
The Craft of Wavefield Extrapolation 

This chapter attends t o  those details that  enable us t o  do a high-quality 
job of downward continuing wavefields. There will be few new seismic imag- 
ing concepts here. There will, however, be interesting examples of pitfalls. 
And in order t o  improve the quality of seismic images of the earth, several 
new and interesting mathematical concepts will be introduced. Toward the 
end of the chapter a program is prepared t o  simulate and compare various 
migration methods. 

The Magic of Color 

The first thing we will consider in this chapter is signal strength. Echoes 
get weaker with time. This affects the images, and requires compensation. 

Next, seismic data is colored by filtering. This filtering can be done in 
space as well as time. Time-series analysis involves the concept of enhancing 
the signal-to-noise ratio by filtering t o  suppress some spectral regions and 
enhance others. Spectral weighting can also be used on wavefields in the 
space of o and k . In the absence of noise, wave-equation theory tells us 
what filters t o  use. Loosely, the wave equation is a filter with a flat amplitude 
response in (o, k )-space and a phase response that  corresponds t o  the time 
delays of propagation. The different regions of (o, k)-space have different 
amounts of noise. But the different regions need not all be displayed a t  the 
strength proposed by the wave equation, any more than  data  must be 
displayed with Ax = A z .  

An example of the mixture of filter theory and migration theory is pro- 
vided by the behavior of the spatial Nyquist frequency. Because seismic data 
is often spatially aliased, this example is not without practical significance. 
Think of an  impulse function with its Nyquist frequency removed. The remo- 
val has little relative effect on the impulse, but a massive relative effect on the 
zeroes surrounding the impulse. When migrating an impulse by frequency 
domain methods, spatial frequencies just below the spatial Nyquist are treated 



CRAFT 4.0 Craft of Wavefield Extrapolation 

much differently from frequencies just above it. One is treated as left dip, the 
other as right dip. This discontinuity in the spatial frequency domain causes 
a spurious, spread-out response in the space domain shown in figure 1. 

The spurious Nyquist noise is readily suppressed, not by excluding the 
Nyquist frequency from the display, but by a narrow band filter such as used 
in the display, namely (1 + cos kz Ax )/(I + .85 cos k, Ax ) which goes 

smoothly to  zero at the spatial Nyquist frequency. This filter has a simple tri- 
diagonal representation in the x -domain. 

FIG. 4.G1. Hyperbola amplified to exhibit surrounding Nyquist noise (top) 
removed by filtering (bottom). 

Survey of Migration Technique Enhancements 

In our quest for quality, we will also recall various approximations as  we 
go. Now is the time to see how the use of approximations degrades results, 
and to  discover how to improve those results. Five specific problems will be 
considered: 

1 The frequency dispersion that results from the approximation of 
differential operators by difference operators 
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2 The anisotropy distortion of phase and group velocity that results from 
square-root approximations 

3 The effect of truncation at the end of the survey line 

4 Dips greater than ninety degrees 

5 Wraparound problems of Fourier transformation 

6 The effect of v ( z  ) upon the Stolt method and how to improve the result 
by stretching 

Following study of these approximations, Section 4.6 is a penetrating 
study of causality, which covers much ground including how Fourier domain 
migration can simulate the causality intrinsic to  time domain migrations. 
Section 4.7 is the grand summary of techniques. A single program is 
presented that can simulate diffraction hyperbolas from many different migra- 
tion methods. This facilitates comparison of techniques and optimization of 
parameters. Figure 1 and many of the other figures in this chapter were pr* 
duced with this program, so you should be able to  reproduce them. 

A Production Pitfall: Weak Instability from v(x) 

Some quality problems cannot be understood in the Fourier domain. 
Unless carefully handled, lateral velocity variation can create instability. 

The existence of lateral velocity jumps causes reflections from steep 
faults. A more serious problem is that the extrapolation equations themselves 
have not yet been carefully stated. The most accurate derivation of extrapo- 
lation equations included in this book so far was done from dispersion rela- 
tions, which themselves imply velocity constant in x .  The question of how a 
dispersion relation containing a v kZ2 term should be represented was never 

answered. It might be represented by v ( x  , z )azz , d, v (x , z )dz , d,, v ( x  , z ) 
or any combination of these. Each of these expressions, however, implies a 
different numerical value for the internal reflection coefficient. Worse still, by 
the time all the axes are discretized, it turns out that one of the most sensible 
representations leads to  reflection coefficients greater than unity and to 
numerical instability. 

A weak instability is worse than a strong one. A strong instability will 
be noticed immediately, but a weak instability might escape notice and later 
lead to  incorrect geophysical conclusions. Fortunately, a stability analysis 
leads t o  a bulletproof method in Section 4.8. 
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4.1 Physical and Cosmetic Aspects 
of Wave Extrapolation 

Frequency filtering, dip filtering, and gain control are three processes 
whose purposes seem to  be largely cosmetic: they are used t o  improve the 
appearance of data. The criteria used t o  choose the quantitative parameters 
of these and similar processes are often vague and relate t o  human experience 
or visual perception. In principle, it should be possible t o  choose the parame- 
ters by invoking information theory and using objective criteria such as signal 
and noise dip spectra. But  in routine practice this is not yet being done. 

The importance of cosmetic processes is not t o  be underestimated. On 
many occasions, for example, a comparison of processing techniques (in order 
t o  choose a contractor perhaps?) has been frustrated by an  accidental change 
in cosmetic parameters. These cosmetic processes arise naturally within 
wave-propagation theory. I t  seems best t o  first understand how they arise, 
and then t o  build them into the processing, rather than t ry  t o  append them in 
some artificial way after the processing. The individual parts of the wave-ex- 
trapolation equations will now be examined t o  show their cosmetic effects. 

t Squared 

Echos get weaker with time. T o  be able t o  see the data  at late times, we 
generally increase data  amplification with time. I have rarely been disap- 
pointed by my choice of the function t 2  for the scaling factor. The t 
scaling function cannot always be expected t o  work, because it is based on a 
very simple model. But I find t 2  t o  be more satisfactory than a popular 
alternative, the growing exponential. The function t has no parameters 
whereas the exponential function requires two parameters, one for the time 
constant, and one for the time a t  which you must stop the exponential 
because it gets too large. 

The first of the two powers of t arises because we are transforming 
three dimensions t o  one. The seismic waves are spreading out in three dimen- 
sions, and the surface area on the expanding spherical wave increases in pro- 
portion t o  the radius squared. Thus the area on which the energy is distri- 
buted is increasing in proportion t o  time squared. But seismic amplitudes are 
proportional t o  the square root of the energy. So the basic geometry of 
energy spreading predicts only a single power of time for the spherical 
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divergence correction. 

An additional power of t arises from a simple absorption calculation. 
Absorption requires a model. The model I'll propose is too simple t o  explain 
everything about seismic absorption, but it nicely predicts the extra power of 
t tha t  experience shows we need. For the model we assume: 

1 One dimensional propagation 
2 Constant velocity 
3 Constant absorption Q-' 
4 Reflection coefficients random in depth 
5 No multiple reflections 
6 White source 

These assumptions immediately tell us that  a monochromatic wave 
would decrease exponentially with depth, say, as exp(-a w t ) where t is 
travel-time depth and a is a decay constant which is inversely proportional 
t o  the wave quality factor Q .  Many people go astray when they model real 
seismic data  by such a monochromatic wave. A better model is that  the 
seismic source is broad band, for example an impulse function. Because of 
absorption, high frequencies decay rapidly, eventually leaving only low fre- 
quencies, hence a lower signal strength. At  propagation time t the original 
white (constant) spectrum is replaced by the forementioned function 
exp(-a w t )  which is a damped exponential function of frequency. The 
seismic energy available for the creation of an impulsive time function is just 
proportional to  the area under the damped exponential function of frequency. 
As for the phase, all frequencies will be in phase because the source is 
assumed impulsive and the velocity is assumed constant. (See Section 4.6 for 
a causality problem lurking here). Integrating the exponential from zero to  
infinite frequency provides us with an inverse power of t thus completing 
the justification of a t divergence correction. 

It is curious that  the shape of the expected seismogram envelope t-2 
does not depend on the dissipation constant a. But changing the spectrum 
of the seismic source does change the shape of the envelope. I t  is left for an 
exercise t o  show that  a seismic source with spectrum / w I b' implies a diver- 
gence correction t 2+p. 

The seismic velocity increases with depth, so sometimes people who know 
the velocity may improve the divergence correction by making it a function of 
velocity (and hence offset) as well as time. 

In reality it may be fortuitous that  t 2  fits data so well. Actually, Q 
generally increases with depth whereas reflection coefficients generally 
decrease with depth. 
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Noise, Surface Waves and Clip 

If seismic data contained nothing but reflections, then there would be lit- 
tle trouble plotting it. You would simply multiply by t and then scale so 
tha t  the largest data values stayed in the available plotting area. In reality 
there are two problems: 1) noisy traces and 2) noise propagation modes. We 
have noisy traces because the people in the world won't all be quiet while we 
listen for echoes. Noise propagation modes are waves trapped in surface 
layers. So their divergence is in a two-dimensional space rather than the 
three-dimensional space for reflections. Water noises are additionally strong 
because of the homogeneity and low absorption of water. 

Noises are handled by "clipping" data  values a t  some level lower than 
the maximum. Clipping means that  values larger than the clip value are 
replaced by the clip value. Since the size of the noise is generally unpredict- 
able, the most reliable method is t o  use quantiles. Imagine the data points 
sorted in numerical order by the size of their absolute values. The n th  quan- 
tile is defined as the absolute value that  is n 1100 of the way between the 
smallest and largest absolute value. So if data is clipped a t  the 9gth percen- 
tile, then up t o  one percent of the data can be infinitely strong noise. I find 
tha t  most field profiles have less than 10% noisy points. So I often clip a t  
twice the goth percentile. To  find the quantile, it is not necessary t o  fully sort 
the  data. Tha t  would be slow. Hoare's algorithm is much faster (see FGDP 
or Claerbout and Muir [I9731 for full reference and more geophysical context). 

Different plots have different purposes. I t  is often important t o  preserve 
linearity during processing, but a t  the last stage - plotting - linearity can 
be sacrificed t o  enable us t o  see all events, large and small. After all, human 
perceptions are generally logarithmic. In our lab we generally use power laws. 
I find tha t  replacing data  points by their signed square roots generally 
compresses all signals into a visible range. When plotting field profiles with a 
very close trace spacing, i t  may be better t o  use the signed cube roots. More 
generally, we do non-linear gain with 

Display = sgn(Data) I Data ( 7  (1) 

Gamma is a term in photography t o  describe nonlinearity of photographic 
film. Most of the data  plots in this book use y = 1, t gain, and clip a t  the 
9gth percentile. 

The industry standard approach seems t o  be AGC (Automatic Gain Con- 
trol). AGC means t o  average the data magnitude in some interval and then 
divide by the magnitude. Although AGC is nonlinear, it is more linear than 
using y so it is presumably better if you plan later processing. But with 
AGC, you lose reversibility and the sense of absolute gain. 
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FIG. 4.1-1. Arctic profile from Western Geophysical. Left, with t 2. Center 
with t and 7=0.4. Right, with Western's AGC. 

Figure 1 is an interesting example. Since it is a split spread, you assume 
i t  t o  be land data. Ships can't push cables in front of them. But the left 
panel clearly shows marine multiples. The reverberation period is uniform, 
and there are no reflections before the water bottom. I t  must be data col- 
lected on ice over deep water (375m). From the non-linear gain in the center 
panel we clearly see a water wave, and before it a fast wave in the ice. There 
is also weak low-velocity, low-frequency "ground roll" on the ice. There are 
also some good reflections. 

Complex Velocity in the 5" Equation 

The 5" equation, namely, 
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states tha t  a wavefront will take some time t o  get from one depth t o  another. 
With velocity v being a real constant, waves controlled by (2)  propagate 
without change in form. In practice waveform changes are observed. So v 
should not be a real constant. An imaginary part of the velocity would cause 
attenuation. A frequency-dependent velocity would cause frequency disper- 
sion. 

Absorption 

A basic model arises when v (w)  is defined by the equation 

For E = 0, equation (3)  gives a constant velocity. Equation (3)  models the 
so-called causal, constant Q attenuation where Q-' = t an  .rrc (see Section 
4.6). Figure 2 shows an example of a synthetic seismogram generated by the 
exploding-reflector model using equations (2)  and (3) .  

Equation (3)  creates attenuation by introducing an imaginary part into 
the velocity. The main effect of this attenuation is t o  weaken the arrivals a t  
late time. A secondary effect is t o  make the frequency content of late arrivals 
lower. A tertiary effect is this: I t  happens that  the requirement of causality 
forces the real part of the velocity t o  be slightly frequency-dependent. In the 
figure, this slight frequency-dependence is evidenced by the "rise time" on 
each pulse being faster than the "fall time." This means that  the high fre- 
quencies are traveling slightly faster than the low frequencies. In practice, 
this tertiary effect is rarely noticeable. 

In making earth images, earth dissipation might be compensated by 
amplifying high-frequency energy during downward continuation. This might 

be done just like migration, except that  k, = - 4- would be 

replaced by something like k = ( - i ~ ) ~ .  In practice, however, no one 

would really do this, since it would amplify high frequency noise. This raises 
the issue of signal-to-noise ratio. 

Noise isn't simply an ambient random fluctuation. It is mainly repeat- 
able if the data  is reshot. Noise is anything for which we have no satisfactory 
model. On  a practical level, time-variable filters are often used t o  select 
pleasing time-variable passbands. Equations (2)  and ( 3 )  could be used for this 
implementation of time-variable filters, but it would be an oversimplification 



CRAFT 4.1  Physical and Cosmetic Aspects 

time (sec) 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 1 

I 

OI 
-3 
3 
U 

a 0-. 
El v 

E r 
u 

1 v Y v 

20 40 60 80 100 120 140 160 180 20C 2 240 

frequency (Hz) 

FIG. 4.1-2. Synthetic seismogram for an earth with Q 100. (Hale) 

t o  view their use as compensation for the earth Q . 

