
The Craft of Wavefield Extrapolation 

This chapter attends t o  those details that  enable us t o  do a high-quality 
job of downward continuing wavefields. There will be few new seismic imag- 
ing concepts here. There will, however, be interesting examples of pitfalls. 
And in order t o  improve the quality of seismic images of the earth, several 
new and interesting mathematical concepts will be introduced. Toward the 
end of the chapter a program is prepared t o  simulate and compare various 
migration methods. 

The Magic of Color 

The first thing we will consider in this chapter is signal strength. Echoes 
get weaker with time. This affects the images, and requires compensation. 

Next, seismic data is colored by filtering. This filtering can be done in 
space as well as time. Time-series analysis involves the concept of enhancing 
the signal-to-noise ratio by filtering t o  suppress some spectral regions and 
enhance others. Spectral weighting can also be used on wavefields in the 
space of o and k . In the absence of noise, wave-equation theory tells us 
what filters t o  use. Loosely, the wave equation is a filter with a flat amplitude 
response in (o, k )-space and a phase response that  corresponds t o  the time 
delays of propagation. The different regions of (o, k)-space have different 
amounts of noise. But the different regions need not all be displayed a t  the 
strength proposed by the wave equation, any more than  data  must be 
displayed with Ax = A z .  

An example of the mixture of filter theory and migration theory is pro- 
vided by the behavior of the spatial Nyquist frequency. Because seismic data 
is often spatially aliased, this example is not without practical significance. 
Think of an  impulse function with its Nyquist frequency removed. The remo- 
val has little relative effect on the impulse, but a massive relative effect on the 
zeroes surrounding the impulse. When migrating an impulse by frequency 
domain methods, spatial frequencies just below the spatial Nyquist are treated 
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much differently from frequencies just above it. One is treated as left dip, the 
other as right dip. This discontinuity in the spatial frequency domain causes 
a spurious, spread-out response in the space domain shown in figure 1. 

The spurious Nyquist noise is readily suppressed, not by excluding the 
Nyquist frequency from the display, but by a narrow band filter such as used 
in the display, namely (1 + cos kz Ax )/(I + .85 cos k, Ax ) which goes 

smoothly to  zero at the spatial Nyquist frequency. This filter has a simple tri- 
diagonal representation in the x -domain. 

FIG. 4.G1. Hyperbola amplified to exhibit surrounding Nyquist noise (top) 
removed by filtering (bottom). 

Survey of Migration Technique Enhancements 

In our quest for quality, we will also recall various approximations as  we 
go. Now is the time to see how the use of approximations degrades results, 
and to  discover how to improve those results. Five specific problems will be 
considered: 

1 The frequency dispersion that results from the approximation of 
differential operators by difference operators 
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2 The anisotropy distortion of phase and group velocity that results from 
square-root approximations 

3 The effect of truncation at the end of the survey line 

4 Dips greater than ninety degrees 

5 Wraparound problems of Fourier transformation 

6 The effect of v ( z  ) upon the Stolt method and how to improve the result 
by stretching 

Following study of these approximations, Section 4.6 is a penetrating 
study of causality, which covers much ground including how Fourier domain 
migration can simulate the causality intrinsic to  time domain migrations. 
Section 4.7 is the grand summary of techniques. A single program is 
presented that can simulate diffraction hyperbolas from many different migra- 
tion methods. This facilitates comparison of techniques and optimization of 
parameters. Figure 1 and many of the other figures in this chapter were pr* 
duced with this program, so you should be able to  reproduce them. 

A Production Pitfall: Weak Instability from v(x) 

Some quality problems cannot be understood in the Fourier domain. 
Unless carefully handled, lateral velocity variation can create instability. 

The existence of lateral velocity jumps causes reflections from steep 
faults. A more serious problem is that the extrapolation equations themselves 
have not yet been carefully stated. The most accurate derivation of extrapo- 
lation equations included in this book so far was done from dispersion rela- 
tions, which themselves imply velocity constant in x .  The question of how a 
dispersion relation containing a v kZ2 term should be represented was never 

answered. It might be represented by v ( x  , z )azz , d, v (x , z )dz , d,, v ( x  , z ) 
or any combination of these. Each of these expressions, however, implies a 
different numerical value for the internal reflection coefficient. Worse still, by 
the time all the axes are discretized, it turns out that one of the most sensible 
representations leads to  reflection coefficients greater than unity and to 
numerical instability. 

