent speed.

. /X dx

To see where this velocity estimate comes from, first noheéthe stratified velocity(z) can
be parameterized as a function of time and take-off angleray &om the surface.

v(2 = v(X2 = v(pt) (3.19)

The x coordinate of the tip of a ray with Snell parameteis the horizontal component of
velocity integrated over time.

t t
x(p,t) = fov/(p,t)sine(p,t)dt = p/ov/(p,t)zdt (3.20)

Inserting this into equation (3.18) and cancelmg: dt/dx we have

t
i = uvrms = \/%fv/(p,t)zdt (3.21)
0

which shows that the observed velocity is the “root-meamasg’ velocity.

When velocity varies with depth, the traveltime curve isyordughly a hyperbola. If we
break the event into many short line segments where-thesegment has a slogg and a
midpoint ¢, %) each segment gives a differentp;,t;) and we have the unwelcome chore
of assembling the best model. Instead, we can fit the obsenehtdata to the best fitting
hyperbola using a different velocity hyperbola for eachxapeother words, find/ () so this
equation will best flatten the data in,)-space.

t> = 124x%/V(1)? (3.22)
Differentiate with respect t& at constant getting
2tdt/dx = 2x/V(r)? (3.23)

which confirms that the observed velocityn"equation (3.18), is the same ¥$r) no matter
where you measuredn a hyperbola.

3.4.2 Layered media

From the assumption that experimental data can be fit to byptss (each with a different
velocity and each with a different apey let us next see how we can fit an earth model of
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layers, each with a constant velocity. Consider the hotadaeflector overlain by a stratified
interval velocity v(z) shown in Figure 3.10. The separation between the sourcgenhone,
also called the offset, ist?and the total travel time is Travel times are not be precisely hy-
perbolic, but it is common practice to find the best fitting égholas, thus finding the function
V2(7).

4h?
V¥(r)
wherert is the zero-offset two-way traveltime.

t2 = ‘1,'2—|—

(3.24)

An example of using equation (3.24) to stretchto 7 is shown in Figure 3.11. (The
programs that find the requirdf(r) and do the stretching are coming up in chapter 4.)

Equation (3.21) shows th&t(7) is the “root-mean-square” or “RMS” velocity defined by
an average of2 over the layers. Expressing it for a small number of layergyate

V() = %vam (3.25)

where the zero-offset traveltimeis a sum over the layers:

r = Y Ag (3.26)

The two-way vertical travel time; in theith layer is related to the thicknegsz; and the

velocity v; by -
Z.
At = — L (3.27)
|

Next we examine an important practical calculation, ggttiterval velocities from mea-
sured RMS velocities: Define in layerthe interval velocity; and the two-way vertical travel
time Az;. Define the RMS velocity of a reflection from the bottom of tkéh layer to beV;.
Equation (3.25) tells us that for reflections from the bottafrthe first, second, and third layers
we have

UJZ_A‘L']_

V2 = 3.28
1 Aty (3.28)
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Figure 3.11: If you are lucky and get a good velocity, when golNMO, everything turns out

flat. Shown with and without mutelwvs-nmogath[ER]

2 2
viAT] +VSAT
V2 AT a2 (3.29)
AT1+ AT
2 2 2
ViAT] +V5A T+ V5AT
vZ = Ao 1T 2T e (3.30)
AT+ Ao+ Ats

Normally it is easy to measure the times of the three hyparbmps,At;, Aty + At and
AT+ Aty + Ats. Using methods in chapter 4 we can measure the RMS velobitiead Vs.
With these we can solve for the interval velocityin the third layer. Rearrange (3.30) and
(3.29) to get

(A‘L’1+A‘E2+A‘L'3)V32 = U%AT1+U%A‘52+U§AT3 (3.31)
(AT1+AT2)V22 = UJZ_A‘L';L—I—U%A‘L'Z (3.32)

and subtract getting the squared interval veloggty

v% _ (A‘E1+A‘E2+A‘L’3)AV32— (A‘L’1+A‘L’2)V22 (3.33)
73

For any real earth model we would not like an imaginary vejowiich is what could happen
if the squared velocity in (3.33) happened to be negative.Sée that this means that the RMS
velocity we estimate for the third layer cannot be too muchlgnthan the one we estimate
for the second layer.
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3.4.3 Nonhyperbolic curves

Occasionally data does not fit a hyperbolic curve very wetlo ©ther simple fitting functions
are

.
t* = %+ = 4 x*x parameter (3.34)
v
2 2 X
(t—t)" = (r—t) + 7z (3.35)

Equation (3.34) has an extra adjustable parameter of ndesimierpretation other than the
beginning of a power series it. | prefer Equation (3.35) where the extra adjustable parame
ter is a time shifty which has a simple interpretation, namely, a time shift sagtvould result
from a near-surface low velocity layer. In other words, audatorrection.

3.4.4 \Velocity increasing linearly with depth

Theoreticians are delighted by velocity increasing liheatth depth because it happens that
many equations work out in closed form. For example, rayeetria circles. We will need
convenient expressions for velocity as a function of tréawved depth and RMS velocity as a
function of traveltime depth. Let us get them. We takeititerval velocity v(z) increasing
linearly with depth:

v(z) = wvo+toaz (3.36)
This presumption can also be written as a differential aqoat
dv
— = . 3.37
E o (3.37)

The relationship betweenand vertical two-way traveltime(z) (see equation (3.27)) is also

given by a differential equation:
dr 2

95 = e (3.38)
Letting v(r) = v(z(r)) and applying the chain rule gives the differential equafor v(z):
dvdz dv Vo

whose solution gives us the desired expressiomterval velocity as a function of traveltime
depth.
v(t) = o e (3.40)

3.4.5 Prior RMS velocity

Substituting the theoretical interval velocityr) from equation (3.40) into the definition of
RMS velocityV (r) (equation (3.25)) yields:

T V3(r) = / TUZ(‘E/)dt/ (3.41)
0
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2ear_l.

= 3.42
g (3.42)
Thus the desired expression for RMS velocity as a functianavkltime depth is:
et —1
V(r) = o (3.43)
ot

For small values ok, this can be approximated as

V(1) ~ voItar/2. (3.44)
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Chapter 4

Moveout, velocity, and stacking

In this chapter we handle data as though the earth had nandipgilectors. The earth model
is one of stratified layers with velocity a (generally ingiea) function of depth. We con-
sider reflections from layers, which we process by normaleoav correction (NMO). The

NMO operation is an interesting example of many generalcgplas of linear operators and
numerical analysis. Finally, using NMO, we estimate theéléawelocity with depth and we

stack some data, getting a picture of an earth with dippiggria This irony, that techniques
developed for a stratified earth can give reasonable imdgemestratified reflectors, is one of
the “lucky breaks” of seismic processing. We will explore timitations of this phenomenon
in the chapter on dip-moveout.

First, a few words about informal language. The inverse toory arises more frequently
in seismology than the velocity itself. This inverse is edlithe “slowness.” In common
speech, however, the word “velocity” is a catch-all, so wisatalled a “velocity analysis”
might actually be a plane of slowness versus time.

4.1 INTERPOLATION AS A MATRIX

Here we see how general principles of linear operators aephfied by linear interpola-
tion. Because the subject matter is so simple and intuitivis,ideal to exemplify abstract
mathematical concepts that apply to all linear operators.

Let an integek range along a survey line, and let data valgee packed into a vector
(Each data point, could also be a seismogram.) Next we resample the data moselgiesay
from 4 to 6 points. For illustration, | follow a crudeearest-neighbor interpolationscheme
by sprinkling ones along the diagonal of a rectangular matiat is

y = Bx (4.1)

41
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where
"y ] 1 0 0 07
y2 0100 X1
Y3 . 0100 X2
Ya o 0010 X3 (4'2)
Vs 0 001 I_ X4 J
| Y6 | L 00O 1_

The interpolated data is simpyy= (X1, X2, X2, X3, X4, X4). The matrix multiplication (4.2) would
not be done in practice. Instead there would be a loop runoweg the space of the outputs
that picked up values from the input.

4.1.1 Looping over input space

The obvious way to program a deformation is to take each goomt theinput space and
find where it goes on the output space. Naturally, many paotsgd land in the same place,
and then only the last would be seen. Alternately, we coudd &rase the output space, then
add in points, and finally divide by the number of points thadled up in each place. The
biggest aggravation is that some places could end up witromag This happens where the
transformatiorstretches. There we need to decide whether to interpolate the rgigsimts,

or simply low-pass filter the output.

4.1.2 Looping over output space

The alternate method that is usually preferable to loopirey mput space is that our program
have a loop over the space of thetputs,and that each output find its input. The matrix multi-
ply of (4.2) can be interpreted this way. Where the transédiomshrink s is a small problem.
In that area many points in the input space are ignored, wientgaps they should somehow
be averaged with their neighbors. This is not a serious prohinless we are contemplating
iterative transformations back and forth between the space

We will now address interesting questions about the relvditgi of these deformation
transforms.

4.1.3 Formal inversion

We have thought of equation (4.1) as a formula for findifigom x. Now consider the opposite
problem, findingx fromy. Begin by multiplying equation (4.2) by theanspose matrix to
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define a new quantity:

Y1
Y2
Y3
4.3
Ya (4.3)
Y5
L Y6 |

X is not the same as, but these two vectors have the same dimensionality and ny rap-
plications it may happen thétis a good approximation t®. In generalX may be called an
“image” of x. Finding the image is the first step of findirgtself. Formally, the problem is

O OO
(ool o)
OO Pr o
oOr OO
= O OO
= O OO

X1
X2
X3
Xa

y = BX (4.4)
And the formal solution to the problem is
x = (B'B)"!BYy (4.5)
Formally, we verify this solution by substituting (4.4) inf4.5).
x = (BB)IBBxXx = Ix = x (4.6)

In applications, the possible nonexistence of an inversthismatrix 8’ B) is always a topic
for discussion. For now we simply examine this matrix for ithterpolation problem. We see
that it is diagonal:

"1 00 07
100000]|/0100 1000
.. _ |lo11000||0100| |[0200
BB = looo0o100|llo0o10] T 0010 (4.7)
000011/l 0001 000 2
| 000 1.

S0,X1 = X1; butX, = 2x,. To recover the original data, we need to dividby the diagonal
matrix B’ B. Thus, matrix inversion is easy here.

Equation (4.5) has an illustrious reputation, which arisebe context of “least squares.”
Least squaress a general method for solving sets of equations that have sauations than
unknowns.

Recoveringx from y using equation (4.5) presumes the existence of the invérBeR
As you might expect, this matrix is nonsingular wHgstretcheshe data, because then a few
data values are distributed among a greater number of toatiWwhere the transformation
squeezethe dataB’B must become singular, since returning uniquely to the umpressed
condition is impossible.

We can now understand why an adjoint operator is often anoappate inverse. This
equivalency happens in proportion to the nearness of thex&tB to an identity matrix.
The interpolation example we have just examined is one ickvBiB differs from an identity
matrix merely by a scaling.
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4.2 THE NORMAL MOVEOUT MAPPING

Recall the traveltime equation (3.17).

Vt2 = 2+ x? (4.8)
2 s | X

wherer is traveltime depth. This equation gives either time fromdisse source to a receiver
at depthr, or it gives time to a surface receiver from an image sourckepthr.

A seismictrace is a signald(t) recorded at some constantWe can convert the trace to a
“vertical propagation” signain(z) = d(t) by stretching to z. This process is callechbrmal
moveout correction” (NMO). Typically we have many traces at diffietrex distances each
of which theoretically produces the same hypothetical -zdiget trace. Figure 4.1 shows a
marine shot profile before and after NMO correction at theeweglocity. You can notice that
the wave packet reflected from the ocean bottom is approgignatconstant width on the raw
data. After NMO, however, this waveform broadens consiolgrasa phenomenon known as
“NMO stretch."

Offset(km) Offset(km)

-0.4 -0.8 -1.2 -1.6 -0.4 -0.8 —-1.2 -1.6

Figure 4.1: Marine data moved out
with water velocity. Input on the
left, output on the right. Press button
for movie sweeping through velocity
(actually through slowness squared).

[vela-stretch(ER,M]

¥o

(spuooas)suy]
(spuooas)suy]
80

The NMO transformatiomN is representable as a square matrix. The mairig a (z,t)-
plane containing all zeros except an interpolation opetaatered along the hyperbola. The
dots in the matrix below are zeros. The input sigdiais put into the vectod. The output
vectorm—i.e., the NMO’ed signal—is simplydg,ds, ds, d7,d7,ds, ds, dg, d10,0). In real life
examples such as Figure 4.1 the subscript goes up to abotihamsand instead of merely to
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ten.

[ mz ] [ e A 11 (o] ]
mpy Y d2
ms Y d3
my e d4
Mg e d5

m = Nd = Mg - e de (4'10)
my e d7
mg Y R dg
Mg o dg
| M1o A L e L d10 A

You can think of the matrix as having a horizontedxis and a verticat-axis. The 1's in the
matrix are arranged on the hyperbofe= z2 + x§/v?. The transpose matrix defining somte
from m gives synthetic datd from the zero-offset (or stack) model, namely,

d1 e my
dé e mpy
aé e e e e e e mas
qg e e e e e e my
a - Nm = q§ _ e e e e e Mg
de e Mg
d} e A my
dé .. . . .11 . .. mg
gé R Mo
B le | I 1 - L M1o A
(4.11)

A program fornearest-neighbor normal moveoutas defined by equations (4.10) and (4.11)
is nmo0() . Because of the limited alphabet of programming langudgesed the keystroke
to denoter.

subrouti ne nnpO( adj, add, slow, x, t0, dt, n,zz, tt)

integer it, iz, adj, add, n

real xs, t , z, slow(n), x, t0, dt, zz(n), tt(n)

call adjnull( adj, add, zz,n, tt,n)
doiz=1, n { z =t0 + dt*(iz-1) # Travel -time depth

xs= x * slow(iz)
t =sqrt (z* z + Xs * Xs)
it=1+ .5+ (t - t0) / dt # Round to nearest nei ghbor
if(it <=n)
if( adj == 0)
tt(it)

tt(it) + zz(iz)
el se

zz(iz) = zz(iz) + tt(it)
}

return; end

A program is a “pull” program if the loop creating the outpaters each location in the output
and gathers the input from wherever it may be. A program isalip program if it takes each
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input and pushes it to wherever it belongs. Thus this NMO gagis a “pull” program for
doing the model building (data processing), and it is a “pysbgram for the data building.
You could write a program that worked the other way aroundnelg, a loop ovet with z
found by calculatiorz = /t2/v2 — x2. What is annoying is that if you want a push program
going both ways, those two ways cannot be adjoint to one anoth

Normal moveout is a linear operation. This means that datebeadecomposed into any
two parts, early and late, high frequency and low, smoothrangh, steep and shallow dip,
etc.; and whether the two parts are NMO’ed either separatetpgether, the result is the
same. The reason normal moveout is a linear operation isvlatve shown it is effectively
a matrix multiply operation and that operation fulfiNgd; + d>) = Nd; + Nda.

4.3 COMMON-MIDPOINT STACKING

Typically, many receivers record every shot, and there arynshots over the reflectors of
interest. It is common practice to define the midpaint (Xs + Xg)/2 and then to sort the
seismic traces intocommon-midpoint gathers”. After sorting, each trace on a common-
midpoint gather can be transformed by NMO into an equivadent-offset trace and the traces
in the gather can all be added together. This is often calkedntmon-depth-pointGDP)
stacking” or, more correctly,common-midpoint stackng”.

The adjoint to this operation is to begin from a model thatdmniical to the zero-offset
trace and spray this trace to all offsets. There is no “offidafinition of which operator of
an operator pair is the operator itself and which is the adj@n the one hand, | like to think
of the modeling operation itself dbe operator. On the other hand, the industry machinery
keeps churning away at many processes that have well-knawres, so people often think
of one of them ashe operator. Industrial data-processing operators are djigiadjoints to
modeling operators.

Figure 4.2 illustrates the operator pair, consisting oagjgrg out a zero-offset trace (the
model) to all offsets and the adjoint of the spraying, whistacking. The moveout and stack
operations are in subroutiseacko() .

subrouti ne stackO( adj, add, slow, t0,dt, x0,dx, nt,nx, stack, gather)

i nteger ix, adj, add, nt, nx

real X, slow(nt), tO,dt, xO,dx, stack(nt), gather(nt, nx)
call adjnull( adj, add, stack, nt, gather, nt*nx)

do ix=1, nx {
x = x0 + dx * (ix-1)
call nmO( adj, 1, slow, x, t0,dt, nt, stack, gather(1,ix))
}

return; end

Let S’ denote NMO, and let the stack be defined by invokéngcko() with the adj =1 ar-
gument. TherSS is the modeling operation defined by invokiegacko() with the adj =0
argument. Figure 4.2 illustrates both. Notice the rougbmesthe waveforms caused by dif-
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Model m

Figure 4.2: Top is a model traae. JA)
Center shows the spraying to syn- #"i5:
thetic traces,Sm. Bottom is the
stack of the synthetic dataSSm.

[vela-stack[ER]

Stack

time,sec

ferent numbers of points landing in one place. Notice algoinicrease oAVO (amplitude
versusoffset) as the waveform gets compressed into a smaller space lyi-imatice that the
stack is a little rough, but the energy is all in the desiretetivindow.

We notice a contradiction of aspirations. On the one handpanator has smooth outputs
if it “loops over output space” and finds its input where ewemay. On the other hand, it
is nice to have modeling and processing be exact adjointadf ether. Unfortunately, we
cannot have both. If you loop over the output space of an ¢@ethen the adjoint operator
has a loop over input space and a consequent roughness offtg.o

4.3.1 Crossing traveltime curves

Since velocity increases with depth, at wide enough offsééep enough path will arrive
sooner than a shallow path. In other words, traveltime cufee shallow events must cut
across the curves of deeper events. Where traveltime cargss, NMO is no longer a one-
to-one transformation. To see what happens tstheking process | prepared Figures 4.3-4.5
using a typical marine recording geometry (although forigtd used larger At, Ax)) and we
will use a typical Texas gulf coast average velocit{g) = 1.5+ oz wherea = .5. First we
repeat the calculation of Figure 4.2 with constant veloeitg O and more reflectors. We see
in Figure 4.3 that thetack reconstructs the model except for two details: (1)adh&plitude
diminishes with time, and (2) the early waveforms have bexoonnded. Then we repeat the
calculation with the Gulf coast typical velocity gradient= 1/2. The polarity reversal on the
first arrival of the wide offset trace in Figure 4.4 is evidertbat in practice traveltime curves
do cross. (As was plainly evident in Figures 3.2, 3.3 and Bo4sing traveltime curves are
even more significant elsewhere in the world.) Comparingifégt.3 to Figure 4.4 we see
that an effect of the velocity gradient is to degrade steck's reconstruction of the model.
Velocity gradient has ruined the waveform on the shallowesnt, at about 400ms. If the plot
were made on a finer mesh with higher frequencies, we couleatxpined waveforms a little
deeper too.

Our NMO and stack subroutines can be used for modeling ordta processing. In de-
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Model i m__2pha0 i il
i T T T
Figure 4.3: Synthetic CMP gather &5 e ————
for constant velocity earth and recon- e
: S ———
struction. [vela-nmoOalfa0[ER] - —
XW P hal - hall
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Stack A - — — am, .
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Figure 4.4: Synthetic CMP gather : S e
for velocity linearly increasing with ~ &diix D N ———— -
depth (typical of Gulf of Mexico) and

reconstruction.  |vela-nmo0alfa.b
[ER]

Stack

time,sec
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signing these programs we gave no thought to signglitudes (although results showed an
interestingAVO effect in Figure 4.2.) We could redesign the programs sottitemodeling

operator has the most realisimplitude that we can devise. Alternately, we could design the
amplitudes to get the best approximation S ~ | which should result in $t ack” being a

good approximation tonvbdel .” | experimented with various weighting functions untildrme
up with subroutinesimo1() on the current page and ack1() (like stack0o() on page 46)

which embodies theveighting function (z/t)(1/+/t) and which produces the result in Fig-
ure 4.5. The result in Figure 4.5 is very pleasing. Not onlthisamplitude as a function

Model m

= 1phai.5 iy

et e——— = - =

Figure 4.5: Synthetic CMP gather D — N ——
for velocity linearly increasing M“W“Xw %MWW:L = S
with depth and reconstruction with ~&'data D S — e ———
weighting functions in subroutine e — e
nmol(). Lots of adjustable pa- /R S A - "
rameters here. |vela-nmolalfa.b R ea———
[ER] T

time,sec
of time better preserved, more importantly, the shallow elets are less smeared and have
recovered their rectangular shape. The reason the reaotigiris much better is the cosine
weighting implicit inz/t. It has muted away much of the energy in the shallow asymptote
think this energy near the asymptote is harmful because #éivefarm stretch is so large there.
Perhaps a similar good result could be found by experimgntith muting programs such as
nutter () on page 29. However, subroutineo1() on this page differs fromutter () in two
significant respects: (I)o1() is based on a theoretical concept whenaaser () requires
observational parameters and (@)t er () applies a weighting in the coordinates of thgex|
input space, whileno1() does that but also includes the coordinata the the output space.
With nmo1() events from different depths see different mutes which is good where a shallow
event asymptote crosses a deeper event far from its own astanmpn practice the problem
of crossing traveltime curves is severe, as evidenced byr€$g3.2-3.4 and both weighting
during NMO and muting should be used.
subroutine nnol( adj

add, sl ow,
integer it,

x, t0, dt, n,zz, tt )

iz, adj, add, n
real xs, t , z, slow(n), x, t0, dt, zz(n), tt(n), wt
call adjnull( adj, add, zz,n, tt,n)
doiz=1, n{ z =t0 + dt*(iz-1)

Xs = x * slow(iz)
t =sqgrt (z* z + xs * xs) + 1.e-20
w = z/t * (1./sqrt(t)) # weighting function
it =1+ .5+ (t - t0) / dt
if( it <=n)
if( adj == 0)

tt(it) =tt(it) + zz(iz) * w
el se
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zz(iz) = zz(iz) +tt(it) * wt
}

return; end

It is important to realize that the most accurate possibiesigal amplitudes are not neces-
sarily those for whict8'S~ |. Physically accurate amplitudes involve many theoretgsales
not covered here. It is easy to include some effects (spdlatticergence based on velocity
depth variation) and harder to include others (surface tghansd arrays). We omit detailed
modeling here because it is the topic of so many other studies

4.3.2 ldeal weighting functions for stacking

The difference betweestacking as defined byinoo() on page 45 and byno1() on the
preceding page is in the weighting functiory{)(1/+/1). This weight made a big difference
in the resolution of the stacks but | cannot explain whethesrweighting function is the best
possible one, or what systematic procedure leads to theamghting function in general.
To understand this better, notice thay{)(1/+/t) can be factored into two weights, and
t=3/2, One weight could be applied before NMO and the other aftdrat would also be
more efficient than weighting inside NMO, as does1() . Additionally, it is likely that these
weighting functions should take into account data trumcadt the cable’s end. Stacking is
the most important operator in seismology. Perhaps sonezg measure of quality can be
defined and arbitrary powers ofx, andr can be adjusted until the optimum stack is defined.
Likewise, we should consider weighting functions in thecép® domain. As the weights
andt~%2 tend to cancel one another, perhaps we should filter withsipgdilters before and
afterNMO and stack.

4.3.3 Gulf of Mexico stack and AGC

Next we create a “CDP stack” of our the Gulf of Mexico data sBRecall the moved out

common-midpoint (CMP) gather Figure 3.11. At each midpdhnere is one of these CMP
gathers. Each gather is summed over its offset axis. Figérehlbws the result of stacking
over offset, at each midpoint. The result is an image of ascsestion of the earth. In Fig-

ure 4.6 the early signals are too weak to see. This results the small number of traces at
early times because of the mute function. (Notice missifgrmation at wide offset and early
time on Figure 3.11.) To make the stack properly, we shouwlldiby the number of nonzero
traces. The fact that the mute function is tapered rather ¢cé off abruptly complicates the

decision of what is a nonzero trace. In general we might bkepply a weighting function of

offset. How then should the stack be weighted with time te@ree something like the proper
signal strength? A solution is to make constant synthetia fgero frequency). Stacking this
synthetic data gives a weight that can be used as a divisan staeking field data. | prepared
code for such weighted stacking, but it cluttered the NMO staatk program and required
two additional new subroutines, so | chose to leave theasluttthe electronic book and not to
display it here. Instead, | chose to solve the signal stiepgiblem by an old standby method,
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midpoint(km)
8 9 10 11 12 13 14 15 16
o
w2
SEEeS
o
o

Stack
Figure 4.6: Stack done with a given velocity profile for aldpéints. |vela-wgstack[ER]

Automatic Gain Control (AGC). A divisor for the data is foubg smoothing the absolute val-
ues of the data over a moving window. To make Figure 4.7 | miaglditvisor by smoothing in
triangle shaped windows about a half second long. To dolthised subroutineri angl e()
on page 222.

4.4 VELOCITY SPECTRA

An important transformation in exploration geophysicet#élata as a function of shot-receiver
offset and transforms it to data as a function of apparerdcigl Data is summed along
hyperbolas of many velocities. This important industriedgess is adjoint to another that
may be easier to grasp: data is synthesized by a superpositimany hyperbolas. The
hyperbolas have various asymptotes (velocities) and wariops (apexes). Pseudocode for
these transformations is
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midpoint(km)
8 9 10 11 12 13 14 15 16
O
o oo
(@)
o
AGC Stack
Figure 4.7: Stack of Figure 4.6 after AGQela-agcstacER,M]
dov{
dot{
dox{

t =12+ x2/v2
if hyperbola superposition
datag, x) = datag, x) + vspacet,v)
else if velocity analysis
vspacet,v) = vspacet, v) + datag, x)
1

We can ask the question, if we transform data to velocity spaied then return to data space,
will we get the original data? Likewise we could begin frone telocity space, synthesize
some data, and return to velocity space. Would we come backéoe we started? The answer
is yes, in some degree. Mathematically, the question amsdorthis: Given the operatda,

is A’A approximately an identity operator, i.e.Asnearly a unitary operator? It happens that
A’A defined by the pseudocode above is rather far from an ideméisformation, but we
can bring it much closer by including some simple scalingdexc It would be a lengthy
digression here to derive all these weighting factors butisebriefly see the motivation for
them. One weight arises because waves &splitude as they spread out. Another weight
arises because some angle-dependent effects should lmeitnékeaccount. A third weight
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arises because in creating a velocity space, the nearo#setless important than the wide
offsets and we do not even need the zero-offset data. A faweitht is a frequency dependent
one which is explained in chapter 6. Basically, the summatia the velocity transformation
are like integrations, thus they tend to boost low frequesiciThis could be compensated
by scaling in the frequency domain with frequencyasi w with subroutinenal f di fa() on
page 95.

The weighting issue will be examined in more detail later. aM@hile, we can see nice
quality examples from very simple programs if we includewleghts in the physical domain,
w = 4/1/t \/x/v t/t. (Typographical note: Do not confuse the weigh{double you) with
omegaw.) To avoid the coding clutter of the frequency domain wdight,/ —iw | omit
that, thus getting smoother results than theoreticallyepable. Figure 4.8 illustrates this
smoothing by starting from points in velocity space, transfing to offset, and then back and
forth again.

Vi

AW
o

Yr
Vi
W

Figure 4.8: Iteration between spaces. Left are model spadRigt are data spaces. Right
derived from left. Lower model space derived from upper datece. [vela-velve| [ER]

There is one final complication relating to weighting. Thestngymmetrical approach is
to putw into bothA andA’. This is what subroutineel si np() on the current page does.
Thus, because of the weighting Ryx, the synthetic data in Figure 4.8 is nonphysical. An
alternate view is talefineA (by the pseudo code above, or by some modeling theory) and the
for reverse transformation use’A’.
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# velsinp --- sinple velocity transform

#

subroutine vel sinp( adj, add, tO,dt, x0, dx, s0,ds, nt,nx,ns, nodl, data)
integer it,ix,is, adj , add, nt, nx, ns, iz,nz
real x,s,sx, t,z, z0,dz,w, t 0, dt, x0, dx, s0, ds, nodl (nt, ns), data(nt, nx)
call adjnull( adj , add, nodl , nt *ns, data, nt *nx)

nz= nt; zO0=t0; dz= dt; # z is travel time depth

dois=1, ns { s =s0 + (is-1) * ds
doix=1, nx { x = x0 + (ix-1) * dx
doiz=2, nz{ z =20+ (iz-1) * dz

sx = abs( s * x)
t =sqgrt( z * z + sx * sx)
it =1.5+ (t - t0) / dt
if (it <=nt) { w= (z/t) / sqrt( t)
if( adj == 0)
data(it,ix) = data(it,ix) + modl(iz,is) * sx * w
el se
modl (iz,is) = nodl (iz,is) + data(it,ix) * sx * wt
}

11}

return; end
An example of applying subroutinel si np() on the preceding page to field data is shown
in Figure 4.9.

offset(km) slowness(sec/km)
04 08 1.2 1.6 2 24 2.8 3.2 0.4 0.5 0.6 0.7

298
J08

Figure 4.9: Transformation of data as a function of offseft)to data as a function of slowness

(velocity scans) on the right using subroutirg si np() . [ER]
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4.4.1 Velocity picking

For many kinds of data analysis, we need to know the velodith® earth as a function of
depth. To derive such information we begin from Figure 4.6 draw a line through the
maxima. In practice this is often a tedious manual processitaneeds to be done everywhere
we go. There is no universally accepted way to automate thrsegure, but we will consider
one that is simple enough that it can be fully described fzré which works well enough for
these demonstrations. (I plan to do a better job later.)

Theoretically we can define the velocity or slowness as atfomof traveltime depth by
the moment function. Take the absolute value of the datassash smooth them a little on the
time axis to make something like an unnormalized probaffilihction, sayp(z,s) > 0. Then
the slowness(t) could be defined by the moment function, i.e.,

> s S Pt,9)
>s P(z,9)

The problem with defining slownesér) by the moment is that it is strongly influenced by
noises away from the peaks, particularly water velocitysesi Thus, better results can be
obtained if the sums in equation (4.12) are limited to a raalgeut the likely solution. To
begin with, we can take the likely solution to be defined byarsal or regional experience.

It is sensible to begin from a one-parameter equation fayorl increasing with depth where
the form of the equation allows a ray tracing solution suceqgtion (3.43). Experience with
Gulf of Mexico data shows that~ 1/2 sec! is reasonable there for equation (3.43), and that
is the smooth curve in Figure 4.10.

S(r) (4.12)

Experience with moments, equation (4.12), shows they asoreble when the desired
result is near the guessed center of the range. Otherwisendment is biased towards the
initial guess. This bias can be reduced in stages. At eagk sta shrink the width of the zone
used to compute the moment. This procedure is used in sulbeaubwfit () on the current
page which after smoothing to be described, gives the asmill curve you see in Figure 4.10.

subroutine slowfit( vsurface, alpha, t0,dt, s0O,ds, scan,nt,ns, reg, sl ow)
integer irange, it,is, nt, ns
real numden, t,s, vsurface, alpha, t0,dt, s0,ds, scan(nt,ns),reg(nt),slownt)
doit=1, nt { t=t0 + dt*(it-1) + dt
reg(it) 1./( vsurface * sqgrt( (exp(al pha*t) - 1.)/(al pha*t) ))
slow(it) reg(it)
}
do irange= ns/4, 5, -1{
doit= 1, nt { t=10 + dt*(it-1)
do is= 1, ns { s= s0 + ds*(is-1)
if( s >slowit) + irange*ds) scan(it,is)

# shrink the fairway

if( s <slowit) - irange*ds) scan(it,is) =0
if(s>1/1.6 ) scan(it,is) = 0. # wat er
}

den= 0.0; num= 0.0

dois=1, ns { s=s0 + ds*(is-1)
num = num + scan(it,is) * s
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den = den + scan(it,is)

}
slow(it) = num/ ( den + 1.e-20)
if( slow(it) == 0.) slowm(it) = 1./vsurface
1}

return; end

A more customary way to view velocity space is to square thecity scans and normalize
them by the sum of the squares of the signals. This has thenedyathat the remaining in-
formation represents velocity spectra and removes vanatile to seismiamplitudes. Since
in practice, reliability seems somehow proportionahtoplitude the disadvantage of normal-
ization is that reliability becomes more veiled.

An appealing visualization of velocity is shown in the rigide of Figure 4.10. This was
prepared from the absolute value of left side, followed kgfihg spatially with an antisym-
metric leaky integral function. (See PVI page 57). An exariplshown on the right side of
Figure 4.10.

slowness(sec/km) slowness(sec/km)

0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7
| | | | | | |

slowness(sec/km) slowness(sec/km)

Figure 4.10: Left is the slowness scans. Right is the slosa/iseans after absolute value,
smoothing a little in time, and antisymmetric leaky intdgm over slowness. Overlaying

both is the line of slowness picksvela-slowfit [ER]

4.4.2 Stabilizing RMS velocity

With velocity analysis, we estimate the RMS velocity. Latex will need both the RMS
velocity and thdnterval velocity. (The word “interval” designates an interval between two
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reflectors.) Recall from chapter 3 equation (3.24)
4h?

2 = 2
AV

Routinevi nt 2r ns() on this page converts from interval velocity to RMS veloeihd vice
versa.

# Invertible transformfrominterval velocity to RVS.

#
subroutine vint2rns( inverse, vmnallow, dt, vint, nt, vrns )
integer it, wide, i nverse, nt
real vm n, vmnal low, dt, vint( nt), vrms( nt)
temporary real vis( nt), sum nt)
if( inverse == 0) { doit=1, nt
vis(it) = vint(it) ** 2
sum(1l) = 0.; doit=2, nt
sun(it) = sum(it-1) + vis(it) * dt
vrns(1) = vint(1); do it= 2, nt

vims(it) = sqrt( sum(it) / ((it-1)*dt) )
}
else { doit=1, nt
sun(it)= ((it-1)*dt) * amax1( vrns(it)**2, vmnallow*2 )
vis(1l) = vrns(1l) ** 2
do it= 2, nt
vis(it) = ( sun(it) - sun(it-1) )/ dt
wi de= 2; repeat {
vmn = vis(1l); doit=1,nt { if( vis(it)<vmin) vmn =vis(it) }
if( vmin > vmnallow*2) br eak
call triangle( wide, 1, nt, vis, vis) # snmooth vis()
wide = wide + 1
if( wide >= nt/3) call erexit(’'Velocity less than allowable.")

}
doit=1, nt

vint(it) = sqgrt( vis(it))
}

return; end

The forward conversion follows in straightforward stepguare, integrate, square root. The
inverse conversion, like an adjoint, retraces the stepseofdrward transform but it does the
inverse at every stage. There is however, a messy problémmedérly all field data that must
be handled along the inverse route. The problem is that thereed RMS velocity function is
generally a rough function, and it is generally unreliablera significant portion of its range.
To make matters worse, deriving arterval velocity begins as does a derivative, roughening
the function further. We soon find ourselves taking squaotsrof negative numbers, which
requires judgement to proceed. The technique usedrit2rns() on the current page is to
average the squared interval velocity in ever expandingjieeirhoods until there are no longer
any negative squared interval velocities. As long as weestictingv? from being negative,

it is easy to restrict it to be above some allowable velogty vrinal | ow. Figures 4.11
and 4.12 were derived from the velocity scans in Figure 4Higure 4.11 shows the RMS
velocity before and after a trip backward and forward thiougutinevi nt 2rms() on this
page. The interval velocity associated with the smoothéabitg is in figure 4.12.



58 CHAPTER 4. MOVEOUT, VELOCITY, AND STACKING

RMS_velocity RMS velocity

08
4

T T T T T T T T T T T T
1.7 1.8 1.9 2 2.1 2.2 2.3 1.7 1.8 1.9 2 2.1 2.2 2.3

km /s km /s

Figure 4.11: Leftis the raw RMS velocity. Right is a superpos of RMS velocities, the raw
one, and one constrained to have realistic interval vétscifvela-rufsmd [ER]

Interval velocity

Figure 4.12: Interval velocity associ-
ated with the smoothed RMS veloc-
ity of Figure 4.11. Pushbutton al-
lows experimentation withvni nal -

ow. [vela-vrmsinf [ER] ]
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Chapter 5

Zero-offset migration

In chapter 4 we discussed methods of imaging horizontalatefle and of estimating velocity
v(2) from the offset dependence of seismic recordings. In thégpter, we turn our attention

to imaging methods fodipping reflectors. These imaging methods are usually referred to as
“migration” techniques.

Offset is a geometrical nuisance when reflectors have dip.tHt® reason, we develop
migration methods here and in the next chapter for formingges from hypotheticalero-
offsetseismic experiments. Although there is usually ample datarded near zero-offset,
we never record purely zero-offset seismic data. Howevbegnwve consider offset and dip
together in chapter 8 we will encounter a widely-used teqiaidip-moveout) that often con-
verts finite-offset data into a useful estimate of the edaivieazero-offset data. For this reason,
zero-offset migration methods are widely used today in industrial practice. Farrtiore the
concepts of zero-offset migration are the simplest stgioint for approaching the compli-
cations of finite-offset migration.

5.1 MIGRATION DEFINED

The term “migration” probably got its name from some asdomewith movement. A casual
inspection of migrated and unmigrated sections shows tigrtation causes many reflection
events to shift their positions. These shifts are necedsacguse thapparentpositions of
reflection events on unmigrated sections are generallyhadtue positions of the reflectors
in the earth. It is not difficult to visualize why such “acaastlusions” occur. An analysis of
a zero-offset section shot above a dipping reflector ilatss most of the key concepts.

5.1.1 A dipping reflector

Consider the zero-offset seismic survey shown in Figure $1is survey uses one source-
receiver pair, and the receiver is always at the same lotasahe source. At each position,
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denoted byS, $,andss in the figure, the source emits waves and the receiver re¢bels
echoes as a single seismic trace. After each trace is retotle source-receiver pair is
moved a small distance and the experiment is repeated.