Dispersion 

The frequency-dependence of velocity in the case of surface waves is 
more dramatic. For example, a frequency-dependent velocity is given by the 
equation 

Figure 3a contains some frequency-dispersive ground roll. In figure 3b 
the dispersion has been backed out by a migration-like process. One 
difference between this process and migration is that  migration extrapolates 
down the z-axis whereas in figure 3b the extrapolation is along the x-axis. 
(The extrapolation direction is really just in the computer). Each trace in 
figure 3b is processed separately. In migration, data  p ( t  , z =o) is extrapo- 
lated t o  an image p ( t  =0, z )  using a dispersion relation k, = 

- ,/-. In this process, data p ( t  , z =0) is extrapolated t o  an 

image p ( t  =0, x ) using a dispersion relation like kZ = f ( w / v  ). After this 
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pseudomigration a pseudodiffraction is done with a constant velocity. The 
total effect is t o  undo the frequency dispersion. Finally, i t  is possible t o  see 
tha t  the noise consists of two separate events. Techniques resembling this one 
were first used t o  locate faults in coal seams (Beresford-Smith and Mason 
[1980]). 

FIG. 4.1-3. Dispersive surface wave (left), with the frequency dispersion 
backed out (right). Bottom shows two arrivals, the direct, straight-line 
arrival, and a hyperbola flank. The hyperbola represents sidescatter that  
must come from some object on the earth's surface off t o  the side of the sur- 
vey line. (Conoco, Sword) 
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False Semicircles in Migrated Data 

Dip filtering can be used t o  suppress multiples. Section 5.5 will show 
that  multiples are unlike primaries in one important respect: their strength 
may change rapidly in the horizontal direction. They need not be spread out 
into broad diffraction hyperbolas as primaries must. This difference arises 
because multiples often spend much time focusing themselves in the irregular, 
near-surface areas. Common evidence for this behavior is contained in the 
appearance of wide-angle migrated sections. Such sections often show semicir- 
cular arcs coming all the way up t o  the surface. These arcs warn that  some- 
thing is wrong. The arcs could result from multiples, statics, or unexplained 
impulsive noise. In any case, they could be partially suppressed without 
touching primaries. 

Zapping Multiples in Dip Space 

Think of the migration of a common-depth-point stack as downward con- 
tinuation in (w, I c , ,  2)-space. Ordinarily, velocity increases with depth. As 

the downward continuation proceeds, the velocity cutoff along the evanescent 
line bites out more and more area from the (w, kx)space (Section 1.4). 

Energy beyond this cutoff does not fit the primary wave-propagation model, 
and it should be suppressed as soon as it is encountered. Such noise suppres- 
sion can lead t o  a large drop in total power a t  late times. 

Mixed Appearance of DipFiltered Data 

An objection often raised against dip filtering is that  it can give data  a 

mixed appearance. Mixed means that  adjacent channels appear t o  have been 
averaged and that  they are no longer independent. This is indeed an effect of 
dip filtering, and it is inevitable a t  late times since the horizontal resolving 
power of reflection data decreases with time. There are two reasons for 
decreasing lateral resolution. First, dissipation causes high frequencies to  
disappear. Second, ray bending causes the angular aperture t o  decrease for 
deeper sources. (Section 1.2 and Section 1.5). It is unrealistic t o  ignore this 
fundamental limitation and imagine that  adjacent channels should have an 
appearance of independence. If a mixed appearance is t o  be avoided for 
display purposes, then I advocate removing the low-velocity, coherent, signal- 
generated noise and replacing it by low-velocity, incoherent, Gaussian, ran- 
dom noise. Many plotters lose dynamic range a t  close trace spacing, and ran- 
dom noise can tend t o  restore it. 
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Accentuating Faults 

It often happens that  the location of oil is controlled by faulting. But 
the dominating effect of stratified reflectors may overwhelm the weak 
diffraction evidence of faulting. A cosmetic process could weaken the zero 
and small dips, accentuating dips in the range of 10" t o  6 0 ° ,  and then 
suppress the wide angles and evanescent energy. As with frequency filtering, 
sharp cutoffs are not desirable because of the implied long (and in space, wide) 
impulse response. 

Dip Filtering 

Dip filtering is conveniently incorporated into the wave extrapolation 
equations. Instead of initializing the Muir expansion with ik, = -i w r  we 

use ik, = E - f'W r o .  (Recall Section 2.1 that r o  is the cosine of an exactly 
fitting angle). For the 15" equation we have 

For the 45" equation we have 

Figures 4 and 5 show hyperbolas of diffraction for the 15" and 45" equa- 
tions with and without the dip filtering parameter E. 

Gain Control Does Dip Filtering Too 

Echoes arriving late are weaker than echoes arriving early. Thus data is 
ordinarily scaled for plotting using some time-variable scale. Should migra- 
tion be done before or after this scaling? The results will differ in an interest- 
ing way. The top part of the hyperbola has flat dip, whereas the asymptotes, 
which come later, have steep dip. So, amplification of late information coin- 
cidentally amplifies the steep dips. I think the main effect of choosing to  do 
migration before or after scaling is selection of the dip spectrum in tbe final 
display. A pedantically correct approach is t o  migrate first and scale second, 
but the result will be weaker in dip and fault information than the answer 
obtained by scaling first and migrating second. A side benefit of the latter 
method is that you can save computer memory by storing scaled values as 
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FIG. 4.1-4. Diffraction hyperbolas of the 15" equation without dip filtering 
(left), and with dip filtering (right). 

short integers. I used 16 bit integer storage in my pioneering work. Compu- 
tations and local storage used 32 bit floating point arithmetic. I see little 
justification for 32 bit storage generally used today. We can't interpolate 
between channels t o  4 bits of accuracy. 

Rejection by Incoherence or Rejection by Filtering? 

It is a pitfall t o  judge a supposed noncosmetic process by a cosmetic 
effect. I once got caught. The process was migration before stack. The 
feature that  was deemed desirable was the relative strength of the steepest 
clear event on the record, a fault-plane reflection. But even gain control can 
affect dip spectra! I hoped the process was working by correctly eliminating 
some of the rejection of steep dips by CDP stack. Perhaps it was, but how 
could I know whether this was happening or whether dips were being acciden- 
tally enhanced by spatial filtering? 
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FIG. 4.1-5. Diffraction hyperbolas of the 45" equation without dip filtering 
(left), and with dip filtering (right). 

Spatial Scaling before Migration 

Scaling on the time axis before migration can be advantageous. What 
about scaling on the space axis? The traditional methods of scaling that  are 
called automatic gain control (AGC) deduce a scaling divisor by smoothing 
the data envelope (or its square or its absolute value) over some window. 
Such scaling can vary rapidly from trace to  trace, so concern is justified that  
diffractions might be caused by lateral jumps in the scaling function. On the 
other hand, there might be good reasons for the scale t o  jump rapidly from 
trace t o  trace. The shots and geophones used t o  collect land data  normally 
have variable strength and coupling, and these problems affect the entire 
trace. 

A model must be found that  respects both physics and statistics. I sug- 
gest allowing for gain that  is slowly time-variable and shots and geophones of 
arbitrarily variable strength, but I also prefer to  regard an impulse as evi- 
dence that  the earth really can focus. For example, data processing with this 
model can be implemented by smoothing the scaling envelope with the filter 
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Filter cutoff parameters are ar and P. When the scaling envelope has been 
smoothed with this filter, i t  no longer varies rapidly with both x and t ,  
although i t  can vary with either one or the other. This filter (6) can be 
economically implemented using the t ridiagonal algorithm. 

Exponential Scaling 

Exponential scaling functions have some ideal mathematical properties. 
(If you are not familiar with Z-transforms, you should read Section 4.6 or 
FGDP before proceeding.) Take the Z-transform of a time function at : 

The exponentially gained time function is defined by 

The symbol f denotes exponential gain. Mathematically, f means that  Z 
is replaced by e "2. Polynomial multiplication amounts t o  convolution of 
the coefficients: 

By direct substitution, 

This means that exponential gain can be done either before or after convolu- 
tion. You may recall from Fourier transform theory that multiplication of a 
time function by a decaying exponential exp(-at ) is the equivalent of replac- 
ing - i w  by -iw+cu in the transform domain. 

Specialize the downward-continuation operator exp(ik, z ) t o  some fixed 

z and some fixed I c , .  The operator has become a function of I*, that may 

be expressed in the time domain as a filter a t .  Hyperbola flanks move 
upward on migration. So the filter is anticausal. This is denoted by 

The large negative powers of Z are associated with the hyperbola flanks. 
Exponentially boosting the coefficients of positive powers of Z is associated 
with diminishing negative powers - so TA is A with a weakened tail - 
and tends to  attenuate flanks rather than move them. Thus t A  may be 
described as viscous. 
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From a purely physical point of view cosmetic functions like gain control 

and dip filtering should be done after processing, say, f (AB ). But f(AB ) is 
equivalent to  (fA )(fB) ,  and the latter operation amounts t o  using a viscous 
operator on exponentially gained data. In practice, it is common t o  forget the 

viscosity and create A ( fB) .  Perhaps this means that  dipping events carry 
more information than flat ones. 

The Substitution Operator 

The f operator has been defined as the substitution Z -r Z e ". The 
main property of this operator is that if C = A B ,  then f C = ( fA ) ( tB) .  
This property would be shared by any algebraic substitution for Z ,  not just 
the one for exponential gain. Another simple substitution can be used to  
achieve time-axis stretching or compression. For example, replacing Z by 
Z 2  stretches the time axis by two. Yet another substitution, which has a 
deeper meaning than either of the previous two, is the substitution of the con- 
stant Q dissipation operator (-& w)7. In summary: 

EXERCISES 

1. Use a table of integrals t o  show that a seismic source with spectrum 
1 w  I p implies a divergence correction t 2+8. 

2. Assuming that t 2  is a suitable divergence correction for field profiles, 
what divergence correction should be applied to  CDP stacks? 

3. How is the t correction altered for water of travel time depth to? 

Assume the Q of water is infinite. 

4. Consider a source spectrum e -p  I I . How is the t correction altered? 

Substitutions for Z -Transform Variable Z 
[ all preserve C (Z  )=A ( Z  )B (2 ) ] 

Exponential growth 

Time expansion (a  > 1) 

(Inverse) Constant Q dissipation 

Z -, Zea 
( i w - t  i w +  a )  

Z + Z a  

-i w -, (-2 w)T 
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5 .  The spectrum in figure 2 shows high frequencies smoother than low fre- 
quencies. Explain. 

6. State some criteria that  can be used in the selection of the cutoff parame- 
ters a and ,43 for the filter (6). 

4.2 Anisotropy Dispersion 
and Wave-Migration Accuracy 

Two distinct types of errors are made in wave migration. Of greater 
practical importance is jrequency dispersion, which occurs when different fre- 
quencies propagate a t  different speeds. This may be reduced by improving 
the accuracy of finite-difference approximations to  differentials. Its cure is 
refinement of the differencing mesh. See Section 4.3. 

Of secondary importance, and the subject of this section, is anisotropy 
dispersion. Anisotropic wave propagation is waves going different directions 
with different speeds. In principle, anisotropic dispersion is remedied by the 
Muir square-root expansion. In practice, the expansion is generally truncated 
a t  either the 15" or 45" term, creating anisotropy error in data processing. 
The reasons often given for truncating the series and causing the error are ( I )  
the cost of processing and (2) the larger size of other errors in the overall data 
collection and processing activity. Anisotropy error should be studied in order 
t o  (1) recognize the problem when it occurs and (2) understand the basic 
trade-off between cost and accuracy. 

Anisotropy is often associated with the propagation of light in crystals. 
In reflection seismology, anisotropy is occasionally invoked t o  explain small 
discrepancies between borehole velocity measurements (vertical propagation) 
and velocity determined by normal moveout (horizontal propagation). These 
fundamental, physical anisotropies and the subject of this section, anisotropy 
in data processing, share a common mathematical and conceptual basis. 
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FIG. 4.2-1. Wavefronts in an isotropic medium (left) and an anisotropic 
medium (right). Note that on the right, the rays are not perpendicular t o  the 
wavefronts. (Rothman) 

Rays not Perpendicular to Fronts 

Anisotropy means that waves propagating in different directions pro- 
pagate a t  different speeds. Anisotropy does not mean that velocity is a func- 
tion of spatial location, and thus anisotropy does not cause rays to  bend. The 
peculiar thing about anisotropy is that rays are not perpendicular to wave- 
fronts. Figure 1 illustrates this idea. The diagram on the left shows spherical 
wavefronts emanating from a point source at the origin. This is the usual, 
isotropic case. The diagram on the right shows the nonspherical wavefronts 
of the 15" migration equation. Note that near the z-axis they are nearly 
spherical, but further away they do a poor job of matching a sphere with its 
center a t  the origin. 

FIG. 4.2-2. Wavefronts of 15" (left) and 45" (right) extrapolation equations, 
inscribed within the exact semicircle. Waves with sin 9 = vkz /w = f 1 are 
marked with small dots. Evanescent energy lies beyond the dots. (Rothman) 
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The ideal wavefront from a Huygens secondary source is a semicircle. 
The secondary source that results from the 15" extrapolation equation is an 
ellipse. The secondary source that  results from the 45" extrapolation equation 
is an interesting, heartlike shape. These are drawn in figure 2. In practice, 
the top parts of the ellipse and the heart are rarely observed because they are 
in the evanescent zone, and the x-axis is seldom refined enough for them to 
be below the aliasing frequency. The center of the heart is sometimes seen in 
the (x , t >plane when the 45" program is used. I t  is shown by a line drawing 
in figure 3 and shown using a 45" diffraction program in figure 4. 

Wavefront Direction and Energy Velocity 

FIG. 4.2-3. 45" heart theory. 
The cusp arises in the evanescent 
region. (Rothman) 

In ordinary wave propagation, energy propagates perpendicular t o  the 
wavefront. When there is anisotropy dispersion, the angle won't be perpen- 
dicular. 