A weak instability is worse than a strong one. A strong instability will 
be noticed immediately, but a weak instability might escape notice and later 
lead to  incorrect geophysical conclusions. Fortunately, a stability analysis 
leads t o  a bulletproof method in Section 4.8. 
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4.1 Physical and Cosmetic Aspects 
of Wave Extrapolation 

Frequency filtering, dip filtering, and gain control are three processes 
whose purposes seem to  be largely cosmetic: they are used t o  improve the 
appearance of data. The criteria used t o  choose the quantitative parameters 
of these and similar processes are often vague and relate t o  human experience 
or visual perception. In principle, it should be possible t o  choose the parame- 
ters by invoking information theory and using objective criteria such as signal 
and noise dip spectra. But  in routine practice this is not yet being done. 

The importance of cosmetic processes is not t o  be underestimated. On 
many occasions, for example, a comparison of processing techniques (in order 
t o  choose a contractor perhaps?) has been frustrated by an  accidental change 
in cosmetic parameters. These cosmetic processes arise naturally within 
wave-propagation theory. I t  seems best t o  first understand how they arise, 
and then t o  build them into the processing, rather than t ry  t o  append them in 
some artificial way after the processing. The individual parts of the wave-ex- 
trapolation equations will now be examined t o  show their cosmetic effects. 

t Squared 

Echos get weaker with time. T o  be able t o  see the data  at late times, we 
generally increase data  amplification with time. I have rarely been disap- 
pointed by my choice of the function t 2  for the scaling factor. The t 
scaling function cannot always be expected t o  work, because it is based on a 
very simple model. But I find t 2  t o  be more satisfactory than a popular 
alternative, the growing exponential. The function t has no parameters 
whereas the exponential function requires two parameters, one for the time 
constant, and one for the time a t  which you must stop the exponential 
because it gets too large. 

The first of the two powers of t arises because we are transforming 
three dimensions t o  one. The seismic waves are spreading out in three dimen- 
sions, and the surface area on the expanding spherical wave increases in pro- 
portion t o  the radius squared. Thus the area on which the energy is distri- 
buted is increasing in proportion t o  time squared. But seismic amplitudes are 
proportional t o  the square root of the energy. So the basic geometry of 
energy spreading predicts only a single power of time for the spherical 
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divergence correction. 

An additional power of t arises from a simple absorption calculation. 
Absorption requires a model. The model I'll propose is too simple t o  explain 
everything about seismic absorption, but it nicely predicts the extra power of 
t tha t  experience shows we need. For the model we assume: 

1 One dimensional propagation 
2 Constant velocity 
3 Constant absorption Q-' 
4 Reflection coefficients random in depth 
5 No multiple reflections 
6 White source 

These assumptions immediately tell us that  a monochromatic wave 
would decrease exponentially with depth, say, as exp(-a w t ) where t is 
travel-time depth and a is a decay constant which is inversely proportional 
t o  the wave quality factor Q .  Many people go astray when they model real 
seismic data  by such a monochromatic wave. A better model is that  the 
seismic source is broad band, for example an impulse function. Because of 
absorption, high frequencies decay rapidly, eventually leaving only low fre- 
quencies, hence a lower signal strength. At  propagation time t the original 
white (constant) spectrum is replaced by the forementioned function 
exp(-a w t )  which is a damped exponential function of frequency. The 
seismic energy available for the creation of an impulsive time function is just 
proportional to  the area under the damped exponential function of frequency. 
As for the phase, all frequencies will be in phase because the source is 
assumed impulsive and the velocity is assumed constant. (See Section 4.6 for 
a causality problem lurking here). Integrating the exponential from zero to  
infinite frequency provides us with an inverse power of t thus completing 
the justification of a t divergence correction. 

It is curious that  the shape of the expected seismogram envelope t-2 
does not depend on the dissipation constant a. But changing the spectrum 
of the seismic source does change the shape of the envelope. I t  is left for an 
exercise t o  show that  a seismic source with spectrum / w I b' implies a diver- 
gence correction t 2+p. 

The seismic velocity increases with depth, so sometimes people who know 
the velocity may improve the divergence correction by making it a function of 
velocity (and hence offset) as well as time. 

In reality it may be fortuitous that  t 2  fits data so well. Actually, Q 
generally increases with depth whereas reflection coefficients generally 
decrease with depth. 