\Sa\ Sg Ss

Figure 5.1: Raypaths and wave-
fronts for a zero-offset seismic line
shot above a dipping reflector. The
earth’s propagation velocity is con-

stant. |krch-reflexpt [ER]

As shown in the figure, the source &t emits a spherically-spreading wave that bounces
off the reflector and then returns to the receivegatThe raypaths drawn betwe&and R,
are orthogonal to the reflector and hence are calledhal rays These rays reveal how the
zero-offset section misrepresents the truth. For exartiptetyace recorded & is dominated
by the reflectivity near reflection poim,, where the normal ray frord, hits the reflector. If
the zero-offset section corresponding to Figure 5.1 islaysal, the reflectivity aR, will be
falsely displayed as though it were directly bene&thwhich it certainly is not. This lateral
mispositioning is the first part of the illusion. The secoiditfs vertical: if converted to depth,
the zero-offset section will shoR, to be deeper than it really is. The reason is that the slant
path of the normal ray is longer than a vertical shaft drifiesn the surface down t&;.

5.1.2 Dipping-reflector shifts

A little geometry gives simple expressions for the horiab@ind vertical position errors on
the zero-offset section, which are to be corrected by mignatigure 5.2 defines the required
guantities for a reflection event recordedsatorresponding to the reflectivity & The two-

C S

Figure 5.2: Geometry of the nor- z| d
mal ray of lengthd and the vertical
“shaft” of length z for a zero-offset
experiment above a dipping reflector.

krch-reflking [ER] K

way travel time for the event is related to the lendtbf the normal ray by
2d

v

, (5.1)
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wherev is the constant propagation velocity. Geometry of the giail€ R Sshows that the
true depth of the reflector & is given by

z = dcoy , (5.2)

and the lateral shift between true positiGrand false positiorsis given by
. vt .
AX = dsing = > sind . (5.3)

It is conventional to rewrite equation (5.2) in terms of tway vertical traveltimer:

2z
T = — = tcoy . (5.4)
v
Thus both the vertical shitt— r and the horizontal shifax are seen to vanish when the dip

angled is zero.

5.1.3 Hand migration

Geophysicists recognized the need to correct these pusigerrors on zero-offset sections
long before it was practical to use computers to make theectons. Thus a number of
hand-migration techniques arose. It is instructive to see tine such scheme works. Equa-
tions (5.3) and (5.4) require knowledge of three quantittes, andd. Of these, the event
timet is readily measured on the zero-offset section. The vgl@as usuallynot measurable
on the zero offset section and must be estimated from fifiigetadata, as was shown in chap-
ter 4. That leaves the dip angle This can be related to the reflection slgpef the observed
event, which is measurable on the zero-offset section:
ot
= — 55
Po 5y (5.5)
wherey (the midpoint coordinate) is the location of the sourcesnegr pair. The slopgyp
is sometimes called th&ime-dip of the event’or more loosely as th&dip of the event”.
It is obviously closely related to Snell’s parameter, whweé discussed in chapter 3. The
relationship between the measurable timeajand the dip anglé is called “Tuchel’s law”:
v Po
>
This equation is clearly just another version of equatiaB)(3n which a factor of 2 has been
inserted to account for the two-way traveltime of the zeffsat section.

sing = (5.6)

Rewriting the migration shift equations in terms of the megable quantitiesandp yields
usable “hand-migration” formulas:

2

vept
AX = 7
N 2 (5.7)
2Nn2
ro= oty 1= 2P (5.8)

4
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Hand migration divides each observed reflection event irget@f small segments for which
p has been measured. This is necessary beqgaissgenerally not constant along real seismic
events. But we can consider more general events to be tha oh large number of very
small dipping reflectors. Each such segment is then mappedifs unmigratedy(, t) location

to its migrated ¥, 7) location based on the equations above. Such a procedurenegtisnes
also known as “map migration.”

Equations (5.7) and (5.8) are useful for giving an idea of iwd@es on in zero-offset
migration. But using these equations directly for pradtsgasmic migration can be tedious
and error-prone because of the need to provide the tim@@ip a separate set of input data
values as a function of andt. One nasty complication is that it is quite common to see
crossing eventsn zero-offset sections. This happens whenever reflectiergg coming from
two different reflectors arrives at a receiver at the same.tMhen this happens the time gip
becomes aulti-valuedfunction of the §,t) coordinates. Furthermore, the recorded wavefield
is now the sum of two different events. It is then difficult tgure out which part of summed
amplitude to move in one direction and which part to move endther direction.

For the above reasons, the seismic industry has generalgdaway from hand-migration
techniques in favor of more automatic methods. These metiezpliire as inputs nothing more
than

e The zero-offset section

e The velocityv

There is no need to separately estimatp(g,t) field. The automatic migration program
somehow “figures out” which way to move the events, even iy ttr@ss one another. Such
automatic methods are generally referred tongsse-equation migration'techniques, and are
the subject of the remainder of this chapter. But before weduce the automatic migration
methods, we need to introduce one additional concept teatlgrsimplifies the migration of

zero-offset sections.

5.1.4 A powerful analogy

Figure 5.3 shows two wave-propagation situations. TheiBretalistic field sounding. The
second is a thought experiment in which the reflectors in #tthesuddenly explode. Waves
from the hypothetical explosion propagate up to the eadiwface where they are observed
by a hypothetical string of geophones.

Notice in the figure that the ray paths in the field-recordiagecseem to be the same as
those in theexploding-reflector case. It is a great conceptual advantage to imagine that the
two wavefields, the observed and the hypothetical, are thtteesame. If they are the same,
the many thousands of experiments that have really been@onbe ignored, and attention
can be focused on the one hypothetical experiment. One ebdifference between the two
cases is that in the field geometry waves must first go down laex teturn upward along
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% = J

R 5 —

Zero-offset Section

Exploding Reflectors

Figure 5.3: Echoes collected with a source-receiver paweddo all points on the earth’s
surface (left) and the “exploding-reflectors” conceptualea (right). INR]

the same path, whereas in the hypothetical experiment tigtygp up. Travel time in field
experiments could be divided by two. In practice, the datdneffield experiments (two-way
time) is analyzed assuming the sound velocity to be halfuis value.

5.1.5 Limitations of the exploding-reflector concept

The exploding-reflector concept is a powerful and fortureatalogy. It enables us to think
of the data of many experiments as though it were a singlerewmpet. Unfortunately, the
exploding-reflector concept has a serious shortcoming. Nol@s yet figured out how to
extend the concept to apply to data recorded at nonzerot.offsgthermore, most data is
recorded at rather large offsets. In a modern marine praisigesurvey, there is not one hy-
drophone, but hundreds, which are strung out in a cable ttw@hohd the ship. The recording
cable is typically 2-3 kilometers long. Drilling may be abb&dkilometers deep. So in practice
the angles are big. Therein lie both new problems and newrtpgbes, none of which will
be considered until chapter 8.

Furthermore, even at zero offset, the exploding-refleaacept is not quantitatively cor-
rect. For the moment, note three obvious failings: FirsguFe 5.4 shows rays that are not
predicted by the exploding-reflector model. These raysheilpbresent in a zero-offset section.
Lateral velocity variation is required for this situatianexist.

Second, the exploding-reflector concept fails wathltiple reflections. For a flat sea floor
with a two-way travel time1, multiple reflections are predicted at times, Bt1, 4t1, etc. In
the exploding-reflector geometry the first multiple goesrineflector to surface, then from
surface to reflector, then from reflector to surface, for altomme 3;. Subsequent multiples
occur attimes f, 7t3, etc. Clearly the multiple reflections generated on the-péiset section
differ from those of the exploding-reflector model.

The third failing of the exploding-reflector model is where \are able to see waves
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1 velocity lens

reflector

NN NN N D

Figure 5.4: Two rays, not predicted by the exploding-refientodel, that would nevertheless

be found on a zero-offset sectiofkrch-fail| [NR]

bounced from both sides of an interface. The exploding¢tdtemodel predicts the waves
emitted by both sides have the same polarity. The physicsftd#ation coefficients says re-
flections from opposite sides have opposite polarities.

5.2 HYPERBOLA PROGRAMMING

Consider an exploding reflector at the poiag, ko). The location of a circular wave front
at timet is v%t? = (x — xg)® + (z— 20)%>. At the surfacez = 0, we have the equation of
the hyperbola where and when the impulse arrives on thecaudata planet(x). We can
make a “synthetic data plane” by copying the explosive saanmplitude to the hyperbolic
locations in the t(, x) data plane. (We postpone including the amplitude redoataused by
the spherical expansion of the wavefront.) Forward modetimounts to taking every point
from the @, x)-plane and adding it into the appropriate hyperbolic lmret in the ¢, x) data
plane. Hyperbolas get added on top of hyperbolas.

Now let us think backwards. Suppose we survey all day longracdrd no echos except
for one echo at timg) that we can record only at locatiog. Our data plane is thus filled with
zero values except the one nonzero valuggaxd). What earth model could possibly produce
such data?

An earth model that is a spherical mirror with bottom z&f, Xo) will produce a reflection
at only one point in data space. Only when the source is ategheecof the circle will all the
reflected waves return to the source. For any other souregidoc the reflected waves will
not return to the source. The situation is summarized infeigub.

Above explains how an impulse at a point in image space casfoen to a hyperbola
in data space, likewise, on return, an impulse in data spacdransform to a semicircle in
image space. We can simulate a straight line in either spaseifperposing points along a
line. Figure 5.6 shows how points making up a line reflectiratt to a line reflection, and
how points making up a line reflection migrate to a line retbecFirst we will look at the
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Figure 5.5: Point response model to data and conv INR]

simplest, most tutorial migration subroutine | could devi3hen we will write an improved
version and look at some results.

5.2.1 Tutorial Kirchhoff code

Subroutineki rchsl ow() below is the best tutoridKirchhoff migration -modeling program

| could devise. A nice feature of this program is that it wo@ while the edge complica-
tions do not clutter it. The program copies information frdata spaceat a(it,iy) to model
spacerodl (i z, i x) orvice versa. Notice that of these four axes, three are ew#gnt (stated
by loops) and the fourth is derived by the circle-hyperbelationt? = 2 4+ x2/v2. Subrou-
tineki rchsl ow() for adj =0 copies information from model space to data space, i.e. th@m
hyperbola top to its flanks. Feaidj =1, data summed over the hyperbola flanks is put at the
hyperbola top.

# Kirchhoff mgration and diffraction. (tutorial, slow

#

subroutine kirchsl ow adj, add, velhalf, t0,dt,dx, nodl,nt,nx, data)
integer ix,iy,it,iz,nz, adj, add, nt, nx

real xO0,y0,dy, z0,dz,t,x,Vy,z,hs, vel hal f, tO0,dt,dx, nodl(nt, nx), data(nt, nx)
call adjnull( adj, add, nmodl , nt *nx, data, nt *nx)

x0=0.; y0=0; dy=dx; z0=t0; dz=dt; nz=nt
doix=1, nx { x = x0 + dx * (ix-1)
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stdin

stdin

Figure 5.6: Left is a superposition of many hyperbolas. Tpeaf each hyperbola lies along a
straight line. That line is like a reflector, but instead ahgsa continuous line, it is a sequence
of points. Constructive interference gives an apparergctdin off to the side. Right shows
a superposition of semicircles. The bottom of each senhicliies along a line that could be
the line of an observed plane wave. Instead the plane wavekgi into point arrivals, each
being interpreted as coming from a semicircular mirror. #ddthe mirrors yields a more

steeply dipping reflectori krch-dip| [ER]
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doiy=1, nx { y=y0 +dy * (iy-1)
doiz=1, nz { z =20 +dz * (iz-1) # z = travel -tine depth
hs= (x-y) / velhalf
t =sqrt( z*z + hs * hs)
it =1.5+ (t-t0) / dt
if( it <=nt)
if( adj == 0)
data(it,iy)

data(it,iy) + nodl (iz,ix)
el se
modl (i z,ix) = modl (iz,ix) + data(it,iy)

133

return; end

Notice how this program has the ability to create a hypergslan an input impulse inx z)-
space, and a circle given an input impulsexrt}-space.

The three loops in subroutiner chsl ow() may be interchanged at will without changing
the result. To emphasize this flexibility, the loops are s#t@same indentation level. We tend
to think of fixed values of the outer two loops and then descvilhat happens on the inner
loop. For example, if the outer two loops are those of the rhgplecenod! (i z, i x), then for
adj =1 the program sums data along the hyperbola into the “fixeditpafimodel space. When
loops are reordered, we think differently and opportusitiése for speed improvements.

5.2.2 Fast Kirchhoff code

Subroutinei r chsl ow() can easily be speeded by a factor that is commonly more thafHz0
philosopy of this book is to avoid minor optimizations, butator of 30 really is significant,
and the analysis required for the speed up is also integestihuch of the inefficiency of
ki rchsl ow() arises whenmax > vtmax because then many valuestaire computed beyond
tmax. TO avoid this, we notice that for fixed offsatx(iy) and variable depthz, as depth
increases, timet eventually goes beyond the bottom of the mesh and, as sobisdsmppens,
it will continue to happen for all larger values iof. Thus we carbr eak out of thei z loop
the first time we go off the mesh to avoid computing anythingooel as shown in subroutine
ki rchfast (). (Some quality compromises, limiting the aperture or the diso yield speedup,
but we avoid those.) Another big speedup arises from reusingre roots. Since the square
root depends only on offset and depth, once computed it carséa for alli x. Finally, these
changes of variables have left us with more complicated Isadendaries, but once we work
these out, the inner loops can be devoid of tests ardriehf ast () they are in a form that is
highly optimizable by many compilers.

# Kirchhoff mgration and diffraction. (greased |ightning)

#

subroutine kirchfast( adj, add, vrns, t0, dt,dx, nodl, nt, nx, data)
integer ix,iz,it,ib, adj, add, nt, nx

real amp,t, z, b, vrns(nt), tO,dt,dx, modl(nt,nx),data(nt, nx)
call adjnull( adj, add, nmodl , nt *nx, dat a, nt *nx)

do i b= -nx, nx { b =dx *ib # b = of fset
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doiz=2, nt { z t0 + dt * (iz-1) # z = travel -tine depth
t sqrt( z**2 + (b*2/vrms(iz))**2)
it =1.5+ (t - t0) / dt
if( it >nt ) break
anp = (z / t) * sgrt( nt*dt / t )
do ix= max0(1, 1-ib), mnO(nx, nx-ib)
if( adj == 0)
data(it,ix+ib)=data(it,ix+ib)+nodl (iz,ix )*anp

el se
modl (iz,ix )=nodl (iz,ix )+data(it,ix+ib)*amp

return; end

Originally the two Kirchhoff programs produced identicaitput, but finally I could not
resist adding an important feature to the fast programedeatorsz/t = cosy and 1//t that
are described elsewhere. The fast program allows for ugleariation with depth. When
velocity varies laterally the story becomes much more caraf#d.

Figure 5.7 shows an example. The model includes dipping, lsgdsline, anticline, fault,
unconformity, and buried focus. The result is as expectdid atbow tie” at the buried focus.
On avideo screen, | can see hyperbolic events originatorg the unconformity and the fault.
At the right edge are a few faint edge artifacts. We could hradeiced or eliminated these
edge artifacts if we had extended the model to the sides wittressmpty space.

mod3

Figure 5.7: Left is the model. Right is diffraction to synticedata. | krch-kfgood [ER,M]

5.2.3 Kirchhoff artifacts

Reconstructing the earth model with the adjoint optioriinchf ast () on the page before

yields the result in Figure 5.8. The reconstruction gemgmalcceeds but is imperfect in a
number of interesting ways. Near the bottom and right side,réconstruction fades away,
especially where the dips are steeper. Bottom fading ebeltause in modeling the data we
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Figure 5.8: Left is the original model. Right is the recounstion. |krch-skmig [ER,M]

abandoned arrivals after a certain maximum time. Thus gnmeggded to reconstruct dipping
beds near the bottom was abandoned. Likewise along the siddandoned rays shooting off
the frame.

Difficult migrations are well known for producing semicitaureflectors. Here we have
controlled everything fairly well so none are obvious, baotaovideo screen | see some semi-
circles.

Next is the problem of the spectrum. Notice in Figure 5.8 thatreconstruction lacks the
sharp crispness of the original. It is shown in chapter 6tt@aspectrum of our reconstruction
loses high frequencies by a scale gid|. Philosophically, we can think of the hyperbola
summation as integration, and integration boosts low feegies. Figure 5.9 shows the aver-
age overx of the relevant spectra. First, notice the high frequenaresweak because there

Figure 5.9: Top is the spectrum of e mmmmmmmmw

the the model, i.e. the left side of
Figure 5.8. Bottom is the spec-

trum of the the reconstruction, i.e. the * " recon mmmwmmmmmmm

right side of Figure 5.8. Middle is
the reconstruction times frequenty

krch-kirsped[ER] recon WWWWWW
I I I I I I
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e T
T T T T T
80 90 100 110 120

is little high frequency energy in the original model. Thestice that our cavalier approach
to interpolation created more high frequency energy. Rinabtice that multiplying the spec-
trum of our migrated model by frequencly, brought the important part of the spectral bands
into agreement. This suggests applyingahfilter to our reconstruction, o/ —iw operator
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to both the modeling and the reconstruction, an idea imphtatkin subroutin@al f di f a()
on page 95.

Neither of these Kirchhoff codes addresses the issue abspéaising. Spatial aliasing is
a vexing issue of numerical analysis. The Kirchhoff codesshhere do not work as expected
unless the space mesh size is suitably more refined thamteeriesh. Figure 5.10 shows an
example of forward modeling with anmesh of 50 and 100 points. (Previous figures used 200

20

¥0

90

20

¥0

90

Figure 5.10: Left is model. Right is synthetic data from thed@l. Top has 50 points on the

x-axis, bottom has 100.krch-skmod [ER]

points on space. All use 200 mesh points on the time.) Suibekitr chf ast () on page 67
does interpolation by moving values to the nearest neigbbtire theoretical location. Had
we taken the trouble to interpolate the two nearest pointsresults would have been a little
better, but the basic problem (resolved in chapter 10) wrrthin.

5.2.4 Sampling and aliasing

Spatialaliasng means insufficient sampling of the data along the space @is. difficulty
is so universal, that all migration methods must consider it
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Data should be sampled at more than two points per waveler@therwise the wave
arrival direction becomes ambiguous. Figure 5.11 showthsyic data that is sampled with
insufficient density along the-axis. You can see that the problem becomes more acute at high
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Figure 5.11: Insufficient spatial sam-
pling of synthetic data. To better per-
ceive the ambiguity of arrival angle, S
view the figures at a grazing angle

from the side. [ER] 5

7

009

frequencies and steep dips.

There is no generally-accepted, automatic method for rmingyapatially aliased data. In
such cases, human beings may do better than machines, eefdbsir skill in recognizing
true slopes. When the data is adequately sampled howeveputer migrations give better
results than manual methods.

5.2.5 Kirchhoff migration of field data

Figure 5.12 shows migrated field data.

The on-line movie behind the figure shows the migration keeford after amplitude gain
with time. You can get a bad result if you gain up the data, sily automatic gain or with
t2, for display before doing the migration. What happens is titia hyperbola flanks are then
included incorrectly with too much strength.

The proper approach is to gain it first wit/it which converts it from 3-D wavefields to
2-D. Then migrate it with a 2-D migration like r chf ast (), and finally gain it further for
display (because deep reflectors are usually weaker).
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Figure 5.12: Kirchhoff migration of Figure 4.7. Press buatfor movie comparing stack to

migrated stack.|krch-wgkirch| [ER,M]



Chapter 6

Waves and Fourier sums

An important concept in wave imaging is the extrapolatiormaftavefield from one depth

to another. Fourier transforms are an essential basic idotre are many books and chap-
ters of books on théheory of Fourier transformation. The first half of this chapter s a
introduction topractice with Fourier sums. It assumes you already know somethingpef t
theory and takes you through the theory rather quickly ermigihray practice by examining
examples, and by performing two-dimensional Fourier ti@nsation of data and interpreting
the result. For a somewhat more theoretical backgroundydesst my previous book PVI at
http://sepwww.stanford.edu/sep/prof/.

The second half of this chapter uses Fourier transformatigxplain the Hankel wave-
form we observed in chapter 4 and chapter 5. Interestinglg the Fourier transform of
+/—lw, which is half the derivative operator.

6.1 FOURIER TRANSFORM

We first examine the two ways to visualize polynomial muitiation. The two ways lead us
to the most basic principle of Fourier analysis that

A product in the Fourier domain is a convolution in the phgbomain

Look what happens to the coefficients when we multiply poigrads.

X(2)BZ) = Y(2) 6.1)
(Xo+X1Z+XZ°+--)(bo+bZ+bZ%) = Yo+nZ+Y:Z°+---  (6.2)

Identifying coefficients of successive powershfwe get

Yo = Xobo
Yyi = Xibo+xoby
Y2 = X2bo+X1b1 + xob2 (6.3)

73
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y3 = Xabo+xoby 4 X102
Ya = Xqbo+ X3by+Xabp

In matrix form this looks like

" Yo ] X 0 07
Y1 X1 X O
Y2 X2 X1 Xo bo
Y3 = X3 X2 X1 by (6.4)
Ya X4 X3 X2 07
Y5 0 X4 X3
L Y6 | 0 0 x4 |

The following equation, called the “convolution equatiaarries the spirit of the group shown
in (6.3)
Yo = > Xcib (6.5)
i=0

The second way to visualize polynomial multiplication is\pler. Above we did not think
of Z as a numerical value. Instead we thought of it as “a unit defsrator”. Now we think
of the productX(Z)B(Z) = Y(Z) numerically. For all possible numerical valuesdfeach
valueY is determined from the product of the two numb&rendB. Instead of considering
all possible numerical values we limit ourselves to all easlof unit magnitud& = €< for all
real values ofv. This is Fourier analysis, a topic we consider next.

6.1.1 FT as an invertible matrix

A Fourier sum may be written

Blw) = Y b = Y bz (6.6)
t t

where the complex valug is related to the real frequenayby Z = €. This Fourier sumis a
way of building a continuous function aef from discrete signal valuds in the time domain.

Here we specify both time and frequency domains by a set oftpoBegin with an example
of a signal that is nonzero at four successive instabgsb{, b,, bz). The transform is

B(w) = bo+biZ+byz?+b3Z3 (6.7)

The evaluation of this polynomial can be organized as a matnes a vector, such as

Bo 11 1 1 bo
2 3
B | _ 1w owew by 6.8)
B, 1 W2 w4 w by
Bs 1 w3 we we bs
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Observe that the top row of the matrix evaluates the polyabatiZ = 1, a point where also
o = 0. The second row evaluat& = B(Z = W = €“0), wherewyq is some base frequency.
The third row evaluates the Fourier transform fap2and the bottom row for@,. The matrix
could have more than four rows for more frequencies and nagrmns for more time points.
I have made the matrix square in order to show you next how wdicd the inverse matrix.
The size of the matrix in (6.8) il = 4. If we choose the base frequeney and henceéV
correctly, the inverse matrix will be

bo 1 1 1 1 Bo
by _ 1 /W 1/wW? 1/W8 By
b, = UN /W2 1/w* 1/wW° B, (6.9)
bs 1 /w3 1/wé 1/w?° Bs

Multiplying the matrix of (6.9) with that of (6.8), we first eethat the diagonals are +1 as
desired. To have the off diagonals vanish, we need various ssuch as + W + W?2 + W3
and 14+W?2 +W* 4+ W8, to vanish. Every element(®, for example, or 1W?) is a unit vector
in the complex plane. In order for the sums of the unit vectorsanish, we must ensure
that the vectors pull symmetrically away from the origin. Aiform distribution of directions
meets this requirement. In other wordf§,should be theN-th root of unity, i.e.,

w = V1 = ¢/ (6.10)

The lowest frequency is zero, corresponding to the top rof6d). The next-to-the-
lowest frequency we find by setting in (6.10) toZ = €. Sowg = 27 /N; and for (6.9) to
be inverse to (6.8), the frequencies required are

0,1,2...,N—1)27
o = N ) (6.11)

6.1.2 The Nyquist frequency

The highest frequency in equation (6.1d)= 27 (N — 1)/N, is almost Z. This frequency is
twice as high as the Nyquist frequenoy= 7. TheNyquist frequencyis normally thought of
as the “highest possible” frequency, becagidk, for integett, plotsas(--,1,—1,1,—-1,1,—1,---).
The double Nyquist frequency functiod 2, for integert, plots as (--,1,1,1,1,1;--). So
this frequency above the highest frequency is really zexquency! We need to recall that
B(w) = B(w — 27). Thus, all the frequencies near the upper end of the ranggatieq (6.11)
are really small negative frequencies. Negative frequesan the intervak, 0) were moved
to interval ¢z, 27) by the matrix form of Fourier summation.

A picture of the Fourier transform matrix is shown in Figurd.6 Notice the Nyquist
frequency is the center row and center column of each matrix.

6.1.3 Laying out a mesh

In theoretical work and in programs, the unit delay operalfinition Z = €At s often
simplified toAt = 1, leaving us withiZ = €. How do we know whethep is given in radians
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per second or radians per sample? We may not invoke a cosare exponential unless the
argument has no physical dimensions. So where wevseghout At, we know it is in units
of radians per sample.

In practical work, frequency is typically given in cyclesésorHertz, f, rather than radi-
ans,o (Wherew = 2 f). Here we will now switch tof . We will design a computemesh
on a physical object (such as a waveform or a function of gpadée often take the mesh
to begin att = 0, and continue till the enthayx of the object, so the time rang@nge= tmax.
Then we decide how many points we want to use. This will beNhesed in the discrete
Fourier-transform program. Dividing the range by the nungiees a mesh intervakt.

Now let us see what this choice implies in the frequency damale customarily take the
maximum frequency to be the Nyquist, eithigfax = .5/ At Hz or wmax = /At radians/sec.
The frequency rangéangegoes from—.5/At to .5/At. In summary:

o At = tangd/ N Iistimeresolution.
o frange = 1/At = N/tange Isfrequency range.
o Af = frangdN = 1/trange Iis frequencyesolution.

In principle, we can always incread¢ to refine the calculation. Notice that increasiNg
sharpens the time resolution (mak&sssmaller) but does not sharpen the frequency resolution
AT, which remains fixed. Increasirnyg increases the frequencgnge,but not the frequency
resolution.

What if we want to increase the frequency resolution? Theneeel to chooskgangelarger
than required to cover our object of interest. Thus we etbeord data over a larger range, or
we assert that such measurements would be zero. Three@gustimmarize the facts:

At frange - 1 (612)

Af trange - 1 (6.13)
1

At at = = (6.14)

Increasingrangein the time domain increasessolutionin the frequency domain ang
vice versa. Increasingsolution in one domain does not increassolution in the other.

6.2 INVERTIBLE SLOW FT PROGRAM

Typically, signals are real valued. But the programs in dhiapter are for complex-valued
signals. In order to use these programs, copy the real-daignal into a complex array,
where the signal goes into the real part of the complex nus)iblee imaginary parts are then
automatically set to zero.
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There is no universally correct choicesifale factorin Fourier transform: choice of scale
is a matter of convenience. Equations (6.8) and (6.9) mihe&ttransform, so their scaling
factors are convenient for the convolution theorem—thataayct in the frequency domain
is a convolution in the time domain. Obviously, the scaliagtbrs of equations (6.8) and
(6.9) will need to be interchanged for the complementarptén that a convolution in the
frequency domain is a product in the time domain. | like to aszale factor that keeps the
sums of squares the same in the time domain as in the freqdentgin. Since | almost never
need the scale factor, it simplifies life to omit it from thébsoutine argument list. When a
scaling program is desired, we can use a simple oneslikee() on this page. Complex-
valued data can be scaled wital e() merely by doubling the value of

subroutine scale( factor, n, data)
integer i,
real factor, data(n)
doi=1, n

data(i) = factor * data(i)
return; end

6.2.1 The simple FT code

Subroutinesi npl ef t () on the current page exhibits features found in many physidsea-
gineering programs. For example, the time-domain signbldiwis denotedt* () "), hasnt
values subscripted, from (1) tott(nt). The first value of this signak (1) is located in real
physical time at 0. The time interval between valuesds. The value oftt (it) is at time

t 0+(it-1)*dt. We do not usei‘t ” as a pointer on the frequency axis becaiuses a keyword
in most programming languages. Instead, we count alongdugiéncy axis with a variable
named e.

subroutine sinpleft( adj, add, tO,dt,tt,nt, fO,df, ff, nf)

integer it,ie, adj, add, nt, nf
conpl ex cexp, cnplx, tt(nt), ff(nf)
real pi2, freq, tine, scale, to, dt, f O, df
call adjnull( adj, add, tt,nt*2, ff,nf*2)
pi 2= 2. * 3.14159265; scale = 1./sqgrt( 1.*nt)
df = (1./dt) / nf
fo = - .5/dt
do ie 1, nf { freg= fO + df*(ie-1)
+

do it 1, nt { time=tO0
if( adj == 0)

ff(ie)=ff(ie) + tt(it) * cexp(cnplx(0., pi2*freg*tinme)) * scale

dt*(it-1)

el se
tt(it)=tt(it) + ff(ie) * cexp(cnpl x(0.,-pi2*freqg*tine)) * scale
1}

return; end

The total frequency band istZradians per sample unit oy At Hz. Dividing the total interval
by the number of pointsf givesAf. We could choose the frequencies to run from 040 2
radians/sample. That would work well for many applicatidng it would be a nuisance for
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applications such as differentiation in the frequency domahich require multiplication by
—iw including thenegative frequenciesas well as the positive. So it seems more natural to
begin at the most negative frequency and step forward to tet positive frequency.

6.3 CORRELATION AND SPECTRA

The spectrum of a signal is a positive function of frequertt tsays how much of each
tone is present. The Fourier transform of a spectrum yiehdsi@resting function called an
“autocorrelation,” which measures the similarity of a signal to itself shafte

6.3.1 Spectrain terms of Z-transforms

Let us look at spectra in terms @ftransforms. Let @pectrumbe denoted(w), where

S@) = [B@)?® = BB(») (6.15)

Expressing this in terms of a three-poifitransform, we have

Sw) = (bo+bie™ +be™%) (g + 1€ + b€ %) (6.16)
2) = (50+%+%)(bo+b12+b222) (6.17)
Z) = E(%) B(Z) (6.18)

It is interesting to multiply out the ponnomieH_s(l/Z) with B(Z) in order to examine the
coefficients ofS(Z):

bobo  (bibo+ boby)

S(2) = —5+——5— +(oobo-+biby +bpy) + (Bobs +b1br) Z + boby Z?
S_ S_
S@2) = S+ rurazis?’ (6.19)

The coefficiens, of ZX is given by

% = Zabwk (6.20)

Equation (6.20) is thautocorrelation formula. The autocorrelation valig at lag 10 issy.

It is a measure of the similarity d with itself shifted 10 units in time. In the most fre-
guently occurring caséd; is real; then, by inspection of (6.20), we see that the auteladion
coefficients are real, argl = s_g.

Specializing to a real time series gives

S(z2) = s0+sl<z+%)+s2<zz+%) (6.21)
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S(Z(w) = so+si€°+e79)+5(e% +e7®) (6.22)
S(w) = S+ 251C0Sw+ 25, CO0S 2 (6.23)
Sw) = ) scoskw (6.24)

k
S(w) = cosine transform ofs, (6.25)

This proves a classic theorem that for real-valued sigraatsoe simply stated as follows:

For any real signal, the cosine transform of #ugocorrelation equals the magnitude
squared of the Fourier transform.

6.3.2 Two ways to compute a spectrum

There are two computationally distinct methods by which \we compute a spectrum: (1)
compute all thes; coefficients from (6.20) and then form the cosine sum (6.2d4eachw;
and alternately, (2) evaluat®(Z) for some value of Z on the unit circle, and multiply the
resulting number by its complex conjugate. Repeat for maaiyes ofZ on the unit circle.
When there are more than about twenty lags, method (2) ipehegaecause the fast Fourier
transform (coming up soon) can be used.

6.3.3 Common signals

Figure 6.2 shows some common signals and thatocorrelations. Figure 6.3 shows the
cosine transforms of the autocorrelations. Cosine tranmsfakes us from time to frequency
and it also takes us from frequency to time. Thus, transfairspn Figure 6.3 are sometimes
more comprehensible if you interchange time and frequemitye various signals are given
names in the figures, and a description of each follows:

cos The theoretical spectrum of a sinusoid is an impulse, busithesoid was truncated (mul-
tiplied by a rectangle function). The autocorrelation israisoid under a triangle, and
its spectrum is a broadened impulse (which can be shown tonberaw sinc-squared
function).

sinc Thesincfunction is sinfot)/(wot). Its autocorrelation is another sinc function, and its
spectrum is a rectangle function. Here the rectangle isupted slightly by Gibbs
sidelobes’ which result from the time truncation of the original sinc

wide box A wide rectangle function has a wide triangle function for an autocorrelation and
a narrow sinc-squared spectrum.

narrow box A narrow rectangle has a wide sinc-squared spectrum.

twin Two pulses.
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2 boxes Two separated narrow boxes have the spectrum of one of thanthis spectrum
is modulated (multiplied) by a sinusoidal function of fremqey, where the modulation
frequency measures the time separation of the narrow bOkesscillation seen in the
frequency domain is sometimes calledouéfrency.”)

comb Fine-toothedzomb functions are like rectangle functions with a lower Nyquigt-
guency. Coarse-toothed-comb functions have a spectruchvida fine-toothed comb.

exponential The autocorrelation of a transieexponentialfunction is adouble-sided expo-
nential function. The spectrum (energy) is a Cauchy functiquwi+w§). The curious
thing about theCauchy function is that the amplitude spectrum diminishes inversely
with frequency to thdirst power; hence, over an infinite frequency axis, the function
has infinite integral. The sharp edge at the onset of theigianexponential has much
high-frequency energy.

Gauss The autocorrelation of &aussianfunction is another Gaussian, and the spectrum is
also a Gaussian.

random Random numbers have an autocorrelation that is an impulse sureslibgt some
short grass. The spectrum is positive random numbers.

smoothed random Smoothed random numbers are much the same as random nuimiers,
their spectral bandwidth is limited.

6.4 SETTING UP THE FAST FOURIER TRANSFORM

Typically we Fourier transform seismograms about a thodipamts long. Under these condi-

tions another Fourier summation method works about a hdrtares faster than those already
given. Unfortunately, the faster Fourier transform progia not so transparently clear as the
programs given earlier. Also, it is slightly less flexiblehel speedup is so overwhelming,
however, that the fast program is always used in routine work

Flexibility may be lost because the basic fast program waikis complex-valued signals,
so we ordinarily convert our real signals to complex onesgiiging a zero imaginary part).
More flexibility is lost because typical fast FT programsuieg the data length to be an inte-
gral power of 2. Thus geophysical datasets often have zemenaled (a process callezero
padding") until the data length is a power of 2. From time to tim@tice clumsy computer
code written to deduce a number that is a power of 2 and isri#inge the length of a dataset.
An answer is found by rounding up the logarithm to base 2. Theerabvious and the quicker
way to get the desired value, however, is with the simpler&orfunctionpad2() .

i nteger function pad2( n )
integer n
pad2 = 1
while( pad2 < n)

pad2 = pad2 * 2
return; end
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How fast is the fast Fourier transform method? The answeemi@pon the size of the
data. The matrix times vector operation in (6.8) requigsmultiplications and additions.
That determines the speed of the slow transform. For therfatitod the number of adds and
multiplies is proportional toN log, N. Since 3° = 1024, the speed ratio is typically 1024/10
or about 100. In reality, the fast method is not quite that, fdspending on certain details of
overhead and implementation.

Below isftu(), a version of thdast Fourier transform program. There are many ver-
sions of the program—I have chosen this one for its simplid@onsidering the complexity
of the task, it is remarkable that no auxiliary memory vestare required; indeed, the output
vector lies on top of the input vector. To run this programuryfirst step might be to copy
your real-valued signal into a complex-valued array. Thegmead enough zeros to fill in the
remaining space.

subroutine ftu( signi, nx, cx )

# conplex fourier transformwi th unitary scaling
#
# 1 nx signi *2*pi *i *(j-1)*(k-1)/nx
# cx(k) = -------- * sumecex(j) * e
# sqrt (nx) j=1 for k=1,2,..., nx=2**j nt eger
#
integer nx, i, j, k, m istep, pad2
real signi, scale, arg
conpl ex cx(nx), cnplx, cw, cdel, ct
if( nx !'= pad2(nx) ) call erexit('ftu: nx not a power of 2')
scale = 1. / sqgrt( 1.*nx)
do i=1, nx
cx(i) = cx(i) * scale
j =1 k=1

do i=1, nx {
if (i<sj) { ct =cx(j); ex(j) = cx(i); cx(i) =ct }

m = nx/ 2
I "&&" neans . AND
while (j>m&& nmpl) { j = j-m m=m2}
jo=j+m
}
repeat {
istep = 2*k; cw = 1.; arg = signi*3.14159265/ k
cdel = cnpl x( cos(arg), sin(arg))
do nr 1, k {

doi=m nx, istep
{ ct=cwrcx(i+k); cx(i+k)=cx(i)-ct; cx(i)=cx(i)+ct }
cw = cw * cdel
}
k = istep
i f (k>=nx) break
}

return; end

The following two lines serve to Fourier transform a vectiot@24 complex-valued points,
and then tanverse Fourier transform them back to the original data:

call ftu( 1., 1024, cx)
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call ftu( -1., 1024, cx)

A reference given at the end of this chapter contains mangrotarsions of the FFT
program. One version transforms real-valued signals toptexavalued frequency functions
in the interval O< w < 7. Others that do not transform data on top of itself may besfasith
specialized computer architectures.

6.4.1 Shifted spectrum

Subroutinei npl ef t () on page 78 sets things up in a convenient manner: The fregyuange
runs from minus Nyquist up to (but not including) plus NyduiBhus there is no problem with
the many (but not all) user programs that have trouble witsat frequencies. Subroutine
ftu() on the page before, however has a frequency range from zeloutdle the Nyquist.
Let us therefore define a friendlier “front end”tou() which looks more likesi npl eft ().

Recall that a time shift ofp can be implemented in the Fourier domain by multiplication
by e~'®%, Likewise, in the Fourier domain, the frequency intervadiby subroutinet u() on
the preceding page, namelys» < 2, can be shifted to the friendlier intervatr <w <
by a weighting function in the time domain. That weightingidtion is e~'“0! where wg
happens to be the Nyquist frequency, i.e. alternate pomth@time axis are to be multiplied
by —1. A subroutine for this purposeish().