X 

The apparent horizontal velocity seen along the earth's surface is dx / dt . 
The apparent velocity along a vertical, e.g., as seen in a borehole, is dz / d t  . 
B y  geometry, both of these apparent speeds exceed the wave speed. The vec- 
tor perpendicular to  the wavefront with a magnitude inverse t o  the velocity is 
called the slowness vector: 

slowness vector = 
dt dt 

The phase velocity vector is defined to  go in the direction of the slowness 
vector, but have the speed of the wavefront normal. More precisely, the 
phase velocity vector is the slowness vector divided by its squared magnitude: 

phase velocity = 

IS)'+ [ % I '  
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FIG. 4.2-4. Impulse response of 
the 45" wave-extrapolation equa- 
tion. The arrival before t o  is a 
wraparound. 

kilometers 
0.5 1 1.5 

For a disturbance of sinusoidal form, namely, exp( i$ )=  
exp(-i w t  + ik, x + ikz z ) ,  the phase 4 may be set equal t o  a constant: 

Thus, in Fourier space the slowness vector is 

slowness vector = 

The direction of energy propagation is somewhat more difficult to  derive, 
but i t  comes from the so-called group velocity vector: 

group velocity = 
d 

For the scalar wave equation w2/v = kz2 + kz2, the group velocity vector 

and the phase velocity vector turn out t o  be the same, as can be verified by 
differentiation and substitution. The most familiar type of dispersion is fre- 
quency dispersion, i.e. different frequencies travel a t  different speeds. Later in 
this section it will be shown that  the familiar (15", 45", etc.) extrapolation 
equations do not exhibit frequency dispersion. That  is, as functions of w and 
angle kx /w, the velocities in these equations do not depend on w. In other 

words, the elliptical and heart shapes in figure 2 are not frequency-dependent. 
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An interesting aspect of anisotropy dispersion is that  energy appears t o  
be going in one direction when i t  is really going in another. An exaggerated 
instance of this occurs when the group velocity has a downward component 
and the phase velocity has an upward component. Figure 5, depicting the 
dispersion relation of the 45" extrapolation equation, shows an example. A 
slowness vector, which is in the direction of the wavefront normal, has been 
selected by drawing an arrow from the origin to  the dispersion curve. The 
corresponding direction of group velocity may now be determined graphically 
by noting that  group velocity is defined by the gradient operator in equation 
(lb). Think of w as the  height of a hill from which k, points south and 

k, points east. Then the dispersion relation is a contour of constant alti- 

tude. Different numerical values of frequency result from drawing figure 5 to  
different scales. The group velocity, in the direction of the gradient, is per- 
pendicular t o  the contours of constant w. 

FIG. 4.2-5. Dispersion relation for downgoing extrapolation equation showing 
group velocity vector and slowness vector. (Rothman) 

The anisotropy-dispersion phenomenon can be most clearly recognized in 
a movie, although it can be understood on a single frame, as in figure 6. The 
line drawing interprets energy flow from the top, through the prism, reflecting 
at the 45" angle, reflecting from the side of the frame, and finally entering an 
area of the figure that  is sufficiently large and uncluttered for the phase fronts 
t o  be recognizable as energy apparently propagating upward but really propa- 
gating downward. 
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FIG. 4.2-6 
right, 45" 
illustrates 

energy in 

I. Plane waves of four different frequencies propagating through a 
prism. Left is the wavefield. Right is a ray interpretation that  

different directions of energy and wavefront normal. (Estevez) 

That  neither energy nor information ,can propagate upward in figure 6 
should be obvious when you consider the program that  calculates the 
wavefield. The program does not have the entire frame in memory; i t  pro- 
duces one horizontal strip a t  a time from the strip just above. Thus the 
movie's phase fronts, which appear t o  be moving upward, seem curious. 
Theoretically, wave extrapolation using the 45" equation is not expected to  
handle angles t o  90". Yet the example in figure 6 shows that  these extreme 
cases are indeed handled, although in a somewhat perverted way. 

I once saw a similar circumstance on reflection seismic data  from a geo- 
logically overthrusted area. The data could not be made available to  me a t  
the time, and by now is probably long lost in the owner's files, so I can only 
offer the line drawing in figure 7, which is from memory. The increasing ve- 
locity with depth causes the ray to  bend upward and reflect from the under- 
side of the overthrust. T o  see what is happening in the wave equation, it is 
helpful t o  draw the dispersion curve a t  two different velocities, as in figure 8. 

Downward continuation of a bit of energy with sGme particular stepout 
dt /dx = kz / W  begins a t  an ordinary angle on the near-surface, slow-velocity 
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FIG. 4.2-7. Ray reflected from the underside of an overthrust. 

- - kx 
0 

slow 
fast - line of constant Snell parameter 

FIG. 4.2-8. Dispersion curve at two different velocities, Vfa , r  and v ,g,. 
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dispersion curve. But as deeper velocity material is encountered, that same 
stepout implies a negative phase velocity. Although the thrust angle is 
unlikely to be quantitatively correct, the general picture is appropriate. It is 
like figure 6. If you want a quantitatively correct migration, see Section 4.5, 
or for something completely different, see the method of Kosloff et al. [I9831 
and Baysal et al. [1983]. 

Analyzing Errors of Migration 

A dipping reflector that is flat and regular can be analyzed in its entirety 
using the phase velocity concept. The group velocity concept is required only 
when more than one angle is simultaneously present. This simultaneity 
occurs with the point scatterer response. It also occurs when there is variable 
reflection amplitude along a dipping bed. The group velocity is needed 
because representation of either a curved event or an amplitude anomaly 
requires a range of plane-wave angles. Analogously, in time-series analysis the 
Fourier representation of an amplitude-modulated sinusoid requires a 
bandwidth of sinusoids. 

Figure 9 depicts a smooth, flat, dipping bed that has been undermigrated 
because the I ,  defined by some rational square-root approximation or some 

numerical approximation did not match the correct square-root value of kz . 

FIG. 4.2-9. Undermigrated dipping reflector. 
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The error in figure 9 is entirely a time-shift error. Since the reflection 
coefficient is constant along the reflector, no lateral shift error can be recog- 
nized. The time error may be theoretically determined by 

For the so-called 15" equation, it turns out that about a half-percent phase 
error is made at  25". 

Next, the error in the collapse of a hyperbola will be determined. Figure 
10 depicts the downward continuation of a hyperbola. For clarity, the down- 
ward continuation was not taken all the way to  the focus. Select a ray of 
some Snell's parameter p =dt / d s  by choosing some slope p .  Imagine a 
tangent line segment of slope p t o  each of the hyperboloids. If there were a 
little amplitude anomaly where the slope is p , you would be able to  identify 
it on each of the hyperboloids. 

FIG. 4.2-10. Error of hyperbola collapse. Note that the actual curve is above 
the desired curve, but the actual point is below the desired point. 

In figure 10 the amount of time moved is too little; likewise, the lateral 
distance moved is too small. In practice, errors of the 15" equation with 
r = 1 are sometimes compensated by an increase in either z or v of 

about 6%. The amounts of the errors may be calculated from 
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where k, is taken to  be a function of w and k , .  It turns out that  for the 

15" equation, about a half-percent group velocity error occurs a t  2 0 " .  Thus 
the group velocity error is generally worse than the phase velocity error. 

Derivation of Group Velocity Equation 

An impulse function at the origin in ( x  , z >space is a superposition of 
Fourier components: 

JJ + i k , ,  + i k,, 
dk, dk, 

Physics (and perhaps numerical analysis) leads t o  a dispersion relation that is 
a functional relation between w, k, , and k, , say, w(k, , k, ). The most com- 

mon example of such a dispersion relation is the scalar wave equation 
2 -  2 k 2  w - v ( . + kZ2) .  The solution to  the equation is 

Integrating ( 5 )  over ( k , ,  k, ) produces a monochromatic time function that 

a t  t =O is an impulse at  ( x  , z )=(O, 0) .  This expression a t  some very large 
time t is 

JI - i t [ ~ ( k , ,  k , )  - k ,  ~ / t  - k,  zit] 
dk, dlc, 

At t very large, the integrand is a very rapidly oscillating function of unit 
magnitude. Thus the integral will be nearly zero unless the quantity in square 
brackets is found to  be nearly independent of kz and k, for some sizable 

area in ( k , ,  k, )space. Such a flat spot can be found in the same way that 

the maximum or minimum of any two dimensional function is found, by set- 
ting derivatives equal t o  zero. This analytical approach is known as the sta- 
tionary phase method. I t  gives 

So, in conclusion, a t  time t the disturbances will be located at  
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which justifies the definition of group velocity. 

Now let us see how figure 2a was calculated. The 15" dispersion relation 
was solved for w and inserted into (8). The resulting (x ,  z ) turned out to 
be a function of k, /w. Trying all possible values of k, /w gave the curve. 

Derivation of Energy Migration Equation 

Energy migration in (x ,  t )-space is analyzed in a fashion similar to  the 
way the group velocity was derived. Take depth to be large in the integral 

IS i .Z [kz (w ,  k z ) - w  t / z  + k,  z / z ]  dw dk, 

The result is that the energy goes to 

This justifies our previous assertion that (3) can be used to analyze energy 
propagation errors. Equation (10) was also used to calculate the curve in 
figure 3. The validity of the stationary phase concept is confirmed by figure 
4, which was produced using inverse Fourier transformation. 

Extrapolation Equations are not Frequency-Dispersive. 

To prove that the familiar 15",  45", etc. wave extrapolators are not 
frequency-dispersive, recall from Section 2.2 that the dispersion relations all 
have the form k, /w = f (k, lw), where f is a semicircle approximation, 

say, 15" or 45". No dispersion relation of this form can be frequency- 
dispersive. Performing the derivatives required by (lo), you see that while the 
( x ,  t )-coordinates of a wavefront depend on the dip angle through the param- 
eter vk, /w, they do not depend explicitly on w. So any frequency dispersion 

observed in practice does not arise from a 15" or 45" approximation. 
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4.3 Frequency Dispersion 
and Wave-Migration Accuracy 

Frequency dispersion results from different frequencies propagating at  
different speeds. The physical phenomenon of frequency dispersion is rarely 
heard in daily life, although many readers may have heard it while ice skating 
on lakes and rivers. Elastic waves caused by cracking ice propagate disper- 
sively, causing pops t o  change into percussive notes. Frequency dispersion is 
generally observable on seismic waves that propagate along the earth's surface 
but frequency dispersion is hardly ever perceptible on internally reflected 
waves. In seismic data processing, frequency dispersion is a nuisance and an 
embarrassment to process designers. It arises mainly with the finite 
differencing method because differential operators and difference operators do 
not coincide at  high frequencies. Frequency dispersion can always be 
suppressed by sampling more densely, and it is the job of the production 
analyst to see that this is done. Figure 1 depicts some dispersed pulses. 

FIG. 4.3-1. (a A pulse. (b) A d pulse slightly ispersed as by the a 
physical dissipation of high fre- 
quencies. (c) A pulse with a sub- t 

stantial amount of frequency b 
dispersion, such as could result 
from careless data processing. t 

Frequency dispersion caused by data processing can be a useful warning 
that the data is in danger of being aliased. Frequency-domain methods do 
not depend on difference operators, so they have the advantage of not show- 
ing dispersion. The penalties that go along with this advantage are (1) limita- 
tion t o  constant material properties, (2) wraparound, and (3) the occurrence of 
spatial aliasing without the warning of dispersion. 

Figure 2 shows an example of frequency dispersion in migrated data. At 
the top of the figure is a CDP stack. In the middle is the data after 
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4.0 
4 sec 

FIG. 4.3-2. Conquering frequency dispersion. (Taner and Koehler, distri- 
buted by Seiscom Delta Inc.) 
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processing with no attempt to control frequency dispersion. The worst disper- 
sion is near shot point 200 a t  4 seconds. The bottom shows the data after 
reprocessing with greater attention to  dispersion. 

Spatial Aliasing 

Aliasing can occur on the axes of time, depth, geophone, shot, midpoint, 
offset, or crossline. Aliasing is the worst on the horizontal space axes. Section 
1.3, figure 3 provides an illustration. Looking at  that  figure, you get confused 
about whether the dip is to  the left or right. Mathematical analysis has the 
same difficulty. The dispersion relation of the wave equation enables us to 
compute the vertical spatial frequency Ic, from the temporal frequency w, 

the velocity v , and the horizontal spatial frequency k, using the semicircle 

relation k, (w, kz ) = J-. Sampling on the x-axis sets an upper 

limit on kz equal t o  the Nyquist frequency .rr/Ax. Both frequency-domain 

methods and finite-difference methods treat higher frequencies as though they 
were folded back at  the Nyquist frequency. Thus the semicircle dispersion 
relation is replicated above the Nyquist frequency, as shown in figure 3. 

FIG. 4.3-3. The effective dispersion relation of the wave equation when the 
horizontal axis is sampled. Frequencies are given for typical zero-offset migra- 
tion. 

The problem of spatial aliasing begins when two circles touch each other, 
as shown a t  20 Hz in figure 3. This occurs when a half-wavelength v /2 f 
equals the spatial sample rate A x .  The exploding-reflector model implies 
that  the velocity t o  use is half the rock velocity. Thus the aliasing problem is 
avoided if 2 f Ax < 1/2 v,,,~. For a rock velocity equal to  2 km/sec, the 
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safe frequencies are listed in the table below: 

Another view of the spatial aliasing problem is that  steeply dipping waves are 
suppressed by the geophone group. (This disregards shot-space aliasing). 
From this standpoint the limit past which spatial aliasing begins should be 
thought of in terms'of angles a t  which energy is missing from the data. Tak- 
ing the ray angle t o  be 30" instead of 90" doubles horizontal wavelengths. 
Thus, for 30" and a rock velocity of 2 km/sec, t o  ensure safety from aliasing, 
frequencies should be in the ranges listed below: 

standard 

reconnaissance 

S-D cross line 

Because data  usually has good signal above 40 Hz, wide-angle processing 
is often frustrated by spatial aliasing. 

Ax 

25 m 

50 m 

100 m 

The problem of spatial aliasing usually overshadows the difference 
between the 15" and the 90" equations. Aliased energy does not move 
between hyperbola flanks and the apex. Aliased energy tends t o  stay in place. 
This is illustrated on figure 4 which shows a 90" hyperbola and a 15" hyper- 
boloid from a finite difference equation. Overall, there is little difference. 
Look a t  the amplitude of the hyperbolic arrival. It is dropping off faster than 
predicted by spherical spreading and the obliquity function. This is because 
the dispersion curve semicircles overlap one another. There can be no angles 
of propagation beyond that  which aliases x .  Since waves can't go so steeply, 
they don't. The pulse doesn't spread properly. 

safe frequency 

< 20 Hz 

< 10 Hz 

< 5 H z  

safe frequency 

< 40 HZ 

< 20 Hz 

< 10 Hz 

standard 

reconnaissance 

S-D cross line 

Second Space Derivatives 

The defining equation for a second digerence operator is 

Ax 

25 m 

50 m 

I00 m 

s2 - P = 
P ( x  + A x ) -  2 P ( x )  + P ( x  - A x )  

sx (Ax l2 
The second derivative operator is defined by taking the limit 
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FIG. 4.3-4. One second of synthetic hyperbolas with At = 4 ms, 
A x  = 25 meters, and velocity 2 km/sec. Fourier domain 90" hyperbola (top) 
and 15" finite difference hyperboloid (bottom). 