CRAFT 4.1 Physical and Cosmetic Aspects 

Noise, Surface Waves and Clip 

If seismic data contained nothing but reflections, then there would be lit- 
tle trouble plotting it. You would simply multiply by t and then scale so 
tha t  the largest data values stayed in the available plotting area. In reality 
there are two problems: 1) noisy traces and 2) noise propagation modes. We 
have noisy traces because the people in the world won't all be quiet while we 
listen for echoes. Noise propagation modes are waves trapped in surface 
layers. So their divergence is in a two-dimensional space rather than the 
three-dimensional space for reflections. Water noises are additionally strong 
because of the homogeneity and low absorption of water. 

Noises are handled by "clipping" data  values a t  some level lower than 
the maximum. Clipping means that  values larger than the clip value are 
replaced by the clip value. Since the size of the noise is generally unpredict- 
able, the most reliable method is t o  use quantiles. Imagine the data points 
sorted in numerical order by the size of their absolute values. The n th  quan- 
tile is defined as the absolute value that  is n 1100 of the way between the 
smallest and largest absolute value. So if data is clipped a t  the 9gth percen- 
tile, then up t o  one percent of the data can be infinitely strong noise. I find 
tha t  most field profiles have less than 10% noisy points. So I often clip a t  
twice the goth percentile. To  find the quantile, it is not necessary t o  fully sort 
the  data. Tha t  would be slow. Hoare's algorithm is much faster (see FGDP 
or Claerbout and Muir [I9731 for full reference and more geophysical context). 

Different plots have different purposes. I t  is often important t o  preserve 
linearity during processing, but a t  the last stage - plotting - linearity can 
be sacrificed t o  enable us t o  see all events, large and small. After all, human 
perceptions are generally logarithmic. In our lab we generally use power laws. 
I find tha t  replacing data  points by their signed square roots generally 
compresses all signals into a visible range. When plotting field profiles with a 
very close trace spacing, i t  may be better t o  use the signed cube roots. More 
generally, we do non-linear gain with 

Display = sgn(Data) I Data ( 7  (1) 

Gamma is a term in photography t o  describe nonlinearity of photographic 
film. Most of the data  plots in this book use y = 1, t gain, and clip a t  the 
9gth percentile. 

The industry standard approach seems t o  be AGC (Automatic Gain Con- 
trol). AGC means t o  average the data magnitude in some interval and then 
divide by the magnitude. Although AGC is nonlinear, it is more linear than 
using y so it is presumably better if you plan later processing. But with 
AGC, you lose reversibility and the sense of absolute gain. 
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FIG. 4.1-1. Arctic profile from Western Geophysical. Left, with t 2. Center 
with t and 7=0.4. Right, with Western's AGC. 

Figure 1 is an interesting example. Since it is a split spread, you assume 
i t  t o  be land data. Ships can't push cables in front of them. But the left 
panel clearly shows marine multiples. The reverberation period is uniform, 
and there are no reflections before the water bottom. I t  must be data col- 
lected on ice over deep water (375m). From the non-linear gain in the center 
panel we clearly see a water wave, and before it a fast wave in the ice. There 
is also weak low-velocity, low-frequency "ground roll" on the ice. There are 
also some good reflections. 

Complex Velocity in the 5" Equation 

The 5" equation, namely, 
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states tha t  a wavefront will take some time t o  get from one depth t o  another. 
With velocity v being a real constant, waves controlled by (2)  propagate 
without change in form. In practice waveform changes are observed. So v 
should not be a real constant. An imaginary part of the velocity would cause 
attenuation. A frequency-dependent velocity would cause frequency disper- 
sion. 

Absorption 

A basic model arises when v (w)  is defined by the equation 

For E = 0, equation (3)  gives a constant velocity. Equation (3)  models the 
so-called causal, constant Q attenuation where Q-' = t an  .rrc (see Section 
4.6). Figure 2 shows an example of a synthetic seismogram generated by the 
exploding-reflector model using equations (2)  and (3) .  