# FT a vector in a matrix, with first onega = - p
#
subroutine fth( adj,sign, nl, nl2, cx)
integer i, adj , ml, nl2
real sign
conpl ex cx(ml, n12)
tenmporary conpl ex tenp(nl2)
do i=1, nl2
tenmp(i) = cx(1,i)
if( adj == 0) { doi=2, nl2, 2
temp(i) = -tenp(i)
call ftu( sign, nl2, tenp)

el se { call ftu( -sign, nl2, tenp)
do i= 2, nl2, 2
temp(i) = -tenp(i)
}
do i=1, nil2

cx(1l,i) = tenp(i)
return; end

To Fourier transform a 1024-point complex veaig(1024) and then inverse transform it, we
would write
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call fth( 0, 1., 1, 1024, cx)
call fth( 1, 1., 1, 1024, cx)

You might wonder about the apparent redundancy of using tt@hargumentdj and the
argumenti gn. Having two arguments instead of one allows us to definéttveard transform
for atimeaxis with the opposite sign as the forward transform fepaceaxis.

The subroutinet h() is somewhat cluttered by the inclusion of a frequently ndgmtac-
tical feature—namely, the facility to extract vectors franmatrix, transform the vectors, and
then restore them into the matrix.

6.5 SETTINGUP2-DFT

The progranit h() is set up so that the vectors transformed can be either roedamns of a
two-dimensional array. In any computer language there iayatevextract a vector (column or
row) from a matrix. In some languages the vector can be psecedirectly without extraction.
To see how this works iRortran, recall a matrix allocated 11, n2) can be subscripted as
a matrix(i 1,i2) oras along vectori 1 + n1*(i2-1),1), andcal |l sub(x(il,i2)) passes
the subroutine a pointer to the 1,i2) element. To transform an entire axis, the subrou-
tinesft 1axi s() andft2axis() are given. For a two-dimensional FT, we simply call both
ftlaxi s() andft2axi s() in either order.

# 1D Fourier transformon a 2D data set along the 1-axis
#
subroutine ftilaxis( adj, signl, nl,n2, cx)
integer i2, adj , nl, n2
conpl ex cx(nl, n2)
real signl
do i2=1, n2
call fth( adj, signl, 1,nl, cx(1,i2))
return; end

# 1D Fourier transformon a 2D data set along the 2-axis

#

subroutine ft2axis( adj, sign2, nl,n2, cx)
integer i1, adj , nl, n2
conpl ex cx(nl, n2)

r eal si gn2

doil=1, nl
call fth( adj, sign2, nl,n2, cx(il, 1))
return; end

6.5.1 Basics of two-dimensional Fourier transform

Let us review some basic facts abowib-dimensional Fourier transform. A two-dimensional
functionis represented in a computer as numerical valugsiatrix, whereas a one-dimensional
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Fourier transform in a computer is an operation on a vectd2-[AFourier transform can be
computed by a sequence of 1-D Fourier transforms. We catréirsiform each column vector
of the matrix and then each row vector of the matrix. Alteehatwe can first do the rows and
later do the columns. This is diagrammed as follows:

p(t, x) <«— P(t, ky)

! !

Pw, X) <«— P(w, ky)

The diagram has the notational problem that we cannot maitite usual convention
of using a lower-case letter for the domain of physical sp@te an upper-case letter for
the Fourier domain, because that convention cannot indluelenixed objects(t,kx) and
P(w,x). Rather than invent some new notation, it seems best tdéetdader rely on the
context: the arguments of the function must help name thetiiom

An example otwo-dimensional Fourier transforms on typical deep-ocean data is shown
in Figure 6.4. In the deep ocean, sediments are fine-gramdeposit slowly in flat, regular,
horizontal beds. The lack of permeable rocks such as sar@s&verely reduces the potential
for petroleum production from the deep ocean. The fine-gdhishales overlay irregular,
igneous,basement rocls. In the plot of P(t,ky), the lateral continuity of the sediments is
shown by the strong spectrum at Iév. The igneous rocks showka spectrum extending to
such largeky that the deep data may be somewsdtially aliased (sampled too coarsely).
The plot of P(w, X) shows that the data contains no low-frequency energy. fhefdhe sea
floor shows up ind, ky)-space as the energy crossing the origin at an angle.

Altogether, thetwo-dimensional Fourier transform of a collection of seismograms in-
volves only twice as much computation as the one-dimenkieoarier transform of each
seismogram. This is lucky. Let us write some equations tabdish that the asserted proce-
dure does indeed do a 2-D Fourier transform. Say first thafamgtion of x andt may be
expressed as a superposition of sinusoidal functions:

p(t,x) = / f e X P ky) do dky (6.26)

The double integration can be nested to show that the temnparsforms are done first (in-
side):

p(t,x) = /e‘kxx U e 'l P(w,ky) dw]dkx
— /eikxx P(t,kx) dkx

The quantity in brackets is a Fourier transform awetone for each and eveky. Alternately,
the nesting could be done with thg-integral on the inside. That would imply rows first
instead of columns (or vice versa). It is the separabilitgxgh(—i wt + i kyX) into a product
of exponentials that makes the computation easy and cheap.
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Figure 6.4: A deep-marine datag#t, x) from Alaska (U.S. Geological Survey) and tieal
part of various Fourier transforms of it. Because of the lageltime through the water, the
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6.5.2 Signs in Fourier transforms

In Fourier transformingd-, x-, andz-coordinates, we must choose a sign convention for each
coordinate. Of the two alternatiggn conventiors, electrical engineers have chosen one and
physicists another. While both have good reasons for thwrces, our circumstances more
closely resemble those of physicists, so we will use theweation. For thenverseFourier
transform, our choice is

p(t,x,z2) = /ff e tet+ikaextikez py, ko ky) dowdky dk, (6.27)

For theforward Fourier transform, the space variables carnegativesign, and time carries
apositivesign.

Let us see the reasons why electrical engineers have madpgbsite choice, and why we
go with the physicists. Essentially, engineers transfonty the time axis, whereas physicists
transform both time and space axes. Both are simplifying tives by their choice of sign
convention, but physicists complicate their time axis idesrto simplify their many space
axes. The engineering choice minimizes the number of miigs @ssociated with the time
axis, because for engineedydt is associated withw instead of, as is the case for us and for
physicists, with—iw. We confirm this with equation (6.27). Physicists and gegjptigts deal
with many more independent variables than time. Besidesh@®us three space axes are
their mutual combinations, such as midpoint and offset.

You might ask, why not makall the signs positive in equation (6.27)? The reason is that
in that case waves would not move in a positive direction @lihve space axes. This would
be especially unnatural when the space axis was a radiusnsiticke geophysical sources,
always radiate from a point to infinity, not the other way arduThus, in equation (6.27) the
sign of the spatial frequencies must be opposite that ofetmporal frequency.

The only good reason | know to choose the engineering coioreistthat we might com-
pute with an array processor built and microcoded by engmegonflict of sign convention
is not a problem for the programs that transform complexe@ltime functions to complex-
valued frequency functions, because there the sign caowveistunder the user’s control. But
sign conflict does make a difference when we use any progratrctmverts real-time func-
tions to complex frequency functions. The way to live in batbrlds is to imagine that the
frequencies produced by such a program do not range fromtGrtas the program descrip-
tion says, but from 0 te-r. Alternately, we could always take the complex conjugattnef
transform, which would swap the sign of theaxis.

6.5.3 Simple examples of 2-D FT

An example of atwo-dimensional Fourier transform of a pulse is shown in Figure 6.5.
Notice the location of the pulse. It is closer to the time dhkisn the space axis. This will
affect the real part of the FT in a certain way (see exercisHs}ice the broadening of the
pulse. It was an impulse smoothed over time (vertically) bgvolution with (1,1) and over
space (horizontally) with (1,4,6,4,1). This will affecetheal part of the FT in another way.
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Figure 6.5: A broadened pulse (left) and the real part of Tigright). \ftl-ft2dofpulsef [ER]

Another example of a two-dimensional Fourier transformiieg in Figure 6.6. This
example simulates an impulsive air wave originating at afpon thex-axis. We see a wave
propagating in each direction from the location of the sewtthe wave. In Fourier space
there are also two lines, one for each wave. Notice that thexether lines which do not
go through the origin; these lines are callegétial aliases.” Each actually goes through the
origin of another square plane that is not shown, but whicltareimagine alongside the one
shown. These other planes are periodic replicas of the awersh
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Figure 6.6: A simulated air wave (left) and the amplitudetsfT (right). [ER]
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EXERCISES:

1 Most time functions are real. Their imaginary part is zeg&how that this means that
F(w,k) can be determined frofi (—w, —k).

2 What would change in Figure 6.5 if the pulse were moved (djeean thet-axis, and
(b) further on thex-axis? What would change in Figure 6.5 if instead the time sere
smoothed with (1,4,6,4,1) and the space axis with (1,1)?

3 What would Figure 6.6 look like on an earth with half the bastlocity?

4 Numerically (or theoretically) compute the two-dimemsbspectrum of a plane wave
[6(t — pX)], where the plane wave has a randomly fluctuating amplitisdsy, randx)
is a random number betweenl, and the randomly modulated plane wave is Kl
2randk)) s(t — px)].

5 Explain the horizontal “layering” in Figure 6.4 in the plot P(w,x). What determines
the “layer” separation? What determines the “layer” slope?

6.5.4 Magic with 2-D Fourier transforms

We have struggled through some technical details to leasntb@erform a 2-D Fourier trans-
formation. An immediate reward next is a few "magical” résioin data.

In this book waves go down into the earth; they reflect; themedack up; and then
they disappear. In reality after they come back up they reftem the earth surface and go
back down for another episode. Such waves, called multgfleations, in real life are in
some places negligible while in other places they overwheBuome places these multiply
reflected waves can be suppressed because their RMS védouityto be slower because they
spend more time in shallower regions. In other places thi@iso. We can always think of
making an earth model, using it to predict the multiply refelcwaveforms, and subtracting
the multiples from the data. But a serious pitfall is that wend need to have the earth model
in order to find the earth model.

Fortunately, a little Fourier transform magic goes a long veavards solving the problem.
Take a shot profilel(t,x). Fourier transform it tdD(w,kx). For everyw andky, square this
valueD(w,ky)?. Inverse Fourier transform. In Figure 6.7 we inspect thalteBor the squared
part thex-axis is reversed to facilitate comparison at zero offsetgréat many reflections
on the raw data (right) carry over into the predicted mudtgp(left). If not, they are almost
certainly primary reflections. This data shows more mudsghan primaries.

Why does this work? Why does squaring the Fourier Transfdrtheoraw data give us
this good looking estimate of the multiple reflections? ReZatransformsZ = <At A
Z-transform is really a Fourier transform. Take a signal thatn impulse of amplitude r at
time t = 100At. Its Z-transform isrZ1%. The square of thig-transform isr2z2%, just
what we expect of a multiple reflection — squared amplitude tarice the travel time. That
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auto—-convolution

Figure 6.7: Data (right) with its FT squared (left)t1-bradl [ER]
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explains vertically propagating waves. When a ray has abotal component, an additional
copy of the ray doubles the horizontal distance travelean&eber what squaring a Fourier
transformation does — a convolution. Here the convolut®nover botht andx. Every bit
of the echo upon reaching the earth surface turns aroundratehgs it is a new little shot.
Mathematically, every point in the upcoming wadg, x) launches a replica af(t, x) shifted

in both time and space — an autoconvolution.

In reality, multiple reflections offer a considerable numbkchallenges that I'm not men-
tioning. The point here is just that FT is a good tool to have.

6.5.5 Passive seismology

Signals go on and on, practically forever. Sometimes wetbkimit our attention to some-
thing more limited such as their spectrum, or equivaletitlgir autocorrelation. We can com-
pute the autocorrelation in the Fourier domain. We multibly FT times its complex con-
jugate D(w,kx)D(w,kyx). Transforming back to the physical domain we see Figure %/8
expect a giant burst at zero offset (upper right corner). @/eat see it because itis "clipped”,
i.e. plot values above some threshhold are plotted at theshhold. | could scale the plot to
see the zero-offset burst, but then the interesting sigiada/n here would be too weak to be
seen.

Figure 6.8 shows us that the 2-D autocorrelation of a shdtlprshares a lot in common
with the shot profile itself. This is interesting news. If wadha better understanding of this
we might find some productive applications. We might find aatibn where we do not have
(or do not want) the data itself but we do wish to build an eartddel. For example, suppose
we have permanently emplaced geophones. The earth is ntp®zacited by seismic noise.
Some of itis man made; some results from earthquakes elsevwtie world; most probably
results from natural sources such as ocean waves, windaig, teéc. Recall every bit of acous-
tic energy that arrives at the surface from below becometsie tiit of a source for a second
reflection seismic experiment. So, by autocorrelating i@ o@f hours and days duration we
convert the chaos of continuing microseismic noise to shimgtthat might be the impulse
response of the earth, or something like it. Autocorrefationverts a time axis of length of
days to one of seconds. From the autocorrelation we mighbhketa draw conclusions in
usual ways, alternately, we might learn how to make earthatsddom autocorrelations.

Notice from Figure 6.8 that since the first two seconds of thead vanishes (travel time
to ocean bottom), the last two seconds of the autocorrelatigst vanish (longest nonzero lag
on the data).

There are many issues on Figure 6.8 to intrigue an intenp(stating with signal polarity).
We also notice that the multiples on the autocorrelatioroffieapidly with increasing offset
and wonder why, and whether the same is true of primariestdgiaty is not the day to start
down these paths.

In principal an autocorrelation is not comparable to the data or to the ideal shot profile
because forming a spectrum squares amplitudes. We canooverthis difficulty by use of
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auto—correlation

f a shot profile resemlikelf. |ft1-brad? [ER]

10N o

The 2-D autocorrelati

Figure 6.8
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multidimensional spectral factorization — but that’s avated mathematical concept not
defined in this book. See my other book, Image Estimation.

6.6 THE HALF-ORDER DERIVATIVE WAVEFORM

Causal integration is represented in the time domain byaatien with a step function. In
the frequency domain this amounts to multiplication By ). (There is also delta function
behavior ato = 0 which may be ignored in practice and sinceat 0, wave theory reduces to
potential theory). Integrating twice amounts to convautby a ramp functiort,step¢), which

in the Fourier domain is multiplication by/{—iw)?. Integrating a third time is convolution
with t2step€) which in the Fourier domain is multiplication by (i w)3. In general

n-1 1
t'"“step() = FT ((—iw)”) (6.28)
Proof of the validity of equation (6.28) for integer valudsnois by repeated indefinite inte-
gration which also indicates the need of @inscaling factor. Proof of the validity of equa-
tion (6.28) for fractional values aof would take us far afield mathematically. Fractional values
of n, however, are exactly what we need to interpret Huygen'srsgary wave sources in 2-D.
The factorial function oh in the scaling factor becomes a gamma function. The polegesig
that a more thorough mathematical study of convergencernsawead, but this is not the place
for it.

The principal artifact of the hyperbola-sum method of 2-Dgration is the waveform
represented by equation (6.28) whee= 1/2. Forn = 1/2, ignoring the scale factor, equa-
tion (6.28) becomes

1 1
7 step() = FT <m) (6.29)
A waveform that should come out to be an impulse actually oo to be equation (6.29)
because Kirchhoff migration needs a little more than sungnoinspreading on a hyperbola.
To compensate for the erroneous filter response of equaii@d)(we need its inverse filter.
We needy/ —iw. To see what/—iw is in the time domain, we first recall that

d
dt
A product in the frequency domain corresponds to a convaiuti the time domain. A time

derivative is like convolution with a doublet (21)/At. Thus, from equation (6.29) and
equation (6.30) we obtain

— FT (—io) (6.30)

% \/if stepf) = FT («/—iw) (6.31)

Thus, we will see the way to overcome the principal artiféfichyperbola summation is to
apply the filter of equation (6.31). In chapter 7 we will leanore exact methods of migration.
There we will observe that an impulse in the earth creates iyperbola with an impulsive
waveform but in two dimensions, a hyperbola with the wavefaf equation (6.31), and in
three dimensions, a hyperbola of revolution (umbrellaP)yoag a time-derivative waveform.
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6.6.1 Hankel tail

The waveform in equation (6.31) often arises in practicetia2-D Huygens wavelet). Be-
cause of the discontinuities on the left side of equatioB1(g.it is not easy to visualize.
Thinking again of the time derivative as a convolution witle tdoublet (1-1)/At, we imag-
ine the 2-D Huygen’s wavelet as a positive impulse followgdbgative signal decaying as
—t=3/2, This decaying signal is sometimes called thkafkel tail ” In the frequency domain
—iw=|w|e % has a 90 degree phase angle afidi w = |w|Y/2e'%%" has a45 degree phase
angle

# Hal f order causal derivative. OK to equiv(xx,yy)

#
subroutine hal fdifa( adj, add, n, xx, yy )
integer n2, i, adj, add, n
real onega, xx(n), yy(n)
conpl ex cz, cv(4096)
n2=1; whil e(n2<n) n2=2*n2; if( n2 > 4096) call erexit('halfdif nenory’)
doi=1, n2 { cv(i) = 0.}
doi=1, n

if( adj == 0) { cv(i) = xx(i)}

el se { cv(i) = yy(i)}
call adjnull( adj, add, XX, Nn, yy,n)

call ftu( +1., n2, cv)
doi=1, n2 {
onega = (i-1.) * 2.*3.14159265 / n2
cz =csqrt( 1. - cexp( cnmplx( 0., onega)))
if( adj !'=0) cz = conjg( cz)
cv(i) = cv(i) * cz
}
call ftu( -1., n2, cv)
doi=1, n
if( adj ==0) { yy(i)
el se { xx(i)
return; end

yy(i) + cv(i)}
xx(i) + cv(i)}

In practice, itis easiest to represent and to apply the 2-{ijdn’s wavelet in the frequency
domain. Subroutineal fdi fa() on the current page is provided for that purpose. Instead of
using+/—1w which has a discontinuity at the Nyquist frequency and a aosal time function,
| use the square root of a causal representation of a finferelifce, i.e./1— Z, which is well
behaved at the Nyquist frequency and has the advantagéhéhatddeling operator is causal
(vanishes when < tp). Fourier transform is done using subroutine() on page 83. Passing
an impulse function into subroutimel f di f a() gives the response seen in Figure 6.9.

6.7 References

Special issue on fast Fourier transform, June 1969: IEERSTi@n Audio and Electroacoustics
(now known as IEEE Trans. on Acoustics, Speech, and SigoakeBsing)AU-17, entire
issue (66-172).
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Figure 6.9: Impulse response (de-
layed) of finite difference operator
of half order. Twice applying this

filter is equivalent to once applying

(1,—1). [fil-hankel [ER]
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Chapter 7

Downward continuation

7.1 MIGRATION BY DOWNWARD CONTINUATION

Given waves observed along the earth’s surface, some welldk mathematical techniques
that are introduced here enable us to extrapotide/(ward continue) these waves down into
the earth. Migration is a simple consequence of this extedion.

7.1.1 Huygens secondary point source

Waves on the ocean have wavelengths comparable to thoseveswaseismic prospecting
(15-500 meters), but ocean waves move slowly enough to be desagine a long harbor

barrier parallel to the beach with a small entrance in theidrafior the passage of ships. This
is shown in Figure 7.1. A plane wave incident on the barriemfithe open ocean will send
a wave through the gap in the barrier. It is an observed fattttite wavefront in the harbor
becomes a circle with the gap as its center. The differentvedss this beam of water waves
and a light beam through a window is in the ratio of wavelerigthole size.

Linearity is a property of all low-amplitude waves (not tedeamy, breaking waves near
the shore). This means that two gaps in the harbor barriee tved semicircular wavefronts.
Where the circles cross, the wave heights combine by sinm@ar addition. It is interesting
to think of a barrier with many holes. In the limiting case @&ry many holes, the barrier
disappears, being nothing but one gap alongside anotheiiciBeular wavefronts combine to
make only the incident plane wave. Hyperbolas do the samgur&i7.2 shows hyperbolas
increasing in density from left to right. All those waves anhrertical angles must somehow
combine with one another to extinguish all evidence of angthut the plane wave.

A Cartesian coordinate system has been superimposed oceha surface witlx going
along the beach amdmeasuring the distance from shore. For the analogy withatédleseis-
mology, people are confined to the beach (the earth’s syneoere they make measurements
of wave height as a function of andt. From this data they can make inferences about the
existence of gaps in the barrier out in theZ)-plane. The first frame of Figure 7.3 shows the

97
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beach

Huygens Secondary

Point Source
Zl —_

harbor

storm barrier

open ocean

T incident wave

Figure 7.1: Waves going through a gap in a barrier have secular wavefronts (if the wave-

length is long compared to the gap siZe)wnc-stornj [NR]

60 g0 Gl 10500 0

G0 20 S0 10 ¢00 0

Figure 7.2: A barrier with many holes (top). Waveg,t(-space, seen beyond the barrier
(bottom). |dwnc-stormholé[ER]
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arrival time at the beach of a wave from the ocean through a g§he earliest arrival occurs

at z0 (beach) at z1 at z2 at z3 (barrier)

X X X X

7\

AT
/1IN

t t t t

Figure 7.3: The left frame shows the hyperbolic wave artivaé seen at the beach. Frames
to the right show arrivals at increasing distances out invth&er. Thex-axis is compressed

from Figure 7.1.[dwnc-dd [ER]

nearest the gap. What mathematical expression deternmeasape of the arrival curve seen
in the (x,t)-plane?

The waves are expanding circles. An equation for a circlaeamng with velocityy about
a point ks, z3) is

(X—x3)%2 + (z—2z3)® = v2t? (7.1)

Consideringt to be a constant, i.e. taking a snapshot, equation (7.1ptsofta circle. Con-
sideringz to be a constant, it is an equation in thet(-plane for a hyperbola. Considered in
the t, x, 2)-volume, equation (7.1) is that of a cone. Slices at vari@lses oft show circles
of various sizes. Slices of various valueszafhow various hyperbolas. Figure 7.3 shows four
hyperbolas. The first is the observation made at the begetD. The second is a hypothetical
set of observations at some distarzg®ut in the water. The third set of observations izt
an even greater distance from the beach. The fourth set ehifons is az, nearly all the
way out to the barrier, where the hyperbola has degeneratagoint. All these hyperbolas
are from a family of hyperbolas, each with the same asymptdtee asymptote refers to a
wave that turns nearly 9t the gap and is found moving nearly parallel to the shorbet t
speeddx/dt of a water wave. (For this water wave analogy it is presumegtesrectly—that
the speed of water waves is a constant independent of waitr)de

If the original incident wave was a positive pulse, the Huygsecondary source must
consist of both positive and negative polarities to enaidedestructive interference of all but
the plane wave. So the Huygens waveform has a phase shifie ekt section, mathematical
expressions will be found for the Huygens secondary soufeeother phenomenon, well
known to boaters, is that the largest amplitude of the HuggEmicircle is in the direction
pointing straight toward shore. The amplitude drops to ferevaves moving parallel to the
shore. In optics this amplitude drop-off with angle is caltkeobliquity factor.



100 CHAPTER 7. DOWNWARD CONTINUATION

7.1.2 Migration derived from downward continuation

A dictionary gives many definitions for the wordn. They are related, but they are distinct.
Similarly, the wordmigrationin geophysical prospecting has about four related butrdisti
meanings. The simplest is like the meaning of the worave. When an object at some
location in the X, z)-plane is found at a different location at a later timehen we say it
movesAnalogously, when a wave arrival (often calledenrent) at some location in thex(t)-
space of geophysical observations is found at a differesitipa for a different survey line at
a greater depth, then we say imigrates.

To see this more clearly, imagine the four frames of FiguBebeing taken from a movie.
During the movie, the depthchanges beginning at the beach (the earth’s surface) and goi
out to the storm barrier. The frames are superimposed in€&igd(left). Mainly what happens

X X

N

N
R

t+z/v

Figure 7.4: Left shows a superposi-
tion of the hyperbolas of Figure 7.3.
At the right the superposition incor-
porates a shift, called retardatitn=
t+z/v, to keep the hyperbola tops to-
gether. | dwnc-dcretarf[ER]

NN

in the movie is that the event migrates upward towazd0. To remove this dominating effect
of vertical translation we make another superpositionpkegthe hyperbola tops all in the

same place. Mathematically, the timeaxis is replaced by a so-calledtardedtime axis

t' =t + z/v, shown in Figure 7.4(right). The second, more precise di&fimif migration

is the motion of an event inx(t’)-space ag changes. After removing the vertical shift, the
residual motion is mainly a shape change. By this definittoyperbola tops, or horizontal

layers, do not migrate.

The hyperbolas in Figure 7.4 really extend to infinity, bug thhawing cuts each one off at
atime equak/2 times its earliest arrival. Thus the hyperbolas shownalepily rays moving
within 45° of the vertical. It is good to remember this, that the ratidist arrival time on a
hyperbola to any other arrival time gives the cosine of trgdeanof propagation. The cutoff on
each hyperbola is a ray at49\otice that the end points of the hyperbolas on the drawamg c
be connected by a straight line. Also, the slope at the enddat dyperbola is the same. In
physical space, the angle of any ray is fag dx/dz For any plane wave (or seismic event
that is near a plane wave), the slapdt/dx is sinf, as you can see by considering a wavefront
intercepting the earth’s surface at angleSo, energy moving on a straight line in physical
(X, 2)-space migrates along a straight line in datagX-space. A« increases, the energy of
all angles comes together to a focus. The focus is the exglodiflector. It is the gap in
the barrier. This third definition of migration is that it ise process that somehow pushes
observational data—wave height as a functiorxaindt —from the beach to the barrier.
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The third definition stresses not so much the motion itseif,the transformation from the
beginning point to the ending point.

To go further, a more general example is needed than the diarrrer example. The
barrier example is confined to making Huygens sources ondpiae particulaz. Sources
are needed at other depths as well. Then, given a wave-ekitegm process to move data to
increasing values, exploding-reflector images are constructed with

Image k,z7 =  Wave ({=0,x,2) (7.2)

The fourth definition of migration also incorporates the iéfin of diffractionas the opposite
of migration.

observations model
27— 0 migration t—0
—
<~
allt diffraction allz

Diffraction is sometimes regarded as the natural procedsctieates and enlarges hyper-
boloids. Migration is the computer process that does the reverse.

Another aspect of the use of the wordgrationarises where the horizontal coordinate can
be either shot-to-geophone midpointor offseth. Hyperboloids can be downward continued
in both the §,t)- and the [,t)-plane. In the y,t)-plane this is calleanigration or imaging,
and in the [, t)-plane it is calledocusing or velocity analysis.

7.2 DOWNWARD CONTINUATION

Given a vertically upcoming plane wave at the earth’s sexfaayu(t, x,z= 0) = u(t)const),
and an assumption that the earth’s velocity is verticatigtsted, i.e.v = v(z), we can presume
that the upcoming wave down in the earth is simply time-edifrom what we see on the
surface. (This assumes no multiple reflections.) Timeiglgiftan be represented as a linear
operator in the time domain by representing it as convatuticth an impulse function. In
the frequency domain, time shifting is simply multiplying & complex exponential. This is
expressed as

ut,z) = ut,z=0)x5(t+2z/v) (7.3)
U(w,2) = U(w,z=0)e '“%V (7.4)

Sign conventions must be attended to, and that is explaireed fually in chapter 6.
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7.2.1 Continuation of a dipping plane wave.

Next consider a plane wawBpping at some angle. It is natural to imagine continuing such
a wave back along a ray. Instead, we will continue the wawaegstt down. This requires the
assumption that the plane wave is a perfect one, namelyltbaame waveform is observed
at all x. Imagine two sensors in a vertical well bore. They shouldrmdhe same signal
except for a time shift that depends on the angle of the wawvatic&l that the arrival time
difference between sensors at two different depths is gsetdr vertically propagating waves,
and the time difference drops to zero for horizontally pgatang waves. So the time shift
At is v~1cosd Az whered is the angle between the wavefront and the earth’s surfad@go
angle between the well bore and the ray). Thus an equatioomtoward continue the wave is

U(w,0,z+A2) = U(w,0,2) exp(—iwAt) (7.5)
Azcosh ) (7.6)

U(w,0,z+A2) = U(w,0,2) exp(—iw

Equation (7.6) is a downward continuation formula for angla®. Following methods of
chapter 3 we can generalize the method to media where theityel® a function of depth.
Evidently we can apply equation (7.6) for each layer of thessAz, and allow the velocity
vary with z. This is a well known approximation that handles the timiogectly but keeps
the amplitude constant (sin¢e?| = 1) when in real life, the amplitude should vary because
of reflection and transmission coefficients. Suffice it totbey in practical earth imaging, this
approximation is almost universally satisfactory.

In a stratified earth, it is customary to eliminate the amsgighich is depth variable, and
change it to the Snell's parametprwhich is constant for all depths. Thus the downward
continuation equation for any Snell’'s parameter is

U(,p,z+A2) = U(w,p,2) exp<— Iw(AZ V1-p2?v(z 2> (7.7)

v(2)

It is natural to wonder where in real life we would encount&reell wavethat we could
downward continue with equation (7.7). The answer is thgtvaave from real life can be
regarded as a sum of waves propagating in all angles. Thusdad&éa set should first be
decomposed into Snell waves of all valuegofind then equation (7.7) can be used to down-
ward continue eaclp, and finally the components for eaghcould be added. This process
akin to Fourier analysis. We now turn to Fourier analysis ag#hod of downward continu-
ation which is the same idea but the task of decomposing daieSinell waves becomes the
task of decomposing data into sinusoids alongxtaxis.

7.2.2 Downward continuation with Fourier transform

One of the main ideas in Fourier analysis is that an impulsetion (a delta function) can be
constructed by the superposition of sinusoids (or compk@oeentials). In the study of time
series this construction is used for thgpulse responsef a filter. In the study of functions of
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space, it is used to make a physical point source that canfacore the downgoing waves
that initialize the reflection seismic experiment. Likegvizbserved upcoming waves can be
Fourier transformed overandx.

Recall in chapter 3, a plane wave carrying an arbitrary wawef specified by equa-
tion (3.7). Specializing the arbitrary function to be thalrpart of the function expfi w(t —
to)] gives

: . X . z
moving cosine wave= cos[ w(— sing 4+ — cosf — t) ] (7.8)
v v

Using Fourier integrals on time functions we encounterfinrier kernelexp(—iwt). To use
Fourier integrals on the space-axighe spatial angular frequency must be defined. Since
we will ultimately encounter many space axes (three for stiwee for geophone, also the
midpoint and offset), the convention will be to use a sulpi@n the lettek to denote the axis
being Fourier transformed. g is the angular spatial frequency on thaxis and expkyXx)

is its Fourier kernel. For each axis and Fourier kernel tieetke question of the sign before
thei. The sign convention used here is the one used in most physats, namely, the one
that agrees with equation (7.8). Reasons for the choice igem gn chapter 6. With this
convention, a wave moves in tipgsitivedirection along the space axes. Thus the Fourier
kernel for , z,t)-space will be taken to be

Fourier kernel= &** @kz gm0t — expfi (kyx + kzz — wt)] (7.9)

Now for the whistles, bells, and trumpets. Equating (7.8htoreal part of (7.9), physical
angles and velocity are related to Fourier components. Doeiér kernel has the form of a
plane wave. These relations should be memorized!

Angles and Fourier Components

. v kX 1)) kz
sing = — cos) = —
w w

(7.10)

A point in (w,ky,k;)-space is a plane wave. The one-dimensional Fourier kextehcts
frequencies. The multi-dimensional Fourier kernel exg@&mnonochromatic) plane waves.

Equally important is what comes next. Insert the angle dedims into the familiar relation
sinf@ +cos 6 = 1. This gives a most important relationship:

2 2 »?
ke + ki = 2 (7.11)
The importance of (7.11) is that it enables us to make theéndistn between an arbitrary
function and a chaotic function that actually is a wavefidldagine any functionu(t, x, z).
Fourier transform it tdJ (w, kx, k7). Look in the @, ky, kz)-volume for any nonvanishing values
of U. You will have a wavefield if and only if all nonvanishin have coordinates that satisfy
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(7.11). Even better, in practice thg X)-dependence a = 0 is usually known, but the-
dependence is not. Then taedependence is found by assumidgis a wavefield, so the
z-dependence is inferred from (7.11).

Equation (7.11) also achieves fame as the “dispersionioalaf the scalawave equa-
tion,” a topic developed more fully in IEI.

Given anyf (t) and its Fourier transforri (w) we can shiftf (t) by to if we multiply F(w)
by €<%, This also works on the-axis. If we were giverF (k,) we could shift it from the
earth surface = 0 down to anyzy by multiplying by €k2%. Nobody ever gives u§ (k)
but from measurements on the earth surface O and double Fourier transform, we can
computeF(w,ky). If we assert/assume that we have measured a wavefield wibdrave
k? = w?/v? — k2, so knowingF (w,kx) means we knowF (k;). Actually, we knowF (kz,Ky).
Technically, we also know (k;, w), but we are not going to use it in this book.

We are almost ready to extrapolate waves from the surfaoethiet earth but we need to
know one more thing — which square root do we takelkgt That choice amounts to the
assumption/assertion of upcoming or downgoing waves. Yighexploding reflector model
we have no downgoing waves. A more correct analysis has twmgaing waves to think
about: First is the spherical wave expanding about the shetond arises when upcoming
waves hit the surface and reflect back down. The study of ptelteflections requires these
waves.

7.2.3 Linking Snell waves to Fourier transforms

To link Snell waves to Fourier transforms we merge equations (3.8) and (3.8) aqua-
tions (7.10)

Ky oto sing

= = — = = p (7.12)
w dX v

k ot cos6 V1— p?v2

o _ 0 _ _y-— P (7.13)
w 0z v v

The basic downward continuation equation for upcoming wavé&ourier space follows from
equation (7.7) by eliminating by using equation (7.12). For analysis of real seismic daa w
introduce a minus sign because equation (7.13) refers toglowg waves and observed data
is made from up-coming waves.

iwAZ 2k2
U(w,kx,z4+A2) = U(w,kyx 2) exp( @ 1- Y 2" ) (7.14)
v w
In Fourier space we delay signals by multiplying &g, analogously, equation (7.14) says
we downward continue signals into the earth by multiplyiygelfz2Z. Multiplication in the
Fourier domain means convolution in time which can be dedibtly the engineering diagram
in Figure 7.5.
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Figure 7.5: Downward continuation of a downgoing wavefididwnc-inout [NR]

Downward continuation is a product relationship in bothdkdomain and thé&y-domain.
Thus it is a convolution in both time and What does the filter look like in the time and space
domain? It turns out like a cone, that is, it is roughly an ifspufunction ofx? + z% — v?t?.
More precisely, it is the Huygens secondary wave sourcentasiexemplified by ocean waves
entering a gap through a storm barrier. Adding up the respohmultiple gaps in the barrier
would be convolution ovex.

A nuisance of using Fourier transforms in migration and nliodds that spaces become
periodic. This is demonstrated in Figure 7.6. Anywhere aneexits the frame at a side,
top, or bottom boundary, the event immediately emerges @opiposite side. In practice, the
unwelcome effect of periodicity is generally amelioratggladding zeros around the data and
the model.
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Figure 7.6: A reflectivity model on the left and syntheticalasing a Fourier method on the

right. [ER]

7.3 PHASE-SHIFT MIGRATION

The phase-shift method of migration begins with a two-digi@mal Fourier transform (2D-
FT) of the dataset. (See chapter 6.) This transformed datlmvis\ward continued with
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expik;z) and subsequently evaluatedtat O (where the reflectors explode). Of all migra-
tion methods, the phase-shift method most easily incotpsi@epth variation in velocity. The
phase angle and obliquity function are correctly includaatomatically. Unlike Kirchhoff
methods, with the phase-shift method there is no dangerasiag the operator. (Aliasing the
data, however, remains a danger.)

Equation (7.14) referred to upcoming waves. However in #fection experiment, we
also need to think about downgoing waves. With the explodéilgctor concept of a zero-
offset section, the downgoing ray goes along the same patieaggoing ray, so both suffer
the same delay. The most straightforward way of convertireyway propagation to two-way
propagation is to multiply time everywhere by two. Inste&d customary to divide velocity
everywhere by two. Thus the Fourier transformed data vaaresdownward continued to a
depthAz by multiplying by

; .2 2K2
ghkedz exp( 22 1o P Az) (7.15)
v

Ordinarily the time-sample interval r for the output-migrated section is chosen equal to the
time-sample rate of the input data (often 4 millisecondshus choosing the depthz =
(v/2)At, the downward-extrapolation operator for a single time e is

v2k2
C = exp| —ioAr /1 - 40);‘ (7.16)

Data will be multiplied many times b¢, thereby downward continuing it by many steps of
At.

7.3.1 Pseudocode to working code

Next is the task of imaging. Conceptually, at each depth aerge Fourier transform is fol-
lowed by selection of its value at= 0. (Reflectors explode at= 0). Since only the Fourier
transform at one point,= 0, is needed, other times need not be be computed. We know the
o = 0 Fourier component is found by the sum over all time, analstyp thet = 0 compo-

nent is found as the sum over all (This is easily shown by substitutinig= O into the inverse
Fourier integral.) Finally, inverse Fourier transfokgito x. The migration process, computing
the image from the upcoming wave may be summarized in the following pseudo code:
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U (o, ke, 7 = 0) = FTu(t, X)]

Fort = At,2A7, ..., end of time axis on seismogram
For all ky
For allw

C =expliwAt/1—v%kZ/40?)
U(w,kx,7) =U(w,ky, 7 — AT)*C
For allky
Imageky, ) = 0.
For allw
Imagekx, ) = Imageky, t) + U (w, Ky, 7)
imagek,t) = FT[Imagekx, )]

This pseudo code Fourier transforms a wavefield observéeé atrth’s surface= 0, and then

it marches that wavefield down into the earth 0) filling up a three-dimensional function,
U(w,kx,7). Then it selects = 0, the time of the exploding reflectors by summing over all
frequencies». (Mathematically, this is like finding the signalat= 0 by summing over ali).