- a2 P - - - 
dx 

62 P 
lim A x  -+O 6x 

Many different definitions can all go to  the same limit as A x  goes to  zero. 
The problem is to  find an expression that is accurate when A x  is larger 
than zero and, on a practical level, is not too complicated. Our first objective 
is to  see how the accuracy of equation (1) can be evaluated quantitatively. 
Second, we will look at  an expression that is slightly more complicated than 
(1) but much more accurate. 

The basic method of analysis we will use is Fourier transformation. Take 
the derivatives of the complex exponential P = P o  exp (ikx) and look at  
any errors as functions of the spatial frequency k . For the second derivative, 

Define by an expression analogous to  the difference operator: 
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Ideally would equal k .  Inserting the complex exponential P = 

P o  exp ( i kx  ) into (I), we see that  the definition (4) gives an expression for d 
in terms of k : 

It  is a straightforward matter t o  make plots of i A x  versus k A x  from 

(5b). The half-angle trig formula allows us t o  take an analytic square root of 
(5b), which is 

i AX - -  - k A x  
sin - 

2 2 

Series expansion shows that for low frequencies i is a good approximation 
to  k .  At the Nyquist frequency, defined by k A x  = n, the approximation 
d A x  = 2 is a poor approximation to  n. 

The 1/6 Trick 

Increased absolute accuracy may always be purchased by reducing A x .  
Increased accuracy relative to  the Nyquist frequency may be purchased a t  a 
cost of computer time and analytical clumsiness by adding higher-order terms, 

say , 
d2 b2 a x 2  @ - a ---- + etc. 
d x  6 x 2  12 6 x 4  

As A x  tends to  zero (6) tends to  the basic definitions (1) and (2). 
Coefficients like the 1/12 in (6) may be determined by the Taylor-series 
method if great accuracy is desired at  small k .  Or somewhat different 
coefficients may be determined by curve-fitting techniques if accuracy is 
desired over some range of k .  In practice (6) is hardly ever used, because 
there is a less obvious expression that  offers much more accuracy at  less cost! 
The idea is indicated by 

where b is an adjustable constant. The accuracy of (7a) may be numerically 
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evaluated by substituting from (5b) t o  get 

2 k A x  sin - 
2 
2 k Ax 

1 - b 4 sin --7 

The square root of (7b) is plotted in figure 5 for a value of b = 116. 

FIG. 4.3-5. Accuracy of the second-derivative representation (7) (for b =1/6) 
as a function of spatial wavenumber. The sign of the square root of (7b) was 
chosen to  agree with k in the range -x t o  n and t o  be periodic outside 
the range. (Hale) 

Taking b in (7) t o  be 1/12, then (7) and (6) would agree t o  second 
order in A x .  The 1/12 comes from series expansion, but the  116 fits over a 
wider range and is a value in common use. Francis Muir has pointed out  that  

the value 114 - I/$ 116.726 gives an  exact fit at the Nyquist frequency 
and an accurate fit over all lower frequencies! Few explorationists consider 
the remaining accuracy deficiency of (7) t o  be sufficient t o  warrant interpola- 
tion of field-recorded values. Figure 6 compares hyperbolas for various values 
of b . Observe in figure 6 tha t  the longest wavelengths travel a t  the same 
speed regardless of b .  The time axis in figure 6 is only 256 points long, 
whereas in practice it would be a thousand or more. So figure 6 exaggerates 
the frequency dispersion attributable in practice t o  finite differencing the x -  
axis. 

Let us be sure i t  is clear how (7) is put into use. Take b = 116. The 
simplest prototype equation is the heat-flow equation: 



CRAFT 4.9 Frequency Dispersion 

FIG. 4.3-6. Hyperbolas for b = 0, 1/12, 116.726, 116, 115. 
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Multiply through the denominator: 

Time and Depth Derivatives - the Bilinear Transform 

You might be inclined to  think a second derivative is a second derivative 
and that there is no mathematical reason to do time derivatives differently 
than space derivatives. This is not the case. A hint of disparity between t 
and x derivatives comes from boundary conditions. With time derivatives 
(and often with the depth z derivative) we must consider causality - which 
means the future is determined solely from the present and past. Appropriate 
boundary conditions on the time axis are initial conditions - the function 
(and perhaps some derivatives) is specified at one point, the initial point in 
time. For depth z that special point is the earth's surface a t  z =O. But 
lateral space derivatives are different: they require boundary conditions at two 
widely separated points, usually at the left and right sides of the volume. 

The differential equation 

is associated with the very definition of k , .  The analogous difference equa- 
tion will define l, : 

Inserting the solution of (10) q = q exp(ik, z  ) into (11) gives us the rela- 
tion between the desired k, and the actual i,. 

ikz Az i k , A z / 2  - i k ,Az /2  
2 e - 1 e - e - 2 i k , ~ z  = - 

ik, A ,  ik, A2 / 2  -ikz A, / 2  
e + 1 e + e 

(12) 

This equation is known as the bilinear transform (Section 4.6). 

sin k, A z  /2 
i l, A z  = 2 i 

cos k,  A z  /2 (13) 
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k, Az k, Az - - 
2 

tan - 
2 

Equation (14) gives the accuracy of first derivatives obtained using the 
Crank-Nicolson method. Recall the migration differencing schemes in Section 
2.7. We did the time differencing in the same way that we did the depth 
differencing. So the same accuracy limitation must apply, namely, 

LJ At  - =  ~3 A t  tan - 
2 2 

Series expansion shows that LJ goes to  IJ as At  goes to zero. Relative 
errors in w at  (4, 10, and 20) points per wavelength are (30%, 3%, and 1%). 
These errors are quite large, calling for either a choice of small A t  or a more 
accurate method than (14). 

The bad news is that  there does not seem to  exist a representation of 
causal differentiation that is any more accurate than the Crank-Nicolson 
representation. There is nothing like the 116 trick. Thus the sample inter- 
vals of Az and A t  must be reduced considerably from the Nyquist cri- 
terion. The practical picture may not be as bleak as the one I am painting. 
Many people are pleased with both the speed and accuracy of time-domain 
migrations at A t  = 4 milliseconds. 

Stolt's classic paper [I9781 besides introducing the fast Fourier transform 
migration method, points out that more accuracy can be achieved when the 
requirement of causality is dropped. Stolt shows how dropping causality at 
the known depth level while retaining it a t  the next level allows stable finite 
differencing. With the depth z-axis we are stuck with causal derivatives, 
although Fourier methods could be used for discrete layers. The depth axis is 
not so troublesome as the x -  and t -axes, however, because it affects corn- 
puter time only, not data storage. 

Finite difference solutions don't just approximate the frequency - what 
they really do is to approximate exp ilc, Az . Solve (11) for the unknown. 

So for N, layers in depth z = N Az we have the approximation 

ik, N Az 1 + i k , ~ z / 2  
e 

1 - i  k z ~ z / 2  l N  
which will be of later use for Fourier domain simulations of finite difference 
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programs. Such simulations, coming in Section 4.7, enable us to compare the 
accuracy of various migration methods. 

4.4 Absorbing Sides 

Computer memory cells are often used t o  model points in a volume that 
contains propagating waves. Though we often wish to  model an infinite 
volume, the number of computer cells is, regrettably, finite. Waves in the 
computer reflect back from the boundaries of the finite computer memory 
when we would prefer that the waves had gone away to infinity. To avoid 
the need for infinite computer capacity this section develops the theory of 
absorptive side boundary conditions. 

There are two kinds of side boundary difficulties. First is where we are 
a t  the end of our observations. Second is where we somehow decided to limit 
the extent of our calculations. These boundaries might be the same. But to 
avoid confusion, let us presume that the data is of more limited extent than 
the computer memory. So alongside the data, which comprises the initial 
conditions for the calculation, is a region which will be called the data pad- 
ding. 

Data Padding 

The crudest assumption is that additional zero-valued data may be 
presumed for the padded area. To avoid an edge diffraction artifact the data 
must merge smoothly with the padding. So zero padding is a good assump- 
tion only if the data is already small around the side boundary. When data is 
zero padded, it is debatable whether or not it should be tapered (gradually 
scaled t o  zero) to match up smoothly with the zero padding. I prefer to  avoid 
tapering the data. That amounts to falsifying it. Instead I prefer to  pad the 
data not with zeroes, but with something that looks more like the data. A 
simple way is to  replicate the last trace, scaling it downward with distance 
from the boundary. This works best when the stepout of the data matches 
the stepout of the extension. Any theory for optimum data padding has two 
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important ingredients: a noise model and a signal model. An ideal data ex- 
trapolation is rarely, if ever, available in practice. Section 3.5 contains 
suggestions for more elaborate models for extensions of gathers. 

Truncation at Cable Ends and at Survey Ends 

In exploration there are two kinds of horizontal truncation problems. 
The first, which is a t  the end of the geophone cable, affects mainly common- 
midpoint stacking. The second is at  the geographical boundaries of the sur- 
vey and affects mainly migration. In both migration and stacking, hyper- 
boloids are collapsed to  points. But the processes differ because of the data 
itself. With stacking, it is predictable that  energy will dip downward toward 
the far-offset cable truncation. With migration, reflectors can dip either 
downward or upward at  the ends of the section. The downward-dipping case 
is better behaved. There seismic events move smoothly from the boundary to  
the interior. 

The troublesome case occurs with migration when the seismic events dip 
upward at  the edges of the survey. Then downward continuation moves 
seismic energy toward the boundary. On arriving at  the boundary, it bounces 
back with opposite dip, and interferes with energy still moving toward the 
boundary. The problem may be reduced by appending space to  the sides of 
the dataset, thus providing the dipping energy with a place t o  go. (You have 
previously decided what initial data padding to put in this space). 

Engquist Boundaries for the Scalar Wave Equation 

The simplest "textbook" boundary condition is that  a function should 
vanish on the boundary. A wave incident onto such a boundary reflects with 
a change in polarity (so that the incident wave plus the reflected wave will 
vanish on the boundary). The next-to-simplest boundary condition is the 
zero-slope condition. It is also a perfect reflector, but the reflection coefficient 
is +1 instead of -1. Two points at  the edge of the differencing mesh are 
required to  represent the zero-slope boundary. The most general boundary 
condition usually considered is a linear combination of function value and 
slope. This is also a two-point boundary condition. I t  so happens that  our 
extrapolation equations (Section 2.2) contain only a single depth derivative, so 
that  on the z-axis they are a two-point condition. Observing this, Bj6rn 
Engquist recognized a new application for our extrapolation equations. Many 
researchers in other disciplines are interested in forward modeling, that  is, 
evolving forward in time with an equation like the scalar wave equation, say, 

Pxx + P,, = Pu / v  2. These people suffer severely the consequences of 
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limited memory. Engquist's idea was that  they should use our extrapolation 
equations for their boundary conditions. (This idea led t o  his winning the 
SLAM prize). Suppose they desire an infinite absorbing volume surrounding a 
box in the ( x ,  z )-plane. Then they need a boundary condition that  goes all 
the way around the box. They could use the downgoing wave equation on the 
bottom of the box and the upcoming wave equation on the top edge. The 
sides could be handled analogously with an interchange of x and z .  This 
idea was thoroughly tested and confirmed by Robert Clayton. For an exam- 
ple of one of his comparisons, see figure 1. 

FIG. 4.4-1. Expanding circular wavefront in a box with absorbing sides (top) 
and zero-slope sides (bottom). (Clayton) 

Engquist Side Conditions for the Extrapolation Equations 

In data processing an extrapolation equation is used in the interior of the 
region under study. This is unlike forward modeling, in which the full scalar 
wave equation is used in the interior and an extrapolation equation can be 
used on the boundary. The scalar wave equation has a circular dispersion 
relation, whereas the extrapolation equation has, ideally, a semicircular one. 
Reasoning by analogy, Engquist speculated that  a quarter-circular dispersion 
relation might be an ideal side boundary for wave-extrapolation problems. To  
make his idea more specific and immediately applicable, he proposed that  the 
quarter-circle be approximated by a straight line. This is shown in figure 2. 

The advantage of the straight-line dispersion relation is that  in the space 
domain i t  is represented by a simple, first-order, differential equation. A 
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first-order equation has first derivatives that can be expressed over just two 
data points, and thus it can be used as a conventional, two-point, side-bound- 
ary condition. The right-side equation in figure 2 defines the boundary disper- 
sion relation D : 

In ( t  , x , z )-space this equation is 

a a a 
0 = ( v  - + - + const - )  P 

az at ax 

In retarded time, d/az may be eliminated by substitution from the interior 
equation. 

o 

FIG. 4.4-2. Dispersion relation of simple absorbing side conditions. 

For a mathematical, nonphysical point of view, imagine some peculiar 
physics which prescribe that the physical equation that applies in some region 
is just the equation which has the dispersion relation of the absorbing side 
condition. Beside this fictitious region imagine another in which the usual ex- 
trapolation equation applies. At the point of contact between the regions the 
solutions would match. It may come as no great surprise that  .the smallest 
boundary reflections would occur where the two dispersion relations were a 
good match to  each other. So the slope of the straight line would be selected 
to  form a good fit over the range of angles of interest. An example of side- 
boundary absorption during migration is shown in figure 3. 
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FIG. 4.4-3. Downward continuation with zero slope side boundaries (top), 
and absorbing side boundaries (bottom). (Toldi) 

Size of the Reflection Coefficient 

Let us look at some of the details of the reflection coefficient calculation. 
A unit amplitude, monochromatic plane wave incident on the side boundary 
generates a reflected wave of magnitude c . The mathematical representation 
is: 

In equation (3) w and k, are arbitrary, and k, is determined from w 

and k, using the dispersion relation of the interior region, i.e., a semicircle 

approximation. Assuming this interior solution is applicable a t  the side bound- 
ary, you insert equation (3) into the differential equation (2), which represents 
the side boundary. As a result, 8/8x is converted t o  + i k, on the 

incident wave, and 818s is converted t o  - i kz on the reflected wave. 