Equation (3)  creates attenuation by introducing an imaginary part into 
the velocity. The main effect of this attenuation is t o  weaken the arrivals a t  
late time. A secondary effect is t o  make the frequency content of late arrivals 
lower. A tertiary effect is this: I t  happens that  the requirement of causality 
forces the real part of the velocity t o  be slightly frequency-dependent. In the 
figure, this slight frequency-dependence is evidenced by the "rise time" on 
each pulse being faster than the "fall time." This means that  the high fre- 
quencies are traveling slightly faster than the low frequencies. In practice, 
this tertiary effect is rarely noticeable. 

In making earth images, earth dissipation might be compensated by 
amplifying high-frequency energy during downward continuation. This might 

be done just like migration, except that  k, = - 4- would be 

replaced by something like k = ( - i ~ ) ~ .  In practice, however, no one 

would really do this, since it would amplify high frequency noise. This raises 
the issue of signal-to-noise ratio. 

Noise isn't simply an ambient random fluctuation. It is mainly repeat- 
able if the data  is reshot. Noise is anything for which we have no satisfactory 
model. On  a practical level, time-variable filters are often used t o  select 
pleasing time-variable passbands. Equations (2)  and ( 3 )  could be used for this 
implementation of time-variable filters, but it would be an oversimplification 
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FIG. 4.1-2. Synthetic seismogram for an earth with Q 100. (Hale) 

t o  view their use as compensation for the earth Q . 

Dispersion 

The frequency-dependence of velocity in the case of surface waves is 
more dramatic. For example, a frequency-dependent velocity is given by the 
equation 

Figure 3a contains some frequency-dispersive ground roll. In figure 3b 
the dispersion has been backed out by a migration-like process. One 
difference between this process and migration is that  migration extrapolates 
down the z-axis whereas in figure 3b the extrapolation is along the x-axis. 
(The extrapolation direction is really just in the computer). Each trace in 
figure 3b is processed separately. In migration, data  p ( t  , z =o) is extrapo- 
lated t o  an image p ( t  =0, z )  using a dispersion relation k, = 

- ,/-. In this process, data p ( t  , z =0) is extrapolated t o  an 

image p ( t  =0, x ) using a dispersion relation like kZ = f ( w / v  ). After this 
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pseudomigration a pseudodiffraction is done with a constant velocity. The 
total effect is t o  undo the frequency dispersion. Finally, i t  is possible t o  see 
tha t  the noise consists of two separate events. Techniques resembling this one 
were first used t o  locate faults in coal seams (Beresford-Smith and Mason 
[1980]). 

FIG. 4.1-3. Dispersive surface wave (left), with the frequency dispersion 
backed out (right). Bottom shows two arrivals, the direct, straight-line 
arrival, and a hyperbola flank. The hyperbola represents sidescatter that  
must come from some object on the earth's surface off t o  the side of the sur- 
vey line. (Conoco, Sword) 
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False Semicircles in Migrated Data 

Dip filtering can be used t o  suppress multiples. Section 5.5 will show 
that  multiples are unlike primaries in one important respect: their strength 
may change rapidly in the horizontal direction. They need not be spread out 
into broad diffraction hyperbolas as primaries must. This difference arises 
because multiples often spend much time focusing themselves in the irregular, 
near-surface areas. Common evidence for this behavior is contained in the 
appearance of wide-angle migrated sections. Such sections often show semicir- 
cular arcs coming all the way up t o  the surface. These arcs warn that  some- 
thing is wrong. The arcs could result from multiples, statics, or unexplained 
impulsive noise. In any case, they could be partially suppressed without 
touching primaries. 

Zapping Multiples in Dip Space 

Think of the migration of a common-depth-point stack as downward con- 
tinuation in (w, I c , ,  2)-space. Ordinarily, velocity increases with depth. As 

the downward continuation proceeds, the velocity cutoff along the evanescent 
line bites out more and more area from the (w, kx)space (Section 1.4). 

Energy beyond this cutoff does not fit the primary wave-propagation model, 
and it should be suppressed as soon as it is encountered. Such noise suppres- 
sion can lead t o  a large drop in total power a t  late times. 