Turning from pseudocode to real code, an important prdcteslity is that computer
memories are not big enough for the three-dimensional iomdd (w,ky, 7). But it is easy
to intertwine the downward continuation with the summatiwer » so a three-dimensional
function need not be kept in memory. This is done in the redédn subroutinghaseni g() .

subrouti ne phasem g( up, nt, nx, dt, dx, inage, ntau, dtau, vel)

i nt eger nt, nx, nt au, iw, nw ikx,itau
real dt, dx, w, w0, dw, kx, kxO0, dkx, dtau, vel, sigl,sig2, pi, w2, vkx2
conpl ex up(nt, nx), imge(ntau, nx), cc

pi = 3.14159265; sigl = +1.; sig2 = -1.

call ftlaxis( 0, sigl, nt, nx, up)
call ft2axis( 0, sig2, nt, nx, up)

nw = nt; w0 = -pi/dt; dw = 2. *pi/(nt*dt)
kx0 = -pi/dx; dkx= 2. *pi / (nx*dx)
call null( inage, ntau*nx*2)
doiw =2, nw { w =w + (iw-1) * dw
do ikx =2, nx { kx = kx0 + (ikx-1) * dkx

w2 =w* w
vkx2 = vel *vel * kx*kx / 4.
if( w2 >vkx2 ) {
cc = cexp( cnplx( 0., - w=* dtau * sqgrt( 1. - vkx2/w2 ) ) )
doitau = 1, ntau {
up(iwikx) = up(iwikx) * cc
image(itau,ikx) = image(itau,ikx) + up(iw,ikx)

}

1}

call ft2axis( 1, sig2, ntau, nx, inage)
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return; end

Conjugate migration (modeling) proceeds in much the same Beginning from an up-
coming wave that is zero at great depth, the wave is marchednan steps by multiplication
with exp(k;Az). As each level in the earth is passed, exploding reflectors that level are
added into the upcoming wave. Pseudo code for modeling tbenoipg waveu is

Imageky, z) = FT[image, 2)]
For allw and allky

U(w,kyx) =0.
Forallw {
For allky {
Forz = Zmax, Zmax— AZ,Zmax— 242, ..., 0{

C = exp-i Azwyv/v=2 —ky?/w?)
U(w,kx) = U (w,ky)xC
U (w,kx) = U(w,kx)+Imageky, 2)

11}
u(t,x) = FT[U (w,ky)]

Some real code for this job is in subroutisteasenod() .

subrouti ne phasenod( image, nz, nx, dz, dx, up, nt, dt, vel)

i nt eger nz, nx, nt, iw, nw,ikx,iz
r eal dt, dx, dz, w, w0, dw, kx, kxO, dkx, vel, sigl,sig2,pi, w2, vkx2
conpl ex up(nt, nx), imge(nz,nx), cc
pi = 3.14159265; sigl = +1.; sig2 = -1.
call ft2axis( 0, sig2, nz, nx, inage)
nw = nt; wo -pi/dt; dw = 2. *pi/ (nt*dt)

kx0 - pi / dx; dkx= 2. *pi/ (nx*dx)
call null( up, nwnx*2)
doiw =2, nw { w =w + (iwl) * dw
do ikx =2, nx { kx = kx0 + (ikx-1) * dkx
w2 =w*w

vkx2 = vel *vel * kx*kx / 4.
if( w2 > vkx2 ) {
cc = cexp( cnplx( 0., w=* dz * sqrt(1. - vkx2/w2) ))
doiz =nz, 1, -1
up(iw ikx) = up(iwikx) * cc + image(iz,ikx)
}
1}
call ftlaxis( 1, sigl, nt, nx, up)
call ft2axis( 1, sig2, nt, nx, up)
return; end

The positive sign in the complex exponential is a combimatbdtwo negatives, thep
coming wave and thapward extrapolation. In principle, the three loops®nky, andz are
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interchangeable, however, since this tutorial prograns aseelocityv that is a constant func-
tion of depth, | speeded it by a large factor by puttingzHeop on the inside and pulling the
complex exponential out of the inner loop. Figure 7.2 wasenaih subroutinghasenod()
on the preceding page.

7.3.2 Kirchhoff versus phase-shift migration

In chapter 5, we were introduced to the Kirchhoff migration anodeling method by means of
subroutinei r chsl ow() on page 65 andi rchf ast () on page 67. From chapter 6 we know
that these routines should be supplemented k{-aw filter such as subroutineal f di f a()

on page 95. Here, however, we will compare results of the ammad subroutingi r chf ast ()

on page 67 with our new programaseni g() on page 107 anghasenod() on the preceding
page. Figure 7.7 shows the result of modeling data and thgratinig it. Kirchhoff and phase-
shift migration methods both work well. As expected, theckhoff method lacks some of the
higher frequencies that could be restoredy-iw. Another problem is the irregularity of
the shallow bedding. This is an operator aliasing probledrested in chapter 10. Figure 7.8

km km
o 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 7.7: Reconstruction after modeling. Left is by thanest-neighbor Kirchhoff method.
Right is by the phase shift methoddwnc-comrecoh[ER,M]

shows the temporal spectrum of the original sigmoid modeha@with the spectrum of the
reconstruction via phase-shift methods. We see the spe@mssentially identical with little
growth of high frequencies as we noticed with the Kirchhoéfthod in Figure 5.9. Figure 7.9

Figure 7.8: Top is the temporal spec- meae mmmmmww

trum of the model. Bottom is the
spectrum of the reconstructed model.

e 0 e e
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shows the effect of coarsening the space axis. Synthetaslgenerated from an increasingly
subsampled model. Again we notice that the phase-shiftadeihthis chapter produces more
plausible results than the simple Kirchhoff programs ofptba5.

7.3.3 Damped square root

The definition ofk, ask, = \/@?/v? — k2 obscures two aspects kf. First, which of the two
square roots is intended, and second, what happens kfhenn?/v2. For both coding and
theoretical work we need a definition idf; that is valid for both positive and negative values
of w and for allkk. Define a functiorR = ik;(w, k;) by

R = ik = J(Ho+e2+k (7.17)

Itis important to know that for any > 0, and any reab and reaky that the real pafii R > 0
is positive. This means we can extrapolate waves safely evitif for increasingz or with
et RZfor decreasing. To switch from downgoing to upcoming we use the complex egaie
R. Thus we have disentangled the damping from the directigmagagation.

Let us see whyi R > O is positive for all real values @ andky. Recall that for ranging
betweentco, €At rotates around the unit circle in the complex plane. Exarfigare 7.10
which shows the complex functions:

1. f(w)=€—iow,

2. —id=(1+¢€)—er,

3. (id)4

4. (iky)? = (—io)*+k2, and
5

. iky = [(—i @)%+ K22

The first two panels are explained by the first two function$e Tirst two functions and
the first two panels look different but they become the santdenpractical limit ofe — 0
and At — 0. The left panel represents a time derivative in continuous, and the second
panel likewise in sampled time is for a “causal finite-diffiece operator” representing a time
derivative. Notice that the graphs look the same neat 0. As we sample seismic data
with increasing densityAt — 0, the frequency content shifts further away from the Nyquis
frequency. Measuring in radians/sample, in the limi&it — 0, the physical energy is all near
w=0.

The third panel in Figure 7.10 showsi(®)? which is a cardioid that wraps itself close
up to the negative imaginary axis without touching it. (Taderstand the shape near the
origin, think about the square of the leftmost plane. You rhaye seen examples of the
negative imaginary axis being a branch cut.) In the fourtiepa small positive quantity? is
added which shifts the cardioid to the right a bit. Taking shi@are root gives the last panel
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oos

Figure 7.9: Modeling with increasing amounts of lateralsarpling. Left is the nearest-
neighbor Kirchhoff method. Right is the phase-shift meth@dp has 200 channels, middle
has 100 channels, and bottom has 50 channelenc-commod[ER]
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Figure 7.10: Some functions in the complex plahgéwnc-francis [ER]

which shows the curve in the right half plane thus provingithportant result we need, that
N ikz(w,kz) > O for all realw. It is also positive for all reak, because ani? > 0 shifts the
cardioid to the right. The additional issue of time caugahtforward modeling is covered in
IEL

Luckily the Fortrarcsqrt () function assumes the phase of the argument is betwé 86
exactly as we need here. Thus the square root itself will laapbase betweefi90° as we
require. In applications, would typically be chosen proportional to the maximum tinnetee
data. Thus the mathematical expressidm + ¢ might be rendered in Fortran aspl x(qi ,
omega) Wheregi =1./tmax and the whole concept implemented as in functokt au() on
this page. Do not sefi =0 because then thesgrt () function cannot decipher positive from
negative frequencies.

conpl ex function eiktau( dt, w, vkx, qgi )

real dt, w, vkx, qi

ei ktau = cexp( - dt * csqrt( crmplx( qi, -w ** 2 + vkx * vkx /4. ) )
return; end

Finally, you might ask, why bother with all this careful tmg@onnected with the damped
square root. Why not simply abandon the evanescent wavesashy the i‘f ” statement in
subroutinephaseni g() andphasenod() ? There are several reasons:

1. The exploding reflector concept fails for evanescent wéwhens? < v?k2). Realistic
modeling would have them damping with depth. Rather thandrio handle them cor-
rectly we will make a choice, either (1) to abandon evandseawes effectively setting
them to zero, or (2) we will take them to be damping. (You migbtice that when
we switch from downgoing to upgoing, a damping exponentiatches to a growing
exponential, but when we consider the adjoint of applyingaped exponential, that
adjoint is also a damped exponential.)

I’'m not sure if there is a practical difference between clogpdo damp evanescent
waves or simply to set them to zero, but there should be aatwédlifference on syn-
thetic data: When a Fourier-domain amplitude drops abydpdim unity to zero, we

can expect a time-domain signal that spreads widely on e dixis, perhaps dropping
off slowly as 1/t. We can expect a more concentrated pulse if we include theesva
cent energy, even though it is small. | predict the followlrehavior: Take an impulse;
diffract it and then migrate it. When evanescent waves haen ltruncated, | predict
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the impulse is turned into a “butterfly” whose wings are at lilgperbola asymptote.
Damping the evanescent waves, | predict, gives us more afumtted” impulse.

2. In alater chapter we will handle thxeaxis by finite differencing (so that we can handle
v(x). There a stability problem will develop unless we begimrircareful definitions as
we are doing here.

3. Seismic theory includes an abstract mathematical corkcepvn as branch-line inte-
grals. Such theory is most easily understood beginning frera.

7.3.4 Adjointness and ordinary differential equations

It is straightforward to adapt the simple prograpaaseni g() on page 107 anghasenod()

on page 108 to depth variable velocity. As you might suspgbletiwo processes are adjoint
to each other, and for reasons given at the end of chaptes2i@sirable to code them to be
so. With differential equations and their boundary comwdis, the concept of adjoint is more
subtle than previous examples. Thus, | postponed till Hexelevelopment of adjoint code for
phase-shift migration. This coding is a little strenuous, ibaffords a review of many basic

concepts, so we do so here. (Feel free to skip this sectidis)nice to have a high quality

code for this fundamental operation.

Many situations in physics are expressed by the differeatjaation

(;—l;—iau = 5(2) (7.18)

In the migration applicationy(z) is the up-coming wavey = —,/w?/v?—k2, s(z) is the
exploding-reflector source. We take the medium to be layarednstant in layers) so that
is constant in a layer, and we put the sources at the layerdaoi@s. Thus within a layer we
havedu/dz—i«u = 0 which has the solution

u(ze+Az) = u(z) ? (7.19)

For convenience, we use thdelay operator’ in the k-th layer Z, = e~'*2Z so the delay of
upward propagation is expressedufyy) = Zx u(z« + Az). (Sincex is negative for upcoming
waves,Zy = e '?AZ has a positive exponent which represents delay.) Besidesing layers,
we must cross layer boundaries where the (reflection) seade to the upcoming wave. Thus
we have

Uk-1 = Zk—1Uk+S-1 (7.20)

Recursive use of equation (7.20) across a medium of thregday expressed in matrix form
as

1 -7 . . Ug S
_ 1 —7Z1 . Uq _ S _
Mu = 1 -7, Uy = 5 = s (7.21)
1 Uz S¢)
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A recursive solution begins at the bottom with= s3 and propagates upward.

The adjoint (complex conjugate) of the delay operaids the time advance operatffn
The adjoint of equation (7.21) is given by

1 ) % Uo
re —Z9 1_ . §1 _ uq _
M'S = " 5, = Uy = u (7.22)
-Z> 1 S us

wheres(z) (summed over frequency) is the migrated image. The adjes# of equation (7.21)
and (7.22) seems obvious, but it is not the elementary fornanedamiliar with because the
matrix multiplies theoutput(instead of multiplying the usuahput). To prove the adjointness,
notice that equation (7.21) is equivalentuc= M ~s whose adjoint, by definition, i3 =
(M~1Yu which is3= (M’)"*u (because of the basic mathematical fact that the adjoint of a
inverse is the inverse of the adjoint) which givd$S = u which is equation (7.22).

We observe the wavefield only on the surface 0, so the adjointness of equations (7.21)
and (7.22) is academic because it relates the wavefield aepths with the source at all
depths. We need to truncaieo its first coefficientg since the upcoming wave is known only
at the surface. This truncation changes the adjoint in @aanvay. We rewrite equation (7.21)
using a truncation operatdrthat is the row matrid =[1,0,0,---] gettingup=Tu =TM ~1s.

Its adjoint is§ = (M ~1)'T'uy = (M")~1T’uj or M’ = T’ug which looks like

1.
~Zy 1 .
~Z; 1

-7, 1

c
o

M'E = (7.23)

& W o
o O o

The operator 7.23 is a recursion beginning freya="up and continuing downward with

& = Zk-1&-1 (7.24)

A final feature of the migration application is that the imag&rmed fromS by summing
over all frequencies. Although | believe the mathematiasvaband the code in subroutine
gazadj () on the current page, | ran the dot product test to be sure!

# Phase shift nodeling and mgration. (Warning: destroys its input!)

#

subrouti ne gazadj ( adj, dt,dx, v,nt,nx, nodl, data )

i nt eger adj , nt, nx, iw, ikx, iz, nz

conpl ex ei ktau, cup, nmodl (nt, nx), data(nt, nx)

real dt, dx, v(nt), pi, w w0, dw, kx, kx0, dkx, qi
call adjnull( adj, O, nmodl , nt *nx*2, data, nt*nx*2 )

pi = 4.*atan(1l.); w0 = -pi/dt; dw = 2. *pi/(nt*dt); gi =. 5/ (nt*dt)
nz = nt; kx0 = -pi/dx; dkx= 2. *pi/ (nx*dx)

if( adj == 0) call ft2axis( 0, -1., nz, nx, nodl)

el se { call ft2axis( 0, -1., nt, nx, data)

call ftlaxis( 0, 1., nt, nx, data)
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}

do ikx =2, nx { kx = kx0 + (ikx-1) * dkx
doiw =2, 1+nt/2 { w =w + (iw-1) * dw
if( adj==0) { data(iw ikx) = nodl(nz,ikx)
doiz =nz-1, 1, -1
data(iw ikx) = data(iw ikx) * eiktau(dt,w v(iz)*kx,qi) +
nmodl (i z, i kx)
}
el se { cup = data(iw,ikx)
doiz =1, nz {
modl (i z,ikx) = modl (iz,ikx) + cup
cup = cup * conjg( eiktau(dt,w v(iz)*kx,qi))
}
}
1}
if( adj == 0) { call ftlaxis( 1, 1., nt, nx, data)
call ft2axis( 1, -1., nt, nx, data) }
el se { call ft2axis( 1, -1., nz, nx, nodl) }

return; end

Finally, a few small details about the code. The loop on spatquency kx begins at kx=2.
The reason for the 2, instead of a 1, is to omit the Nyquistueagy. If the Nyquist frequency
were to be included, it should be divided into one half at fpasiNyquist and one half at
negative Nyquist, which would clutter the code without addpractical value. Another small
detail is that the loop on temporal frequenay begins ati w=1+nt/ 2 which effectly omits
negative frequencies. This is purely an economy measuctidimg the negative frequencies
would assure that the final image be real, no imaginary pamittidg negative frequencies
simply gives an imaginary part that can be thrown away, anelsginhe same real image, scaled
by a half. The factor of two speed up makes these tiny commesnwell worthwhile.

7.3.5 \Vertical exaggeration example

To examine questions ofertical exaggerationand spatiatesolution we consider a line of
point scatters along a 4%lipping line in &,z)-space. We impose a linear velocity gradi-
ent such as that typically found in the Gulf of Mexico, i€z) = vo+ az with @ = 1/2s7L.
Viewing our point scatterers as a function of traveltimettlep = ZfOZdZ/v(Z) in Figure 7.11
we see, as expected, that the points, although separateglibyietervals inx, are separated
by shorter time intervals with increasing depth. The poarts uniformly separated along a
straight line in &, z)-space, but they are nonuniformly separated aloograedline in (X, t)-
space. The curve is steeper near the earth’s surface w{@rgelds the greatest vertical exag-
geration. Here the vertical exaggeration is about unityexegeration) but deeper the vertical
exaggeration is less than unity (horizontal exaggeratiépplying subroutinggazad;j () on
the facing page the points spray out into hyperboloids {igeerbolas, but not exactly) shown
in Figure 7.12. The obvious feature of this synthetic datéhad the hyperboloids appear to
have different asymptotes. In fact, there are no asympbateguse an asymptote is a ray going
horizontal at a more-or-less constant depth, which willmppen in this model because the
velocity increases steadily with depth.
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Figure 7.11: Points along a 45 degree
slope as seen as a function of travel-

time depth. [dwnc-sagmoH{ER]
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(I should get energetic and overlay these hyperboloids proftdhe exact hyperbolas of
the Kirchhoff method, to see if there are perceptible triawvel differences.)

7.3.6 Vertical and horizontal resolution

In principle, migration converts hyperbolas to points. hagiice, a hyperbola does not col-
lapse to a point, it collapses tda@cus.A focus has measurable dimensions. Vertical resolution
is easily understood. For a given frequency, higher vetagiites longer vertical wavelength
and thus less resolution. When the result of migration ist@tbas a function of traveltime
depthr instead of true depth, however, enlargement of focus with depth is not visible.

Horizontal resolution works a little differently. Migratn is said to be “good” because it
increases spatiaksolution. It squeezes a large hyperbola down to a tiny focus. Study the
focal widths in Figure 7.13. Notice the water-velocity fees hardly broaden with depth.
We expect some broadening with depth because the late lojpsrére cut off at their sides
and bottom (an aperture effect), but there is no broadereng lbecause the periodicity of the
Fourier domain means that events are not truncated but wdsgmound.

kilometers kilometers
o 0.5 1 1.5 2 2.5 3 3.5 o O.5 1 1.5 2 2.5 3 3.5

03s ‘qydap awm)-[aaeny
938 ‘q)dap owm)-[aaesy

Figure 7.13: Left is migration back to a focus with a constavdter-velocity model. Right
is the same, but with a Gulf of Mexico velocity, i.e. the hylpa@bids of Figure 7.12 migrated

back to focuses. Observe focus broadening with defifiunc-sagre§ER]

When the velocity increases with depth, wider focuses aradat increasing depth. Why
is this? Consider each hyperbola to be made of many shoré plame segments. Migration
moves all the little segments on top of each other. The sleagoof a focus cannot be narrower
than the width of each of the many plane-wave segments tipatsose to make the focus.
The narrowest of these plane-wave segments is at the stgepesf a hyperbola asymptote.
Deeper reflectors (which have later tops) have less steepstes because of the increasing
velocity. Thus deeper reflectors with faster RMS velocitiase wider focuses so the deeper
part of the image is more blurred. A second way to understaoieeased blurring with depth
is from equation (7.12), that the horizontal frequegy= wp = wv~1sind is independent
of depth. The steepest possible angle occurs weew| = 1. Thus, considering all possible
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angles, the largety| is |kx| = |w|/v(2). Larger values of horizontal frequengy| could help
us get narrower focuses, but the deeper we go (faster welweitencounter), the more these
high frequencies are lost because of the evanescent/kphik |w/v(z)|. The limit is where
the ray goes no deeper but bends around and comes back upvthan ever reflecting. Any
ray that does this many times is said to be a surface-trapped.wt cannot sharpen a deep
focus.

7.3.7 Field data migration

Application of subroutingazadj () on page 114 to the Gulf of Mexico data set processed in
earlier chapters yields the result in Figure 7.14.

EXERCISES:

1 Devise a mathematical expression for a plane wave that ismpulse function of time
with a propagation angle of $3rom the verticalz-axis in the plusz direction. Express
the result in the domain of

@ x2)

(b) (v,x,2)
(©) (@.k«2)
(d) (v,p.2
(€) (w.kx k)
() (t.kx,kz)



7.3. PHASE-SHIFT MIGRATION 119

midpoint(km)
0 g 10 11 12 13 14 1o 16

DS I

Phase—shift migration

Figure 7.14: Phase shift migration of Figure 4.7. Presohutir movie to compare to stack
and Kirchhoff migration of Figure 4.6{dwnc-wgphasgER,M]




120 CHAPTER 7. DOWNWARD CONTINUATION



Chapter 8

Dip and offset together

When dip and offset are combined, some serious complicatidee. For many years it was
common industry practice to ignore these complicationstantindle dip and offset sepa-
rately. Thus offset was handled by velocity analysis, nérmaveout and stack (chapter 4).
And dip was handled by zero-offset migration after staclaftbrs 5 and 7). This practice is a
good approximation only when the dips on the section arelsival need to handle large off-

set angles at the same time we handle large dip angles attieetgae we are estimating rock
velocity. It is confusing! Here we see the important stepbaitstrapping yourself towards
both the velocity and the image.

8.1 PRESTACK MIGRATION

Prestack migration creates an image of the earth’s refigctivrectly from prestack data.
It is an alternative to theéxploding reflector’ concept that proved so useful in zero-offset
migration. Inprestack migration, we consider both downgoing and upcoming waves.

A good starting point for discussing prestack migration isetecting point within the
earth. A wave incident on the point from any direction reBegaves in all directions. This
geometry is particularly important because any model ispeposition of such point scat-
terers. The point-scatterer geometry for a point locatdd,a&) is shown in Figure 8.1. The
equation for travel time is the sum of the two travel paths is

tv = \/22+(s—x)2+\/22+(g—x)2 (8.1)

We could model field data with equation (8.1) by copying reitets from any point inX, z)-
space intog,g,t)-space. The adjoint program would form an image stacked a@iVeffsets.
This process would be called prestack migration. The proliere is that the real problem is
estimating velocity. In this chapter we will see that it i¢ satisfactory to use a horizontal layer

IMatt Schwab prepared a draft of the Gardner DMO derivatidnukBRonen gave me the “law of cosines”
proof.

121
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%
——»|S

Figure 8.1: Geometry of a point scgr-
terer. dpmv-pgeometrMNR]

approximation to estimate velocity, and then use equa®oh) {o do migration. Migration
becomes sensitive to velocity when wide angles are involM&dors in the velocity would
spoil whatever benefit could accrue from prestack (insté@bststack) migration.

8.1.1 Cheops’ pyramid

Because of the importance of the point-scatterer model, iWega/ to considerable lengths
to visualize the functional dependence amang, X, s, andg in equation (8.1). This pic-
ture is more difficult—by one dimension—than is the conidisecof the exploding-reflector
geometry.

To begin with, suppose that the first square root in (8.1) rstant because everything in
itis held constant. This leaves the familiar hyperbolagrt)-space, except that a constant has
been added to the time. Suppose instead that the other sgeaie constant. This likewise
leaves a hyperbola irs(t)-space. Ing, g)-space, travel time is a function sfplus a function
of g. | think of this as one coat hanger, which is parallel togfais, being hung from another
coat hanger, which is parallel to tigeaxis.

A view of the traveltime pyramid on thes,(g)-plane or the ¥, h)-plane is shown in Fig-
ure 8.2a. Notice that a cut through the pyramid at langea square, the corners of which have
been smoothed. At very largea constant value dfis the square contoured is, §j)-space,
as in Figure 8.2b. Algebraically, the squareness becomdsr@vor a point reflector near the
surface, sayz — 0. Then (8.1) becomes

vt = [s—X| + |g - X| (8.2)

The center of the square is locatedsag) = (X, X). Taking travel timé to increase downward
from the horizontal plane of(g)-space, the square contour is like a horizontal slice tjinou
the Egyptian pyramid of Cheops. To walk around the pyramal@instant altitude is to walk
around a square. Alternately, the altitude change of atsavaverg (or s) at constans (or g)

is simply a constant plus an absolute-value function.

More interesting and less obvious are the curves on commdpeimt gathers and constant-
offset sections. Recall the definition that the midpointesn the shot and geophoneyis
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Figure 8.2: Left is a picture of the traveltime pyramid of agjan ((8.1)) for fixedx andz.
The darkened lines are constant-offset sections. Rightiess section through the pyramid

for larget (or smallz). (Ottolini) |dpmv-cheop[NR]

Also recall thath is half the horizontal offset from the shot to the geophone.

_ g+s
y = 5 (8.3)
h = 9 > > (8.4)

A traverse ofy at constanh is shown in Figure 8.2. At the highest elevation on the treeer
you are walking along a flat horizontal step like the flat-teginyperboloids of Figure 8.8.
Some erosion to smooth the top and edges of the pyramid givexlal for nonzero reflector
depth.

For rays that are near the vertical, the traveltime curvesaarfrom the hyperbola asymp-
totes. Then the square roots in (8.1) may be expanded in Tegtees, giving a parabola of
revolution. This describes the eroded peak of the pyramid.

8.1.2 Prestack migration ellipse

Equation (8.1) iny,h)-space is

tv = 24—y h2 424y yot P (8.5)

A basic insight into equation (8.1) is to notice that at cansffseth and constant travel time
t the locus of possible reflectors is an ellipse in thgz)-plane centered afy. The reason




124 CHAPTER 8. DIP AND OFFSET TOGETHER

it is anellipse follows from the geometric definition of an ellipse. To drawellipse, place
a nail or tack intas on Figure 8.1 and another inth Connect the tacks by a string that is
exactly long enough to go througii(z). An ellipse going throughyp, z) may be constructed
by sliding a pencil along the string, keeping the stringtigrhe string keeps the total distance
tv constant as is shown in Figure 8.3

Figure 8.3: Prestack migration el-
lipse, the locus of all scatterers with
constant traveltime for source S and
receiver G. dpmv-ellipse:ir[ER,M]

Replacing deptlz in equation (8.5) by the vertical traveltime depth= 2z/v = z/vpar We
get

t = % <\/fz + [(y—Yo) —h]?/vdys + \/72 + [(y_y0)+h]2/vﬁa|f> (50)

8.1.3 Constant offset migration

Considerindh in equation (8.6) to be a constant, enables us to write a stibeofor migrating
constant-offset sections. Subroutinet hyp() on this page is easily prepared from subroutine
ki rchfast() on page 67 by replacing its hyperbola equation with equgB8d).

# Flat topped hyperbol as and constant-offset section mgration

#

subroutine flathyp( adj, add, vel , h, t0,dt,dx, nodl,nt,nx, data)
integer ix,iz,it,ib, adj, add, nt, nx

r eal t, anmp, z,b, vel (nt), h, tO0,dt,dx, nodl (nt,nx),data(nt, nx)
call adjnull( adj, add, nmodl , nt *nx, dat a, nt *nx)
do i b= -nx, nx { b=dx *ib #b m dpt separation y-y0

do iz= 2, nt { z =t0 +dt * (iz-1) # z

t =.5* ( sgrt( z**2 +((b-h)*2/vel (iz))**2) +
sqrt( z**2 +((b+h)*2/vel (iz))**2) )
it =1.5+ (t - t0) / dt
if(it >nt) br eak
amp = (z/t)/ sqgrt(t)
do ix= max0(1, 1-ib), mnO(nx, nx-ib)
if( adj == 0)
data(it,ix+ib)= data(it,ix+ib) + nodl(iz,ix ) * anmp

zero-of fset tine

el se
modl (iz,ix )= nodl (iz,ix ) + data(it,ix+ib) * anp
}
}

return; end

The amplitude in subroutingl at hyp() should be improved when we have time to do so.
Forward and backward responses to impulses of subroutin@yp() are found in Figures 8.4
and 8.5.
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Figure 8.4: Migrating impulses on a
constant-offset section with subrou-
tine fl athyp(). Notice that shallow
impulses (shallow compared ) ap-
pear ellipsoidal while deep ones ap-

pear circular. [ER]

Figure 8.5: Forward modeling from
an earth impulse with subroutine

flathyp(). ' [ER]
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It is not easy to show that equation (8.5) can be cast in tmelatd mathematical form of
an ellipse, namely, a stretched circle. But the result isrgplg one, and an important one for
later analysis. Feel free to skip forward over the followirgification of this ancient wisdom.
To help reduce algebraic verbosity, define a neeqgual to the old one shifted by. Also
make the definitions

tv = 2A (8.7)
« = ZZ 4 (y+h)?
B = Z + (y-hy?
a — B = 4y h
With these definitions, (8.5) becomes
2A = Joa + JB
Square to get a new equation with only one square root.
AN — (a+B) = 2B
Square again to eliminate the square root.
16A* — 8A%(@+B) + (@+B? = 4ap
16 A" — 8A?(@+B) + @—B? = 0
Introduce definitions of andg.
16 A* — 8A%[27% + 2y? + 2h?] + 16y?h? = O
Bring y andz to the right.
A4 . A2 h2 — A2(22 + y2) . y2h2
A2(A2 _ h2) — A222 + (A2 _ h2)y2
2
A2 — z = + y2 (88)
1 - N
A2

Finally, recalling all earlier definitions and replacigdpy y — yo, we obtain the canonical form
of an ellipse with semi-major axi& and semi-minor axi8:

U2 72
= Yo A2y°) +5 o= 1, (8.9)
where
t
A = “7 (8.10)

B = JA-_n (8.11)

Fixing t, equation (8.9) is the equation for a circle with a stretchexkis. The above
algebra confirms that the “string and tack” definition of elfipse matches the “stretched
circle” definition. Anellipsein earth model space corresponds to an impulse on a constant-
offset section.
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8.2 INTRODUCTION TO DIP

We can consider a data space to be a superposition of poidtthan analyze the point re-

sponse, or we can consider data space or model space to berpasifion of planes and then

do an analysis of planes. Analysis of points is often eakgan planes, but planes, particularly
local planes, are more like observational data and eartletsod

The simplest environment for reflection data is a single zworial reflection interface,
which is shown in Figure 8.6. As expected, the zero-offsetise mimics the earth model.

Model Common-Midpoint Gather Constant-Offset Section
(horizontal layer) at Yo for h g
o h
R —
-&
Vi '
V2
t t

Figure 8.6: Simplest earth modeldpmv-simple [NR]

The common-midpoint gather is a hyperbola whose asymps#weestraight lines with slopes
of the inverse of the velocity;. The most basic data processing is calbechmon-depth-
point stack or CDP stack In it, all the traces on the common-midpoint (CMP) gather ar
time shifted into alignment and then added together. Theltresmics a zero-offset trace.
The collection of all such traces is called t&8®P-stacked section. In practice the CDP-
stacked section is often interpreted and migrated as thduwgére a zero-offset section. In
this chapter we will learn to avoid this popular, oversirfipi assumption.

The next simplest environment is to have a planar reflectiistoriented vertically rather
than horizontally. This might not seem typical, but the esiséfeature (that the rays run
horizontally) really is common in practice (see for examipigure 8.9.) Also, the effect of
dip, while generally complicated, becomes particularmp@e in the extreme case. If you
wish to avoid thinking of wave propagation along the airtleanterface you can take the
reflector to be inclined a slight angle from the vertical,rafigure 8.7.

Figure 8.7 shows that the travel time does not change as tbet changes. It may seem
paradoxical that the travel time does not increase as thteasitbgeophone get further apart.
The key to the paradox is that midpoint is held constant, hotmoint. As offset increases,
the shot gets further from the reflector while the geophong gjeser. Time lost on one path
is gained on the other.
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Model Common-Midpoint Gather Zero-Offset Section
(almost vertical contact) at Yo
R s - :
@ \
\
Vl N
V2
- '
~5° t t

Figure 8.7: Near-vertical reflector, a gather, and a sectidpmv-vertlay [NR]

A planar reflector may have any dip between horizontal antlcatr Then the common-
midpoint gather lies between the common-midpoint gath&igire 8.6 and that of Figure 8.7.
The zero-offset section in Figure 8.7 is a straight line,chliurns out to be the asymptote of
a family of hyperbolas. The slope of the asymptote is therseef the velocity;.

It is interesting to notice that at small dips, informatidyoat the earth velocity is essen-
tially carried on the offset axis whereas at large dips, #leaity information is essentially on
the midpoint axis.

8.2.1 The response of two points

Another simple geometry is a reflecting point within the ka& wave incident on the point
from any direction reflects waves in all directions. This metry is particularly important
because any model is a superposition of such point scatdfegure 8.8 shows an example.
The curves in Figure 8.8 include flat spots for the same resawat some of the curves in
Figures 8.6 and 8.7 were straight lines.

8.2.2 The dipping bed

While the traveltime curves resulting from a dipping bed siraple, they are not simple to
derive. Before the derivation, the result will be stated: ddoed dipping at angle from the
horizontal, the traveltime curve is

t2v2 =  4(y—vyo)?sirfa + 4h?cow (8.12)

Fora = 45°, equation (8.12) is the familiar Pythagoras cone—it is ljstt? = 7% + x2. For
other values of, the equation is still a cone, but a less familiar one becatiiee stretched
axes.
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Model Common-Midpoint Gather Constant-Offset Section
(two point scatterers) at Yo Jor ho
h ® y
Yo
—@
o
° /
t t

Figure 8.8: Response of two point scatterers. Note the ftztlsspdpmv-twopoin* [NR]

For a common-midpoint gather git= y; in (h,t)-space, equation (8.12) looks liké =
t2+ 4h2/”§pparem Thus the common-midpoint gather containseaacthyperbola, regardless
of the earth dip angle. The effect of dip is to change the asymptote of the hyperliblzs
changing the apparent velocity. The result has great scgmiée in applied work and is known
as Levin’s dip correction [1971]:

v Vearth
apparent =
Cos()

(See also Slotnick [1959]). In summary, dip increases thekatg velocity.

(8.13)

Figure 8.10 depicts some rays from a common-midpoint gatiNatice that each ray
strikes the dipping bed at a different place. So a commdgtpoint gather is not a common-
depth-pointgather. To realize why the reflection point moves on the reftececall the basic
geometrical fact that an angle bisector in a triangle gdlyadtaesn't bisect the opposite side.
The reflection point movesp dip with increasing offset.

Finally, equation (8.12) will be proved. Figure 8.11 shotwvs basic geometry along with
an “image” source on another reflector of twice the dip. Fowvenience, the bed intercepts the
surface atp = 0. The length of the ling'g in Figure 8.11 is determined by the trigonometric
Law of Cosines to be

t>v2 = s°+4 g% — 2sgcos 2

t2v> = (y—h)?+ (y+h)> — 2(y — h)(y + h) cos 2
t2v2 = 2(y*+h? — 2(y>"h?(cofa — sirfa)

t>v2 =  4y®sifa + 4h?cofa

which is equation (8.12).

Another facet of equation (8.12) is that it describes thestamt-offset section. Surpris-
ingly, the travel time of a dipping planar bed becomes cuatewnzero offset—it too becomes
hyperbolic.
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Figure 8.9: Undocumented data from a recruitment brochilines data may be assumed to
be of textbook quality. The speed of sound in water is aboQ0I8/sec. Identify the events
at A, B, and C. Is this a common-shotpoint gather or a commaipomnt gather? (Shell Oil

Company)|dpmv-shel| [NR]
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Figure 8.10: Rays from a common-

midpoint gather. dpmv-dipra

[NR]

Figure 8.11: Travel time from image
source as’ to g may be expressed by

the law of cosines. |dpmv-lawcos

[NR]

8.2.3 Randomly dipping layers

On a horizontally layered earth, a common shotpoint gathekd like a common midpoint
gather. For an earth model of random dipping planes the twdskof gathers have quite
different traveltime curves as we see in Figure 8.12.

The common-shot gather is more easily understood. Alth@ugéflector is dipping, a
spherical wave incident remains a spherical wave afteratgle The center of the reflected
wave sphere is called the image point. The traveltime eguas again a cone centered at
the image point. The traveltime curves are simply hypetdpped above the image point
having the usual asymptotic slope. The new feature intreddxy dip is that the hyperbola
is laterally shifted which implies arrivals before the fstpossible straight-line arrivals at
vt = |g|. Such arrivals cannot happen. These hyperbolas must beatechwherat = |g].
This discontinuity has the physical meaning of a dipping biihg the surface at geophone
location|g| = vt. Beyond the truncation, either the shot or the receiver loag ¢peyond the
intersection. Eventually both are beyond. When either y®bd the intersection, there are no
reflections.

On the common-midpoint gather we see hyperbolas all topatreero offset, but with
asymptotic velocities higher (by the Levin cosine of dipgniithe earth velocity. Hyperbolas
truncate, now ath| = tv/2, again where a dipping bed hits the surface at a geophone.

On a CMP gather, some hyperbolas may seem high velocityt isuthie dip, not the earth
velocity itself that causes it. Imagine Figure 8.12 witHajlers at 90 dip (abandon curves and
keep straight lines). Such dip is like the backscatteredmptooll seen on the common-shot
gather of Figure 8.9. The backscattered groundroll becari#éat top” on the CMP gather in
Figure 8.12.
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Common Shot Common Midpoint

Figure 8.12: Seismic arrival times on an earth of randomidgpplanes. Leftis for CSP. Right

is for CMP, [ER]

Such strong horizontal events near zero offset will matghvatocity, particularly higher
velocities such as primaries. Unfortunately such nois@tswhus make a strong contribution
to a CMP stack. Let us see how these flat-tops in offset creatdiagonal streaks you see in
midpoint in Figure 8.13.

Consider 360 rocks of random sizes scattered in an exat® af@ km diameter on the
ocean floor. The rocks are distributed along one degreevalterOur survey ship sails from
south to north towing a streamer across the exact centeedfittle, coincidentally crossing
directly over rock number 180 and number 0. Let us considecttimmon midpoint gather
corresponding to the midpoint in the center of the circlecko0 and 180 produce flat-top
hyperbolas. The top is flat for @ |h| < 1 km. Rocks 90 and 270 are 90ut of the plane
of the survey. Rays to those rocks propagate entirely witienwater layer. Since this is a
homogeneous media, the travel time expression of thess iseksimple hyperbola of water
velocity. Now our CMP gather at the circle center has a “flat tnd a simple hyperbola both
going through zero offset at tinte= 2/v (diameter 2 km, water velocity). Both curves have
the same water velocity asymptote and of course the curegsiagent at zero offset.

Now consider all the other rocks. They give curves inbetwbersimple water hyperbola
and the flat top. Near zero offset, these curves range in appaelocity between water
velocity and infinity. One of these curves will have an appakelocity that matches that of
sediment velocity. This rock (and all those near the sammathi) will have velocities that
are near the sediment velocity. This noise will stack veryl.wehe CDP stack at sediment
velocity will stack in a lot of water borne noise. This noisepropagating somewhat off the
survey line but not very far off it.