Also, 8/82 is converted t o  k Thus the first term in (3) produces the 

dispersion relation D (w, k,, k,) times the amplitude P .  The second term 

produces the reflection coefficient c times D (w, - k, , k, ) times P . So (2) 
with (3) inserted becomes: 
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The case of zero reflection arises when the numerical value of Ic, selected by 

the interior equation a t  ( a ,  kz) happens also t o  satisfy exactly the dispersion 

relation D of the side boundary condition. This explains why we t ry  t o  
match the quarter-circle as closely as possible. The straight-line dispersion 
relation does not correspond t o  the most general form of a side boundary con- 
dition, which is expressible on just two end points. A more general expression 
with adjustable parameters b b 2, and b 3, which fits even better, is 

vkz vk, 
D ( ~ 7  k2 7 k, ) = I 1 - b 3 - I w -  w [ b I - b ,  w 

The absolute stability of straight-line absorbing side boundaries for the 
15" equation can be established, including the discretization of the x-axis. 
Unfortunately, an  airtight analysis of stability seems t o  be outside the frame- 
work of the Muir impedance rules. As a consequence, I don't believe that  sta- 
bility has been established for the 45" equation. 

4.5 Tuning up Fourier Migrations 

First we will see how t o  migrate dips greater than 90". Then we will 
attack the main two disadvantages of Fourier migrations, namely, their 
periodicity and their poor tolerance of space-variable velocity. 

Dips Greater than 90" 

Migration of dips greater than 90" requires careful handling of evanes- 
cent energy. As this is being written, most migration-by-depth-extrapolation 
programs ignore or set to  zero the energy that  turns evanescent.' The proper 
thing t o  do with energy becoming evanescent a t  depth z is to  save it for a 
second pass upward. The upward pass begins from the bottom of the section 
with a zero downgoing wave. As the downgoing wave is extrapolated upward, 
the saved evanescent energy is reintroduced. As usual, the images are 
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withdrawn from the wave a t  time t = 0. 

To illustrate the concept, a program will be sketched that  makes two 
images, first the usual image of the top side of the reflector, and second the 
image of the under side. The images may be viewed separately or summed. 

The program makes the simplifying restriction on the velocity that 
dv / dz  2 0. Because of this assumption, evanescent energy can be stored "in 
place" and ignored until the return pass. It is worth noting that the second 
pass is cheaper than the first pass because the region in which evanescence 
never occurred, I k ( < I w 1 / v  (T~,),  need not be processed. 

# first pass of conventional phase-shift migration. 
P ( w , k , )  = F T [ u ( t , z ) l  
For T = AT,  AT, . . - 2 T ~ M  { 

For all k, { 
Uimage ( k , ,  T )  = 0 .  
For all w > I k I v (7) { 

c = exp( - i w AT J 1 -  v (TI' k?/w' 
P ( w ,  k , )  = P ( w ,  k , )  * C 
Uimage ( k , ,  T )  = Uimage ( k , ,  T )  + P ( w ,  k , )  
1 

} 
uimage ( z ,  T )  = F T  [Uimage ( k , ,  T ) ]  

1 

# Second pass for underside image. 
For T = T,,, T,,-AT, T,,-~AT, ' . . , 0 { 

For all k, { 
Dimage ( k , ,  T )  = 0 .  
For w =  I k 1 V ( T )  to W =  I k I v(T,=)  { 

# The wave changes direction but so does AT 
C = exp( - i w A T  J1 - v (7)' kZ2/wZ' ) 
P (w ,  k, ) = P (w ,  k, ) * C 
Dimage (k ,  , T )  = Dimage (k,  , T )  + P ( w ,  k, ) 
1 

1 
dimage ( z  , T )  = F T  [Dimage (k,  , T ) ]  

1 

Stopping P hase-Shift Migration Wraparound (S. Levin) 

Figure 1 shows a family of hyperbolas. Notice that  these hyperbolas do 
not extend to  infinite time but they truncate a t  a cut-off time t ,  . A Fourier 
method will be described to  create such time-truncated data. The method 
leads t o  a phase-shift migration program without wraparound artifacts. 

When the fast Fourier transformation algorithm first came into use peo- 
ple noticed that it could be used for filtering. Transient filtering could be 
done exactly in the periodic Fourier domain if signals and filters were 
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FIG. 4.5-1. Hyperbolas truncated at  a particular time. 

surrounded by enough zero padding. The same concept applies with migra- 
tion. If field data and migration hyperbolas are surrounded by enough zeroes 
in the time- and space-domain then migration can be done in the Fourier 
domain with no wraparound. The trick is to  see how the truncated hyperbo- 
las in figure 1 can be constructed in the Fourier domain. 

To have truncations at  time t ,  , special point sources must be used. The 
deeper the source, the narrower must be its angular aperture. Take a hyper- 

bola with first arrival a t  time t o  to  be truncated a t  some time t ,  . The pro- 
pagation angle 9 of energy at  the cutoff is given by cos 6' = t  o / t ,  . So 
exploding reflectors have their k, -spectrum truncated at  sin 9 = v k, /a. A 
90" aperture implies echoes with an infinite time delay. Here is a sketch of 
the program. 
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# Modeling with time truncation at tc 
Model (kz , t ) = FT [ model (z , z )] 
For all w and all k, 

U (w,  k, ) = 0. 
For z = z,,, z,,-At, z,,-2Az, . . . , 0  { 

For all w ( 
For all ( k, ( < ( w  ( / u  { 

if ( z < " tC& 
aine = 1 - t 2 / v  tc2 

aperture = 1. 
else 

aperture = 0.  

1 
else 

The above modeling program may be converted to  a migration program 
(as in Section 1.3) by running the depth z loop down instead of up and by 
multiplying the downward continued data by the aperture function. The 
modifications t o  the program not only improve the quality of the migration, 
but the calculation is faster. 

Controlling Stolt Migration Wraparound 

As with the phase-shift algorithm, the key to  reducing the computational 
artifacts of the Stolt algorithm is to  suppress the time-domain wraparound. 
We will see that  this amounts t o  accurate frequency-domain interpolation. 

First, consider an impulse function at  time to. Its Fourier transform is 
exp(-i wt o). If t o  is large, then the Fourier transform is a rapidly oscillating 
function of w. Rapidly oscillatory functions are always difficult to  interpo- 
late. It is better to  shift backward the time function, thereby smoothing its 
frequency function, then to  interpolate the frequency function, and finally to 
undo the shift. Given seismic data on the time interval O<t < T ,  the fre- 
quency function will be smoother if the data is shifted to  an interval 
-T /2< t < T 12. So the first proposed improvement to the Stolt migration 
program is to  multiply in the frequency domain by exp(i wT /2), then inter- 
polate, and finally multiply by exp(-i wT /2). 

Linear interpolation is almost the easiest form of interpolation. On the 
other hand, Fourier transform theory suggests interpolation with the sinc 
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function (by definition sinc u = (sin u ) /u  ). The sinc function of fre- 
quency, when brought back into the time domain is a rectangle function of 
time. Take this rectangle function t o  be nonzero on the interval 
-T /2< t < T 12. Recall that the fast (inverse) Fourier transform algorithm 
sums at  uniform intervals in the frequency domain. This implicitly assumes 
zero between sample points, which in turn assumes that the time-domain 
function is periodic outside the given time interval. Now take the rectangle 
function of time to  be the multiplier in the time domain that converts the 
periodic time function t o  the observed transient one. This multiplication in 
the time domain is equivalent to a convolution in the frequency domain with 
the appropriate sinc function. Convolution of the continuous sinc func- 
tion with the given discrete-interval frequency function is really interpolation. 
Unfortunately, the sinc function extends infinitely down the frequency axis. 
Worse yet, it decays slowly. So some approximation or truncation of the 
sinc is used. Bill Harlan showed that tapered sinc functions achieve satis- 
factory accuracy more cheaply than zero padding. It seems, however, that the 
best approach is both to zero pad and to use some sinc -like interpolation. A 
definitive study of interpolation is that of Rosenbaum and Boudreaux [1981]. 

Stolt Stretch 

The great strength and the great weakness of the Stolt migration method 
is that it uses Fourier transformation over depth. This is a strength because 
it makes his method much faster than all other methods. And it is a weak- 
ness because it requires a velocity that is a constant function of depth. The 
earth velocity typically ranges over a factor of two within the seismic section, 
and the effect of velocity on migration tends to go as its square. To 
ameliorate this difficulty, Stolt suggested stretching the time axis to make the 
data look more like it had come from a constant-velocity earth. Stolt pro- 
posed the stretching function 

where 

At late times, which are associated with high velocities, Stolt's stretch implies 
that T grows faster than t . The 7-axis is uniformly sampled to  allow the 
fast Fourier transform. Thus at  late time the samples are increasingly dense 
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on the t-axis. This is the opposite of what earth Q and the sampling 
theorem suggest, but most people consider this a fair price. 

The most straightforward derivation of (1) is based on the idea of match- 
ing the curvature of ideal hyperbola tops to  the curvature on the stretched 
data. The equation of an ideal hyperbola in (x , T)-space is 

Simple differentiation shows that the curvature a t  the hyperbola top is 

It can be shown that in a stratified medium, equation (3) applies, except that 
the velocity must be replaced by the RMS velocity: 

We seek a stretched time 7(t ). We would like to match the curves t ( x )  
and ( x )  for all x .  But that would overdetermine the problem. Instead we 
could just match the derivatives at the hyperbola top, i.e., the second deriva- 
tive of ~ [ t  (x)] with respect t o  x a t  x =O. With the substitutions (3) and 
(4), this would give an expression for T d r/dt which, after integrating and 
taking its square root, yields (1). 

A different derivation of the stretch gives a more accurate result at 
steeper angles. Instead of matching hyperbola curvature a t  the top, we go 
some distance out on the flank and match the slope and value. It is the 
flanks of the hyperbola that actually migrate, not the tops, so this result is 
more accurate. Algebraically the derivation is also easier, because only first 
derivatives are needed. Differentiating equation (2) with respect to  x for a 
reflector at any depth z j  gives 

There is an analogous expression in a stratified medium. To obtain it, solve 
x = I v  s in6d t  = p s v 2 d t  for p = d t / d x :  

Expressions (5) and (6 )  play the same role as (3) and (4), but (5) and (6) are 
valid everywhere, not just at the hyperbola top. Differentiating 7(t)  gives 
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Inserting (5) and (6) into (7) gives 

Integrating (9) gives ?/2 on the left. Then, taking the square root gives ( la)  
but with a new definition for RMS velocity: 

The thing that is new is the presence of the Snell parameter p .  In a 
stratified medium characterized by some velocity, say, v '(2 ), the velocity 
v ( p ,  t ) is defined for the tip of the ray that left the surface at  an angle with 
a stepout p .  In practice, what value of p should be used? The best pro- 
cedure is t o  look at  the data and measure the p = dt /dx of those events 
that you wish to migrate well. A default value is p = 2(sin30°)/(2.5 
km/sec) = .4 millisec/meter. The factor of 2 is from the exploding-reflector 
model. 

Gazdag's v(x) Method 

The phase-shift method of migration is attractive because it allows for 
arbitrary depth variation in velocity and arbitrary angles of propagation up to 
90". Unfortunately, lateral variation in velocity is not permitted because of 
the Fourier transformation over the x-axis. To alleviate this difficulty, Gaz- 
dag and Sguazzero (19841 proposed an interpolation method. Recall from Sec- 
tion 1.3 that the phase-shift method 2-D Fourier transforms the data p (x , t ) 
to  P (k, , o). Then P (k, , w )  is downward continued in steps of depth by 

multiplication with exp[ik, (o, k, ) Az 1. Gazdag proposed several reference 
velocities, say, v vg, v3, and v4. He downward continued one depth step 
with each of the velocities, obtaining several reference copies of the 
downward-continued data, say, PI, P2, P3, and P4. Then he inverse Fourier 
transformed each of the Pj over k, to  p j  (x , w). At each x , he interpo- 

lated the reference waves of nearest velocity to get a final value, say, p (x ,  w )  
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which he retransformed to P (k, , w )  ready for another step. This appears to  
be an inefficient method since it duplicates the usual migration computation 
for each velocity. Surprisingly, the method seems to be successful, perhaps 
because of the peculiar nature of computation using an array processor. 

EXERCISE 

1. To obtain a sharp cutoff in time t ,  requires a broad bandwidth in the 
spectral domain. Given that figure 1 is expressed on a 1000 X 1000 
mesh, deduce the uncertainty in the cutoff t, . 

2. The phase-shift method tends to produce a migration that is periodic 
with z because of the periodicity of the Fourier transform over t .  
Ordinarily, this is not troublesome because we do not look at large z .  
The upcoming wave at great depth should be zero before t =O. Kjar- 
tansson pointed out that periodicity in z could be avoided if the wave 
at  t =O is subtracted from the wavefield before the computation des- 
cends further. Thus, information could never get to  negative time and 
"wrap around." Indicate how the program should be changed. 

4.6 Impedance 

Classical physics gives much attention to  energy conservation and dissi- 
pation. Engineering filter theory gives much attention to causality - that 
there can be no response before the excitation. In geophysics we often need to 
ensure both causality and energy loss. We need to  incorporate both, not only 
in theoretical derivations, but also in computations, and sometimes in compu- 
tations that are discretized in time. There is a special class of mathematical 
functions called impedance functions that describe causal, linear disturbances 
in physical objects that dissipate energy. 

Nature evolves forward in time. Naturally, impedance functions play a 
fundamental role in any modeling calculation where time evolves from past to 
future. Besides their use in physical modeling, impedances also find use in the 
depth extrapolation of waves. We geophysicists take data on the earth's 
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surface and extrapolate downward t o  get information at depth. I t  is not the 
same as nature's extrapolation in time. In principle we don't require 
impedance functions t o  extrapolate in depth. But depth extrapolations made 
without impedance functions could exhibit growing oscillations, much like a 
physical system receiving energy from an  external source. In fact, "straight- 
forward" implementations of physical equations often exhibit unstable extrap- 
olations. By formulating our extrapolation problems with impedance func- 
tions, we ensure stability. Of all the virtues a computational algorithm can 
have - stability, accuracy, clarity, generality, speed, modularity, etc. - the 
most important seems t o  be stability. 