Mixed Appearance of DipFiltered Data 

An objection often raised against dip filtering is that  it can give data  a 

mixed appearance. Mixed means that  adjacent channels appear t o  have been 
averaged and that  they are no longer independent. This is indeed an effect of 
dip filtering, and it is inevitable a t  late times since the horizontal resolving 
power of reflection data decreases with time. There are two reasons for 
decreasing lateral resolution. First, dissipation causes high frequencies to  
disappear. Second, ray bending causes the angular aperture t o  decrease for 
deeper sources. (Section 1.2 and Section 1.5). It is unrealistic t o  ignore this 
fundamental limitation and imagine that  adjacent channels should have an 
appearance of independence. If a mixed appearance is t o  be avoided for 
display purposes, then I advocate removing the low-velocity, coherent, signal- 
generated noise and replacing it by low-velocity, incoherent, Gaussian, ran- 
dom noise. Many plotters lose dynamic range a t  close trace spacing, and ran- 
dom noise can tend t o  restore it. 
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Accentuating Faults 

It often happens that  the location of oil is controlled by faulting. But 
the dominating effect of stratified reflectors may overwhelm the weak 
diffraction evidence of faulting. A cosmetic process could weaken the zero 
and small dips, accentuating dips in the range of 10" t o  6 0 ° ,  and then 
suppress the wide angles and evanescent energy. As with frequency filtering, 
sharp cutoffs are not desirable because of the implied long (and in space, wide) 
impulse response. 

Dip Filtering 

Dip filtering is conveniently incorporated into the wave extrapolation 
equations. Instead of initializing the Muir expansion with ik, = -i w r  we 

use ik, = E - f'W r o .  (Recall Section 2.1 that r o  is the cosine of an exactly 
fitting angle). For the 15" equation we have 

For the 45" equation we have 

Figures 4 and 5 show hyperbolas of diffraction for the 15" and 45" equa- 
tions with and without the dip filtering parameter E. 

Gain Control Does Dip Filtering Too 

Echoes arriving late are weaker than echoes arriving early. Thus data is 
ordinarily scaled for plotting using some time-variable scale. Should migra- 
tion be done before or after this scaling? The results will differ in an interest- 
ing way. The top part of the hyperbola has flat dip, whereas the asymptotes, 
which come later, have steep dip. So, amplification of late information coin- 
cidentally amplifies the steep dips. I think the main effect of choosing to  do 
migration before or after scaling is selection of the dip spectrum in tbe final 
display. A pedantically correct approach is t o  migrate first and scale second, 
but the result will be weaker in dip and fault information than the answer 
obtained by scaling first and migrating second. A side benefit of the latter 
method is that you can save computer memory by storing scaled values as 
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FIG. 4.1-4. Diffraction hyperbolas of the 15" equation without dip filtering 
(left), and with dip filtering (right). 

short integers. I used 16 bit integer storage in my pioneering work. Compu- 
tations and local storage used 32 bit floating point arithmetic. I see little 
justification for 32 bit storage generally used today. We can't interpolate 
between channels t o  4 bits of accuracy. 

Rejection by Incoherence or Rejection by Filtering? 

It is a pitfall t o  judge a supposed noncosmetic process by a cosmetic 
effect. I once got caught. The process was migration before stack. The 
feature that  was deemed desirable was the relative strength of the steepest 
clear event on the record, a fault-plane reflection. But even gain control can 
affect dip spectra! I hoped the process was working by correctly eliminating 
some of the rejection of steep dips by CDP stack. Perhaps it was, but how 
could I know whether this was happening or whether dips were being acciden- 
tally enhanced by spatial filtering? 
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FIG. 4.1-5. Diffraction hyperbolas of the 45" equation without dip filtering 
(left), and with dip filtering (right). 

Spatial Scaling before Migration 

Scaling on the time axis before migration can be advantageous. What 
about scaling on the space axis? The traditional methods of scaling that  are 
called automatic gain control (AGC) deduce a scaling divisor by smoothing 
the data envelope (or its square or its absolute value) over some window. 
Such scaling can vary rapidly from trace to  trace, so concern is justified that  
diffractions might be caused by lateral jumps in the scaling function. On the 
other hand, there might be good reasons for the scale t o  jump rapidly from 
trace t o  trace. The shots and geophones used t o  collect land data  normally 
have variable strength and coupling, and these problems affect the entire 
trace. 

A model must be found that  respects both physics and statistics. I sug- 
gest allowing for gain that  is slowly time-variable and shots and geophones of 
arbitrarily variable strength, but I also prefer to  regard an impulse as evi- 
dence that  the earth really can focus. For example, data processing with this 
model can be implemented by smoothing the scaling envelope with the filter 
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Filter cutoff parameters are ar and P. When the scaling envelope has been 
smoothed with this filter, i t  no longer varies rapidly with both x and t ,  
although i t  can vary with either one or the other. This filter (6) can be 
economically implemented using the t ridiagonal algorithm. 