Now let us think about the appearance of the CDP stack. Wedttention from offset
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Figure 8.13: CDP stack with water noise from the ShelikoatiAlaska. (by permission
from Geophysics, amer et al.[1983]) dpmv-shelikof [NR]

to midpoint. The easiest way to imagine the CDP stack is t@inethe zero-offset section.
Every rock has a water velocity asymptote. These asympaogesvident on the CDP stack in
Figure 8.13. This result was first recognized by Ken Larner.

Thus, backscattered low-velocity noises have a way of smpwp on higher-velocity
stacked data. There are two approaches to suppressingothés 1i1) mute the inner traces,
and as we will see, (2) dip moveout processing.

8.3 TROUBLE WITH DIPPING REFLECTORS

The “standard process” is NMO, stack, and zero-offset nignalts major shortcoming is the
failure of NMO and stack to produce a section that resemblesrtie zero-offset section. In
chapter 4 we derived the NMO equations for a stratified ebrttthen applied them to seismic
field data that was not really stratified. That this works &isa little surprising, but it turns
out that NMO hyperbolas apply to dipping reflectors as wel@szontal ones. When people
try to put this result into practice, however, they run inteasty conflict: reflectors generally
require adip-dependenNMO velocity in order to produce a “good” stack. Which NMO
velocity are we to apply when a dipping event is near (or evesses) a horizontal event?
Using conventional NMO/stack techniques generally fokedscity analysts to choose which
events they wish to preserve on the stack. This inabilityiraukaneously produce a good
stack for events witlll dips is a serious shortcoming, which we now wish to undedstaore
guantitatively.
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8.3.1 Gulf of Mexico example

Recall the Gulf of Mexico dataset presented in chapter 4. M@deasonably careful job of
NMO velocity analysis in order to produce the stack shownigufe 4.7. But is this the best
possible stack? To begin to answer this question, Figu# ghbws some constant-velocity
stacks of this dataset done with subroutiesi mp() on page 53. This figure clearly shows
that there are some very steeply-dipping reflections thataissing in Figure 4.7. These
steep reflections appear only when the NMO velocity is qugh bompared with the velocity
that does a good job on the horizontal reflectors. This phemom is consistent with the
predictions of equation (8.12), which says that dippingéseequire digherNMO velocity
than nearby horizontal events.

midpoint(km)
8 9 10 11 12 13 14 15 16
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Stack at faster velocity
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Figure 8.14: Stacks of Gulf of Mexico data with two differezsanstant NMO velocities.
Press button to seeraovie in which each frame is a stack with a different constant veloc
ity. |dpmv-cvstack§[ER,M]

Another way of seeing the same conflict in the data is to loak\alocity-analysis panel
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at a single common-midpoint location such as the panel showigure 8.15 made by sub-
routinevel si np() on page 53. In this figure it is easy to see that the velocityclvis good
for the dipping event at 1.5 sec is too high for the horizoatednts in its vicinity.

slowness(sec/km) slowness(sec/km)

0.36 0.4 0.44 0.48 0.52 0.56 0.36 0.4 0.44 0.48 0.52 0.56

Figure 8.15: Velocity analysis panel
of one of the panels in Figure 8.14
before (left) and after (right) DMO.
Notice two velocities at the same

time before DMO.

[ER,M]

Slowness scan Slowness after DMO

8.4 SHERWOOD'’S DEVILISH

The migration process should be thought of as being inteewaevith the velocity estimation
process. J.W.CSherwood[1976] indicated how the two processes, migration and vigloc
estimation, should be interwoven. The moveout correctimukl be considered in two parts,
one depending on offset, the NMO, and the other dependingponTdhis latter process was
conceptually new. Sherwood described the process as a kiiiteong, but he did not pro-
vide implementation details. He called his procBevilish,an acronym for “dipping-event
velocity inequalities licked.” The process was later déssdt more functionally byyilmaz
asprestack partial migration, and now the process is usually calldigp moveout (DMO)
although some call it MZO, migration to zero offset. We wilistisee Sherwood’s results,
then Rocca’s conceptual model of tbdMO process, and finally two conceptually distinct,
guantitative specifications of the process.

Figure 8.16 contains a panel from a stacked section. Thel pasbown several times;
each time the stacking velocity is different. It should béedlathat at the low velocities, the
horizontal events dominate, whereas at the high velocitiessteeply dipping events domi-
nate. After theDevilishcorrection was applied, the data was restacked as befayereR8.17
shows that the stacking velocity no longer depends on theldifs means that aftéevilish,
the velocity may be determined without regard to dip. In otherds, events with all dips
contribute to the same consistent velocity rather than dgghng event predicting a different
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Figure 8.16: Conventional stacks with varying velocity. is{dbuted by Digicon, Inc.)

dpmv-digicon [NR]
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Figure 8.17: Devilish stacks with varying velocity.  (distributed by Digicon, lhc

dpmv-devlish[NR]
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velocity. So theDevilishprocess should provide better velocities for data with ectirily dips.
And we can expect a better final stack as well.

8.5 ROCCA'S SMEAR OPERATOR

FabioRoccadeveloped a clear conceptual model for Sherwood’s dip cboms. Start with
an impulse on a common offset section, and migrate it geetiigses like in Figure 8.4.
We did this with subroutinel at hyp() on page 124 using some constant-offseAlthough
the result is an ellipsoidal curve, think of it as a row of maguints along an ellipsoidal
curve. Then diffract the image thus turning each of the mamgtp into a hyperbola. We do
this with the return path of the same subroutimat hyp(), however the path back is taken
with h=0. The result is shown in Figure 8.18. To enhance the appearinthe figure, |
injected an intermediate step of converting the ellipseid/e into a trajectory of dots on the
ellipse. Notice that the hyperbola tops are not on the stesngar function that results from
the superposition.

The strong smear function that you see in Figure 8.18 is Ro&ddO +NMO operator,
the operator that converts a point on a constant-offsetoset a zero-offset section. The
important feature of this operator is that the bulk of thergpés in a much narrower region
than the big ellipse of migration. The narrowness of the Ramgerator is important since
it means that energies will not move far, so the operator moll have a drastic effect and
be unduly affected by remote data. (Being a small operasar mlakes it cheaper to apply).
The little signals you see away from the central burst in Fegi18 result mainly from my
modulating the ellipse curve into a sequence of dots. Howewases from sampling and
nearest-neighbor interpolation also yield a figure muaoh kigure 8.18. This warrants a more
careful theoretical study to see how to represent the Rogeeator directly (rather than as a
sequence of two nearly opposite operators).

km
(;O,S —-0.6 —-0.4 —-0.2 o] 0.2 0.4 0.6 0.8
Figure 8.18: Rocca’s prestack partial-
migration operator is a superposition
of hyperbolas, each with its top on an ?

ellipse. [ER]

€0 20

70

Rocca

To get a sharper, more theoretical view of the Rocca operktgure 8.19 shows line
drawings of the curves in a Rocca construction. It happems$we will later show, that the
Rocca operator lies along an ellipse that passes thrdtlgltand hence is independent of
velocity!) Curiously, we see something we could not see gufé 8.18, that the Rocca curve
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ends part way up the ellipse and it does not reach the surfilce.place where the Rocca
operator ends and the velocity independent ellipse coasimg; however, velocity dependent
as we will see. The Rocca operator is along the curve of osonlan Figure 8.19, i.e., the
smile-shaped curve where the hyperbolas reinforce onéanot
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Figure 8.19: Rocca’s smile. (Ronefjpmv-rocca2[NR]

8.5.1 Push and pull

Migration and diffraction operators can be conceived amgiammed in two different ways.
Lett denote data anzldenote the depth image. We have

= Cpht spray or push an ellipse into the output (8.14)
= HuZ spray or push a flattened hyperbola into the output (8.15)

~! NI

whereh is half the shot-geophone offset. The adjoints are

= CyZ  sumor pull a semiCircle from the input (8.16)
= H/hf sum or pull a flattened Hyperbola from the input (8.17)

Nl )

In practice we can choose either ©f~ H’. A natural question is which is more correct or
better. The question of “more correct” applies to modelind & best answered by theoreti-
cians (who will find more than simply a hyperbola; they willdiits waveform including its
amplitude and phase as a function of frequency). The quesfitbetter” is something else.
An important practical issue is that the transformationuth@ot leave miscellaneous holes in
the output. It is typically desirable to write programs tloatp over all positions in theutput
space, “pulling” in whatever inputs are required. It is Ugukess desirable to loop over all
positions in thenput space, “pushing” or “spraying” each input value to the appaie loca-
tion in the output space. Programs that push the input dakeetoutput space might leave the
output too sparsely distributed. Also, because of gridding output data might be irregularly
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positioned. Thus, to produce smooth outputs, we usyméfer the summation operatoks’
for migration andC’ for diffraction modeling. Since one could always force sitmooutputs
by lowpass filtering, what we really seek is the highest fadesiesolution.

Given a nonzero-offset section, we seek to convert it to a-péiset section. Rocca’s
concept is to first migrate the constant offset data with &pselid push operato€y and
then take each point on the ellipsoid and diffract it out teeozoffset hyperbola with a push
operatoHp. The product of push operatds= HyCp, is known as Rocca’s smile. This smile
operator includes both normal moveout and dip moveout. (Ydcsay that dip moveout is
defined by Rocca’s smile after restoring the normal movgout.

Because of the approximatidth~ C’, we have four different ways to express the Rocca
smile:
R = HCh ~ HoH, ~ CgHi ~ CiCn (8.18)

HoHj, says sum over a flat-top and then spray a regular hyperbola.

The operatorCyHy,, having two pull operators should have smoothest outputge§e
Fomel suggests an interesting illustration of it: Its adlj@$ two push operator®’ = H,Co.
R’ takes us from zero offset to nonzero offset first by pushingta goint to a semicircle and
then by pushing points on the semicircle to flat-topped hyplass. As before, to make the
hyperbolas more distinct, | broke the circle into dots altimg) circle and show the result in
Figure 8.20. The whole truth is a little more complicatedbi®utinef | at hyp() on page 124
implementsH andH’. Since | had no subroutine f@&, figures 8.18 and 8.20 were actually
made with onlyH andH’. We discuss th€;,Cy representation dR in the next section.
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Figure 8.20: The adjoint of Rocca’s |
smile is a superposition of flattened .,
hyperbolas, each with its top on a cir- ~
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8.5.2 Dip moveout withv(2)

It is worth noticing that the concepts in this section are lmited to constant velocity but
apply as welltaw(z). However, the circle operat@ presents some difficulties. Let us see why.
Starting from the Dix moveout approximatiorf,= 2+ x2/v(t)?, we can directly solve for
t(z,x) but findingz (t, x) is an iterative process at best. Even worse, at wide offsgperbolas
cross one another which means thét x) is multivalued. The spray (push) operat@andH
loop over inputs and compute the location of their outputaist = Cj, t requires we compute
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7 fromt so it is one of the troublesome cases. Likewise, the sum)(pp#ratorsC’ andH’

loop over outputs. Thus= C'j, Z causes us the same trouble. In both cases, the circle operato
turns out to be the troublesome one. As a consequence, naasicat work is done with the
hyperbola operator.

A summary of the meaning of the Rocca smile and its adjoirdusifl in Figures 8.21 and
8.22, which were computed using subroutimet hyp() on page 124.

Data (h=0.=2Z5 lcrr1) Data (lh=—0.0 Ilrri)d

Figure 8.21: Impulses on a zero-offset section migrate micecles. The corresponding

constant-offset section contains the adjoint of the Roagiées |dpmv-yaleiZ [ER]

Data (h=0.=2Z5 lcrr1) Datass (la=—0O lcrra)d Irmass

Figure 8.22: Impulses on a constant-offset section becdlipses in depth and Rocca smiles

on the zero-offset sectionpdpmv-yaleil [ER]

8.6 GARDNER'’S SMEAR OPERATOR

A task, even in constant velocity media, is to find analytipressions for the travel time in
the Rocca operator. This we do now.

The Rocca operatdR = C,Cy, says to spray out an ellipse and then sum over a circle.
This approach, associated with Ge@®gardner, says that we are interested in all circles that
are inside and tangent to an ellipse, since only the oneate@ngent will have a constructive
interference.

The Gardner formulation answers this question: Given alsingnzero offset impulse,
which events on the zero-offset section will result in thensamigrated subsurface picture?



8.6. GARDNER’S SMEAR OPERATOR 141

Since we know the migration response of a zero and nonzesetafhpulses (circle and el-
lipse) we can rephrase this question: Given an ellipse spording to a nonzero offset im-
pulse, what are the circles tangent to it that have theirersrdt the earth’s surface? These
circles if superposed will yield the ellipse. Furthermagach of these circles corresponds to
an impulse on the zero-offset section. The set of these sepuh the zero offset section is
theDMO +NMO impulse response for a given nonzero offset event.

M=(0,0) S=(-h,0) C=(-b,0)

S C M G surface

ellipse

Figure 8.23: The nonzero offset migration impulse respassn ellipse. This ellipse can
be mapped as a superposition of tangential circles withecgemtiong the survey line. These

circles correspond to zero offset migration impulse respsen dpmv-ell [NR]

8.6.1 Restatement of ellipse equations

Recall equation (8.9) for an ellipse centered at the origin.

y2 2
0 = ﬁ—l—@—l. (8.19)

where
A = vnarth, (8.20)
B2 = A?-_h2 (8.21)

The ray goes from the shot at one focus of the ellipse to angevbre the ellipse, and then to
the receiver in traveltimg,. The equation for a circle of radiuR = tovnha With center on the
surface at the source-receiver pair coordinateb is

R? = (y—b)?+7, (8.22)
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where
R = tovnhanr (8.23)

To get the circle and ellipse tangent to each other, thepredanust match. Implicit differen-
tiation of equation (8.19) and (8.22) with respecitgields:

_ oy, zdz
0 = A2+BZ dy (8.24)
dz
0 = —b — 8.25
y-D)+2z g (8.25)
Eliminatingdz/dy from equations (8.24) and (8.25) yields:
b
y = 57 (8.26)
vy

At the point of tangency the circle and the ellipse shoulahcinie. Thus we need to combine
equations to eliminat& andz. We eliminatez from equation (8.19) and (8.22) to get an
equation only dependent on tlyevariable. Thisy variable can be eliminated by inserting

equation (8.26).
A2 — B2 —D?
2 2

Substituting the definitions (8.20), (8.21), (8.23) of wais parameter gives the relation
between zero-offset traveltinigand nonzero travelting:

h? b?
2 = (t2- —> <1— —> . (8.28)
( vr21alf h?

As with the Rocca operator, equation (8.28) includes bgtmibveoutDMO and NMO.

8.7 DMO IN THE PROCESSING FLOW

Instead of implementing equation (8.28) in one step we céhismto two steps. The first
step converts raw data at timeto NMOed data at timé,.

h2
2
n - th_

5 (8.29)
Uhalf
The second step is tHe2MO step which like Kirchhoff migration itself is a convolutiaver
the x-axis (orb-axis) with
b2

2 = t <1— ﬁ> (8.30)
and it converts time, to timetg. Substituting (8.29) into (8.30) leads back to (8.28). As
equation (8.30) clearly states, tBMO step itself is essentially velocity independent, but the
NMO step naturally is not. Now the program. Backsolving eauna(8.30) fort,, gives

t2
2 0
t = e (8.31)
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Like subroutinef | at hyp() on page 124, oubMO subroutinednoki rch() on this page is
based on subroutine rchf ast () on page 67. It is just the same, except wherne:hf ast ()
has a hyperbola we put equation (8.31). In the program, thablaty is calledz and the
variablet, is calledt. Note, that the velocityel hal f does exclusively occur in the break
condition (which we have failed to derive, but which is whére circle and ellipse touch at
z=0).

subroutine dnokirch( adj, add, velhalf, h, t0,dt,dx, nodl,nt,nx, data)

integer ix,iz,it,ib, adj, add, nt, nx
real amp,t, z, b, vel hal f, h, tO,dt,dx, nodl (nt,nx),data(nt, nx)
call adjnull( adj, add, nodl , nt *nx, dat a, nt *nx)
if( h==0) call erexit(’h=0")
do ib= -nx, nx { b =dx * ib # b = m dpt separation
do iz= 2, nt { z =t0 +dt * (iz-1) # z = zero-offset time
if( h**2 <= b**2 ) next

t=sqrt( z**2 / (1-b**2/h**2) )

amp= sqrt(t) * dx/h

if( velhalf*abs(b) * t*t > h**2*z) break
it =1.5+ (t - t0) / dt

if( it >nt) br eak
do ix= max0(1, 1-ib), mnO(nx, nx-ib)
if( adj == 0)

data(it,ix+ib) = data(it,ix+ib) + modl (iz,ix ) * anmp

el se

modl (iz,ix ) = nodli(iz,ix ) + data(it,ix+b) * anp

}

return; end

Figures 8.24 and 8.25 were made with subroutigki r ch() on this page. Notice the big
noise reduction over Figure 8.18.
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8.7.1 Residual NMO

Unfortunately, the theory above shows tia¥O should be performedfter NMO. DMO

is a convolutional operator, and significantly more cogtignt NMO. This is an annoyance
because it would be much nicer if it could be done once andlfcairad not need to be redone
for each new NMO velocity.

Much practical work is done with using constant velocity fllee DMO process. This is
roughly valid since DMO, unlike NMO, does little to the datatke error of using the wrong
velocity is much less.

It is not easy to find a theoretical impulse response for theCDdperator inv(z) media,
but you can easily compute the impulse responsg(z by usingR = HoH}, from equation
(8.18).

8.7.2 Results of our DMO program

We now return to the field data from the Gulf of Mexico, which kagve processed earlier in
this chapter and in chapter 4.
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Figure 8.26: Stack after the dip-moveout correction. Campfas result with Figure 4.7. This

one has fault plane reflections to the right of the fau\ldpmv-wgdmostl)f[ER,M]




146 CHAPTER 8. DIP AND OFFSET TOGETHER

midpoint(km)
0 Y 0o 11 12 13 14 15 16

Migrated DMO Stack

Figure 8.27: Kirchhoff migration of the previous figure. Ndwe fault plane reflections jump

to the fault. |dpmv-wgdmomig[ER,M]




Chapter 9

Finite-difference migration

This chapter is a condensation of wave extrapolation andefidifference basics from IEI
which is now out of print. On the good side, this new orgamrais more compact and
several errors have been corrected. On the bad side, tovalip on many many interesting
details you will need to find a copy of IEI (http://sepwwwidted.edu/sep/prof/).

In chapter 7 we learned how to extrapolate wavefields downmtimt earth. The process
proceeded simply, since it is just a multiplication in theguency domain by exi{,(w, kx)Z].
In this chapter instead of multiplying a wavefield by a fuoatiof ks to downward continue
waves, we will convolve them along thxeaxis with a small filter that represents a differential
equation. On space axes, a concern is the seismic veladjth lateral velocity variation,
sayv(x), then the operation of extrapolating wavefields upward@mwinward can no longer
be expressed as a product in thedomain. (Wave-extrapolation procedures in the spatial
frequency domain are no longer multiplication, but contiol) The alternative we choose
here is to go to finite differences which are convolution ia physicalk domain. This is what
the wave equation itself does.

9.1 THE PARABOLIC EQUATION

Here we derive the most basic migration equation via theedgspn relation, equation (7.11).
Recall this equation basically says os /1 —sir?é.

2K2
v2ke

1_w2

kz ==

- (9.1)
v

The dispersion relation above is the foundation for dowveantinuing wavefields by Fourier
methods in chapter 7. Recall that nature extrapolates forvwatime fromt = O whereas a

geophysicist extrapolates information in depth froe 0. We get ideas for our task, and then
we hope to show that our ideas are consistent with naturepd@apve substitutik, = 9/0z

147
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into equation (9.1), multiply by, and interpret velocity as depth variable.

oP i v(2)?k?2

9z (@ w2

(9.2)

Since the above steps are unorthodox, we need to enquire dieauvalidity. Suppose that
equation (9.2) were valid. Then we could restrict it to canstvelocity and take a trial solu-
tion P = Pyexp(—ik,z) and we would immediately have equation (9.1). Why do weebeli
the introduction ofv(z) in equation (9.2) has any validity? We can think about thegehshift
migration method in chapter 7. It handlefz) by having the earth velocity being a staircase
function of depth. Inside a layer we had the solution to eigug®.2). To cross a layer bound-
ary, we simply asserted that the wavefield at the bottom oflayer would be the same as
the wavefield at the top of the next which is also the solutmaduation (9.2). (Lehz— 0

be the transition from one layer to the next. TheR = 0 sincedP/dz is finite.) Although
equation (9.2) is consistent with chapter 7, it is an appnation of limited validity. It as-
sumes there is no reflection at a layer boundary. Reflectiatdrahange part of a downgoing
wave to an upcoming wave and the wave that continued downwauit have reduced am-
plitude because of lost energy. Thus, by our strong desidotmward continue wavefields
(extrapolate inz) whereas nature extrapolatestinwe have chosen to ignore reflection and
transmission coefficients. Perhaps we can recover thermdwtve have bigger fish to fry.
We want to be able to handi€x, z), lateral velocity variation. This requires us to get rid of
the square root in equation (9.2). Make a power series fordtdrop higher terms.

P o (1 - v(z)2k3> P4 ... (9.3)

9z v(2) 202

The first dropped term is std whered is the dip angle of a wavefront. The dropped terms in-
crease slowly with angle, but they do increase, and droppie will limit the range of angles
that we can handle with this equation. This is a bitter pracpdy for the benefit of handling
v(X,z), and we really will return to patch it up (unlike the transsion coefficient problem).
There are many minus signs cropping up, so | give you anotipgaten to straighten them

out. X
P [ 2k
& o _ vaka) p (9.4)
0z v(2) —iw?2
Now we are prepared to leap to our final result, an equatioddamward continuing waves
in the presence of depth atateral velocity variation v(x,z). Substitutedx = —k2 into

equation (9.4) and revise interpretationfbfrom P(w, Ky, z) to P(w, X, 2).

P i w v(X,2) 9°P
— = P 4+ 2 9.5
0z v(X,2) + —iw2 9x? (9:5)

As with v(z), there is aloss of lateral transmission and reflectionfooehts. We plan to forget
this minor problem. It is the price of being a data handletaad of a modeler. Equation (9.5)
is the basis for our first program and examples.
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9.2 SPLITTING AND SEPARATION

Two processesA and B, which ordinarily act simultaneously, may or may not be liota-
nected. The case where they are independent is dalleseparation. In this case it is often
useful, for thought and for computation, to imagine proc&sgoing to completion before
processB is begun. Where the processes are interconnected it idgpmssiallowA to run for
a short while, then switch tB, and continue in alternation. This alternation approadalied
splitting.

9.2.1 The heat-flow equation

We wish to solve equation (9.5) by a method involvisiglitting. Since equation (9.5) is
an unfamiliar one, we turn to thieeat-flow equationwhich besides being familiar, has no
complex numbers. A two-sentence derivation of beat-flow equationfollows. (1) The
heat flowHy in the x-direction equals the negative of the gradier#t/dx of temperaturel
times the heat conductivity. (2) The decrease of temperatur@T /dt is proportional to the
divergence of the heat flowHy/dx divided by the heat storage capadiyof the material.
Combining these, extending from one dimension to two, @kirconstant anedC = 1, gives

the equation
aT 32 92
— - | T 9.6

ot (0 a2 T O ayZ) (9:6)

9.2.2 Splitting

The splitting method for numerically solving thieeat-flow equationis to replace the two-
dimensional heat-flow equation by two one-dimensional 8gns, each of which is used on
alternate time steps:

aT 32T

aT 3T

— = 20— Il 0.
- oG @ 9.8)

In equation (9.7) the heat conductivity has been doubled for flow in thedirection and
zeroed for flow in they-direction. The reverse applies in equation (9.8). At oddmeants in
time heat flows according to (9.7) and at even moments in tirflews according to (9.8).
This solution by alternation between (9.7) and (9.8) canrbequl mathematically to converge
to the solution to (9.6) with errors of the order &f. Hence the error goes to zero At goes
to zero.
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9.2.3 Full separation

Splitting can turn out to be much more accurate than mighiragined. In many cases there
is no loss of accuracy. Then the method can be taken to an extrenite [Think about a
radical approach to equations (9.7) and (9.8) in whichemdtof alternating back and forth
between them at alternate time steps, what is done is to nf@réhthrough all time steps.
Then this intermediate result is used as an initial conlifit (9.8), which is marched through
all time steps to produce a final result. It might seem surggighat this radical method can
produce the correct solution to equation (9.6). Bui ifs a constant function af andy, it
does. The process is depicted in Figure 9.1 for an impulsiNgli disturbance. A differen-

Figure 9.1: Temperature distribution in the ¥)-plane beginning from a delta function (left).
After heat is allowed to flow in th&-direction but not in the/-direction the heat is located in
a “wall” (center). Finally allowing heat to flow for the sammaunt of time in they-direction
but not thex-direction gives the same symmetrical Gaussian resulttbatd have been found
if the heat had moved ir- andy-directions simultaneously (rightj.fdm-temperaturHCR]

tial equation like (9.6) is said to beilly separable when the correct solution is obtainable
by the radical method. It should not be too surprising fodtseparation works wheno is

a constant, because then Fourier transformation may be asddhe two-dimensional so-
lution expf-o (ki + k)t] equals the succession of one-dimensional solutions-exfgt)
exp(—o k§t). It turns out, and will later be shown, that the conditioguieed for applicability
of full separation is thate 92/3x? should commute witlr 3%/9y?, that is, the order of differ-
entiation should be irrelevant. Technically there is alb@andary-condition requirement, but
it creates no difficulty when the disturbance dies out befeaehing a boundary.
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There are circumstances which dictate a middle road betwglgting andfull separa-
tion, for example ifo were a slowly variable function of or y. Then you might find that
althougho 92/9x? does not strictly commute with 32/3y?, it comes close enough that a
number of time steps may be made with (9.7) before you tresespite data and switch over
to (9.8). Circumstances like this one but with more geopfalsnterest arise with the wave-
extrapolation equation that is considered next.

9.2.4 Splitting the parabolic equation

In discussing and solving thgarabolic wave equationit is convenient to rearrange it to
recognize the role of an averaged stratified medium of vgladiv(z) and departures from it.

P . 1 . 1 1 v(X,2) 92
— = iw|=—)P+i —— )P — P 9.9
2z @ (v(z)) Tl (v(x,z) v(Z)) + (—iw2 8x2> ©-9)
= AP + BP + CP
= shift + thin lens + diffraction

The shift termin (9.9) commutes with the thiens term, that is,AB P = B AP. the shift term
also commutes with the diffraction term becaus€ P = C AP. But the thin-lens term and
the diffraction term do not commute with one another becéBse— C B)P £ 0, because

d? 1 > 1 dv(x,z)i]

_ZW v(X,2) v(x,22 dx 9x

0 # (BC—-CBP = u(x,2) [(
(9.10)

Mathematicians look at the problem this way: Consider amgdfiwave propagation angle
so vky/w is a constant. Now let frequeney (and henceky) tend together to infinity. The
terms inBC P andC B P grow in proportion to the second power of frequency, whetease
in (BC — CB)P grow as lower powers. There is however, a catch. The mafeniglerties
have a “wavelength” too. We can think af/dx)/v as a spatial wavenumber for the material
just asky is a spatial wavenumber for the wave. If the material costarstep function
change in its properties, that is an infinite spatial freqygdv,/dx)/v for the material. Then
the BC — CB)P terms dominate near the place where one material change®toea If
we drop the BC — CB)P terms, we’ll get the transmission coefficient incorrecthaligh
everything would be quite fine everywhere else except at tuadary.

A question is, to what degree do the terms commute? The proisl@ust that of focusing
a slide projector. Adjusting the focus knob amounts to réjosng the thin-lens term in
comparison to the free-space diffraction term. There is allsrange of knob positions over
which no one can notice any difference, and a larger rangevaivieh the people in the back
row are not disturbed by misfocus. Much geophysical datagssing amounts to downward
extrapolation of data. Thiateral velocity variation occurring in thdens termis known only
to a limited accuracy and we often wish to determie) by the extrapolation procedure.

In practice it seems best to forget tHe@@ — C B) P terms because we hardly ever know
the material properties very well anyway. Then we splithgdhe shift and the thin-lens part
analytically while doing the diffraction part by a numeticaethod.
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9.2.5 \Validity of the splitting and full-separation concefis

Feel free to skip forward over this subsection which is meaaiathematical proof.

When Fourier transformation is possible, extrapolatioerefors are complex numbers
like €22, With complex numbers andb there is never any question theld = ba. Then
bothsplitting andfull separation are always valid.

Suppose Fourier transformation has not been done, or cotildbendone because of some
spatial variation of material properties. Then extrapotabperators are built up by combi-
nations of differential operators or their finite-diffecenrepresentations. L&tandB denote
two such operators. For exampke,could be a matrix containing the secordlifferencing
operator. Seen as matrices, th@undary conditions of a differential operator are incorpo-
rated in the corners of the matrix. The bottom line is whe#&i&e= BA, so the question clearly
involves theboundary conditions as well as the differential operators.

Extrapolation downward a short distance can be done witlopleeator [+ A AZz). Letp
denote a vector where components of the vector designavestredield at various locations on
the x-axis. Numerical analysis gives us a matrix operator,Aawhich enables us to project
forward, say,

p(z+ Az) = A1p(2 (9.11)

The subscript o\ denotes the fact that the operator may change wifo get a step further
the operator is applied again, say,

p(z+2Az) = Az2[A1p(2) (9.12)

From an operational point of view the matexis never squared, but from an analytical point
of view, it really is squared.

A2[A1p(@] = (A2A1)p(2) (9.13)

To march some distance down thexis we apply the operator many times. Take an
interval z; — zp, to be divided intoN subintervals. Since there aieintervals, an error pro-
portional to N in each subinterval would accumulate to an unacceptabé kvthe time
71 was reached. On the other hand, an error proportiongl & tould only accumulate to a
total error proportional to AN. Such an error would disappear as the number of subintervals
increased.

To prove the validity ofsplitting, we takeAz = (z; — zp)/N. Observe that the operator
I + (A + B)Az differs from the operatorl G A Az)(l + B Az) by something in proportion to
AZ? or 1/N2. So in the limit of a very large number of subintervals, th@edisappears.

It is much easier to establish the validity of the full-seggEnm concept. Commutativity is
whether or noAB = BA. Commutativity is always true for scalars. With finite diféacing
the question is whether the two matrices commute. TakiagdB to be differential operators,
commutativity is defined with the help of the family of all pisle wavefield$. ThenA and
B are commutative iRB P = BAP.
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The operator representidd® /0z will be taken to beA 4+ B. The simplest numerical inte-
gration scheme using tlsplitting method is

P(zo+ AZ) = (I +AAZ)( + BAZ) P(z) (9.14)

Applying (9.14) in many stages gives a product of many opesafl he operator& andB are
subscripted with to denote the possibility that they change wath

N
Pz) = []I0 + AjA2( + BjAZ)] P(z) (9.15)
j=1

As soon aA andB are assumed to be commutative, the factors in (9.15) mayareareged
at will. For example, thé\ operator could be applied in its entirety before Bieperator is
applied:

N N
P(z) = {]‘[ (I + B; Az):| {]‘[ (I + A Az):| P(20) (9.16)
=1 j=1

Thus thefull-separation concept is seen to depend on the commutativity of operators.

9.3 FINITE DIFFERENCING IN (omega,x)-SPACE

The basic method for solving differential equations in a pater isfinite differencing. The
nicest feature of the method is that it allows analysis oéotg of almost any shape, such as
earth topography or geological structure. Ordinarily,térdifferencing is a straightforward
task. The main pitfall is instability. It often happens thateemingly reasonable approach to a
reasonable physical problem leads to wildly oscillatoryetyent calculations. Luckily, a few
easily learned tricks go a long way, and we will be coverirantthere.

9.3.1 The lens equation

The parabolic wave-equation operator can be split into teudsp a complicated part called
the diffraction or migration part, and an easy part called tlemspart. Thelens equation
applies a time shift that is a function & Thelens equationacquires its name because it
acts just like a thin optical lens when a light beam entersxs-(vertically). Corrections
for nonvertical incidence are buried somehow in the dificacpart. Thelens equationhas
an analytical solution, namely, expilto(x)]. It is better to use this analytical solution than
to use a finite-difference solution because there are ncoappations in it to go bad. The
only reason théens equationis mentioned at all in a chapter on finite differencing is tinat
companion diffraction equation must be marched forward@lweith thelens equation so the
analytic solutions are marched along in small steps.
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9.3.2 First derivatives, explicit method

The inflation of money at a 10% rate can be described by the difference equation

Gy1 — G = .10q (9.17)
(1.0)G+1 + (1) = O (9.18)

This one-dimensional calculation can be reexpressed d&eedicing star and a data table. As
such it provides a prototype for the organization of caltafes with two-dimensional partial-
differential equations. Consider

Differencing Star Data Table
2.000
-1.1 2.200
time
\
+1.0 2.420
2.662

Since the data in the data table satisfy the difference emsa(9.17) and (9.18), the dif-
ferencing star may be laid anywhere on top of the data taidentimbers in the star may be
multiplied by those in the underlying table, and the resglitross products will sum to zero.
On the other hand, if all but one number (the initial condhjion the data table were missing
then the rest of the numbers could be filled in, one at a timesliding the star along, taking
the difference equations to be true, and solving for the ankndata value at each stage.

Less trivial examples utilizing the same differencing stage when the numerical constant
.10 is replaced by a complex number. Such examples exhitiltai®n as well as growth and
decay.

9.3.3 First derivatives, implicit method

Let us solve the equation
dq

at 2rq (9.19)
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by numerical methods. The most obvious (but not the onlyy@aagh is the basic definition of
elementary calculus. For the time derivative, this is

dg _ qt+At - q
dt At

(9.20)

Using this in equation (9.19) yields the the inflation-ofimg equations (9.17) and (9.18),
where 2 = .1. Thus in the inflation-of-money equation the expressibdgydt is centered
att 4+ At/2, whereas the expression @ty itself is at timet. There is no reason thee on
the right side of equation (9.19) cannot be averaged atttiwi¢h timet + At, thus centering
the whole equation at+ At/2. When writing difference equations, it is customary totevri
g(t + At) more simply asy11. (Formally one should saly= nAt and writeq,1 instead of
Oi+1, but helpful mnemonic information is carried by usings the subscript instead of some
integer liken.) Thus, a centered approximation of (9.19) is

+
Gy1 — G = 2r At et T % (9.21)
Lettinga =r At, this becomes
l-a)g1 — (A+a)qx = O (9.22)
which is representable as the difference star
—1-«

+l-«o

For a fixedAt this star gives a more accurate solution to the differeetjalation (9.19) than
does the star for the inflation of money. The reasons for tmeesaexplicit method” and
“implicit method” above will become clear only after we study a more compédatquation
such as théeat-flow equation

9.3.4 Explicit heat-flow equation

Theheat-flow equation(9.6) is a prototype for migration. Let us recopy the heatiaowation
letting q denote the temperature.

aq o 9%q
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Data Table X —
[ \ n \ [ \ t \ [ \ a \ I
S S
i star i
d ‘ —o | 20—1]| —« d
e 1 e
t

Table 9.1: Differencing star and table for one-dimensidwdt-flow equation

Implementing (9.23) in a computer requires some differeaqmeroximations for the partial
differentials. As before we use a subscript notation tHatal (9.20) to be compacted into

99 O — G

9.24
ot At ( )

wheret 4+ At is denoted byt + 1. The second-derivative formula may be obtained by doing
the first derivative twice. This leads tp;2 — 2¢i+1 + 0:. The formula is usually treated more
symmetrically by shifting it tag+1 — 20t + gt—1. These two versions are equivalent ad
tends to zero, but the more symmetrical arrangement will beeraccurate whemt is not
zero. Using superscripts to describ@lependence gives a finite-difference approximation to
the second space derivative:

82q qx—i—l _ 2qx + qx—l
ax2 AX?

(9.25)

Inserting the last two equations into theat-flow equation(and using = to denote’) gives

th+1 _ th o th+1 _ 2th + th—l
At - C AX2 (9.26)

(Of course it is not justified to use = to denetebut the study of errors must be deferred until
the concepts have been laid out. Errors are studied in IFitend. Lettingr = o At/(C AX?),
equation (9.26) becomes

Gy — & — @t -2 + ) = 0 (9.27)

Equation (9.27) can bexplicitly solved forq for any x at the particular timé + 1 givenq at
all x for the particular time and hence the naneplicit method.

Equation (9.27) can be interpreted geometrically as a ctamipnal star in thex, t)-plane,
as depicted in Table 9.1. By moving the star around in the tddi@ you will note that it can
be positioned so that only one number at a time (the 1) lies avainknown element in the
data table. This enables the computation of subsequentyegisning from the top. By doing
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this you are solving the partial-differential equation hg finite-difference method. There are
many possible arrangements of initial and side conditisush as zero-value side conditions.
Next is a computer program for the job and its result.