In this section we examine the theory of impedance functions, their pre- 
cise definition, their computation in the world of discretized time, and the 
rules for combining simple impedances t o  get more complicated ones. We will 
also examine other special functions, the minimum-phase filter and the 
reflectance filter in their relation t o  the impedance filter. Wide-angle wave 
extrapolation and migration in the time domain will be formulated with 
impedance functions. Rocks are unlike "pure" substances because they con- 
tain irregularities a t  all scales. A particularly simple impedance function will 
be found that  mimics the dissipation of energy in rocks, unlike the classical 
equations of Newtonian viscoelasticity. 

Beware of Infinity! 

T o  prove that  one equals zero take an infinite series, for example, 1, -1, 

+1, -1, +I, . . . and group the terms in two different ways, and add them 
in this way: 

Of course this does not prove that  one equals zero: it proves that  care must be 
taken with infinite series. Next, take another infinite series in which the 
terms may be regrouped into any order without fear of paradoxical results. 
Let a pie be divided into halves. Let one of the halves be divided in two, giv- 
ing two quarters. Then let one of the two quarters be divided into two 
eighths. Continue likewise. The infinite series is 112, 114, 118, 1/16, . - . . 
No matter how the pieces are rearranged, they should all fit back into the pie 
plate and exactly fill it. 
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The danger of infinite series is not that they have an infinite number of 
terms but that they may sum to  infinity. Safety is assured if the sum of the 
absolute values of the terms is finite. Such a series is called absolutely conver-  
gent. 

Z - transform 

The Z -transform of an arbitrary, time-discretized function xt is defined 

by 

Give Z the physical interpretation of time delay by one time unit. Then 
Z 2  delays two time units. Expressions like X ( Z )  U ( 2 )  and 
X ( 2 )  U (1/Z ) are useful because they imply convolution and cross- 
correlation of the time-domain coefficients. (See FGDP). 

Going on to  consider numerical values for the delay operator Z ,  we dis- 
cover that it is useful to  ask whether X ( Z )  is finite or infinite. Numerical 
values of Z that are of particular interest are Z =+I, Z=-1, and all 
those complex values of Z which are unit magnitude, say, I Z I =I or 

where w is the real Fourier transform variable. Taking w t o  be real means 
that Z is on the unit circle. Then the 2-transform is a discrete Fourier 
transform. Our attention can be restricted to time functions with a finite 
amount of energy by demanding that U ( 2 )  be finite for all values of Z on 
the unit circle I Z I = l .  Filter functions are always restricted to have finite 
energy. 

The most straightforward way to  say that a filter is causal is to  say that 
its time domain coefficients vanish before zero lag, that is ut =O for t <O. 
Another way t o  say it is to say that U (Z  ) is finite for Z =O. At Z =O the 
Z-transform would be infinite if the coefficients u - ~ ,  u - ~ ,  etc. were not 
zero. For a causal function, each term in I U ( 2 )  I will be smaller if Z is 
taken inside the disk ) Z ) <1 rather than on it. Thus convergence at  
Z =0 and on the circle I Z I =1 implies convergence everywhere inside the 
unit disk. So boundedness combined with causality means convergence in the 
unit disk. Convergence at  Z = 0 but not on the circle 1 Z I = 1 would 
refer to a causal function with infinite energy, a case of no practical interest. 
What kind of function converges on the circle, at Z = oo, but not at 
Z = O ?  What function converges at all three places, Z = 0, Z = oo, and 
121 = l ?  
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The filter 1/(1 - 2 2 )  can be expanded into powers of Z in (at least) 
two different ways. These are 

Which of these two infinite series converges depends on the numerical value of 
2 .  For I Z I =1 the first series diverges, but the second converges. So the 
only acceptable filter is anticausal. Is a series expansion unique? It is if it 
converges. Complex-variable theory proves this. 

Let bt denote a filter. Then at is its inverse filter if the convolution 
of at with bt is a delta function. In the Fourier domain, we would say 
that filters are inverse to one another if their Fourier transforms are inverse to  
one another. 2-transforms can be used to define the inverse filter, say, 
A (Z)= l /B(Z) .  Whether the filter A ( 2 )  is causal depends on whether it 
is finite everywhere inside the unit disk, or really on whether B ( 2 )  vanishes 
anywhere inside the disk. For example, B ( 2 )  = 1 - 2 2  vanishes at 
Z =1/2. There A ( 2 )  = 1/B ( 2 )  must be infinite, that is to say, the series 
A ( 2 )  must be nonconvergent at 2=1/2.  Thus - as we have just seen - 

at is noncausal. A most interesting case, called minimum phase, occurs when 

both a filter B ( 2 )  and its inverse are causal. In summary: 

Review of Impedance Filters 

Use 2 -transform notation to define a filter R (Z) ,  its input X ( Z  ), 
and its output Y (2 ). Then 

causal 

causal inverse 

minimum phase 

The filter R ( 2 )  is said to  be causal if the series representation of R (2) 
has no negative powers of 2. In other words, yt is determined from 
present and past values of xt . Additionally, the filter R ( 2 )  is minimum 

+ 

I B ( 2 ) l  < oo for ) Z  ( 51 

I l /B (Z ) 1 < oo for I 2 ( 5 1 

both above conditions 
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phase if 1 /R  ( Z )  has no negative powers of Z .  This means that  xt can be 

determined from present and past values of y, by straightforward polyno- 

mial division in 

Given that  R ( Z )  is already minimum phase, it can in addition be an 
impedance function if positive energy or work is represented by 

0 5 work = C force X velocity = voltage X current 
t t 

( 6 4  

Since ZX could be an impulse function located a t  any w, i t  follows that  

Re [R (w)] 2 0 for all real w. In summary: 

Adding an  impedance t o  its Fourier conjugate gives a real positive func- 
tion (the imaginary part of which is zero) like a power spectrum, say, 

Definition of an Impedance 

1 1 [ F 0 + T 1 - + f 2 -  
Z 

+ . - . ) > O  for real w 
z2 - 

causality 

causal inverse 

dissipates energy 

R ( z ) + R ( $ )  o fo r rea l  w (7b) 

r ,  = O  f o r t  < O  i.e. I R ( Z ) I  < m  f o r l Z I  51 

/ l / R ( Z ) (  < m  for ( Z I  51 

2 ~e R (w) = R (z )  + E ( l / Z )  3 0 real w 
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which is the basis for the remarkable fact that every impedance time function 
is one side of an autocorrelation function. 

Impedances also arise in economic theory when X and Y are price 
and sales volume. I suppose that there the positivity of the impedance means 
that  in the game of buying and selling you are bound to  lose! 

Causal Integration 

Begin with a function in discretized time pt. The Fourier transform 
with the substitution 2 = exp(i w At ) is the 2-transform 

Define -i& (which will turn out t o  be an approximation to  -i w) by 

Define another time function qt with 2-transform Q ( 2 )  by applying the 

operator t o  P ( 2  ): 

Multiply both sides by (1-2): 

Equate the coefficient of 2 on each side: 

Taking pt t o  be an impulse function, we see that qt turns out to  be a step 
function, that  is, 

So qt is the discrete domain representation of the integral of pt from 

minus infinity to  time t . It is the same as a Crank-Nicolson-style numerical 
integration of the differential equation d Q  l d t  = P. The operator 

(1+2)/(1-2) is called the bilinear transform. The accuracy of the approxi- 
mation to  differentiation can be seen by multiplication on top and bottom by 
z - . ~  and substitution of Z = e i w A t  . 
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(2 A t  - i  - = s i n w A t  2 w A t  I = - i t a n -  - a  
2 cos w A t  /2 2 

The integration operator has a pole at  Z=1, which is exactly on the 
unit circle. This raises the possibility of the paradox of infinity. In other 
words, there are other noncausal expansions too. For example, taking 
l/(-iw) t o  be an imaginary, antisymmetric function of w implies a real, 
antisymmetric time function, namely, sgn ( t  ) = t / ( t ( , which is not usu- 
ally regarded as the integration operator. To avoid any ambiguity, we intro- 
duce here a small positive number r and define p = 1 - r. The integration 
operator becomes 

Because p is slightly less than one, this series converges for any value of Z 
on the unit circle. If r had been slightly negative instead of positive the 
expansion would have come out in negative instead of positive powers of Z .  

Now the big news is that  the causal integration operator is an example of 
an impedance function. The operator is clearly causal with a causal inverse. 
Let us check in the frequency domain that  the real part is positive. Rational- 
izing the denominator gives 

1 ( l + p Z )  ( 1 - p / Z )  - ( I = -  - 1 - P2) + p(Z - 1 / Z )  

2 (1 - P Z )  ( ~ - P / Z )  positive 

- - (1 - p2) + 2 i p sin wAt 
positive (16b) 

Again, it is the choice of a positive E that has caused 1 - p2, and hence the 
real part to  be positive for all w, as shown in figure 1. 

As multiplication by -iw in the frequency domain is associated with 
differentiation d /dt in the time domain, so is division by -i w associated 
with integration. People usually associate the asymmetric operator (1, -1) 

with differentiation. But notice that the inverse to  the causal integration 
operator, namely, 
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Real frequency 

Imaginary \ 
FIG. 4.6-1. The causal integration operator I .  The frequency axis is 
represented by a discrete Fourier transform over 256 points. Zero time and 
zero frequency are on the left end of their respective axes. 

also represents differentiation, although it is completely causal and not at all 
asymmetric. In .linear systems analysis this representation of discrete 
differentiation is often the preferred one. The construction of higher-order, 
stable differential equations is subject to  certain rules, t o  be covered, for com- 
bining impedances. 

Occasionally it is necessary t o  have a negative real part for the 
differentiation operator. This can be achieved by taking E t o  be negative, 

which means taking p > 1, and doing the infinite series expansion in powers 
of 2-', tha t  is, anticausally instead of causally. In either the anticausal or 
the  causal case the imaginary part will still be -i w, but the real part will 
have the opposite sign. 

Muir's Rules for Combining Impedances 

For every physical system that  conserves or dissipates energy there is an  
impedance function. Impedance functions are special combinations of 
differential operators and positive-valued physical constants. We will see just 
what combinations are allowed. 

T o  ensure stable computations, it is important to  be able t o  ensure that  
a supposed impedance function really is an impedance function. A difficulty 
in applied geophysics is this: Although you might require results only over a 
limited range of frequencies, and you might make approximations that  are 
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reasonable within that range, if the calculated impedance becomes negative 
outside the applicable range (it often happens near the Nyquist frequency), 
then the impedance filter will yield a numerically divergent output. So even 
though the impedance is almost correct, it is not usable. 

Francis Muir providedt three rules for combining simple impedances to 
get more complicated ones. These rules are especially useful because we can 
start from the discrete-time forms of the differentiation and integration opera- 
tors. Let R 1  denote a new impedance function generated from known 
impedance functions R ,  R , ,  and R2.  These three ways of combining 
impedance are 

1. Multiplication by positive scalar a R 1 = a R  

2. Inversion 
1 R '  = - 
R 

3. Addition R 1 =  R l + R 2  

These rules do not include multiplication. Multiplication is not allowed 
because squaring, for example, doubles the phase angle, and thus may destroy 
the positivity of the real part. Since these rules do not include multiplication, 
but only scaling, summation, and inversion, the impedance functions that 
occur in nature will often be represented mathematically as continued jrac- 
t ions.  

The first two of Muir's rules are so obvious we will not prove them. The 
third rule deserves more careful attention. To prove any rule, we need to 
show three things about R I ,  namely, it is causal, it is PR (the Fourier 
transform has a positive real part), and it has an inverse. This last part is the 
hard part with Muir's third rule, namely, that the sum of two impedances has 
a causal inverse. Proof of this fact will take about two pages, and introduce 
several additional concepts. 

Impedance Defined from Reflectance 

The size of the class of filters called impedances  will be seen to  be large, 
because impedances are derived by transformation from an easily specified 
family of filters called ref lectances,  say, ct and its Fourier transform C(w) .  

To be a reflectance, the time function must be strictly causal, and the fre- 
quency function must be strictly less than unity. By strictly causal it is 
meant that the time function vanishes both at zero time and before. For 
example, take -1 < p < +1 and the reflectance ct to be an impulse of size 

tPersonal communication with Francis Muir. 
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p after a time At .  The Fourier transform is 

Obviously, the product of two reflectances is another reflectance. 

An impedance has been defined t o  be a causal filter with a causal inverse 
and a Fourier transform whose real part is positive. I t  will be shown that  
from any reflectance C the expression 

generates an impedance. There are three things to  show: R  is causal, has a 
causal inverse, and is PR.  First because of the assumption that  C  has a 
magnitude strictly less than unity, C  < 1, the denominator expands t o  a 

convergent 1 + C + c2 + . . - . Second, the inverse of R  is found by sim- 
ply changing the sign of C .  Third, multiply top and bottom by the complex 
conjugate: 

? 1 - c ) ( l + E )  > 
Re R  = Re ( - positive 

1  - C  E )  + imaginary  , Re R = Re ( - 
positive 

which shows that  R  has a real part that  is positive. 

The expression for R  ( C )  is easily back-solved for C  (R ), but the con- 
verse theorem, that  every R  generates a reflectance, is harder t o  show. 
Nevertheless, it will be proved, along with a deeper theorem. A filter that  is 
both causal and P R  is said t o  be CPR. The deeper theorem is that  every 
CPR has  a n  inverse  and hence  i s  a n  impedance.  This will be proved by show- 
ing that  every CPR - say, R , - can be used t o  construct a reflectance 6 ,  
which, since it is a reflectance, implies that  the CPR R is an impedance R . 
Backsolving gives 

Proof requires that  two things be shown - first, tha t  the magnitude of 
e is less than unity. T o  show this, form the magnitude of the denominator 
and subtract the magnitude of the numerator. The result is four times the 
real part of R , which is positive. Second, 6 must be proved causal. This 
is harder. (1 + R )-' can be expanded into a sum of positive powers of R 
and hence of positive powers of the delay operator. But the convergence of 
the series is not assured, because nothing requires R t o  be less than unity. 
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To prove that & is causal, we will take advantage of rule 1, namely, 
that an impedance can be scaled by any real positive number that you like, 
and it will still be an impedance. Consider a function that is similar to 6.  

Choose a small enough that for all w, a 1 R I <l. This ensures a conver- 
gent expansion for the denominator in positive powers of R and hence 2. 
The expansion contains only positive powers in the delay operator. Thus B 
is a reflectance, and its corresponding impedance is a R..  But an impedance 
can always be scaled by a positive number. Taking the number to be 1 / a  
shows that R is an impedance. This completes the proof that every CPR is 
an impedance. 