Exponential Scaling 

Exponential scaling functions have some ideal mathematical properties. 
(If you are not familiar with Z-transforms, you should read Section 4.6 or 
FGDP before proceeding.) Take the Z-transform of a time function at : 

The exponentially gained time function is defined by 

The symbol f denotes exponential gain. Mathematically, f means that  Z 
is replaced by e "2. Polynomial multiplication amounts t o  convolution of 
the coefficients: 

By direct substitution, 

This means that exponential gain can be done either before or after convolu- 
tion. You may recall from Fourier transform theory that multiplication of a 
time function by a decaying exponential exp(-at ) is the equivalent of replac- 
ing - i w  by -iw+cu in the transform domain. 

Specialize the downward-continuation operator exp(ik, z ) t o  some fixed 

z and some fixed I c , .  The operator has become a function of I*, that may 

be expressed in the time domain as a filter a t .  Hyperbola flanks move 
upward on migration. So the filter is anticausal. This is denoted by 

The large negative powers of Z are associated with the hyperbola flanks. 
Exponentially boosting the coefficients of positive powers of Z is associated 
with diminishing negative powers - so TA is A with a weakened tail - 
and tends to  attenuate flanks rather than move them. Thus t A  may be 
described as viscous. 
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From a purely physical point of view cosmetic functions like gain control 

and dip filtering should be done after processing, say, f (AB ). But f(AB ) is 
equivalent to  (fA )(fB) ,  and the latter operation amounts t o  using a viscous 
operator on exponentially gained data. In practice, it is common t o  forget the 

viscosity and create A ( fB) .  Perhaps this means that  dipping events carry 
more information than flat ones. 

The Substitution Operator 

The f operator has been defined as the substitution Z -r Z e ". The 
main property of this operator is that if C = A B ,  then f C = ( fA ) ( tB) .  
This property would be shared by any algebraic substitution for Z ,  not just 
the one for exponential gain. Another simple substitution can be used to  
achieve time-axis stretching or compression. For example, replacing Z by 
Z 2  stretches the time axis by two. Yet another substitution, which has a 
deeper meaning than either of the previous two, is the substitution of the con- 
stant Q dissipation operator (-& w)7. In summary: 

EXERCISES 

1. Use a table of integrals t o  show that a seismic source with spectrum 
1 w  I p implies a divergence correction t 2+8. 

2. Assuming that t 2  is a suitable divergence correction for field profiles, 
what divergence correction should be applied to  CDP stacks? 

3. How is the t correction altered for water of travel time depth to? 

Assume the Q of water is infinite. 

4. Consider a source spectrum e -p  I I . How is the t correction altered? 

Substitutions for Z -Transform Variable Z 
[ all preserve C (Z  )=A ( Z  )B (2 ) ] 

Exponential growth 

Time expansion (a  > 1) 

(Inverse) Constant Q dissipation 

Z -, Zea 
( i w - t  i w +  a )  

Z + Z a  

-i w -, (-2 w)T 
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5 .  The spectrum in figure 2 shows high frequencies smoother than low fre- 
quencies. Explain. 

6. State some criteria that  can be used in the selection of the cutoff parame- 
ters a and ,43 for the filter (6). 

4.2 Anisotropy Dispersion 
and Wave-Migration Accuracy 

Two distinct types of errors are made in wave migration. Of greater 
practical importance is jrequency dispersion, which occurs when different fre- 
quencies propagate a t  different speeds. This may be reduced by improving 
the accuracy of finite-difference approximations to  differentials. Its cure is 
refinement of the differencing mesh. See Section 4.3. 

Of secondary importance, and the subject of this section, is anisotropy 
dispersion. Anisotropic wave propagation is waves going different directions 
with different speeds. In principle, anisotropic dispersion is remedied by the 
Muir square-root expansion. In practice, the expansion is generally truncated 
a t  either the 15" or 45" term, creating anisotropy error in data processing. 
The reasons often given for truncating the series and causing the error are ( I )  
the cost of processing and (2) the larger size of other errors in the overall data 
collection and processing activity. Anisotropy error should be studied in order 
t o  (1) recognize the problem when it occurs and (2) understand the basic 
trade-off between cost and accuracy. 