# Explicit heat-flow equation
real q(12), qp(12)

nx = 12

doia=1, 2 { # stabl e and unstabl e cases
al pha = ia*. 3333; wite(6,’(/"alpha =",f5.2)") al pha
doix=1,6 { g(ix) = 0.} # Initial tenperature step
do ix= 7,12 { q(ix) = 1.}

doit=1, 6 {
wite(6,’ (20f6.2)") (q(ix),ix=1,nx)
do ix= 2, nx-1
ap(ix) = q(ix) + al pha*(q(ix-1)-2.*q(ix)+q(ix+1))
ap(1) = ap(2); agp(nx) = gp(nx-1)
do ix= 1, nx
a(ix) = ap(ix)
}
}

call exit(0); end

al pha = 0. 33
0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
0.00 0.00 0.00 0.00 0.00 0.33 0.67 1.00 1.00 1.00 1.00 1.00
0.00 0.00 0.00 0.00 0.11 0.33 0.67 0.89 1.00 1.00 1.00 1.00
0.00 0.00 0.00 0.04 0.15 0.37 0.63 0.8 0.96 1.00 1.00 1.00
0.00 0.00 0.01 0.06 0.19 0.38 0.62 0.81 0.94 0.99 1.00 1.00
0.00 0.00 0.02 0.09 0.21 0.40 0.60 0.79 0.91 0.98 1.00 1.00

al pha = 0. 67
0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
0.00 0.00 0.00 0.00 0.00 0.67 0.33 1.00 1.00 1.00 1.00 1.00
0.00 0.00 0.00 0.00 0.44 0.00 1.00 0.56 1.00 1.00 1.00 1.00
0.00 0.00 0.00 0.30 -0.15 0.96 0.04 1.15 0.70 1.00 1.00 1.00
0.00 0.00 0.20 -0.20 0.89 -0.39 1.39 0.11 1.20 0.80 1.00 1.00
0.13 0.13 -0.20 0.79 -0.69 1.65 -0.65 1.69 0.21 1.20 0.87 0.87

9.3.5 The leapfrog method

A difficulty with the given program is that it doesn’t work faidl possible numerical values
of @. You can see that whenis too large (whem\x is too small) the solution in the interior
region of the data table contains growing oscillations. Whéhappening is that the low-
frequency part of the solution is OK (for a while), but the lhflyequency part is diverging.
The mathematical reason the divergence occurs is the subjeathematical analysis found
in IEI section 2.8. Intuitively, at wavelengths long compdito Ax or At, we expect the dif-
ference approximation to agree with the theat-flow equation smoothing out irregularities
in temperature. At short wavelengths the wild oscillatibows that the difference equation
can behave in a way almost opposite to the way the differesdjaation behaves. The short
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wavelength discrepancy arises because difference opetsoome equal to differential oper-
ators only at long wavelengths. The divergence of the swius a fatal problem because the
subsequent round-off error will eventually destroy the fosguencies too.

By supposing that the instability arises because the timeatee is centered at a slightly
different timet +1/2 than the seconxl-derivative at time, we are led to the so-calléeapfrog
method, in which the time derivative is taken as a difference betweel andt + 1:

a9 Ot+1 — Gt-1
A M 9.2
ot 2 At ( 8)

Here the result is even worse. An analysis found in IEI shd.asthe solution is now divergent
for all real numerical values @f. Although it was a good idea to center both derivatives in the
same place, it turns out that it was a bad idea to express ddiristtive over a span of more
mesh points. The enlarged operator has two solutions initistead of just the familiar one.
The numerical solution is the sum of the two theoreticalsohs, one of which, unfortunately
(in this case), grows and oscillates for all real values.of

To avoid all these problems (and get more accurate answarsliswe now turn to some
slightly more complicated solution methods knowriraglicit methods.

9.3.6 The Crank-Nicolson method

The Crank-Nicolson method solves both the accuracy and the stability problem. Rekall t
difference representation of theat-flow equation(9.27).

G — & = a(gt-2+q ) (9.29)

Now, instead of expressing the right-hand side entirelyna¢ t, it will be averaged at and
t+1, giving

a
G- = @)+ (@ -t (030

This is called the&Crank-Nicolson method Defining a new parameter=a/2, the difference
star is

X

(9.31)

—a | 20+1| —«
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When placing this star over the data table, note that, tyigicaree elements at a time cover
unknowns. To say the same thing with equations, move ali thé terms in (9.30) to the left
and thet terms to the right, obtaining

—ag T+ (L+20)0, —eg’ = et 4+ (1—20) + gt ! (9.32)

Now think of the left side of equation (9.32) as containinigfa¢ unknownquantities and the
right side as containing akknownquantities. Everything on the right can be combined into a
single known quantity, say*. Now we can rewrite equation (9.32) as a set of simultaneous
equations. For definiteness, take thaxis to be limited to five points. Then these equations

are: Qeft — 0 0 0 qt]:,_]_ dtl
~al+2¢ —a 0 O 04 d?
0 —a 1420 —a O o4 = d3 (9.33)
0O O —a 1420 —« o4 d?
0 0 0 —ou egnd Lady d?

Equation (9.32) does not give us eagh, explicitly, but equation (9.33) gives theimplicitly
by the solution of simultaneous equations.

The valueser andeign: are adjustable and have to do with the dadeindary conditions.
The important thing to notice is that the matrixigliagonal, that is, except for three central
diagonals all the elements of the matrix in (9.33) are zerbe Folution to such a set of
simultaneous equations may be economically obtainedrristaut that the cost is only about
twice that of theexplicit method given by (9.27). In fact, thigmplicit method turns out to
be cheaper, since the increased accuracy of (9.32) ovéf) @Iaws the use of a much larger
numerical choice ofAt. A program that demonstrates the stability of the methodnder
large At, is given next.

A tridiagonal simultaneous equation solving subroutinei s() explained in the next
section. The results are stable, as you can see.

a = 8.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
0.17 0.17 0.21 0.30 0.47 0.76 0.24 0.53 0.70 0.79 0.83 0.83
0.40 0.40 0.42 0.43 0.40 0.24 0.76 0.60 0.57 0.58 0.60 0.60
0.44 0.44 0.44 0.44 0.48 0.68 0.32 0.52 0.56 0.56 0.56 0.56

# Inmplicit heat-flow equation
real q(12),d(12)

nx=12; a =8.; wite(6,'(/"a =",f5.2)") aq; al pha = .5%a
do ix=1,6 { q(ix) = 0.} # Initial tenperature step
do ix= 7,12 { q(ix) = 1.}
doit=1,4 {

wite(6,’(20f6.2)") (q(ix),ix=1,nx)

d(1) = 0.; d(nx) = 0.

do ix= 2, nx-1

d(ix) = q(ix) + alpha*(q(ix-1)-2.*q(ix)+q(ix+1))
call rtris( nx, alpha, -alpha, (1.+2.*alpha), -alpha, alpha, d, q)
}

call exit(0); end
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9.3.7 Solving tridiagonal simultaneous equations

Much of the world’s scientific computing power gets used upisg tridiagonal simultane-
ous equations. For reference and completeness the algastimcluded here.

Let the simultaneous equations be written as a differenaaten
0+1+ bjg + g1 = d (9.34)

Introduce new unknowng and fj, along with an equation

g = 041+ f (9.35)
Write (9.35) with shifted index:
-1 = &-10 + fj_1 (9.36)
Insert (9.36) into (9.34)
8 Gi+1+ b +C(g-1G + fi-1) = d (9.37)

Now rearrange (9.37) to resemble (9.35)

— 8 d —¢fia
A - + 9.38
% bj + cjg-1 Gi+1 bj + cjg-1 ( )
Compare (9.38) to (9.35) to see recursions for the new unkeepand f;:
_ aj

e = _ 9.39
J bj + Cjg-1 ( )

d — ¢ fj_
o= S -90h4 (9.40)

bj + Cj &1

First aboundary condition for the left-hand side must be given. This may involve one or
two points. The most general possible end condition is alinglation like equation (9.35) at
j =0, namelygo = epg1+ fo. Thus, theboundary condition must give us botley and fo.
With ey and all theay, bj, ¢, we can use (9.39) to compute all the

On the right-hand boundary we needbaundary condition. The general two-point
boundary condition is
Ch—10n—-1 + &ightdn = dn (9.41)
Equation (9.41) includes as special cases the zero-vatlieaan-slopéoundary conditions.
Equation (9.41) can be compared to equation (9.36) at its end

O-1 = €100 + fnoz (9.42)

Both g, andqg,_1 are unknown, but in equations (9.41) and (9.42) we have twatsmns, so
the solution is easy. The final step is to take the valug,adnd use it in (9.36) to compute
On—1, On—2, On—3, €tc. The subroutinetri s() solves equation (9.33) faywheren=5, endl =
8eft, endr = ight, a=c= —a, andb=1—20.



9.4. WAVEMOVIE PROGRAM 161

# real tridiagonal equation solver

subroutine rtris( n, endl, a, b, ¢, endr, d, Q)
integer i, n

real q(n), d(n), a, b, c, den, endl, endr
temporary real f(n), e(n)

e(l) = -alendl; f(1l) = d(1)/end

doi=2, n-1¢{
den = b+c*e(i-1); e(i) = -alden; f(i) = (d(i)-c*f(i-1))/den
}

q(n) = (d(n)-c*f(n-1)) / (endr+c*e(n-1))

doi=n-1, 1, -1
a(i) =e(i) * q(i+1) + f(i)
return; end

If you wish to squeeze every last ounce of power from your agerp note some facts
about this algorithm. (1) The calculation gfdepends on themediumthrougha;, b;, ¢j, but
it does not depend on ths®lution q (even througld;). This means that it may be possible to
save and reusg. (2) In many computers, division is much slower than multgtion. Thus,
the divisor in (9.39) or (9.40) can be inverted once (and peststored for reuse).

9.3.8 Finite-differencing in the time domain

IEI develops time-domain finite differencing methods. $ittee earth velocity is unvarying in
time, a “basics only” book such as this omits this topic sipoe can, in principle, accomplish
the same goals in the-domain. There are some applications, however, that gae to
time-variable coefficients in their partial differentiajuations. Recursive dip filtering is one
application. Residual migration is another. Some formaoitet of DMO are another.

9.4 WAVEMOVIE PROGRAM

Here we see solutions to exercises stated in figure capfidresproblems and solutions were
worked over by former teaching assistants. (Lynn, Gonzale€Z, Hale, Li, Karrenbach,
Fomel). The various figures are all variations of the compstdroutinewavenovi e(). It
makes amovie of a sum of monochromatic waves. As it stands it will produceavie
(three-dimensional matrix) of waves propagating througbcais. The whole process from
compilation through computation to finally viewing the filmop takes a few seconds. A
sample frame of thenovieis in Figure 9.2. It shows a snapshot of tixez)-plane. Collapsing
spherical waves enter from the top, go through a focus anddgkpand again. Notice that the
wavefield is small but not zero in the region of geometricaldgw. In the shadow region you
see waves that appear to be circles emanating from pointe®at the top corners. Notice that
the amplitudes of expanding spherical waves drop off witttesice and collapsing spherical
waves grow towards the focus. We will study the program thederthis figure and see many
features of waves and mathematics.
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Figure 9.2: First frame of movie gen-
erated bywavenovie(). (Press but-
ton for movie.) |fdm-Mfocus1590
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9.4.1 Earth surface boundary condition

The program that created Figure 9.2 begins with an initisldition along the top bound-
ary, and then this initial wavefield is extrapolated dowmniva®o, the first question is: what

is the mathematical function of that describes a collapsing spherical (actually cyliradjic
wave? An expanding spherical wave has an equation-axgf —r /v)], where the radial dis-
tance isr = /(X — xg)2 + (z— 20)2 from the source. For a collapsing spherical wave we need
exp[—iw(t +r/v)]. Parenthetically, I'll add that the theoretical solutare not really these,
but something more like these divided kyr; actually they should be BEankel functions,

but the picture is hardly different when the exact initiahddion is used. If you have been
following this analysis, you should have little difficultyranging the initial conditions in the

program to create the downgoing plane wave shown in Fig@red\tice the weakened waves
5 10 15 20 25 30 35 40 45 50
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0¥

Figure 9.3: Specify program changes
that give an initial plane wave propa- .,
gating downward at an angle of 15
to the right of vertical. (Movie)
| fdm-Mdipplane90[ER,M]
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in the zone of theoretical shadow that appear to arise fromirg pource on the top corner of
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the plot. You have probably learned in physics classes ahtihg waves”. This is what you
will see near the reflecting side boundary if you recompugepdot with a single frequency
nw=1. Then the plot will acquire a “checkerboard” appearance tleareflecting boundary.
Even this figure witmw=4 shows the tendency.

9.4.2 Frames changing with time

For a film loop to make sense to a viewer, the subject ofitbeie must be periodic, and orga-
nized so that the last frame leads naturally into the firsthémovie created bywavenovi e()
there is a parametéeranbda that controls the basic repetition rate of wave pulses fired the
screen from the top. When a wavelet travels one-quartereoivtly down the frame, another
is sent in. This is defined by the line

N, Az
4

lambda = nz * dz / 4 =

Take any point in X,z)-space. The signal there will be a superposition of sirdsoif
various frequenciesy;. We can choose what frequencies we will use in the calculatiul
what amplitudes and phases we will attach to the initial @goos at those frequencies. Here
we will simply take uniformly spaced sinusoids of unit anydie and no phase. Thev
frequencies are; = Aw, 2Aw, ...,nwAw. The lowest frequencyw = Aw must be inversely
proportional to the wavelengttanbda = A

_ 2w v
dw = v * pi2 / lanbda = T

Finally, the time duration of the film loop must equal the pdrof the lowest-frequency

sinusoid
27

Aw
This latter equation defines the time interval on the line

Nt At =

dt = pi2/ ( nt * dw)

If you use more frequencies, you might like the result bdissrause the wave pulses will be
shorter, and the number of wavelengths between the puldleaavease. Thus the quiet zones
between the pulses will get quieter. The frequency compsream be weighted differently—
but this becomes a digression into simple Fourier analysis.

# frompar: integer n3:nt=12, n2:nx=48, nl:nz=96, nw=2, nl anr4

# frompar: real dx=2, dz=1, v=1

#

subrouti ne waverovi e( nt, nx, nz, nw, nlam dx,dz,v, p, cd, Q)
integer it,nt,ix,nx,iz, nz,iw, nw, nlam

real dx,dz,v, phase,pi 2, z0, x0, dt, dw, | anbda, w, wov, x, p(nz, nx, nt)

conpl ex aa, a, b, c, cshift, cd(nx), q(nx)

| ambda=nz*dz/ nl am pi 2=2. *3. 141592; dw=v*pi 2/ anbda; dt=pi 2/ (nt*dw)
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x0 = nx*dx/3; z0 = nz*dz/3
call null( p, nz*nx*nt)

do iw=1,nw{ # superinpose nw frequenci es
w = iwdw wov = W v # frequency / velocity
do ix = 1,nx { # initial conditions for a
X = i x*dx-x0; # col | apsi ng spherical wave
phase = -wov*sqrt( zO0**2+x**2)
q(ix) = cexp( cnplx( 0., phase))
}
aa = (0.,1.)*dz/ (4. *dx**2*wov) # tridiagonal matrix coefficients
a = -aa; b = 1.+2. *aa; c = -aa
doiz =1,nz { # extrapol ation in depth
do ix = 2,nx-1 # diffraction term
cd(ix) = aa*q(ix+1l) + (1.-2.*aa)*q(ix) + aa*q(ix-1)
cd(1l) = 0.; cd(nx) = 0.

call ctris( nx,-a,a,b,c,-c,cd, Q)
# Sol ves conpl ex tridiagonal equations
cshift = cexp( cnpl x( 0.,wov*dz))

do ix = 1,nx # shifting term
q(ix) =q(ix) * cshift
do it=1,nt { # evolution in tine

cshift = cexp( cnpl x( O.,-wsit*dt))
do ix = 1,nx

p(iz,ix,it) =p(iz,ix,it) + q(ix)*cshift
}

}

return; end

9.4.3 Internals of the film-loop program

The differential equation solved by the program is equattoh), copied here as

oP i w v %P
- — P 4+ —
0z v(X,2) —iw2 9x?
For eachA z-step the calculation is done in two stages. The first stagesslve
oP v 9%P
3z —iw2 9x?
Using theCrank-Nicolson differencing method this becomes
PP v (pteepi et P -2pg e
Az  —iw2 2 AX2 2 AX?
Absorb all the constants into one and define
vAZ
o = ———>5
—i w4 AX?

getting

Pra— P = « [(p§+1 —-2p;* p;(_l) +(p;:11 —2p;, + p;:ll ]

(9.43)

(9.44)

(9.45)

(9.46)

(9.47)
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Bring the unknowns to the left:
—apiil + A+ 20)p g —aplt = epitt 4+ (1-20)pf +apit (9.48)

We will solve this as we solved equations (9.32) and (9.38) 3econd stage is to solve the
equation

P _ ey (9.49)
0z v
analytically by
P(z+Az) = P(z)e?zel (9.50)

By alternating between (9.48) and (9.50), which are derivech (9.44) and (9.49), the
program solves (9.43) by splitting method. The program uses ttreliagonal solver dis-
cussed earlier, like subroutimeri s() on page 160 except that version needed here,s(),
has all the real variables declared complex.

Figure 9.4 shows a change of initial conditions where thenmag wave on the top frame
is defined to be an impulse, namebyfx,z=0)=(---,0,0,1,0,0;--). The result is alarmingly
noisy. What is happening is that for any frequencies anyahear the Nyquist frequency, the
differenceequation departs from trafferential equation that it should mimic. This problem
is addressed, analyzed, and ameliorated in IEl. For nowpélsething to do is to avoid sharp

corners in the initial wave field.
5 10 15 20 25 30 35 40 45 50

02 0T

0¢

Figure 9.4: Observe and describe var-
ious computational artifacts by test- |=

Lo et

ing the program using a point source °
at (x,2) = (xmax/ 2, 0) . Such a source L] N EE

is rich in the high spatial frequencies ., - ': L
for which difference equations do not
mimic their differential counterparts.
(Movie) |fdm-Mcompart90[ER,M]
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9.4.4 Side-boundary analysis

In geophysics, we usually wish the side-boundary quesiidnaot arise. The only real reason
for side boundaries is that either our survey or our proogsactivity is necessarily limited
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in extent. Given that side boundaries are inevitable, wet tiirsk about them. The subrou-
tine wavenovi e() included zero-slope boundary conditions. This type of lolauy treatment
resulted from taking

d(1)

0. ; d(nx) =0.

and in the call tazt ri s taking

endl - a; endr = - c

A quick way to get zero-value side-boundary conditions ismte@
5 10 15 20 25 30 35 40 45 50

Figure 9.5: Given that the domain
of computation is O< X < xmax and
0 < z <zmax, how would you modify
the initial conditions atz = 0 to
simulate a point source ai,z) =
(xmax/ 3, -zmax/2)? (Movie)
fdm-Mexpandsphere9(ER,M]

endl =endr = 103 ~ oo

Compare the side-boundary behavior of Figures 9.5 and 9.6.
5 10 15 20 25 30 35 40 45 50

0g 0z 01

0¥

Figure 9.6: Modify the program so
that zero-slope side boundaries are o
replaced by zero-value side bound-
aries. (Movie) |fdm-Mzeroslope9p
[ER,M]
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The zero slope boundary condition is explicitly visible dentical signal on the two end
columns. Likewise, the zero-value side boundary condhiasa column of zero-valued signal
on each side.

9.4.5 Lateral velocity variation

Lateral velocity variationn = v(x) has not been included in the program, but it is not difficult
to install. It enters in two places. It enters first in equat{8.50). If the wavefield is such
thatky is small enough, then equation (9.50) is the only place iesded. Second, it enters in
thetridiagonal coefficients through the in equation (9.46). The so-called thin-lens approx-
imation of optics seems to amount to including the equat®BQ) part only. An example of
lateral velocity variation is in Figure 9.7.

5 10 15 20 25 30 35 40 45 50

0T

02

Figure 9.7: Make changes to the
program to include a thitens term ©
with a lateral velocity change of -
40% across the frame produced by &
a constant slowness gradient. Iden- o
tify other parts of the program which
are affected by lateral velocity varia-
tion. You need not make these other
changes. Why are they expected to be
small? (Movie)|fdm-Mlateralvel9Q
[ER,M]
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9.4.6 Migration in (omega,x)-space

The migration program is similar to the film loop program. Blure are some differences.
The film loop program has “do loops” nested four deep. It poeduresults for many values
of t. Migration requires a value only at= 0. So one loop is saved, which means that for the
same amount of computer time, the space volume can be iectebmfortunately, loss of a
loop seems also to mean loss ofmavie. With w-domain migration, it seems that the only
interesting thing to view is the input and the output.

The input for this process will probably be field data, unlike the film loop movie,
so there will not be an analytic representation in #heomain. The input will be in the
time domain and will have to be Fourier transformed. The fr@gg of the program defines
some pulses to simulate field data. The pulses are broadewpedises and should migrate to
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approximate semicircles. Exact impulses were not usedusecthe departure of difference
operators from differential operators would make a noisgsne

Next the program Fourier transforms the pseudodata frontittee domain into theo-
frequency domain.

Then comes the downward continuation of each frequencys i§ha loop on deptlz and
on frequencyw. Either of these loops may be on the inside. The choice canduerfor
machine-dependent efficiency.

For migration an equation for upcoming waves is requiredikerthe downgoing wave
equation required for the film loop program. Change the sfghez-axis in equation (9.43).
This affects the sign afa and the sign of the phase efhift.

Another difference with the film loop program is that the ihpaw has a time axis whereas
the output is still a depth axis. It is customary and conveiriie reorganize the calculation to
plot traveltime depth, instead of depth, making the velas@s on both input and output the
same. Using = z/v , equivalentlydz/dz= 1/v , the chain rule gives

0 at 9 10
- 22 - -2 (9.51)
0z 0z dt v dt
Substitution into (9.43) gives
P v? 9%P
— = —-ioP - — — 9.52
ot © —iw2 9x? ( )

In the program, the time sample size= At and the traveltime depth sampleau = At
are taken to be unity, so the maximum frequency is the NygWsttice that the frequency
loop covers only the negative frequency axis. The positieguencies serve only to keep the
time function real, a task that is more quickly done by sintpking the real part. A program
listing follows

#% Mgration in the (onega, x, z)-donai n

program kj artj ac{

real p(48,64), pi, alpha, dt, dtau, dw, w0, onega

conpl ex cp(48,64), cd(48), ce(48), cf(48), aa, a, b, c, cshift
integer ix, nx, iz, nz, iw, nw, it, nt, esize

nt= 64; nz= nt; nx= 48; pi = 3.141592

dt= 1.; dtau= 1.; wO0=-pi/dt; dw= 2*pi/(dt*nt); nw= nt/2;

al pha = .25 # al pha = v*v*dtau/ (4*dx*dx)
doiz=1, nz { doix=1,nx { p(ix,iz) =0.; cp(ix,iz)=0. }}

do it=nt/3, nt, nt/4{
# Broadened i nmpul se source
do ix=1, 4 { cp(ix,it) = (5.-ix); cp(ix,it+l) = (5.-
ix) }}
call ft2axis( 0, 1., nx,nt, cp)
do iz=1, nz {
do iw= 2, nw{ omega = WO + dwr(iw1)
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aa = - alpha /( (0.,-1.)*onega )
a = -aa; b = 1.+2. *aa; c = -aa
do ix= 2, nx-1
cd(ix) = aa*cp(ix+l,iw) + (1.-2.*aa)*cp(ix,iw) + aa*cp(ix-1,iw
cd(1l) = 0.; cd(nx) = 0.
call ctris( nx, -a, a, b, ¢, -c, cd, cp(1,iw))
cshift = cexp( cnplx( O.,-onega*dtau))
do ix= 1, nx
cp(ix,iw) = cp(ix,iw) * cshift
do ix= 1, nx
p(ix,iz) = p(ix,iz)+cp(ix,iw) # p(t=0) = Sum P(onega)
1}
esi ze=4
to history: integer nl:nx, n2:nz, esize
call srite( "out’, p, nx*nz*4)
call hclose()

}

The output of the program is shown in Figure 9.8. Mainly, yea semicircle approxima-
tions. There are also some artifacts at late time that may-éemain wraparounds. The input
pulses were apparently sufficiently broad-banded in dipttiefigure provides a preview of
the fact, to be proved later, that the actual semicircle@ppration is an ellipse going through
the origin.

horizontal
0 10 20 30 40

0

—+ 8
>
Y
T
Figure 9.8: Output of the pro- =
gramkj artjac: semicircle approxi- % &
. . . o
mations. | fdm-kjartjac [ER] ~
T
S o
5 o
<o
(o)
(@)

Notice that the waveform of the original pulses was a symim&inction of time, whereas
the semicircles exhibit a waveform that is neither symmeatar antisymmetric, but is a 45
phase-shifted pulse. Waves from a point in a three-dimeasigorld would have a phase shift
of 90°. Waves from a two-dimensional exploding reflector in a tkitgeensional world have
the 4% phase shift.
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9.5 HIGHER ANGLE ACCURACY

A wave-extrapolation equation is an expression for thevdévie of a wavefield (usually in
the depthz direction). When the wavefield and its derivative are knoextrapolation can
proceed by various numerical representations of

P(z+Az) = P(2 + Az%—: (9.53)

Extrapolation is moving information from to z+ Az and what we need to do it is a way
to find dP/dz Two theoretical methods for findingP/dz are the originatransformation
method and the newelispersion-relationmethod.

9.5.1 Another way to the parabolic wave equation

Here we review the historic “transformation method” of @arg the parabolic wave equation.
A vertically downgoing plane wave is represented matheralyi by the equation
P(t,x,2) = Py e let=2z/v) (9.54)

In this expressionPy is absolutely constant. A small departure from verticaldeace can
be modeled by replacing the constdftwith something, sayQ(x,z), which is not strictly
constant but varies slowly.

P(t,x,2) = Q(x,2) e '®t=2/) (9.55)

Inserting (9.55) into the scalar wave equat®yy + P,; = Py /v? yields

92 iw 9 \? w?

e O (7 +a—z) =

92 2iw o 02

°Q 2lw 9Q °Q 0 (9.56)
X2 v 0z 072

The wave equation has been reexpressed in ternfz). So far no approximations have
been made. To require the wavefield to be near to a plane vi@ez) must be near to a
constant. The appropriate means (which caused some cergyonvhen it was first introduced)
is to drop the highest depth derivative @f namely,Q;,. This leaves us with thparabolic
wave eguation

0Q v 9%Q

9z —2iw 0x?

(9.57)

| called equation (9.57) the 1®quation. After using it for about a year | discovered a way
to improve on it by estimating the droppég, term. Differentiate equation (9.57) with respect
to z and substitute the result back into equation (9.56) getting

32Q 2i0 9Q v 9%Q
X2 v 0z —2iw 0Zox?

= 0 (9.58)
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| named equation (9.58) the 4&igration equation. It is first order 8, so it requires only
a single surface boundary condition, however, downwardicoation will require something
more complicated than equation (9.53).

The above approach, the transformation approach, was aadjisseful. But people were
confused by the dropping and estimating of the derivative, and a philosophically more
pleasing approach was invented by FrarMdisr , a way of getting equations to extrapolate
waves at wider angles by fitting the dispersion relation afraisircle by polynomial ratios.

9.5.2 Muir square-root expansion

Muir 's method of finding wave extrapolators seeks polynomiabrapproximations to a
square-root dispersion relation. Then fractions are etkand the approximate dispersion
relation is inverse transformed into a differential eqoiatiRecall equation (9.1)

212
ve kg

1 —
w2

ke =

w
v

(9.59)

To inverse transform the-axis we only need to recognize th&t corresponds t@/dz.
Getting into thex-domain, however, is not simply a matter of substitutingcoselx derivative
for k2. The problem is the meaning of tisguare root of a differential operator. The square
root of a differential operator is not defined in undergraduzalculus courses and there is
no straightforward finite difference representation. Tépgase root becomes meaningful only
when it is regarded as some kind of truncated series expansias shown in IEl that the
Taylor series is a poor choice. Frandisir showed that my original P5and 45 methods
were just truncations of a continued fraction expansionsd@this, define

vky vk;

X = and R = (9.60)

w w
With the definitions (9.60) equation (9.59) is more compawatiitten as

R = 1-Xx2 (9.61)

which you recognize as meaning that cosine is the squareofamte minus sine squared.
The desired polynomial ratio of ordarwill be denotedR,, and it will be determined by the

recurrence
X2
= 1- 9.62
Rnt1 TR (9.62)
The recurrence is a guess that we verify by seeing what iterges to (if it converges). Set

n = o0 in (9.62) and solve

XZ
Re = 1_1+Rc><>
Ro(l+ Rx) = 14 Ry — X?

RZ = 1-Xx? (9.63)
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The square root of (9.63) gives the required expressionl]9®eometrically, (9.63) says that
the cosine squared of the incident angle equals one minusriequared and truncating the
expansion leads to angle errokuir said, and you can verify, that his recurrence relationship
formalizes what | was doing by re-estimating theterm. Although it is pleasing to think of
large values oh, in real life only the low-order terms in the expansion aredisT he first four
truncations oMuir 's continued fraction expansion beginning frd®g = 1 are

5° R = 1 (9.64)
X2
15°: Ry = 1—7
X2
4 R = 1-—0p
)
X2
60: R = 1-——0j
2— 2
=7

For various historical reasons, the equations in the abguat®ns are often referred to as
the 3, 15, and 45 equations, respectively, the names giving a reasonabligajive (but poor
guantitative) guide to the range of angles that are adelyuaamdled. A trade-off between
complexity and accuracy frequently dictates choice of tifeegjuation. It then turns out that a
slightly wider range of angles can be accommodated if therrence is begun with something
like Ry = cos 45. Figure 9.9 shows some plots.

e |3

exact

/f Y

Figure 9.9: Dispersion relation of equation (9.65). Theveuabeled 4% was constructed

with Ry = cos45. It fits exactly at 0 and 45. |fdm-disper[NR]
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9.5.3 Dispersion relations

Substituting the definitions (9.60) into equation (9.65)sely. gives dispersion relationships
for comparison to the exact expression (9.59).

w
5° - k, = — (9.65)
v
o vk?
15°: k, = ———=
v 2w
w k2
45° : k, = ———
v w ka
v 2w

Identification ofik, with d/dz converts the dispersion relations (9.65) into the diffaeg¢n

equations
oP o
5°: — = i (—) P (9.66)
dz v
P k2
15 o (2
0z v 2w
aP k2
45 : o 12X __|p
0Z v w Uk>%
v 20

which are extrapolation equations for when velocity degesrdy on depth.

The differential equations above in Table 9.4 were based dis@ersion relation that
in turn was based on an assumption of constant velocity. riSurgly, these equations also
have validity and great utility when the velocity is deptwable,v = v(z). The limitation is
that the velocity be constant over each depth “slab” of wiithover which the downward-
continuation is carried out.

9.5.4 The xxz derivative

The 45 diffraction equation differs from the *Sequation by the inclusion of 83/3x23z
-derivative. Luckily this derivative fits on the six-poinifférencing star

AX2 Az
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So other than modifying the six coefficients on the star, d¢sadothing to the computational
cost. Using this extra term allows in programs like subrrmeitavenovi e() on page 163 yields
wider angles.

02 07

0¢

Figure 9.10: Figure 9.2 including
the 45 term, dxxz for the collaps-
ing spherical wave. What changes .,
must be made to subroutineve- °
novi e() to get this result? Mark an 3
X at the theoretical focus location.
| fdm-Mfortyfive90| [ER,M]

[0h%

Figure 9.11: The accuracy of the
x-derivative may be improved by a
technique that is analyzed in IEIl p
262-265. Briefly, instead of rep-
resentingk? Ax? by the tridiagonal
matrix T with (—1,2,—1) on the main
diagonal, you usé& /(I — T /6). Mod-
ify the extrapolation analysis by mul-
tiplying through by the denominator. <
Make the necessary changes to the
45° collapsing wave program. Left
without 1/6 trick; right, with 1/6 trick.

| fdm-Mhi45b90 [ER,M]

Theory predicts that in two dimensions, waves going throaidgbcus suffer a 90phase
shift. You should be able to notice that a symmetrical wanrafis incident on the focus, but
an antisymmetrical waveform emerges. This is easily se&imgimre 9.11.

In migrations, waves go jus$b a focus, nothroughit. So the migration impulse response
in two dimensions carries a 4phase shift. Even though real life is three dimensionaltwioe
dimensional response is appropriate for migrating seidimés where focusing is presumed
to arise from cylindrical, not spherical, reflectors.
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9.5.5 Time-domain parabolic equation

The parabolic wave extrapolation equation (9.57) is rgaeidpressed in the time domain
(instead of thevs-domain). Simply replace-iw by a time derivative.
8%q v 9%q

700 = 2@ (9.67)
In principal we never need the time domain because the ealticity is a constant function
of time. In practice, processes (like DMO) might involve ¢éirdependent coefficients. In the
time domain, a more complicated numerical procedure isireddetails in my earlier book
FGDP). An advantage of the time domain is that there is abslglaero noise preceding a first
arrival — no time-domain wraparound. Another advantagkeasall signals are real valued —
no complex arithmetic. A disadvantage arises wherttheis is not sampled densely enough
— the propagation velocity becomes frequency dispersive.

9.5.6 Wavefront healing

When a planar (or spherical) wavefront encounters an inlgemeity it can be said to be
“‘damaged”. If it continues to propagate for a long time, ighti be said to “heal”. Here

we construct an example of this phenomena and see that Wkile ts some healing on the
front edge, the overall destruction continues. The origsimaplicity of the wavefield is being

destroyed by the continued propagation.

We begin with a plane wave. Then we deform it as though it hagaayated through a slow
lens of thicknes$i(x) = sinx. This is shown in the first frame of Figure 9.12. In subsequent
frames the wavefront has been extrapolaterlusing equation (9.67).

1 2 3 4 5 6

Figure 9.12: Snapshots of a wavefront propagating to th.rithe picture frame moves along

with the wavefront. (Press button for movid fidm-heal [ER,M]

In the second frame we notice convex portions of the wavéin@akening by something
like spherical divergence while concave portions of theefiant strengthen by focusing.
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In the third frame we have moved beyond the focus and we seethong like a parabolic
wavefront emerge from each focus. Now we notice that theraigvaveform was a doublet
whereas the parabolic wavefronts all have a single polaktcusing in 2-D has turned an
asymmetrical wavelet into a symmetrical one.

In the fourth frame we see the paraboloids enlarging anderg®ver one another. Inspect
the top or the bottom edges of the 4th and 5th frames. Youticaedhat the intersections of
the wavefronts on these side boundaries are moving forwatdwards the initial onset. This
is peculiar. The phase fronts are moving forward while thergyis falling further behind the
original onset.

Finally, in the last frame, we notice the that the front edfyine wave packet has “healed”
into a plane wave — a plane wave like before encounting thgirai sinf) velocity lens. |
felt some delight on first viewing this picture. | had spentame years of my life looking
at seismograms of earthquakes and nuclear explosions.aEbrexent | had a seismic trace
at each of about a dozen locations. Each trace would have allmundred wiggles. Nothing
would be consistent from trace to trace except for maybe #iewavelength of the first
arrivals. Quite often these all would luckily begin with teeame polarity but then become
rapidly incoherent. Take a dozen random locations on theied) x-axis of the last frame
in Figure 9.12. You'll find the dozen time signals agree onfttst arrival but are randomly
related at later times just as usually seen with nuclearosimh data.

Perhaps if we had very dense recordings of earthquakes e@dvapolate the wavefield
back towards its source and watch the waveform get simpleeasoceeded backward. Often
throughout my career I've wondered how | might approach goial. As we step back im
we wish, at each step, that we could find the best lgnsily next book (GEE) has some
clues, but nothing yet concrete enough to begin. We needttmize some (yet unknown)
expression of simplicity of the wavefieldk) at the nexiz as a function of the lens between
here and there.



Chapter 10

Antialiased hyperbolas

A most universal practical problem in geophysics is that ween have enough recordings.
This leads to the danger of spatial aliasing of data. Theme isniversal cure for this problem
(although there are some specialized techniques of limaédity). A related, but less severe
problem arises with Kirchhoff type operators. This problesncalled “operator-aliasing”. It
has a cure, which we investigate in this chapter.

Fourier and finite-difference methods of migration are imeuo the operator-aliasing
malady suffered by hyperbola summation (Kirchhoff) migrat Here we will see a way to
overcome the operator-aliasing malady shared by all KmffHike operators and bring them
up to the quality of phase-shift methods. The antialiasieghoads we develop here also lead
to natural ways of handling irregularly sampled data.

We like to imagine that our data is a continuum and that ourssare like integrals. For
practical purposes, our data is adequately sampled in boteften it is not adequately sam-
pled in space. Sometimes the data is sampled adequatelya@e,sput our operators, such
as hyperbolic integrations, are not adequately repreddnjtea summation ranging over the
x-coordinate picking a value at the nearest tirffd@. First we could improve nearest-neighbor
interpolation by using linear interpolation. Linear irgetation, however, is not enough. Trou-
ble arises when we jump from one trace to the next; X+ Ax, and find that(x) jumps more
than a singleAt. Then we need a bigger “footprint” on the time axis than the h&ighboring
points used by linear interpolation. See Figure 10.1. N in some places each value of
x corresponds to several valuestpfand other places it is the opposite where one value of
corresponds to several values»of An aliasing problem arises when we approximate a line
integral by a simple sum of points, one for each value orxtaais instead of using the more
complicated trajectory that you see in Figure 10.1.

10.0.1 Amplitude pitfall

In geophysics we often discuss signal amplitude versugtifistance. It sounds easy, but
there are some serious pitfalls. Such pitfalls are one readty mathematicians often use

177
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=
Figure 10.1: To integrate along hy- = =
perbolas without aliasing, you should
include (at least) the points shown. e EEE
[vimo-nmotaj [ER] fati. S
e

nonintuitive weasel words. The best way for you to appredia pitfall is for me to push you
into the pit.

Suppose we are writing a seismogram modeling program andistetevmodel an impul-
sive plane wave of unit amplitude. Say the signal seeqiaf(---,0,0,1,0,0;--). At X+ AX
the plane wave is shifted in time so that the impulse lies Wwalf between two points, say it
is (---,0,0,a,a,0,0,---). The question is, “what should be the valueadf’ There are three
contradictory points of view:

1. The amplituda should be 1 so that the peak amplitude is constant with
2. The amplitudex should be 1+/2 so that both seismic signals have the same energy.

3. The amplitude should be 12 so that both seismic signals have the same area.

Make your choice before reading further.

What is important in the signal is not the high frequencieseemlly those near the
Nyquist. We cannot model the continuous universe with sathgata at frequencies above the
Nyquist frequency nor can we do it well or easily at freques@pproaching the Nyquist. For
example, at half the Nyquist frequency, a derivative iseyditferent from a finite difference.
What we must try to handle correctly is the low frequencibe @dequately sampled signals).
The above three points of view are contradictory at low ferrpies. Examine only the zero
frequency of each. Sum over time. Only by choosing equalkaeal/2 do the two signals
have equal strength. The appropriate definition of ampditod a sampled representation of
the continuum is tharea per unit timeThink of each signal value as representing the integral
of the continuous amplitude from- At/2 tot + At /2. Amplitude defined in this way cannot
be confounded by functions oscillating between the samyaédes.