So impedances arise more easily than you might think. It is not neces- 
sary to have a reflectance C to  insert into the relation R = (1-C)/(l+C). 
We only need to have a CPR. 

Functional Analysis 

We will establish the following theorems about exponentials, logarithms, 
and powers of Fourier transforms of filters: 

1. The exponential of a causal filter is causal. 

2. The exponential of a causal filter is a minimum-phase filter. 

3. The logarithm of a minimum-phase filter is causal. 

4. The Fourier domain representation of a minimum-phase filter is a 
curve that does not enclose the origin of the complex plane. 

5. Any power of a minimum-phase filter is minimum phase. 

6. Any real fractional power -1s p 5 1 of an impedance function is 
an impedance function. 

To establish theorem 1, define the 2-transform of an arbitrary causal 
function 

U(Z)  = u o + u l z + u 2 z 2 +  . . .  (23) 

and substitute it into the familiar power series for the exponential function: 

No negative powers of 2 can be found in the right side of (24), so B ( 2 )  
will have no negative powers of Z .  Also, the factorials in the denominator 
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assure us that (24) always converges, so bt is always causal. 

To establish theorem 2, that the exponential is not just causal but also 
minimum phase, consider 

Clearly both B +  and B -  are causal, and they are inverses of one another. 

A minimum-phase filter is defined t o  be causal with a causal inverse. So B +  

and B- are minimum phase. 

Now we will establish the converse of theorem 2 - namely, theorem 3 - 
which states that the logarithm of a minimum-phase filter is causal. Take the 
logarithm of (24) and form the Z-derivative: 

Since B was assumed to  be minimum phase, both 1 / B  and dB/dZ  on 
the right of (26c) are causal. Since the product of two causals is causal, 
dU /dZ is causal. But dU /dZ cannot be causal unless U is causal. That 
proves theorem 3, disregarding the remote danger that B might converge 
while dB /dZ diverges. 

Theorem 4 refers to the Fourier domain representation of the minimum- 
phase filter. In the complex plane, the filter gives parametric equations for a 
curve, say [x (w), y (w)] = [Re B (Z ), Im B ( Z  )I. The phase angle 4(w) is 

defined by the arctangent of the ratio y / x .  For example, the causal, non- 
minimum-phase filter U (Z ) = Z = e gives the parametric equations 
x = cos w and y = sin w which define a circle surrounding the origin. 
Notice that the phase of Z = e is d(w) = w, which is a monotonically 
increasing function of w. In the minimum phase case, d(w=O) = 4(w=27r). 

In the non-minimum-phase case, the curve loops the origin, so $(w=O) = 
4(w=27r) + 2n. Theorem 3 allows us to say that a general formula for 
minimum-phase filters is 

N N 
B = e U ( Z )  = exp [ C Uk cos k w + i C Uk sin k w 

k =O k =O 

= exp [T (w) + i #(w)] (27b) 
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The phase $(w), being a sum of periodic functions, is itself a periodic func- 
tion of w, which means that  in the plane of (Re B ,  Im B )  the curve 
representing B (w) does not enclose the origin. 

On t o  theorem 5, which says that any power of a minimum-phase func- 
tion is minimum phase. Consider 

Since B is assumed to  be minimum phase, by theorem 3 In B will be 
causal. Scaling by a real or complex constant r does not change causality. 
Exponentiating shows, by theorem 2, that  B ' is minimum phase. 

Finally the proof of theorem 6, that an impedance function can be raised 

to  any real fractional power -1 5 p 5 +1 and the result will still be an 
impedance function. An impedance function is defined to  be a minimum- 
phase function with the additional property that the real part of its Fourier 
transform is positive. This means that the phase angle 4 lies in the range 
-7~12 < 4 < +7r/2. Raising the impedance function to  the p power will 
compress the range to  -7rp/2 < 4 < 7rp/2. This will keep the real part of 
the impedance function positive. Theorem 5 states that  any power of a 
minimum-phase function is causal, which is more than we need to  be certain 
that  a fractional real power of an impedance function will be causal. 

Wide-Angle Wave Extrapolation 

Let s = -i & denote the causal, positive, discrete representation of the 
differentiation operator, say, 

Figure 2 compares hyperbolas constructed with w to  those constructed 
with Cj. You see a pleasing drop in wraparound noise. It seems to  work 
better than the E in Section 4.1. As we will see, the introduction of 
complex-valued & leads t o  a more natural handling of the square root at  the 
evanescent transition. 

Consider the following recursion starting from R = s : 

This recursion produces continued fractions. Francis Muir introduced it as a 
means of developing wide-angle square-root approximations for migration 
(Section 2.1), and he developed his three rules to show that every R, is an 

impedance function. To  see why every Rn is an impedance function, first 
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kilometers 
0 . 5 1 1.5 

kilometers 
0.5 1 1.5 

FIG. 4.6-2. Hyperbolas with real frequency (left) and complex frequency 
(right). (Plotting uses square root gain described in Section 4.1). 

note that  the denominator s + R, is, for n = 0, the sum of two 

impedance functions. Then its inverse is an  impedance function, and multi- 
plication by the real positive constant x2 and addition of another s both 
preserve the properties of impedance functions. Recursively we see that  all 
the R, are impedances. 

As N becomes large this recursion either converges or  it does not. Sup- 
posing that  i t  does, we can see what it will converge t o  by setting 
R, +, = R, = R ,  = R . Thus, 

In wave-extrapolation problems x2 is v kz2, where v is the wave 
velocity and k, is the horizontal spatial frequency, namely, the Fourier dual 

t o  the horizontal x-axis. Performing these substitutions we have 
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So R is like f ikr v .  Remember that  R o, the first approximation t o  R , is 

-i 21. So downgoing waves are 

T o  switch from downgoing t o  upcoming waves, we could either change the 
sign in front of R or we take the complex conjugate of R . The difference 
is what you want t o  do with the real part - do you want the wave t o  grow 
or not? 

Consider the dissipation of waves in the exploding reflector model. They 
damp as  they propagate from the explosion t o  the surface. This means that  
as we migrate them, they should be exponentially growing. But we don't 
really want that.  We really want to  assure that  they are not growing, 
perhaps we even want them decaying as we extrapolate them back. So for 
migration we downward continue monochromatic waves with 

although the real behavior of a wave from an exploding reflector wave would 
be 

T o  examine the phase of the complex quantity R , set v = 1 obtaining 

First note that  (- iG) is causal because of its 2-transform representation. 
By squaring the Z -transform we see that  (- i b)2 is also causal. In the time 
domain, kz2 is a delta function a t  the time origin. Thus R given by (36) 

is causal. Figure 3 shows how the phase of (36) is constructed from its consti- 
tuents. T o  illustrate the behavior of -iG from zero t o  infinity, I include 
both an artist's conception and the function on itself, overlain a t  various 
magnifications. The function -iG is a periodic with w and its real and 
imaginary parts plot t o  a closed curve. T o  show the rate of change of the 
function, I sampled w a t  2" intervals. From great distance the function is a 
circle. Close up i t  looks like a line parallel t o  the imaginary axis. 

R 2  is causal and from figure 3 we can see that  i t  has a "branch cut" 
property. That  is, the phase of R has the positive real property. Theorem 
5 forces R t o  be causal and minimum phase. That ,  with the phase defined 
by figure 3, proves that  R , given by (36), is an impedance function. 
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FIG. 4.6-3. Complex plane diagram of constituents of the extrapolation 
operator R given by (36). The center column shows an artist's conception. 
The right column shows the function a t  several magnifications simultaneously. 
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Fractional Integration and Constant Q 

By equation (29) and theorem 6, fractional powers of integration and 
differentiation are also impedance functions. Kjartansson [I9791 has adv- 
cated the fractional power as a stress-strain law for rocks. See also Madden 
[1976]. Classical studies in rock mechanics begin with a stress-strain law such 
as 

stress = stiffness X strain + viscosity X strain-rate 

which in the transform domain is 

stress = [(-iw)' X stgness + 
(- i w)' x viscosity ] x strain (37) 

Expcrimentally, the viscoelastic law (37) does a poor job of describing real 
rocks. Let us try another mathematical form that is like (37) in its limiting 
behavior a t  high and low viscosity: 

stress = const x (- i w)' x strain (384 

- - const X (- i wy-' X strain-rate (38b) 

Here 6 close to  zero gives elastic behavior and 6 close t o  one gives viscous 
behavior. The fact that (- iw)'-' is an impedance function meshes nicely 
with the concepts that (1) stress may be determined from strain history and 
strain may be determined from stress history, and (2) stress times strain-rate 
is dissipated power. Kjartansson [1979] points out that  (- i w)7 exhibits the 
mathematical property called constant Q, so that as a stresslstrain law for 
fitting experimental data on rocks, it is far superior t o  (37). To see the con- 
stant Q property more clearly, express (- i w)7 in real and imaginary parts: 

= 1 1 7 { 0 s  [ s g  w ]  - i sin [y sgn (w)] 1 ( 3 9 ~ )  

The constant Q property follows from the constant ratio between the real 
and imaginary parts of this function. Q itself is defined by 

1 - - - 
Q 

tan TC n 6  (40) 
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A pulse with a Q of about 10 is shown in figure 4. 

4.6  Impedance 

time frequency 

Imaginary 

FIG. 4.6-4. The constant Q pulse given by e - (- iu )  Q'tO . The frequency axis 
is represented by a discrete Fourier transform over 256 points. Zero time and 
zero frequency are on the left end of their respective axes. 

EXERCISES 

1. Take E < 0 and expand the integration operator for negative powers of 
Z . Explain the sign difference. 

2. Let a>O be a real, positive scaling constant, and let C be a 
reflectance function. Without using Muir's rules, prove that C '  is a 
reflectance, where 

Note that you have proven Muir's first rule. Muir's third rule can also be 
proven in an analogous way, but with much more algebraic detail. 

3. The word isomo~.phism means not only that any impedance R R 2, R ' 
can be mapped into a reflectance C1, C2, C '  , but also that  Muir's three 
rules will be mapped into three rules for combining reflectances. 

a. What are these three rules? 

b. Although C 1  = C1C2 does not turn out t o  be one of the three 

rules, it is obviously true. Either show that it is a consequence of 
the three rules or conclude that it is an independent rule that can be 
mapped back into the domain of the impedances to  constitute a 
fourth rule. 



CRAFT 4.6 Impedance 

4. Show that the log of the discrete causal integration operator, 

log[(l+Z )/(I-Z )I, is one side of the discrete Hilbert transform. Show 
that the reflected pulse from a boundary between two media with the 
same velocity but slightly different Q is one side of the Hilbert 
transform. 

5. Consider the fourth-order Taylor expansion for square root in an extrapo- 
lat ion equation 

a. Will this equation be stable for the complex frequency 
- i w  = -iwo + c? Why? 

b. Consider causal and anticausal time-domain calculations with the 
equation. Which, if any, is stable? 

6. Consider a material velocity that may depend on the frequency w and 
on the horizontal x-coordinate as well. Suppose that, luckily, the veloci- 
ty  can be expressed in the factored form v (x , w) = v l(x ) v 2 ( ~ ) .  
Obtain a stable 45" wave-extrapolation equation. Hints: try 

x2 = positive eigenvalue o j  (v  la,)(v la,)T 

7. Is the Levinson Recursion described in FGDP related to  the rules in this 
section? If so, how? Hint: see Jones and Thron (19801. 

8. Show the converse t o  theorem 4, namely, that  if the phase curve of a 
causal function does not enclose the origin, then the inverse is causal. 
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4.7 Accuracy - the Contractor's View 

A chain is no stronger than its weakest link. Economy dictates that all 
the links should be equally strong. Many broad questions merit study such as 
the errors associated with velocity uncertainty and with migration after, 
rather than before, stack. Having read this far, you are now qualified to  
attack these broad questions. Now we will narrow our focus and examine 
only the errors in downward continuation that result from familiar data pro- 
cessing approximations. 

In the construction of a production program for wave-equation migration, 
weakness arises from approximations made in many different places. Econ- 
omy dictates that funds to  purchase accuracy should be distributed where 
they will do the most good. Geophysical contractors naturally become experts 
on accuracy/cost trade-offs in the migration of stacked data. Contractors will 
use the equations and program gathered below to  obtain best results for the 
lowest cost. Users of reflection data are interested in learning to  recognize 
imperfect migrations, so they may want to use the program to  see the effect of 
various shortcuts. 

In preparation for a big production job there are two general approaches 
t o  examining accuracy. The first approach, which gives the best insight into 
qualitative phenomena, is t o  make synthetic hyperbolas by the various 
methods. The synthetic hyperboloids can be be compared to  the data at  hand 
with a video movie system or by plotting on transparent paper. In the second 
approach you compute travel times of hyperboloids or spheroids of waves of 
different stepouts and frequencies for different mesh sizes, etc. Then an 
optimization program can be run to  minimize the average error over the 
important range of parameters. 

It is not necessary to  write a time domain 45" finite difference migration 
program to  see what its synthetic hyperboloids would look like. We can sim- 
ply express all the formulas in the (w, k, )-domain and then do an inverse 

two-dimensional Fourier transformation. To facilitate comparisons between 
the many migration methods we will gather equations from different parts of 
the book in the order that they are needed. Then I'll present the program 
that makes the diffraction hyperbolas for many methods. Using the same 
equations you can compute travel times and solve the optimization problem 
as you wish. 
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Lateral Derivatives 

First, kz will range over f r / A x .  If the x-axis is going to  be handled 

by finite differencing then we will need 

2 k Ax sin - 
2 

So if the x-axis is going to  be handled by finite differencing then subsequent 
reference to  k, should be replaced by iZ. The finite differencing introduces 

the free parameter b . Likewise, you could also scale the whole expression by 
an adjustable parameter near unity. Also, Ax isn't necessarily fixed by the 
data collection. You could always interpolate the data before processing. A 
finite-difference method using interpolated data could be mandated by enough 
lateral velocity variation. 