Anisotropy is often associated with the propagation of light in crystals. 
In reflection seismology, anisotropy is occasionally invoked t o  explain small 
discrepancies between borehole velocity measurements (vertical propagation) 
and velocity determined by normal moveout (horizontal propagation). These 
fundamental, physical anisotropies and the subject of this section, anisotropy 
in data processing, share a common mathematical and conceptual basis. 
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FIG. 4.2-1. Wavefronts in an isotropic medium (left) and an anisotropic 
medium (right). Note that on the right, the rays are not perpendicular t o  the 
wavefronts. (Rothman) 

Rays not Perpendicular to Fronts 

Anisotropy means that waves propagating in different directions pro- 
pagate a t  different speeds. Anisotropy does not mean that velocity is a func- 
tion of spatial location, and thus anisotropy does not cause rays to  bend. The 
peculiar thing about anisotropy is that rays are not perpendicular to wave- 
fronts. Figure 1 illustrates this idea. The diagram on the left shows spherical 
wavefronts emanating from a point source at the origin. This is the usual, 
isotropic case. The diagram on the right shows the nonspherical wavefronts 
of the 15" migration equation. Note that near the z-axis they are nearly 
spherical, but further away they do a poor job of matching a sphere with its 
center a t  the origin. 

FIG. 4.2-2. Wavefronts of 15" (left) and 45" (right) extrapolation equations, 
inscribed within the exact semicircle. Waves with sin 9 = vkz /w = f 1 are 
marked with small dots. Evanescent energy lies beyond the dots. (Rothman) 
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The ideal wavefront from a Huygens secondary source is a semicircle. 
The secondary source that results from the 15" extrapolation equation is an 
ellipse. The secondary source that  results from the 45" extrapolation equation 
is an interesting, heartlike shape. These are drawn in figure 2. In practice, 
the top parts of the ellipse and the heart are rarely observed because they are 
in the evanescent zone, and the x-axis is seldom refined enough for them to 
be below the aliasing frequency. The center of the heart is sometimes seen in 
the (x , t >plane when the 45" program is used. I t  is shown by a line drawing 
in figure 3 and shown using a 45" diffraction program in figure 4. 

Wavefront Direction and Energy Velocity 

FIG. 4.2-3. 45" heart theory. 
The cusp arises in the evanescent 
region. (Rothman) 

In ordinary wave propagation, energy propagates perpendicular t o  the 
wavefront. When there is anisotropy dispersion, the angle won't be perpen- 
dicular. 

X 

The apparent horizontal velocity seen along the earth's surface is dx / dt . 
The apparent velocity along a vertical, e.g., as seen in a borehole, is dz / d t  . 
B y  geometry, both of these apparent speeds exceed the wave speed. The vec- 
tor perpendicular to  the wavefront with a magnitude inverse t o  the velocity is 
called the slowness vector: 

slowness vector = 
dt dt 

The phase velocity vector is defined to  go in the direction of the slowness 
vector, but have the speed of the wavefront normal. More precisely, the 
phase velocity vector is the slowness vector divided by its squared magnitude: 

phase velocity = 

IS)'+ [ % I '  



CRAFT 4.2 Anisotropy Dispersion 

FIG. 4.2-4. Impulse response of 
the 45" wave-extrapolation equa- 
tion. The arrival before t o  is a 
wraparound. 

kilometers 
0.5 1 1.5 

For a disturbance of sinusoidal form, namely, exp( i$ )=  
exp(-i w t  + ik, x + ikz z ) ,  the phase 4 may be set equal t o  a constant: 

Thus, in Fourier space the slowness vector is 

slowness vector = 

The direction of energy propagation is somewhat more difficult to  derive, 
but i t  comes from the so-called group velocity vector: 

group velocity = 
d 

For the scalar wave equation w2/v = kz2 + kz2, the group velocity vector 

and the phase velocity vector turn out t o  be the same, as can be verified by 
differentiation and substitution. The most familiar type of dispersion is fre- 
quency dispersion, i.e. different frequencies travel a t  different speeds. Later in 
this section it will be shown that  the familiar (15", 45", etc.) extrapolation 
equations do not exhibit frequency dispersion. That  is, as functions of w and 
angle kx /w, the velocities in these equations do not depend on w. In other 

words, the elliptical and heart shapes in figure 2 are not frequency-dependent. 






















































































