Consider the task of abandoning data: We must reduce dataesdat a two millisecond
rate to data sampled at a four millisecond rate. A method &liftsing is to abandon alternate
points. A method with reasonably effective antialiasintpisonvolve with the rectangle (1,1)
(add two neighboring values) and then abandon alternateesalWithout the antialiasing,
you could lose the impulse on the {,0,0,1,0,0;--) signal. A method with no aliasing is
to multiply in the frequency domain by a rectangle functi@vieerd- Nyquist/2 (equivalent
to convolving with a sinc function) and then abandoningraliée data points. This method
perfectly preserves all frequencies up to the new Nyquesfifency (which is half the original).
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10.1 MIMICING FIELD ARRAY ANTIALIASING

In geophysical data recording there is usually a local awihgse elements are added locally
before a single channel is recorded. For example, the SERr#tgroup once laid out more
than 4056 geophones in a two-dimensional array ok 113 recorders with 24 geophones
added at each recorder. We may think of the local superposa an integration over a small
interval of space to create a sampled space function froonéinemus one. With vibrator
sources, it is also customary to vibrate on various nearbycedocations and sum them into
a single signal. Figure 10.2 is a caricature of what happ®nghe left a data field appears to
be a continuous function of space (it is actually 500 sp&i@ations) with various impulsive
signals at different times and distances. For simplicillysignals have unit amplitude. The
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Figure 10.2: Quasicontinuous field (left) added in grough(). ‘trimo-oversam;p[ER]

500 signals are segregated into 10 groups of 50 and each gf&@ps summed into a single
channel. The various signals sum to functions that couldaiea"slump shouldered rectan-
gles.” If bothx andt-meshes were refined further, the “slump shoulders” on thangles
would diminish in importance and we would notice that theargles were still imperfect.
This is because the rectangle approximation arises froragghsoximation that the hyperbola
is a straight line within the group. In reality, there is caitwre and the effect of curvature is
strongest near the apex, so the rectangle approximatiaroisgt the apex.

Some of the rectangles are longer than others. The narrow ametall and the wide
ones are short because the area of each rectangle must beid@ tfiie sum of 50 channels
each holding a 1). Since the rectangles all have the samevaeea we to lowpass filter the
sparse data we would recover the original characteriséitdh these signals have the same
amplitude.

Figure 10.3 shows a quasisinusoidal signal and comparesusyiling to antialiasing via
field arrays as in Figure 10.2. We see that aliased energyg®asdurpressed but not removed.
Let us see how we can understand the result and how we coulettiy fout we won't). Sup-
pose that the 500 channels had been individually recordeel right panel in Figure 10.3 was
computed simply by adding in groups of 25. A lengthier exptaon of the calculation is that
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Figure 10.3: 500 channels (left), subsampled to 20 (midddyled in groups of 25(right).
trimo-subsampvrsgéER]

the 500 channels were convolved along the horizoxtakis with a 25 point long rectangle
function. Then the 500 channel output was subsampled to 20ngts. This lengthier calcu-
lation gives the same result but has a simple Fourier exptanaConvolving with a rectangle
function of x is the Fourier equivalent to multiplying by a sinc functian(&yx Ax)/(kx AX)

in the Fourier domain. We have convolved with a rectanglehe ghysical domain which
amounts to multiplication by a sinc function in the Fourienthin. Theoretically we would
prefer to have done it the other way around, convolved witme i the physical domain,

equivalently multiplying with a rectangle in the Fouriemdain. The Fourier rectangle would
drop to zero at half Nyquist and thus subsampling would niotlback any energy from above
the half Nyquist to below it. Although Figure 10.3 shows tlia¢ aliased information is
strongly suppressed, you can see that it has not been etedinelad we instead convolved
with a sinc on the-axis, the Fourier function would have been a rectangle.would see the

wavefronts in Figure 10.3 (right panel) vanishing wheredlgereached a critical threshhold
instead of seeing the wavefronts gradually tapering off wedk aliased events still being
visible.

10.1.1 Adjoint of data acquisition

Knowing how data is recorded, or how we would like it to be melenl, suggests various
possibilities for data processing. Should we ignore thteltectangle functions, or should
we include them in the data processing? Figure 10.4 showsplesimodel and its implied
data, along with migrations, with and without attention iasing the horizontal space axis.
The figure shows that migration without attention to aligsi@ads to systematic noise and
(apparently) random noise.

This figure is based on realistic parameters except that paterand display the results
on a very coarse mesh (20100) to enable you to see clearly the phenomena of numerical
analysis. No additional values were used between meshspoindff the edges of what is
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Figure 10.4: Top leftis a synthetic image. Top right is sytithdata from the synthetic image.
Bottom are migrations of the data with and without antiatigs ‘trimo-migalia# [ER]

shown.

The practical need to limit operator aliasing is often rextliby three indirect measures.
First is temporal low pass filtering which has the unfortersitle effect of reducing the tem-
poral bandwidth. Second is dip limiting (limiting the ape#g of the hyperbola) which has
the unfortunate side effect of limiting the dip bandwidthirf is interlacing the data traces.
Interpolating the data also interpolates the operator smatugh trace interpolation is done,
the operator is no longer subsampled. A disadvantage ofidE&polation is that the data
becomes more bulky. Here we attack the operator aliasirggmodirectly.

A simple program designed for antialiasing gave the resuigure 10.5. A zero-offset
signal is input to adjoint NMO to make synthetic data whiclthen NMO’ed and stacked.
Notice that the end of each rectangle is the beginning ofébtangle at the next offset. You
might fear the coding that led up to Figure 10.5 is a fussy aefficient business because of
all the short little summation loops. Luckily, there is a wedous little formula that allows
us to express the integral under any of the little rectangiesmatter how many points it
contains, by a single subtraction. Integration is the keys bnly necessary to realize that
the sums are, like a definite integral, representable byiffexehce of the indefinite integral
at each end. In other words, to find the sum of all the valuesdrsti t andit +n we begin
with a recursive summation such@git)=qq(it-1)+pp(it). Then, any sum of values like

pp(it)+---+p(it+n) isSsimplyqgq(it+n+1l) - qq(it) .

Figure 10.5 is not fully consistent with Figure 10.1. In Figu0.5 notice that the last
point in each rectangular area overlaps the next rectangtéa by one point. Overlap could
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Figure 10.5: Rectangle smoothing 3
during NMO and stacking. Notice = ;2
that the end of one rectangle exactly = i 3 4 =
coincides with the beginning of the & % 0
rectangle at next larger offset. Thus, i } 1
rectangle width increases with off- i
set and decreases with time.an{
tialias=1.) |trimo-boxmol [ER]
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be avoided by shortening each rectangle by one point, but tbetangles near the apex of
the hyperbola would haveero lengthwhich is wholly unacceptable. Should we write a code
to match Figure 10.1? This would be better, but far from ptrfélotice in Figure 10.1 that
a horizontal sum of the number of boxes is not a smooth funaifdime. To achieve more
smoothness, we later turn to triangles, but first we look atestmplementation details for
rectangles.

10.1.2 NMO and stack with a rectangle footprint

A subroutine for causal summation is subroutiaesi nt () on page 20. Recall that the adjoint
of causal integration is anticausal integration. For eaflector, data modeling proceeds by
throwing out two pulses of opposite polarity. Then causahsation produces a rectangle
between the pulses (sometimes called “box car”). Sinceastestep in the modeling operator
is causal summation, the first step in the adjoint operatdigvdoes NMO) is anticausal
summation. Thus each impulse in the data becomes a rectirogiehe impulse td = 0.
Then subtracting values at rectangle ends gives the ddsitegtal of data in the rectangle.
The code is in subroutingsxno() andboxst ack(). The traveltime depth is denoted by

z in the code. The inverse of the earth veloaify), called the slowness(t), is denoted by

slowi z) .
subrouti ne boxno( adj, add, t0,dt, dx, x, nt,slow, antialias, zz, tt )

integer it,iz,itp,adj, add, nt
real t, tp, z, anp, t0,dt, dx, x, slow(nt), antialias, zz(nt), tt(nt)
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tenporary real ss(nt)

call null( ss,nt); call adjnull( adj, add, zz,nt, tt,nt)
if( adj '=0) cal | causint( 1, 0, nt, ss, tt)
doiz=2, nt { z =10 + dt*(iz-1)
t =sqgrt( z**2 + (slowiz)* abs(x) )**2 ); it = 1.5 + (t -t0)/dt
tp= sqrt( z**2 + (slowiz)*(abs(x)+abs(dx)))**2)
tp =t + antialias * (tp - t) + dt; itp= 1.5 + (tp-t0)/dt

amp = sqrt( nt*dt/t) * z/t | (itp - it)
if (itp <nt ) {

if( adj ==0) { ss(it ) =ss(it ) + amp * zz(iz)
ss(itp) = ss(itp) - amp * zz(iz)
}

el se { zz(i z) zz(iz) + anp * ss(it )

zz(i z)

}

zz(iz) - anp * ss(itp)

}
if( adj == 0) cal | causint( 0, add, nt, ss, tt)
return; end

subrouti ne boxstack( adj, add, sl ow, antialias, tO,dt, x0,dx, nt,nx, stack, gather)
integer adj, add, ix, nx, nt
real x, slow(nt),antialias, tO,dt,x0,dx, stack(nt), gather(nt, nx)
call adjnull( adj, add, stack, nt, gather, nt*nx)
doix=1, nx { x = x0 +dx * (ix-1)

call boxmo( adj, 1, tO,dt,dx,x,nt, slow antialias, stack, gather(1,ix))

}

return; end

To find the end points of the rectangular intervals, givenvrtical travel time, | get the
timet, in the usual way. Likewise | get the timep, on the next further-out trace for the
ending location of the rectangle wavelet. | introduce a peeter callecinti al i as that can be
used to increase or decreaseithet gap. Normallyanti al i as=1.

Theoretical solutions to various problems lead to varioggessions for amplitude along
the hyperbola. | set the amplitudep by a complicated expression that | do not defend or
explain fully here but merely indicate that: a “divergencetrection is in the factor 4/t; a
cosine like “obliquity” scale iz/t; and the wavelet area must be conserved, so the height is
inversely proportional to the pulse widthtp - it). Wavelet area is conserved to assure that
after low-pass filtering, the strength of a wave is independéwhether it straddled two mesh
points as (.5, .5) or lay wholly on one of them as (1, 0).

To test a limiting case, | set the antialias parameter to aec show the result in Fig-
ure 10.6 which is the same as the simple prescription to “suenthex-axis.” We notice that
the final stack is not the perfect impulses that we began Witle. explanation is: information
can be expanded in time and then compressed with no loss,ebatithis compressed first
and then expanded, so the original location is smeared cé&latso that the full amplitude is
not recovered on the latest event. The explanation is thigngisant fraction of the angular
aperture has been truncated at the widest offset.
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Figure 10.6: Rectangles shortened to e i
one point duration. apti al i as=0.) =
| trimo-boxmo( [ER]

10.1.3 Coding a triangle footprint

We should take some care with anti-aliasing in data proegs3ihe anti-aliasing measures we
take, however, need not match the field recording. If the aeldys were rectangles, we could
use triangles or sincs in the data processing. It happengidnagles are an easy extension of
the rectangle work that we have been doing and triangles mhblgstep in the right direction.

For an input pulse, the output of integration is a step. Ttipuwiwf a second integration is
aramp. For aninput triplet (1,0,82,0, 0, 1) the output of two integrations is a short triangle.
An easy way to assure time alignment of the triangle centéértlve triplet center is to integrate
once causally and once anticausally as done in subrodiing nt () on this page.

# Doubl e integration, first causal, then anticausal.

#

subrouti ne doubint( adj, add, n, pp , qq )

i nt eger adj, add, n; real pp(n), qq(n)

temporary real tt(n)

call adjnull( adj, add, pp,n, qq,n)

if( adj ==0) { call causint( O, 0, n,pp, tt )
call causint( 1, add, n,qq, tt )

}
el se { call causint( 1, 0, ntt, qq )

call causint( 0, add, n,tt, pp )

return; end

You can imagine placing the ends and apex of each trianglenaaeest neighbor mesh
point as we did with the rectangles. Instead | place these smate precisely on the mesh
with linear interpolation. Subrouting nt 1() on page 19 does linear interpolation, but here
we need weighted results as providedsbyt w() on this page.

# Scaled linear interpolation.

#

subroutine spotw adj, add, scale, nt,tO0,dt, t, val, vec )
integer it,itc, adj, add, nt
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real tc, fraction, scal e, t0,dt, t, val, vec(nt)
call adjnull( adj, add, val ,1, vec,nt)
tc = .5+ (t-t0) / dt; itc = tc; it =1+ itc; fraction =tc - itc
if(1<=it && it <nt) {
if( adj == 0) {
vec(it ) = vec(it ) + (1l.-fraction) * val * scale
vec(it+l) = vec(it+l) + fraction * val * scale
}
el se
val = val + ((1.-fraction) * vec(it) +
fraction * vec(it+l) ) * scale
}

el se
call erexit('spotw. at boundary’)
return; end

Using these subroutines, | assembled the stacking subeauti st ack() and the NMO
routinetrimo() with triangle wavelets. The triangle routines are like #hdsr rectangles
except for some minor changes. Instead of computing the¢kieal locations of impulses on
nearer and further traces, | assumed a straight line tangéné hyperbold? = 72+ x2/v2.
Differentiating byx at constant gives the slopet/dx = x/(v°t). As before, the area of the
the wavelets, now triangles must be preserved. The arear@mgle is proportional to the
base times the height. Since the triangles are built fronbldomategration ramp functions, the
height is proportional to the base length. Thus to presene@saeach wavelet is scaled by the
inversesquaredof the triangle’s base length. Results are shown in Figudes dnd 10.8.

Model Synthetic data Stack

—
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=
=
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Figure 10.7: Triangle wavelets, ac- = ="
curately positioned, but aliasedn{ = -
tialias=0.) |trimo-trimoQ|[ER]
B = = = S L

# Model i ng and stacking using triangle wei ghted noveout.
#
subroutine tristack( adj,add, slow anti,tO,dt,x0,dx, nt,nx, stack, gather )
i nteger ix, adj , add, nt, nx
real x, slow(nt),anti,tO,dt, x0,dx, stack(nt), gather(nt, nx)
call adjnull( adj, add, stack, nt, gather, nt*nx)

doix=1, nx { x = x0 + dx * (ix-1)
call trimo( adj,1,t0,dt,dx, x, nt,slow 0.,1.,anti,stack, gather(1,ix))
}

return; end
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Figure 10.8:
wavelets.

[ER]

= =
# noveout with triangle shaped snoot hi ng wi ndow.
#
subroutine trinmo( adj, add, dx, x, nt, slow, s02, wt, anti,
integer iz,itp,itmadj, add, nt
real dx, x, slow(nt), s02, wt, anti,
real z, t,tmtp, anp, slope
tenporary real ss(nt)
call null( ss,nt); call adjnull( adj, add
if( adj '=0) call doubint( 1, 0, nt, ss, tt)
doiz=2, nt { z =10+ dt * (iz-1)
t =sqgrt( z**2 + (slowmiz) * x)**2 )
slope = anti * ( slow(iz)**2 - s02 ) * x [/ t
tm=1t - abs(slope * dx) - dt; itm= 1.5 + (tmt0) / dt
if( itm<=1 ) next
tp =t + abs(slope * dx) + dt; itp 1.5 + (tp-t0) / dt
if( itp >>=nt ) break

Antialiased triangle
gntialias=1.) Where

ever triangle duration is more than
about three points, the end of one
triangle marks the apex of the next.
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amp = wt * sqrt( nt*dt/t) * z/t * (dt/(dt+tp-tm) ** 2
nt,t0,dt,tm zz(iz), ss)
nt,to0,dt,t ,
nt,t0,dt,tp

call spotw adj, 1
call spotw adj,
call spotw adj, 1
}

if( adj == 0)

return; end

1, 2*anp

call doubint( O

add,

nt,

zz(iz), ss)
zz(iz), ss)

SS,

tt)

Stack

e

=
zz, tt )
zz(nt),tt(nt)
zz,nt, tt,nt)

From the stack reconstruction of the model in Figure 10.8 @eethe reconstruction is more
blured with antialiasing than it was without in Figure 10.Vhe benefit of antialiasing will
become clear next in more complicated examples where evm¥s.

10.2 MIGRATION WITH ANTIALIASING

Subroutineaani g() below does migration and diffraction modeling using sulire ri mo()

as the workhorse.

# anti-aliased kirchhoff migration (adj=1) and nodel i ng (adj=0)
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#
subroutine aam g( adj, add, slow antialias,tO,dt, dx, nt,nx, image, data )
integer adj, add, ix, nx, nt, iy
real h, slow(nt),antialias,t0,dt, dx, image(nt,nx), data(nt, nx)
call adjnull( adj, add, i mge, nt *nx, data, nt*nx)
do ix=1, nx {
do iy=1, nx {
h =dx * (iy - ix)
call trimo( adj, 1, tO,dt,dx, h, nt,slow, 0., 1., antialias, _
image(1l,iy), data(l,ix))
1}

return; end

Figure 10.9 shows the synthetic image that is used for gesiiinere is a horizontal layer, a
dipping layer, and a few impulses. The impulses are chosengsr than the layers because
they will spread out in the synthetic data. The velocity letaconstant. Figure 10.10 shows

Figure 10.9: Model image for migra- —

tion study. [trimo-aamod [ER]

synthetic data made without regard for aliasing. The hypladlook fine—the way we expect.
The horizontal layer, however, is followed by many pseudeta. These pseudo layers are
the result of modeling with an operator that is spatiallasdid. Figure 10.11 shows how the
synthetic data improves dramatically when aliasing istt@ké& account. The layers look fine
now. The hyperbolas, however, have a waveform that is naptithnging with offset from the
apex. This changing waveform is an inevitable consequehteecanti-aliasing. The apex
has a huge amplitude because the temporal bandwidth is vatidse apex (because the dip
is zero there, there is no filtering away of high spatial femggies). Simple low-pass temporal
filtering (not shown) will cause the wavelet to be largelyapdndent of offset.

Do not confuse aliased data with synthetic data made by aseslioperator. To make
aliased data, you would start from good data, such as Figudel 1and throw out alternate
traces. More typically, the earth makes good data and wedaécord all the needed traces
for the quality of our field arrays.

The horizontal layer in Figure 10.11 has a waveform thatméxes a damped step function
which is related to the Hankel tail we studied in chapter 6 nghseibroutinenal f di f a() on
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page 95 was introduced to provide the filter required to cdrnkie waveform on the horizontal
layer in Figure 10.11 back to an impulse. This was done inif€i§0.12. You can see the final
flat-layer waveform is roughly the zero-phase shape weestavith. Figure 10.13 shows my

Figure 10.12: Best synthetic data. L§ g%%%
=

Made from model image using ﬁm/f;/;/ﬁ/;/fﬁ/? qﬁ

aam g() with antial i as=1 followed

by a causal half-order time deriva- J

tive. Lowpass temporal filtering é ééé; ?
S
P

?éé :

fier Ul

would make wavelets more inde-
pendent of location on a hyperbola. ? ?

[trimo-aad1h[ER] s 5 %é
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best migration of my best synthetic data. All the featuretheforiginal model are apparent.
Naturally, high frequencies are lost, more on the dippingd the@n the level one. Likewise the
broadening of the deeper point scatterer compared to tiestane is a well known aperture
effect. Figure 10.14 shows what happens when antialiasimgniored in migration. Notice

<
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Figure 10.13: Best migration of g fff/77 T T
best synthetic data. Usesni g() Qz/g
with antialias=2 followed by an Y
anticausal half-order time derivative. é % %ﬁ
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many false layers above the given horizontal layer. Notemisircles above the impulses.
Notice apparent noise everywhere. But notice also that ifheirdy bed is sharper than the
antialiased result in Figure 10.13.
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10.2.1 Use of the antialiasing parameter

Migration requires antialiasing, even where the earth leas dip. This is because the earth’s
horizontal layers cut across the migration hyperbola. Aergsting extension is where the
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earth has dipping layers. There #epe parameter could be biased to account for it.

Where the earth contains hyperbolas, they will cut steepigss our migration hyperbola.
Figure 10.15 suggests that such hyperbolas require ariasfirameter greater than unity,
Sayanti al i as=2.

Figure 10.15: Crossing hyperbolas
that do not touch. Thus the points
shown are not enough to prevent
spatial aliasing a line integral along e >
one trajectory of signal on the other.

= =
[frimo-croshy [ER] =

10.2.2 Orthogonality of crossing plane waves

Normally, waves do not contain zero frequency. Thus the imtegyral of a waveform normally
vanishes. Likewise, for a dipping plane wave, the time irdkganishes. Likewise, a line
integral across thet (x)-plane along a straight line that crosses a plane wave opaind)
plane wave vanishes. Likewise, two plane waves with diffeséopes should be orthogonal if
one of them has zero mean.

| suggest that spatial aliasing may be defined and analyzéd@ference to plane waves
rather than with reference to frequencies. Aliasing is winemplanes that should be orthogo-
nal, are not. This is like two different frequency sinusoi@isey are orthogonal except perhaps
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if there is aliasing.

10.3 ANTIALIASED OPERATIONS ON A CMP GATHER

A common-midpoint gather holding data with only one velpsiould stack OK without need
for antialiasing. It is nice when antialiasing is not regairbecause then high temporal fre-
guencies need not be filtered away simply to avoid aliasetiesiequencies. When several
velocities are simultaneously present on a CDP gather, Wdimd crossing waves. These
waves will be curved, but aliasing concepts drawn from plaaees are still applicable. We
designed the antialiasing of migration by expecting hypkxifianks to be orthogonal to hor-
izontal beds or dipping beds of some chosen dip. With a CDRegate chose not a dip, but
a slownessg. The slope of a wave of slownes®n a CDP gather igs’/t. The greater the
contrast in dips, the more need for antialiasing. The sldenave with slowness is x%/t.
The difference between this slope and that of another waxe’jg — x5/t or (s? — s5)x/t
which in the program is thel ope for the purpose of antialiasing. The choicespthas yet
to be determined according to the application. For illugira | prepared a figure with three
velocities, a very slow surface wave, a water wave, and astditnent wave. | chos® to
match the water wave. In practisgmight be the earth’s slowness as a function of traveltime
depth.

Figure 10.16: The air wave and 7%
fast wave are broadened increasingly
with offset, but the water wave does ===
not. This broadening enables cross- ﬁg ;
ing events to maintain their orthogo- >
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10.3.1 Iterative velocity transform

After we use data to determine a velocity model (or slowneedeat) with an operatoA
we may wonder whether synthetic data made from that modél thig adjoint operatoA’
resembles the original data. In other words, we may wonderdiose the velocity transform
A comes to being unitary. The first time | tried this, | discacthat large offsets and large
slownesses were attenuated. With a bit of experimentatfonrid that the scale factqy'sx
seems to make the velocity transform approximately a yndae. Results are in Figure 10.17.
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Figure 10.17 shows that on a second pass, the velocity specif the slow wave is much
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Figure 10.17: Top left: Slowness model. Top right: Datadtifrom it using the pseudouni-
tary scale factor. Bottom left: the velocity spectrum of taght. Bottom right: data made

from velocity spectrum [trimo-aavel] [ER]

smoothed. This suggests that it might be more efficient tarpaterize the data with slowness
squaredrather than slowness itself. Another interesting thinguthusing slowness squared
as an independent variable is that when slowness squaredasive (velocity imaginary) the
data is matched by ellipses curving up instead of hypertmlasng down.

Figure 10.18 shows the effect of no antialiasing in eitherfibld recording or the process-
ing. The velocity spectrum is as sharp, if not sharper, big marred by a large amount of
low-level noise.

Aliased data gives an interesting question. Should we usdiased operator as in Fig-
ure 10.18 or should we use an antialiased operator as thaguneFL0.17? Figure 10.19 shows
the resulting velocity analysis. The antialiased operagams well worth while, even when
applied to aliased data.

Inreal life, the field arrays are not “dynamic” (able to resgavith space and time variable
S) but the data processing can be dynamic. Fourier and fiifferehce methods of wave
propagation and data processing are generally immuneasiradj difficulties. On the other
hand, dynamic arrays in the data processing are a helpfulréeaf the ray approach whose
counterparts seem unknown with Fourier and finite-diffeestechniques.

Since/sx does not appear in physical modeling, people are sometiestaht to put
it in the velocity analysis. If,/sx is omitted from the modeling, thejsx| should be put in
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Figure 10.18: Like Figure 10.17 but witinti al i as=0. This synthetic data presumes no
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Figure 10.19: Aliased data analyzed
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the velocity analysis. Failing to do so will give a resultdikn figure 10.20. The principal
feature of such a velocity analysis is the velocity smearigeason for smearing is that the
zero-offset signal is strong in all velocities. Multiplgrby ./sx kills that signal (which is
never recorded in the field anyway). The conceptual advardbg pseudounitary transforma-
tion like Figure 10.17 is that points in velocity space ardogonal components like Fourier
components whereas for nonunitary transforms like wittuFédL0.20 the different points in
velocity space are not orthogonal components.
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Figure 10.20: Like Figure 10.17 omitting pseudounitarylisca psun=0. Right is synthetic
data and left the analysis of it which is badly smeargdmo-velsmea}[ER]

Subroutinevel tran() does the work.

# veltran --- velocity transformwith anti-aliasing and sqrt(-i onega)

#

subroutine vel tran(adj, add, psun, s02, anti, tO, dt, x0, dx, s0, ds, nt, nx, ns, nodel , dat a)
integer it,ix,is, adj,add, psun, nt, nx, ns

real x, s, w, s02, anti, t0, dt, x0, dx, s0, ds, nodel (nt, ns), dat a(nt, nx)
tenmporary real slow(nt), half(nt, nx)

call null( hal f, nt *nx)

call adjnull( adj , add, nmodel , nt *ns, data, nt *nx)

if( adj '=0) do ix =1, nx

call halfdifa( adj, 0, nt, half(1, ix), data(l, ix) )
sO + (is-1) * ds; doit=1,nt { slowit) = s}
x0 + (ix-1) * dx

dois=1, ns { s
doix=1, nx { x

i f ( psun == 2 ) { w = abs( s * x) } # vel tran
else if( psun == 1) { w = sqgrt( abs( s * x)) } # pseudouni tary
el se { w = 1. } # nodel i ng
call trimo( adj, 1, tO,dt,dx, x, nt,slow, s02, _
wt , anti, nodel(1,is), half(1,ix))
1}

if( adj == 0) do ix =1, nx
call halfdifa( adj, add, nt, half(1, ix), data(l, ix) )
return; end
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EXERCISES:

1 What circumstances would suggest that the linear intatjool in subroutineri no() on
page 186 be replaced by nearest-neighbor interpolation?

2 Show how to adapt the programs of this chapter to variabbetspacing and missing data.
Hint: Splittrino() into two parts, the first determining the location of the idigring
traces and the second using that information.
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Chapter 11
Imaging in shot-geophone space

Till now, we have limited our data processing to midpoirfiset space. We have not analyzed
reflection data directly in shot-geophone space. In pradhis is often satisfactory. Some-
times it is not. The principal factor that drives us away frEynh)-space into g, g)-space is
lateral velocity variationv(x,z) # v(z). In this chapter, we will see how migration can be
performed in the presence ofx, z) by going to 6, g)-space.

Unfortunately, this chapter has no prescription for findirfg, z), although we will see
how the problem manifests itself even in apparently steatifegions. We will also see why,
in practice, amplitudes are dangerous.

11.1 TOMOGRAPY OF REFLECTION DATA

Sometimes the earth strata lie horizontally with littleegularity. There we may hope to
ignore the effects of migration. Seismic rays should fit apd@xmodel with large reflection
angles occurring at wide offsets. Such data should be ided&h& measurement of reflection
coefficient as a function of angle, or for the measuremenhefearth acoustic absorptivity
1/Q. In his doctoral dissertation, Ein&jartansson reported such a study. The results were
so instructive that the study will be thoroughly reviewedehd don’t know to what extent the
Grand Isle gas field typifies the rest of the earth, but it is>arekent place to begin learning
about the meaning of shot-geophone offset.

11.1.1 The grand isle gas field: a classic bright spot

The dataseKjartansson studied was a seismic line across the Grand Isle gas fieldheff
shore of Louisiana. The data contain several classic “bisglots” (strong reflections) on
some rather flat undisturbed bedding. Of interest are tleedhvariations in amplitude on
reflections at a time depth of about 2.3 seconds on Figure tis3widely believed that such
bright spots arise from gas-bearing sands.

197
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Theory predicts that reflection coefficient should be a fiomcof angle. For an anoma-
lous physical situation like gas-saturated sands, thetiimshould be distinctive. Evidence
should be found on common-midpoint gathers like those showfigure 11.1. Looking at
any one of these gathers you will note that the reflectiomgtreversus offset seems to be
a smooth, sensibly behaved function, apparently quite unebke. Using layered media the-
ory, however, it was determined that only the most impropaéitarre medium could exhibit
such strong variation of reflection coefficient with anglarstigularly at small angles of inci-
dence. (The reflection angle of the energy arriving at widgedfat time 2.5 seconds is not a
large angle. Assuming constant velocity, arccos(2.8) = 28°). Compounding the puzzle,
each common-midpoint gather showditierentsmooth, sensibly behaved, measurable func-
tion. Furthermore, these midpoints are near one anothreshtat points spanning a horizontal
distance of 820 feet.

11.1.2 Kjartansson's model for lateral variation in amplitude

The Grand Isle data is incomprehensible in terms of the muoaetd on layered media theory.
Kjartansson proposed an alternative model. Figure 11u&tithtes a geometry in which rays
travel in straight lines from any source to a flat horizongdllactor, and thence to the receivers.
The only complications are “pods” of some material that sspmed to disturb seismic rays
in some anomalous way. Initially you may imagine that thegpabisorb wave energy. (In the
end it will be unclear whether the disturbance results frorgy focusing or absorbing).

Pod A is near the surface. The seismic survey is affectedtayae—once when the pod
is traversed by the shot and once when it is traversed by tbphgme. Pod C is near the
reflector and encompasses a small area of it. Pod C is seehadffisatsh but only at one
midpoint,yo. The raypath depicted on the top of Figure 11.2 is one thdtastad by all pods.
It is at midpointyy and at the widest offsétyay. Find the raypath on the lower diagram in
Figure 11.2.

Pod B is part way between A and C. The slope of affected pairttsd {y, h)-plane is part
way between the slope of A and the slope of C.

Figure 11.3 shows a common-offset section across the gds Tieke offset shown is the
fifth trace from the near offset, 1070 feet from the shot poiwn’t be tricked into thinking
the water was deep. The first break at about .33 seconds isamgle propagation.

The power in each seismogram was computed in the interva Ir® to 3 seconds. The
logarithm of the power is plotted in Figure 11.4a as a functdmidpoint and offset. Notice
streaks of energy slicing across thelf)-plane at about a 45angle. The strongest streak
crosses at exactly 45hrough the near offset at shot point 170. This is a missirmg, & is
clearly visible in Figure 11.3. Next, think about the gasdsdascribed as pod C in the model.
Any gas-sand effect in the data should show up as a streaksaaliooffsets at the midpoint
of the gas sand—that is, horizontally across the page. itdeer’ such streaks in Figure 11.4a.
Careful study of the figure shows that the rest of the manylgi@gsible streaks cut the plane
at an angle noticeablgssthan+45°. The explanation for the angle of the streaks in the figure
is that they are like pod B. They are part way between the saidad the reflector. The angle
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Figure 11.1: Top left is shot point 210; top right is shot g&#20. No processing has been
applied to the data except for a display gain proportionaini@. Bottom shows shot points

305 and 315. (Kjartansson¥g-kjcmg [NR]
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Figure 11.2: Kjartansson’s model. The model on the top prediuhe disturbed data space
sketched below it. Anomalous material in pods A, B, and C magétected by its effect on

reflections from a deeper layersg-kjidea [NR]
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determines the depth. Being closer t¢ 4%an to 0, the pods are closer to the surface than to
the reflector.

Figure 11.4b shows timing information in the same form thguFe 11.4a shows ampli-
tude. A CDP stack was computed, and each field seismogramomgsaced to it. A residual
time shift for each trace was determined and plotted in [eidur.4b. The timing residuals on
one of the common-midpoint gathers is shown in Figure 11.5.

Figure 11.5: Midpoint gather 220 {
(same as timing of (h,y) in Fig- ale Wik
ure 11.4b) after moveout. Shown is )

a one-second window centered at 2.3 }1) ' u
seconds, time shifted according to an &
NMO for an event at 2.3 seconds, us-
ing a velocity of 7000 feet/sec. (Kjar-

tansson) sg-kjmid| [NR]
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The results resemble the amplitudes, except that the sdsettome noisy when the am-
plitude is low or where a “leg jump” has confounded the measwant. Figure 11.4b clearly
shows that the disturbing influence on timing occurs at timesdepth as that which disturbs
amplitudes.

The process oinversesant stack (not described in this book) enables one to determine
the depth distribution of the pods. This distribution ispliésyed in figures 11.4c and 11.4d.

11.1.3 Rotten alligators

The sediments carried by the Mississippi River are droppégeadelta. There are sand bars,
point bars, old river bows now silted in, a crow’s foot of sgmtistributary channels, and be-
tween channels, swampy flood plains are filled with decayrggmic material. The landscape
is clearly laterally variable, and eventually it will allrdi of its own weight, aided by growth
faults and the weight of later sedimentation. After it isibdrand out of sight the lateral vari-
ations will remain as pods that will be observable by therselsgists of the future. These
seismologists may see something like Figure 11.6. Figuré diows ahree-dimensional
seismic survey, that is, the ship sails many parallel linesia70 meters apart. The top plane,
a slice at constant time, shows buried river meanders.
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Figure 11.6: Three-dimensional seismic data from the Gulffailand. Data planes from
within the cube are displayed on the faces of the cube. Thelape shows ancient river

meanders now submerged. (Dahm and Graebsgmeande{ER]

11.1.4 Focusing or absorption?

Highly absorptive rocks usually have low velocity. Behintba velocity pod, waves should
be weakened by absorption. They should also be strengthsnéatusing. Which effect
dominates? How does the phenomenon depend on spatial wgtle?eMaybe you can figure
it out knowing that black on Figure 11.4c denotes low amgktor high absorption, and black
on Figure 11.4d denotes low velocities.

I’'m inclined to believe the issue is focusing, not absonpti&ven with that assumption,
however, a reconstruction of the velociigx, z) for this data has never been done. This falls
within the realm of “reflectionomography”, a topic too difficult to cover here. Tomography
generally reconstructs a velocity moa€k, z) from travel time anomalies. It is worth noticing
that with this data, however, the amplitude anomalies seegive more reliable information.

EXERCISES:

1 Consider waves converted from pressBravaves to shea® waves. Assume aB-wave
speed of about half the-wave speed. What would Figure 11.2 look like for these waves
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11.2 SEISMIC RECIPROCITY IN PRINCIPLE AND IN PRACTICE

The principle ofreciprocity says that the same seismogram should be recorded if thelosat
of the source and geophone are exchanged. A physical reasthrefvalidity of reciprocity is
that no matter how complicated a geometrical arrangemeaspeed of sound along a ray is
the same in either direction.

Mathematically, the reciprocity principle arises becabhgegphysical equations of elasticity
are self adjoint. Thinking in terms of finite differences ogradded earth, self-adjoint means
that the matrix that translates a source anywhere to a respamywhere else is a symmetric
matrix. There is a reason why such a matrix turns out to be sstmien A product of symmetric
matrices is symmetric. Running a finite difference systeohdiane step is often a symmetric
matrix, SO running it many steps results in a symmetric mafkny actual proof is much more
complicated than these few words. The final result is that gemplicated electromechanical
systems mixing elastic and electromagnetic waves gegdidflll the reciprocal principle.
To break the reciprocal principle, you need something likéraly atmosphere so that sound
going upwind has a different velocity than sound going dovwnaly

Anyway, since the impulse-response matrix is symmetremeints across the matrix di-
agonal are equal to one another. Each element of any paiegpamse to an impulsive source.
The opposite element of the pair refers to an experimentevtier source and receiver have
had their locations interchanged.

A tricky thing about the reciprocity principle is the way anha patterns must be handled.
For example, a single vertical geophone has a natural aafesitern. It cannot see horizon-
tally propagating pressure waves nor vertically propaggshear waves. For reciprocity to
be applicable, antenna patterns must not be interchanged g8durce and receiver are inter-
changed. The antenna pattern must be regarded as attachedtedium.

| searched our data library for split-spread land data tloatldvillustrate reciprocity under
field conditions. The constant-offset section in Figure/Mas recorded by vertical vibrators
into vertical geophones. The survey was not intended to bstat reciprocity, so there likely
was a slight lateral offset of the source line from the regeline. Likewise the sender and
receiver arrays (clusters) may have a slightly differemirgetry. The earth dips in Figure 11.7
happen to be quite small although lateral velocity varrateoknown to be a problem in this
area.

In Figure 11.8, three seismograms were plotted on top of tiegiprocals. Pairs were
chosen at near offset, at mid range, and at far offset. Yowsearnhat reciprocal seismograms
usually have the same polarity, and often have nearly equoplitudes. (The figure shown is
the best of three such figures | prepared).

Each constant time slice in Figure 11.9 shows the recipradimany seismogram pairs.
Midpoint runs horizontally over the same range as in Figur& 1Offset is vertical. Data is
not recorded near the vibrators leaving a gap in the middienihimize irrelevant variations,
moveout correction was done before making the time slicEgerg is a missing source that
shows up on the left side of the figure). A movie of panels likguFe 11.9 shows that the
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bilateral symmetry you see in the individual panels is cti@mstic of all times. On these
slices, you notice that the long wavelengths have the egfddulateral symmetry whereas the
short wavelengths do not.

In the laboratory, reciprocity can be established to withi& accuracy of measurement.
This can be excellent. (See White’s example in FGDP). In #id,fthe validity of reciprocity
will be dependent on the degree that the required condigoadulfilled. A marine air gun
should be reciprocal to a hydrophone. A land-surface wedgbp source should be recipro-
cal to a vertical geophone. But a buried explosive shot ne¢da reciprocal to a surface
vertical geophone because the radiation patterns areehtf@and the positions are slightly
different. Under varying field conditions Fenati and Roamarid that small positioning errors
in the placement of sources and receivers can easily cresatepancies much larger than the
apparent reciprocity discrepancy.