Viscosity and Causality 

The frequency w will range over f n / A t .  If the t -axis is going t o  be 
handled by finite differencing then we will need the 2-transform variable 

and the causal derivative 

The data can be subsampled or supersampled before processing, so A t  is an 
adjustable parameter. The causality parameter p should be a small amount 
less than unity, say p = 1 - E where r>O is an adjustable parameter. You 
may want to  introduce p even if you are migrating in the frequency domain 
because it reduces wraparound in the time domain - it is a kind of viscosity. 
The E should be about inverse to the data length, say l / N t  where Nt is 

the number of points on the time axis. (Because I made many plots of syn- 
thetic hyperbolas with square root gain, 7 = 112, time wraparounds were 
larger than life. So I had the program default t o  c four times larger). If you 
like t o  adjust free parameters, you could separately adjust numerator and 
denominator values of p. Subsequently, I'll distinguish between w and &, 
but you can take & to  be w if you don't care to  introduce causality. 
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Retarded Muir Recurrence 

The kz square root may be computed with the square root function in 

your computer or by Muir's expansion. For Fourier domain calculations 
incorporating causality, you must use a complex square root function. This 
will also take care of the evanescent region automatically - you no longer 
have the discontinuity between evanescent and nonevanescent regions. The 
square root of a complex number is multivalued, so you better first check that  
your computer chooses the phase as described in figure 4.6-3. Mine did. But 
I found that  limited numerical accuracy prevented me from achieving strict 
positivity of the real part of the impedance until I replaced the expression 

- s by its algebraic equivalent v 2k '/(d- + s ). 

For finite differencing we will need the Muir recurrence. Let r o  define 

the cosine of the angle that  starts the Muir recurrence, often 0" or 45". This 
is another free parameter for optimization. See for example figure 2.1-1. This 
angle is also an angle of exact fit for all orders of the recurrence. Let 

Starting from R = r s the Muir recursion is 

For a diffraction program we will be evaluating exp(-Rz ). Since R was 
proven in 4.6 t o  have a positive real part, the exponential should never grow. 
Finite difference calculations are normally done with retarded time. T o  retard 
time, exp(-Rz ) is expressed as 

As discussed in Section 4.1, you probably don't want the time shift of retarda- 
tion t o  be associated with viscous effects. So you will probably want t o  down- 
ward continue instead with 

Notice the signs and distinction of w from h. 

From equation (4.6-30) we see that  R -s should have a positive real 
part. I found that  numerical roundoff sometimes prevented it. So the Muir 
recurrence was reorganized to  incorporate the retardation. Let 

Equation (4.6-30) becomes 
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From Muir's rules, you can see that R ' will always have a positive real part if 
we start it that way, so we start it from 

R', = 
& 

(1 + ro) 

(Combining (5) and (3) gives the same 15" equation as does (4.6-30)) 
Mathematically (2) is identical t o  

e - R I  Z / V  ,+iw Z / V  (6) 

but numerically the exponential in (6) is assured to  decay in z .  

Stepping in Depth 

If you are using finite differences on depth, or travel-time depth, then we 
have the relation 

it Az k, Az 
- - tan - 

2 
(4.3-14) 

2 

which can be used in exp ik,  z .  Since dissipation may be present, the quanti- 

ties above may be complex. Let N, be the number of depth layers, gen- 

erally equal or less than Nt . Adapting (4.3-17) to  (6) gives 

Lightning Phase Shift Migration 

Not only can the causality and viscosity features of time domain methods 
be incorporated in the frequency domain, but the square roots and complex 
exponentials of the phase shift method can be replaced by complex multiplies 
and divides. First note that  the square root expansion need not begin from a 
starting guess or from a lower order iteration. I t  could begin from the square 
root previously obtained from the preceding w or k .  (I noticed this when 
an early version of the program had a bug that  made all my 15" calculations 
look like 90" calculations)! Also, Az / v  is necessarily small in the phase shift 
method to  accommodate imaging at  every time point. So the finite 

differencing form (7) is probably as good as the complex exponential. Why 
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don't you try it? 

Final Appearances 

The output of an impulse-response program always looks awful. The 
main reason is the large area of (w, k, )-space which is near the Nyquist fre- 

quency or above the evanescent cutoff. Since we rarely sample data in time as 
coarsely as the Nyquist criterion permits, the program below defaults to  final 
filtering with the filter (1+2)/(1-32).  This filter still passes a lot of energy 
outside the usual bandwidth of seismic data. Since all land data and most 
marine data do not have the zero frequency component, the program contains 
an option to  filter further with (1-2)/(1-.82). I haven't displayed anything 
with this extra filter because I wanted this book to  show all the artifacts you 
might encounter. Furthermore, I deliberately enhanced the visibility of 
artifacts on wiggle-trace, variable-area plots by plotting with the nonlinear 

7 = 112 gain described in Section 4.1. (Perspective hidden-line drawings 
always have linear gain). Since my plots are necessarily about 10 cm square 
in this book and in practice you will look at  plots of about a hundred times 
the area, I plotted only one second of travel time. 

Program 

Many of the figures in the book were made with the program presented 
here. To  enable you to  reproduce them I am including the complete program. 
The parameter input and data output calls are site dependent, but I include 
them anyway to help clarify the defaults, increasing the odds that you can get 
exactly what I did. 

# representations of e -J(-i WI" l2 + 
integer output, outfd, fetch 
integer iw,nw,ik,nk, omhat, kxhat, kzhat, degree, tfilt, xfilt 
real v, dt, dx, dz, xf, xO, tf, tau0, rho, bi, rO, eps, pi, omega, k, vk2 
complex cz, cs, cikz, cexp, cmplx, csqrt, cp(1024) 
outfd = output() 

call putch "esizen,"i", 8) # complex numbers 
nw = 256; call putch "nln,"i",nw) # inner index is w 
nk = 64; call putch "n2" ,"in ,nk) # outer index is k, 

call putch I "n3","iP, 1) # one frame movie 

"v", "f", v) == 0 # rock vel 
"dt", "f", dt) == 0 # A t ,  sec 
"dx", "f", dx == # A z , k m  
"dzn, " P ,  dz] == 0 # A t ,  sec 
"xf", "f", xf) == 0 xO =xf*nk*dx 
"tf","P, t f ) = = O )  tf =.5; tauO=tf*nw*dt 
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"omhat" "in, omhat)==O) ornhat = 0 # L A  
" kxhat" , "inl kxhat == 0 kxhat = 0 # 
" kzhat", "inl kzhat == 0 kzhat = 0 

"degreen, "in ,de ree 1 == 0 1 degree= 90 
# kz 

ntfiltn, *ipl tfilty == 0 ) tfilt = 1 
"xfilt" , "in, xfilt) == 0 ) xfilt = 1 

"rho", "f", rho) == 0 ) rho = 1-4./nw 
"bin, "f", bi == 0 bi = 6.726 # 6-' 
"rOn, "f", 4 == 0 1  rO = 0.7071 

"eps", "f", eps) == 0 ) eps = 0. 

"labell","sn,"secn) 
"label2" ,"s","ki1ometers") 
# close data  description file 

pi = 3.14159265 
do ik = 1, nk { # loop over all k, 

k = 2*pi * (ik-1.) / nk 
if( k > i ) k = k - 2*pi 
k = k %  
if( kxhat == 0 ) 

vk2 = (v/2)**2 * k*k 
else 

vk2 = (v/2)**2 * **2 * sin(k*dx/2)**2 / (1 - 
* sin(k*dx/2)**2 ) 

do iw = 1, nw { # loop over all w 
omega = 2*pi * (iw-1.) / nw 
if( omega > pi ) omega = omega - 2*pi 
omega = omega / dt  
cz = cexp( cmplx( O., omega * d t  ) ) 
if( omhat == 0 ) 

cs = cmplx( 1.e-5 / dt,  - omega) 
else 

cs = (2./dt) * (1. - r h o  * cz) / (1. + rho * cz) 
if ( degree == 90 

cikz = v $ 2 / ( csqrt( cs * cs + vk2 ) + cs ) 
if ( degree == 15 1 degree == 45 ) 

cikz = vk2 / ( eps + (rO+l.) * cs ) 
if (degree == 45 ) 

cikz = vk2 / ( 2.*cs + cikz) 
if( real( cikz) < 0.) call erexit("cikz not positive realn) 

if( kzhat == 0 ) 
cp(iw) = cexp( - tauO * cikz ) 

else 
= ((1.-cikz * dz/2) / (l.+cikz * dz/2) ) ** (tauO/dz) 
* cexp(cmplx(O., omega * tau0 )) # unretard 

call rite( dutfd, cp, 8*nw ) # write 
1 
I 

stop; end 
# Finally, you must 2-D Fourier Transform (Section 1.7), take real part, and plot. 

Twenty-two plots displayed in this book were made with this program. 
Different input parameters for the different plots are in the table below. 
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Section and figure. 

1.3-6a 
1.3-6b 
2.0-la 
2.0-lb 
4.0-la 
4.0-lb 
4.1-4a 
4.1-4b 
4.1-5a 
4.1-5b 
4.2-4 
4.3-4a 
4.3-4b 
4.3-6a 
4.3-6b 
4.3-6~ 
4.3-6d 
4.3-6e 
4.6-2a 
4.6-213 
4.7-la 
4.7-lb 

Default parameter overrides. 

t f i l t=O 

It is rumored that  accuracy can be improved by making the z mesh 
coarser. This couldn't happen if x and t were in the continuum, but since 
they may be discretized, there is the possibility of errors fortuitously cancel- 
ing. To  test this rumor, I tried tripling Az (actually, tripling the increment 
in travel-time depth). The result is in figure 1. What do you think? 

Complete as this analysis must seem, it is limited by the assumption of 
Fourier analysis that  velocity is constant laterally. To handle this problem 
we turn  now to  the final lecture on techniques. 
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FIG. 4.7-1. Left is a 45" point diffraction in ( x ,  z ,  t )-space with 
Az = v A t .  At  the right, with Az  = 3 v A t .  

4.8 The Bulletproofing of Muir and Godfrey 

Stable extrapolation can be assured by preserving certain symmetries. I t  
will be shown that  stability is assured in both the differential equation 

and its Crank-Nicolson approximation 

provided that  R + R* is a positive definite (actually, semidefinite) matrix. 
When stability was studied in the previous section the operator R was a 
scalar 2-transform. Because 2-transforms were used, the mathematics of 
that  section was particularly suitable for time domain migrations. Because R 
was a scalar, the mathematics of that  section was particularly suitable when 
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data  has been Fourier transformed over x .  Here we will focus on the matrix 
character of R. Thus we are concerning ourselves with migration in the x -  
domain. Our purpose in doing this theoretical work is t o  gain the ability to  
write a "bulletproof" program for migrating seismic data  in the presence of 
lateral velocity variation. As  an example, the familiar 45" extrapolation equa- 
tion will be put in the bulletproof form. This section, combined with the pre- 
vious one, gives a general theory for stable migration in ( t  , x)-space. 

S tab i l i ty  of t h e  Differential  E q u a t i o n  

Let q* denote the Hermitian conjugate of q. For equation (I) t o  be 
stable the energy q* q must be either constant or decaying during depth ex- 
trapolation. 

Substituting equation ( I )  into equation (3) gives 

Equation (4) shows that  R + R* must be positive semidefinite for the 
differential equation t o  be stable. 

S tab i l i ty  of t h e  Difference E q u a t i o n  

The stability of the difference equation can be shown in a similar way, 
but with some extra clutter. First observe the identity 

1 
(a* a - b* b) - [(a + b)* (a - b) + ( a  - b)* (a + b)] 

2 (5) 

Letting a = qn +l and b = qn , equation (5) becomes 

Now, replace the (qn - qn ) terms by equation (2): 
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This equation establishes the result: If the matrix R + R* is positive 
definite, then q,*+lq, + l  is less than q,* q, . 

Application to 45" Wavefield Extrapolation 

The scalar wave equation for the extrapolation of a downgoing wavefield 
is 

where the R operator takes the usual form 

Our plan is t o  approximate the square root by the usual continued frac- 
tion expansion and then identify i k, with d, t o  obtain a space-domain 
equation. The main effort we must make stems from our refusal t o  make the 
usual assumption that  v (x , z ) is independent of x . Since d, v q differs 

from v a, q, the space representation does not seem t o  be unique, and we 

may wonder how the variable q relates t o  physical wave variables like pres- 
sure and displacement. Since (9) is purely imaginary, the depth-invariance of 
the quadratic q* q can be interpreted as the downward energy flux across the 
datum a t  depth z .  Our main effort will be t o  assure that  q* q does indeed 
remain depth-invariant when v (x , z ) # cons t .  The task of determining 
the relation between the energy flux variable q and the physical variables 
will be left t o  the reader. 

First v2kz2 must be represented in the space domain. Thinking of the 
x-derivative operator d /dx  = 8, as a large bidiagonal matrix with 
(1, - l ) /Ax along the diagonal and V (x ) as a diagonal matrix, we are 
attracted t o  expressions like ( V  a, ) T ( ~  a, ) or ( V  a, )(V a, )T because they 
are symmetric, positive, semidefinite matrices. In simplest form, such numeri- 
cal representations are tridiagonal matrices that  can be abbreviated as 

A t  a later time accuracy or some other consideration could determine the 
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choice in (10). Even other expressions could be used, provided they are real, 
symmetric, and positive definite. 

In the previous section the constant velocity, 45" expansion of (9) was 
shown to  be 

This scalar R always has a positive real part because - i w is always 
represented in an impedance form, and the whole expression is built up satis- 
fying Muir's rules for combining impedance functions. In going to the x -  
domain notice that (i k, )2 = -a,, and (a, )T = - 8, . So the positive 
scalar v2kZ2 corresponds to  the positive eigenvalues of (10). 

The expression of the bulletproof, square-root operator R in the space 
domain will now be given as 

Use of the division sign in (12) is justifiable because the matrix T commutes 
with the identity matrix I. (A hazard in this work is that  T does not com- 
mute with the diagonal matrix V ) .  The matrix M has the properties 
required of R since a basic matrix theorem says that the eigenvalues of a 
polynomial of a real symmetric matrix are the polynomials of the eigenvalues. 
In other words, replacing T in (12) by one of its eigenvalues produces a com- 
plex M whose real part is positive, so that  M* + M is positive as required. 
What is needed is to  show that the following matrix is positive definite: 

A matrix A is positive definite if for arbitrary d ,  the scalar d*A d is 
positive. The diagonal matrix V-'l%an certainly be absorbed into d and 
d will still be arbitrary, so the proof is complete. 

In programming it is a nuisance to put V-'Ie on each side of the matrix 
M. Actually you can put V-' on either side. In general, some other qua- 
dratic form such as q*U q where U is strictly positive definite will be 
decreasing if R* U + U R is positive definite. 