Geometrical complexity within the earth does not diminisl applicability of the prin-
ciple of linearity. Likewise, geometrical complexity doest reduce the applicability of reci-
procity. Reciprocity does not apply to sound waves in thesgmee ofwind. Sound goes
slower upwind than downwind. But this effect of wind is mu@sg than the mundane ir-
regularities of field work. Just the weakening of echoes witte leaves noises that are not
reciprocal. Henceforth we will presume that reciprocitg&nerally applicable to the analysis
of reflection seismic data.

11.3 SURVEY SINKING WITH THE DSR EQUATION

Exploding-reflector imaging will be replaced by a broadeagmmg conceptsurvey sinking.
A new equation called the double-square-root (DSR) equatith be developed to implement
survey-sinking imaging. The function of ti¥SR equationis to downward continue an entire
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seismic survey, not just the geophones but also the shotk deead at equation (11.13) and
you will see an equation with two square roots. One repregéptcosine of the wawaarival
angle. The other represents tlaeoffangle at the shot. One cosine is expressed in terms of
kg, the Fourier component along the geophone axis of the dawaneoin (s, 9,t)-space. The
other cosine, witlks, is the Fourier component along the shot axis.

11.3.1 The survey-sinking concept

The exploding-reflector concept has great utility becauseables us to associate the seismic
waves observed at zero offset in many experiments (say 1000p®ints) with the wave
of a single thought experiment, the exploding-reflectoregixpent. The exploding-reflector
analogy has a few tolerable limitations connected withrédteelocity variations and multiple
reflections, and one major limitation: it gives us no cluecalsdw to migrate data recorded at
nonzero offset. A broader imaging concept is needed.

Start from field data where a survey line has been run along{tves. Assume there
has been an infinite number of experiments, a single expatiomsisting of placing a point
source or shot aon thex-axis and recording echoes with geophones at each possiaiedn
g on thex-axis. So the observed data is an upcoming wave that is aitwergional function
of sandg, sayP(s,g,t).

Previous chapters have shown how to downward continuegbemingwvave. Downward
continuation of the upcoming wave is really the same thindagnward continuation of the
geophones. ltis irrelevant for the continuation proceguvbere the wave originates. It could
begin from an exploding reflector, or it could begin at thefate, go down, and then be
reflected back upward.

To apply the imaging concept of survey sinking, it is necasgadownward continue the
sources as well as the geophones. We already know how to dadreentinue geophones.
Since reciprocity permits interchanging geophones wititshwe really know how to down-
ward continue shots too.

Shots and geophones may be downward continued to diffezealsl and they may be
at different levels during the process, but for the final liethey are only required to be at
the same level. That is, taking to be the depth of the shots amglto be the depth of the
geophones, the downward-continued survey will be requitedl levelsz = zs = zg.

The image of a reflector ax(z) is defined to be the strength and polarity of the echo seen
by the closest possible source-geophone pair. Taking thleemetical limit, this closest pair
is a source and geophone located together on the reflectravel time for the echo is zero.
This survey-sinking concept of imaging is summarized by

Imagek,z) = Waveb=x,9=X,2t=0) (11.1)

For good quality data, i.e. data that fits the assumptionseofiownward-continuation method,
energy should migrate to zero offset at zero travel timedyaf the energy that doesn’t do so
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should enable improvement of the model. Model improvemsuaally amounts to improving
the spatial distribution of velocity.

11.3.2 Survey sinking with the double-square-root equatio

An equation was derived for paraxial waves. The assumpti@isingle plane wave means
that the arrival time of the wave is given by a single-valtedz). On a plane of constaiat
such as the earth’s surface, Snell’s paramptsrmeasurable. It is

ot sinéd
_ = =2 = 11.2
o . p (11.2)

In a borehole there is the constraint that measurementsleusiade at a constarf where
the relevant measurement from @pcomingwave would be

at cost 1 at \?
s - = —J= (= (11.3)
0z v v2 X
Recall the time-shifting partial-differential equationdaits solutionJ as some arbitrary func-
tional form f:

ouU ot U
— = - (11.49)
0z 0z ot

z 4t
u = f(r—A Ed% (11.5)

The partial derivatives in equation (11.4) are taken to beoastantx, just as is equation
(11.3). After inserting (11.3) into (11.4) we have

U 1 at \? au
— = - - | = — (11.6)
0z v2 aX ot

Fourier transforming the wavefield ovex, ), we replaced/at by —iw. Likewise, for the

traveling wave of the Fourier kernel exp{wt + ikxX), constant phase means tlhafox =
kx /w. With this, (11.6) becomes

U 1k

The solutions to (11.7) agree with those to the scalar wavatean unless is a function ofz,

in which case the scalar wave equation has both upcoming@mdgbing solutions, whereas
(11.7) has only upcoming solutions. We go into the lateratspdomain by replacindck by
d/dx. The resulting equation is useful for superpositions of ynagal plane waves and for
lateral velocity variations(x).
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11.3.3 The DSR equation in shot-geophone space

Let the geophones descend a distagizginto the earth. The change of the travel time of the
observed upcoming wave will be

ot 1 ot \?
a _\/ . <_) (11.8)
0Zg v a9

Suppose the shots had been let off at dejgthinstead of az = 0. Likewise then,
ot 1 at \?
- - _|=—_(Z 11.9
0Zs \/ v2 <85> (11.9)

Both (11.8) and (11.9) require minus signs because thelttiave decreases as either geo-
phones or shots move down.

Simultaneously downward project both the shots and geagghbg an identical vertical
amountdz= dzy = dz. The travel-time change is the sum of (11.8) and (11.9), hame

ot ot ot ot
dt = —d —d = — 4+ —)d 11.10
9t z % (azg + azs) z ( )

B (B EG) e

This expression fobt /0z may be substituted into equation (11.4):
U 1 at \? 1 at\* | au
— = = — (= e — 11.12
0z + (\,/v2 <8g> + \/v2 <85> ) ot ( )

Three-dimensional Fourier transformation converts upngiwave datai(t, s, g) to U (w, ks, Kg).
Expressing equation (11.12) in Fourier space gives

= = _.w{ F‘(Z) n F‘(Z) U (11.13)

Recall the origin of the two square roots in equation (11.T®)e is the cosine of the arrival
angle at the geophones divided by the velocity at the gea#horhe other is the cosine of the
takeoff angle at the shots divided by the velocity at the shutith the wisdom of previous
chapters we know how to go into the lateral space domain bacewiky by d/dg andiks
by 9/9s. To incorporate lateral velocity variatiar{x), the velocity at the shot location must
be distinguished from the velocity at the geophone locafidus,

or
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auU —iw \? 92 —iw \? 32
7 = N(wg))ag”\/(v(s))w}u (11.14)

Equation (11.14) is known as the double-square-root (D®fRa#on in shot-geophone
space. It might be more descriptive to call it the surveyisig equation since it pushes
geophones and shots downward together. Recalling th@sextisplitting and full separation
we realize that the two square-root operators are commaatgaiis) commutes withv/9g), so
it is completely equivalent to downward continue shots agolpipones separately or together.
This equation will produce waves for the rays that are foundero-offset sections but are
absent from the exploding-reflector model.

11.3.4 The DSR equation in midpoint-offset space

By converting the DSR equation to midpoint-offset space wkb& able to identify the famil-
iar zero-offset migration part along with corrections fdiset. The transformation between
(g,s) recording parameters any, f) interpretation parameters is
S
y = 9 er (11.15)
—S
h = 9 - (11.16)

Travel timet may be parameterized ig,s)-space or ¥, h)-space. Differential relations for
this conversion are given by the chain rule for derivatives:

ot at gy ot oh 1 /0t ot
o - 2y 29 _ - (L2 11.17
a9 ady dg + oh ag 2 <ay + ah) ( )
ot at gy ot dh 1 /ot ot
o - sty 24 _ (2 _ 2 11.18
s dy 0s + oh as 2 (ay ah) ( )

Having seen how stepouts transform from shot-geophonesdpanidpoint-offset space,
let us next see that spatial frequencies transform in muelsime way. Clearly, data could
be transformed froms(g)-space to ¥, h)-space with (11.15) and (11.16) and then Fourier
transformed toKy, kn)-space. The question is then, what form would the doubleusgtroot
equation (11.13) take in terms of the spatial frequendigskg)? Define the seismic data field
in either coordinate system as

U(s,g) = U'(y,h) (11.19)

This introduces a new mathematical functidhwith the same physical meaning dsbut,
like a computer subroutine or function call, with a differsnbscript look-up procedure for
(y,h) than for &,9). Applying the chain rule for partial differentiation toX19) gives

ouU ay oU’  ah au’

— = — — 11.20
as s dy + s oh ( )
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U gy U’ ah au’

— = = — 11.21
g ag oy ag oh ( )
and utilizing (11.15) and (11.16) gives
ouU 1 /oU" U’
v — h — 11.22
as 2 <ay ah > ( )
ouU 1 /oU" U’
— = = 11.23
a9 2 <ay + ah > ( )

In Fourier transform space whei¢ix transforms toky, equations (11.22) and (11.23), when
i andU = U’ are cancelled, become

1
ks = > (ky — kn) (11.24)
1
Kg = > (ky + kn) (11.25)
Equations (11.24) and (11.25) are Fourier representatibfisl.22) and (11.23). Substituting

(11.24) and (11.25) into (11.13) achieves the main purpbs@ssection, which is to get the
double-square-root migration equation into midpoinseftfcoordinates:

0 ) vky + vkp 2 vky — vkp 2
8_ZU = —|; |:\/1_(T> +\/l_<T) U (11.26)

Equation (11.26) is the takeoff point for many kinds of conmmidpoint seismogram
analyses. Some convenient definitions that simplify itseapance are

k

c = % (11.27)
w
K

s = U5 (11.28)
k

y = LY (11.29)
2w
k

H = 2% (11.30)
2w

The new definition§SandG are the sines of the takeoff angle and of the arrival angleraja
When these sines are at their limits-6i they refer to the steepest possible slopes,t){

or (g,t)-space. LikewiseY may be interpreted as the dip of the data as seen on a seismic
section. The quantityd refers to stepout observed on a common-midpoint gatheh tvgse
definitions (11.26) becomes slightly less cluttered:

a%u = —ijw(\/l—(Y+H)2+\/l—(Y—H)2)U (11.31)
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EXERCISES:

1 Adapt equation (11.26) to allow for a difference in velgditetween the shot and the
geophone.

2 Adaptequation (11.26) to allow for downgoing pressureasand upcoming shear waves.

11.4 THE MEANING OF THE DSR EQUATION

The double-square-root equation is not easy to underst@acalise it is an operator in a four-
dimensional space, namely, §,9,t). We will approach it through various applications, each
of whichis like a picture in a space of lower dimension. Iisthection lateral velocity variation
will be neglected (things are bad enough already!).

One way to reduce the dimensionality of (11.14) is simplygbt$ = 0. Then the two
square roots become the same, so that they can be combinéc tthg familiar paraxial
equation:

212
- _ 2K
dz v 4w?
In both places in equation (11.32) where the rock velocitguos, the rock velocity is divided
by 2. Recall that the rock velocity needed to be halved in ofolefield data to correspond
to the exploding-reflector model. So whatever we did by sgtii = 0, gave us the same
migration equation we used in chapter 7. Settihg= 0 had the effect of making the survey-
sinking concept functionally equivalent to the explodiedlector concept.

U] (11.32)

11.4.1 Zero-dip stacking (Y = 0)

When dealing with the offsét it is common to assume that the earth is horizontally laysced
that experimental results will be independent of the midpwi With such an earth the Fourier
transform of all data ovey will vanish except foky = 0, or, in other words, fol¥ = 0. The

two square roots in (11.14) again become identical, andebelting equation is once more

the paraxial equation:
du 2 v2k2
— = —ilw-41- —U 11.33
dz ' v 42 ( )

Using this equation to downward continue hyperboloids ftomearth’s surface, we find the
hyperboloids shrinking with depth, until the correct deptiere best focus occurs is reached.
This is shown in Figure 11.10.

The waves focus best at zero offset. The focus representaawgrd-continued exper-
iment, in which the downward continuation has gone just teféector. The reflection is
strongest at zero travel time for a coincident source-vecqaair just above the reflector. Ex-
tracting the zero-offset value = 0 and abandoning the other offsets is a way of eliminating
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z = vt 2 =01, z=uvlig

—
—
—4

I
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t'=1t+z/v

Figure 11.10: With an earth model of three layers, the commaipoint gathers are three
hyperboloids. Successive frames show downward contimudat successive depths where

best focus occurs|sg-dcd [NR]

noise. (Actually it is a way oflefiningnoise). Roughly it amounts to the same thing as
the conventional procedure of summation along a hyperi@jectory on the original data.
Naturally the summation can be expected to be best when tbeityeused for downward
continuation comes closest to the velocity of the earth.et,aiffset space will be used to
determinevelocity.

11.4.2 Giving up on the DSR

The DSR operator defined by (11.14) is fun to think about, bdbesn’t really go to any
very popular place very easily. There is a serious probleth i It is not separableinto a
sum of an offset operator and a midpoint operatdonseparablaneans that a Taylor series
for (11.14) contains terms lik¥2H?2. Such terms cannot be expressed as a functiovi of
plus a function ofH. Nonseparability is a data-processing disaster. It insgiat migration
and stacking must be done simultaneously, not sequenti@lg only way to recover pure
separability would be to return to the spacesdndG.

This chapter tells us that lateral velocity variation iswenportant. Where the velocity
is known, we have the DSR equation in shot-geophone spacetioumigration. A popular
test data set is called the Marmousi data set. The DSR equatparticularly popular with it
because with synthetic data, the velocity really is knowstir&ating velocityv(x, z) with real
data is a more difficult task, one that is only crudely handilgdby methods in this book. In
fact, it is not easily done by the even best of current ingaigbractice.



Chapter 12

RATIonal FORtran == Ratfor

Bare-boneg-ortran is our most universal computer language for computationgsigs. For
general programming, however, it has been surpassédl biRatfor"” is Fortran with C-like
syntax. | believe Ratfor is the best available expositongleage for mathematical algorithms.
Ratfor was invented by the people who invented C. Ratfor iaiog are converted to Fortran
with the Ratforpreprocessor Since the preprocessor is publicly available, Ratfor &cpr
cally as universal as Fortran.

You will not really need the Ratfor preprocessor or any medefinitions if you already
know Fortran or almost any other computer language, bedhesethe Ratfor language will
be easy to understand. Statements on a line may be sepayatgd Statements may be
grouped together with braces { }. Do loops do not requireestant numbers because { }
defines the range. Given that( ) istrue, the statements in the following { } are dorese{

} does what you expect. We magpt contractel se i f to el sei f. We may always omit the
braces { } when they contain only one statemesiteak will cause premature termination of
the enclosing { }.break 2 escapes from {{ }}. while( ) { } repeats the statements in { }
while the condition () is truetepeat { ... } until( ) is aloop that tests at the bottom.
A looping statement more general thanis f or (initialize; condition reinitialize { }. An
example of one equivalent o i =0, n- 1 is the looping statemenbr (i =0;i <n;i =i +i). The
statemeniext causes skipping to the end of any loop and a retrial of thedastlition.
next is rarely used, but when it is, we must beware of an inconsistéetween Fortran and
C-language. Where Ratfor usesxt, the C-language use®ntinue (which in Ratfor and
Fortran is merely a place holder for labels). The Fortraatrehal operatorsgt . , . ge. , . ne. ,
etc. may be written-, >=, I=, etc. The logical operatorsaand. and.or. may be written
& and |. Anything from a # to the end of the line is a comment. Anyththgt does not
make sense to the Ratfor preprocessor, such as Fortraraofuut, is passed through without
change. (Ratfor has switch statement but we never use it because it conflicts with the
inplicit undefined declaration. Anybody want to help us fix the switch in publendiin

IKernighan, B.W. and Plauger, P.J., 1976, Software Toolsdigah-Wesley. Ratfor was invented at
AT&T, which makes it available directly or through many coumtgr vendors. The original Ratfor trans-
forms Ratfor code té-ortran 66. Seentt p: / / sepwwy. st anf or d. edu/ sep/ pr of for a public-domain Ratfor
translator td~ortran 77.
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Ratfor?)

Indentation irrat f or is used for readability. It is not part of timat f or language. Choose
your own style. | have overcondensed. There are wti@ll s associated with indentation.
The beginner’s pitfall is to assume thati@loop ends where the indentation ends. The loop
ends after the first statement. A larger scope forddéoop is made by enclosing multiple

statements in braces. The other pitfall arises in any cocistn likeif() ... if() ...
el se. Theel se goes with the lastf () regardless of indentation. If you want these with
the earliern f (), you must use braces like() { if() ... } else ....

The most serious limitation dfortran -77 is its lack of ability to allocate temporary mem-
ory. | have written greprocessorto Ratfor or Fortran to overcome this memory-allocation
limitation. This program, namesht , allows subroutines to include the declaratienpor ary
real data(nil,n2), so that memory is allocated during execution of the sulmewvhere the
declaration is written. Fortran-77 forces us to accompdisimething like this More recently
Bob Clapp has prepared Ratfor90, a Perl-based preprocesBortran 90 that incorporates
the desireable features of both ratfor and Fortran 90 anddkweard compatible to the codes
of this book.



Chapter 13

Seplib and SEP software

Most of the seismic utility software é8EP" Stanford Exploration ProjecSEP) software
handles seismic data as a rectangular lattice or “cube” ofbmus. Each cube-processing
program appends to the history file for the cube. Preprocgsstend-ortran (or Ratfor) to
enable it to allocate memory at run time, to facilitate inpot output of data cubes, and to
facilitate self-documenting programs.

At SEP, a library of subroutines known apl i b evolved for routine operations. These
subroutines mostly handle data in the form of cubes, plaarebyectors. A cube is defined by
14 parameters with standard names and two files: one the alagsitself, and the other con-
taining the 14 parameters and a history of the life of the agg passed through a sequence
of cube-processing programs. Most of these cube-progepsagrams have been written by
researchers, but several nonscientific cube programs lenate highly developed and are
widely shared. Altogether there are (1) a library of subireag, (2) a library of main programs,
(3) some naming conventions, and (4) a graphics librargedall ot . The subroutine library
has good manual pages. The main programs rarely have maamed,ptheir documentation
being supplied by the on-line self-documentation that tsaeted from the comments at the
beginning of the source file. Following is a list of the namépapular main programs:

Byt e Scale floats to brightness bytes for raster display.
Cat Concatenate conforming cubes along the 3-axis.
Cont our Contour plot a plane.

Cp Copy a cube.

Dd Convert between ASCI, floats, complex, bytes, etc.
Dot s Plot a plane of floats.

Ft 3d Do three-dimensional Fourier transform.

G aph Plot a line of floats.

I'n Check the validity of a data cube.

Mer ge Merge conforming cubes side by side on any axis.

101d reports of the Stanford Exploration Project can be foirttie library of the Society of Exploration
Geophysicists in Tulsa, Oklahoma.
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Movi e View a cube with Rick Ottolini’s cube viewer.
Noi se Add noise to data.

Rever se Reverse a cube axis.

Spi ke Make a plane wave of synthetic data.

Ta2vpl ot  Convert a byte format to raster display with ot .
Tpow Scale data by a power of timg1-axis).

Thpl ot Make a hidden line plot.

Transpose Transpose cube axes.

Tube View avpl ot file on a screen.

Wggl e Plot a plane of floats as “wiggle traces.”

W ndow Find a subcube by truncation or subsampling.

To use the cube-processing programs, read this documehthan for each command,
read its on-line self-documentation. To write cube-pregegprograms, read the manual page
for sepl i b and the subroutines mentioned there and here. To wgitet programs, see the
references ompl ot .

13.1 THE DATA CUBE

The data cube itself is like a Fortran three-dimensionakimatts location in the computer
file system is denoted bhy=PATHNAME, wherei n= is the literal occurrence of those three char-
acters, an@PATHNAME is a directory tree location likedat a/ west ern73. F. Like the Fortran
cube, the data cube can be real, complex, double precigitayt® and these cases are distin-
guished by the element size in bytes. Thus the history filéatogs one otsi ze=4, esi ze=8,

or esi ze=1, respectively. Embedded blanks around thédre always forbidden. The cube
values are binary information; they cannot be printed oteed{without the intervention of
something like a Fortran “format”). To read and write cubs=e the manual pages for such
routines aseed, sreed, rite, srite, snap.

A cube has three axes. The number of points on the 1-axis i& Fortran declaration of
a cube could beeal nydata(ni, n2, n3). For a planen3=1, and for a linep2=1. In addition,
many programs take “1” as the default for an undefined value2ofr n3. The physical
location of the single data valuedata(1, 1, 1), like a mathematical originog,0,,03), is
denoted by the three real variables o2, ando3. The data-cube values are presumed to
be uniformly spaced along these axes like the mathematicegments 41, A2, A3), which
may be negative and are denoted by the three real variableig, andd3. Each axis has a
label, and naturally these labels are calladel 1, | abel 2, andi abel 3. Examples of labels
arekil oneters, sec, Hz, and"of fset, knt. Most often,l abel 1="ti ne, sec". Altogether
that is 24 3 x 4 parameters, and there is an optional title parametershatarpreted by most
of the plot programs. An exampletstle="Yil maz and Cunro Canada profile 25". We
reserve the names, o4, d4, and | abel 4 (a few programs support them already), and please
do not usens etc. for anything but a five-dimensional cubic lattice.
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13.2 THE HISTORY FILE

The 15 parameters above, and many more parameters definethioysaof cube-processing
programs, are part of thehistory file" (which is ASCI, so we can print it). A great many
cube-processing programs are simple filters—i.e., one gabs in and one cube comes out—
and that is the case | will describe in detail here. For otlases, such as where two go in
and one comes out, or none go in and one comes out (synth&ic daone goes in and none
come out (plotting program), | refer you to the manual pagasjcularly to subroutine names
beginning withaux (as in “auxiliary”).

Let us dissect an example of a simple cube-processing progral its use. Suppose
we have a seismogram in a data cube and we want only the firsp&@@ on it, i.e., the
first 500 points on the 1-axis. A utility cube filter nameichdow will do the job. Our com-
mand line looks like< nygi ven. H W ndow n1=500 > nyshort.H On this command line,
nygi ven. H is the name of the history file of the data we are given, @rtiort . H is the his-
tory file we will create. The momen¥ ndow, or any othesepl i b program, begins, it copies
nygi ven. H t0 nyshort . H; from then on, information can only be appendedmshort . H.
When w ndow learns that we want the 1-axis on our output cube to be 5000at ¢chl |
putch(’n1’,’i’,500), which append$1=500 to nyshort.H. But before this, some other
things happen. Firsteplib’s internals will get our log-in name, the date, the name ef th
computer we are using, amidndow's name (which isw ndow), and append these i@short . H.
The internals will scanygi ven. Hfor i n=sonewher e to find the input data cube itself, and will
then figure out where we want to keep the output cgbg!.i b will guess that someone named
professor wants to keep his data cube at some place dik@ pr of essor/ _W ndow. H@ You
should read the manual page fait apat h to see how you can set up the default location for
your datasets. The reasaat apat h exists is to facilitate isolating data from text, which is
usually helpful for archiving.

When a cube-processing filter wonders what the value ig ¢br the cube coming in, it
makes a subroutine call likeal | hetch("n1","i", n1). The value returned for1 will be the
last value ofn1 found on the history filew ndow also needs to find a different, the one we
put on the command line. For this it will invoke somethingglil | getch(*n1*,"i", nlout).
Then, so the next user will know how big the output cube isjlitawl | put ch(*n1","i", nlout).
For more details, see the manual pages.

If we want to take input parameters from a file instead of framm¢ommand line, we type
something like<i n. H W ndow par=nyparfile.p > out.H. The. pis mynaming convention
and is wholly optional, as is the4 notation for a history file.

Sepcube programs are self-documenting. When you type the name girttggam with no
input cube and no command-line arguments, you should sesetiidocumentation (which
comes from the initial comment lines in the program).

SEP software supports “pipelining.” For example, we can sliggame out of a data cube,
make a contour plot, and display the plot, all with the comdhlime <i n. H W ndow n3=1 |
Contour | Tube where, asin UNIX pipes, thg “ denotes the passage of information from
one program to the next. Pipelining is a convenience for g8 because it saves defining a
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location for necessary intermediate files. The history filedflow down UNIX pipes. You
may not have noticed that some location had to be assigndtetddta at the intermediate
stages, and when you typed the pipeline above, you weredsgatclutter. To writesepl i b
programs that allow pipelining, you need to read the managkpnhc! ose() to keep the
history file from intermingling with the data cube itself.

A sample history file follows: this was an old one, so | remo@etew anachronisms
manually.

# Texaco Subduction Trench: read fromtape by Bill Harlan
n1=1900 n2=2274
01=2.4 it0=600 d1=.004 d2=50. in=/d5/al aska
W ndow. bill Wed Apr 13 14:27:57 1983
input() : in ="/d5/al aska"
output() : sets next in="/qg2/datal/Dalw
Input: float Fortran (1900, 2274,1)
Qutput: float Fortran (512,128,1)
n1=512 n2=128 n3=1
Swab: root @mzam Mon Feb 17 03:23:08 1986
# input history file /r3/qg2/data/Halw
input() : in ="/qg2/ dat a/ Dal w'
output() : sets next in="/qg2/datal/Dalw 002870_Rcp"
#i bs=8192 #o0bs=8192
Rcp: paul Mon Feb 17 03:23:15 PST 1986
Copyi ng from nmazama: /r 3/ 2/ dat a/ Hal w
to hanauna:/ g2/ dat a/ Hal w
i n="/qg2/ dat a/ Dal w'
Cp: jon@anauma  Wed Apr 3 23:18:13 1991
input() : in ="/qg2/ dat a/ Dal w'
output() : sets next in="/scr/jon/_junk. H@

13.3 MEMORY ALLOCATION

Everything below is for Fortran 77. This approach still warlbbut has been superceded
by a backward compatible Fortran 90 preprocessor by BobpQldpch is called Ratfor90.
Sepcube programs can be written in Fortran, Ratfor, or C. A seriowbf@m withFortran -77
(and hence Ratfor) is that memory cannot be allocated fayanvhose size is determined at
run time. We have worked around this limitation by using twarie-grown preprocessors,
one calledsaw (Stanford Auto Writer) for main programs, and one caled (Stanford Auto
Temporaries) for subroutines. Both preprocessors tramséither Fortran or Ratfor.

13.3.1 Memory allocation in subroutines with sat

Thesat preprocessor allows us to declare temporary arrays ofrarpiimension, such as
tenporary real *4 data(nl, n2,n3), convol ution(j+k-1) These declarations must follow
other declarations and precede the executable statements.
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13.3.2 The main program environment with saw

The saw preprocessor also calls an essential initialization nauthi t par (), organizes the
self-doc, and simplifies data-cube input. See the on-litfedeeumentation or the manual
pages for full details. Following is a completew program for a simple task:

# <in.H Scale scaleval=1. > out.H

#

# Copy input to output and scale by scal eva
# keyword generic scale

#%

integer nl, n2, n3, esize

fromhistory: integer nl, n2, n3, esize

if (esize !'=4) call erexit('esize !=4")

al l ocate: real x(nl,n2)

subroutine scaleit( nil,n2, x)

integer i1,i2, ni,n2

real x(nl,n2), scal eva

frompar: real scaleval =1

call hclose() # no nore paraneter handling
call sreed(’in’, x, 4*nl*n2)

do i1=1,n1

do i2=1,n2

x(il,i2) =x(il1,i2) * scaleva

call srite( 'out’, x, 4*nl*n2)

return; end

13.4 SHARED SUBROUTINES

The following smoothing subroutines are described in P\d ased in both PVI and BEI.

subrouti ne boxconv( nb, nx, xx, yy)

# inputs: nx, xx(i), i=1,nx the data
# nb the box length
# out put: yy(i),i=1, nx+nb-1 snoot hed dat a

i nteger nx, ny, nb,
real xx(nx), yy(1)
tenporary real bb(nx+nb)

#"||" nmeans .OR
if( nb <1 || nb>nx) call erexit(’boxconv')
ny = nx+nb-1
doi=1, ny
bb(i) =0

bb(1) = xx(1)
do i= 2, nx

bb(i) = bb(i-1) + xx(i) # make B(Z) = X(2)/(1-2)
do i= nx+1, ny

bb(i) = bb(i-1)
doi=1, nb

yy(i) = bb(i)
do i= nb+l, ny

yy(i) = bb(i) - bb(i-nb) # make Y(Z) = B(Z)*(1-Z**nb)
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doi=1, ny
yy(i) =yy(i) / nb
return; end

# Convolve with triangle

#

subroutine triangle( nr, ml, nl2, uu, vv)

# input: nr rectangle width (points) (Triangle base twice as wide.)
# input: uu(ntl,i2),i2=1,n12 is a vector of data

# out put: vv(ml,i2),i2=1,n12 may be on top of uu

integer nr,nl,nl2, i,np,nq
real uu( mi, nl2), vv( ml, nl2)
temporary real pp(nl2+nr-1), qq(nl2+nr+nr-2), tt(nl2)
do i=1,nl12 { qq(i) = uu(l,i) }
if( nl2 ==1)
do i= 1, ni2
tt(i) = qq(i)

el se {

call boxconv( nr, nl2, qq, pp); np = nr+nl2-1

call boxconv( nr, np, pp, qq); ng = nr+np-1

do i= 1, nl2
tt(i) = qq(i+nr-1)

doi=1, nr-1 # fold back near end
tt(i) =tt(i) + qq(nr-i)

doi=1, nr-1 # fold back far end
tt(nl2-i+1) = tt(nl2-i+1) + qq(nl2+(nr-1)+i)

}

do i=1,n12 { vv(l,i) =tt(i) }
return; end

# snmooth by convolving with triangle in two dinensions
#
subroutine triangle2( rectl, rect2, nl, n2, uu, vv)
integer i1,i2, rectl, rect2, nl, n2
real uu(nl,n2), vv(nl, n2)
temporary real ss(nil, n2)
doil=1, nl
call triangle( rect2, nl, n2, uu(il,1), ss(il, 1))
do i2=1, n2
call triangle( rectl, 1, nl, ss(1,i2), vv(1,i2))
return; end
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45 degree phase angle, 95, 174
full separation, 149

aamig subroutine, 186
adjnull subroutine, 13
adjoint, 11, 16, 46
alias, 70, 177
amplitude, 47, 49, 50, 52, 56
antialias, 189

migration, 186

stack, 182, 184

velocity analysis, 191
artifacts, 68
autocorrelation, 79, 80
AVO, 47, 49

back projection, 12

basement rock, 86

boundary, 152

boundary condition, 152, 159, 160
boxconv subroutine, 221

boxmo subroutine, 182

Byte program, 217

C, 215

Cat program, 217

Cauchy function, 82

causal integration, 19
causint subroutine, 20
CDP, 46

CDP gather, 2

CDP stack, 127

Cheops’ pyramid, 122
CMP gather, 2

comb, 82
common-depth-point stack, 127
common-midpoint, 46
common-midpoint stack, 46
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constant-offset migration, 124
Contour program, 217

Cp program, 217

Crank-Nicolson method, 158, 164
crossing traveltime curves, 47

damped square root, 110
data-push binning, 17

Dd program, 217

delay operator, 113
derivative, 14

differential equation, 20
diffraction, 101

dip, 102

dipping bed, 128

direct arrivals, 24

DMO, 135, 137, 141-144
dmokirch subroutine, 143
dot product test, 22

Dots program, 217
doubint subroutine, 184
double-sided exponential, 82
downward continue, 97
dpbin2 subroutine, 17
DSR equation, 207

eiktau subroutine, 112
ellipse, 124, 126
evanescent, 33
explicit method, 155, 156, 159
exploding reflector, 62, 121
exponential, 82
exponential
double-sided, 82

fast Fourier transform, 83
field array, 179
filter impulse response, 15
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finite difference, 147
flathyp subroutine, 124
focus, 101
Fortran, 85, 215-217, 220
Fourier analysis, 12
Fourier downward continuation, 102
Fourier sum, 74
Fourier transform
discrete, 73
fast, 83
inverse, 83
two-dimensional, 85, 86, 88
Fourier transformation, 16
front, 30
ftlaxis subroutine, 85
ft2axis subroutine, 85
Ft3d program, 217
fth subroutine, 84
ftu subroutine, 83
full separation, 149, 150, 152, 153

Gardner, 140
Gaussian, 82

gazadj subroutine, 114
Gibbs sidelobes, 80
Graph program, 217
ground roll, 24, 25, 29
guided wave, 24, 25

halfdifa subroutine, 95

hand migration, 61

Hankel function, 162

Hankel tail, 95

head wave, 24, 25

heat-flow equation, 149, 155-158
Hertz, 77

history file, 219

hyperbolic, non, 38

igradl subroutine, 15

implicit method, 155, 158, 159

In program, 217

index, 223

interpolation, nearest-neighbor, 41
interval velocity, 36, 38, 56, 57
inverse Fourier transform, 83

INDEX

inversion, 11

kirchfast subroutine, 67
Kirchhoff migration, 59, 65
kirchslow subroutine, 65
Kjartansson, 197

lateral velocity variation, 147, 148, 151, 167
lead-in, 6

leapfrog method, 158
least squares, 21, 43
lens equation, 153
lens term, 151, 167
linear interpolation, 18
linear moveout, 25, 27
lintl subroutine, 19
LMO, 27

Imo subroutine, 27

matmult subroutine, 13

matrix multiply, 11-13

Merge program, 217

mesh, 77

midpoint, 1

migration
constant-offset, 124
hand, 61
Kirchhoff, 59
phase-shift, 105
prestack, 121
prestack partial, 135

migration, defined, 101

modeling, 12

movie, 8, 9, 28, 44, 134, 161, 163, 167

Movie program, 218

Muir, 171, 172

multiple reflection, 63

mutter subroutine, 29

near-trace section, 2

nearest neighbor binning, 17

nearest neighbor coordinates, 17
nearest-neighbor interpolation, 41
nearest-neighbor normal moveout, 45
negative frequency, 79

NMO, 50
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nmoO subroutine, 45

nmol subroutine, 49

Noise program, 218

nonhyperbolic, 38

normal moveout, 2, 44

normal moveout, nearest neighbor, 45
normal rays, 60

Nyquist frequency, 75

offset, 1, 25, 47
operator, 11

pad2 subroutine, 82

parabolic wave equation, 147, 151, 170
phase velocity, 33

phasemig subroutine, 107
phasemod subroutine, 108
pitfall, 216

preprocessor, 215, 216
prestack migration, 121
prestack partial migration, 135
processing, 12

profile, 2

pseudocode, 12

guefrency, 82

random, 82

Ratfor, 215-217

ray, 30, 31

ray parameter, 31

rays, normal, 60
reciprocity, 205
rectangle function, 80
recursion, downward continuation, 114
recursion, integration, 20
reflection slope, 25
residual NMO, 144
resolution, 77, 115, 117
Reverse program, 218
RMS velocity, 35

Rocca, 137
root-mean-square, 35
rtris subroutine, 160

sat, 216, 220
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saw, 220, 221

scale factor, 78

scale subroutine, 78

section
near-trace, 2
zero-offset, 2

SEP, 217, 219, 222

seplib, 217

Sherwood, 135

shrink, 42

sign convention, 88

simpleft subroutine, 78

sinc, 80

slant stack, 203

slowfit subroutine, 55

slowness, 33

Snell parameter, 33

Snell wave, 33, 102, 104

Snell’s law, 33

spatial alias, 86, 89

spectrum, 79

Spike program, 218

split spread, 6

splitting, 149, 150, 152, 153, 165

spotw subroutine, 184

square root, 171

stack, 46, 47, 50

stack, antialias, 182

stackO subroutine, 46

stacking diagram, 3

stepout, 25, 31, 33

streamer, 6

stretch, 42

subroutine
aani g, antialias migration, 186
adj nul I, erase output, 13
boxconv, smooth, 221
boxno, box footprint, 182
causi nt, causal integral, 20
dmoki r ch, fast Kirchhoff dip-moveout,

143

doubi nt, double integration, 184
dpbi n2, push data into bin, 17
ei kt au, exp ikz, 112
f1 at hyp, const offset migration, 124
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ftilaxi s, FT 1-axis, 85

ft2axis, FT 2-axis, 85

fth, FT, Hale style, 84

ftu, unitary FT, 83

gazadj , phase shift mig., 114

hal f di f a, half derivative, 95

i gradi, first difference, 15

ki rchf ast, hyperbola sum, 67

ki r chsl ow, hyperbola sum, 65

l'int1, linearinterp, 19

| mo, linear moveout, 27

mat mul t , matrix multiply, 13

mut t er, mute, 29

nmo0, normal moveout, 45

nnol, weighted NMO, 49

pad2, round up to power of two, 82

phaseni g, migration, 107

phasenod, diffraction, 108

rtris, real tridiagonal solver, 160

scal e, scale an array, 78

sinpl eft, slow FT, 78

sl owfi t, velocity est., 55

spot w, weighted linear interp., 184

st ack0, NMO stack, 46

synmar i ne, Synthetic marine, 7

triangl e2, 2-D smooth, 222

triangl e, Smooth, 222

tri no, triangle footprint, 186

tristack, stack with triangle footprint,
185

vel si np, velocity spectra, 53

vel tran, antialiased velocity transform,
194

vi nt 2rms, interval to/from RMS vel,
57

wavenovi e, 2-D wave movie, 163

zpadi, zero pad 1-D, 16

survey sinking, 207
synmarine subroutine, 7

Ta2vplot program, 218
texture, 7

Thplot program, 218
time dip, 25, 61

time slice, 2

INDEX

tomography, 12, 197, 204
Tpow program, 218

trace, 44

transpose matrix, 42
Transpose program, 218
traveltime curves, crossing, 47
traveltime depth, 23

triangle footprint, 184

triangle subroutine, 222
triangle2 subroutine, 222
tridiagonal, 159, 160, 165, 167, 174
trimo subroutine, 186

tristack subroutine, 185
truncation, 15, 16

Tube program, 218

Tuchel’s law, 61

velocity
dip dependent, 129
interval, 56
laterally variable, 147, 148, 151, 167
picking, 55
RMS, 56
velocity spectrum, 51
velsimp subroutine, 53
veltran subroutine, 194
vertical exaggeration, 24, 115
vint2rms subroutine, 57
vplot, 217

wave equation, 104
wavemovie subroutine, 163
weighting function, 49
Wiggle program, 218

wind, 207

Window program, 218

Yilmaz, 135

zero pad, 15, 16, 82
zero-offset migration, 59
zero-offset section, 2
zpad1l subroutine, 16
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