
WAVEFORM APPLICATIONS OF LEAST SQUARES 

By the methods of calculus, one learns to find the coordinates of an extremal point 
on a curve. In the calculus of variations, one learns how to find extremal functions. 
In practice, the continuum may be approximated on a mesh and the distinction 
blurs. In the calculus of variations problems, however, the matrices can be immense, 
a disadvantage often partially offset by their orderly form. In this chapter we will 
take up examples in the use of least squares on waveforms and relationships between 
groups of waveforms. This leads to a massive full matrix called the block-Toeplitz 
matrix for which we have a special solution technique. 

7-1 PREDICTION AND SHAPING FILTERS 

A data wavelet is given by b = (b,, b,, . . . , b,). We plan to construct a filter 
f = (f,, f,, . . . , f,). Filtering is defined in this way: When data b go into a filter f, 
an output wavelet c is produced according to the following matrix multiplication. 



This operation is often called complete transient convolution. It is the same as 
identifying coefficients in a polynomial multiplication. 

Now we introduce another wavelet d which will have the same number of 
components as c. We call d the desired output of the filter. We saw that c is the 
actual output. The actual output c was seen to be a function of the input b and 
the filter f. The problem now is to determine f so that c and d are very much alike. 
Specifically we will choose f so that the difference vector c - d has minimum 
length squared (in n + m + 1 dimensional space). In other words, we use the 
method of least squares to solve the overdetermined equations 

Using the " quick-and-dirty" method of the previous chapter we merely pre- 
multiply (7-1-2) by the transposed matrix. The result is a Toeplitz matrix of the 
form 

where r, is the autocorrelation of the input x, and g, is a crosscorrelation of the 
input x, with the desired output d, .  For computation techniques see Chapt. 7-5. 

The formulas of this section may also be used to attempt to predict a time 
series from its past. For example fl,  f, , . . . , fm is a prediction filter of x,+ ,, from 
x , ,  x , -  . . . , x,-,+ if we solve by least squares the equations 



The matrix in (7-1-4) may be continued downward for as far as one has data. 
In an application, the range of t in  (7-1-4) would be over past values of t. Then, after 
solving the equations for the filter f it would be hoped that the character of the 
time series was such that f could be used to predict future values of the time series 
which had not gone into the equation defining f. 

If the matrix of (7-1-4) is very much higher than it is wide, it may be desirable 
to  treat the end effects differently. If one uses instead 

one finds that the least-squares normal equation has a Toeplitz matrix whereas for 
(7-1-4) the matrix is not Toeplitz. As the reader is aware, the Toeplitz matrix has 
many advantages, both theoretical and computational. 

Of special interest is the filter which is designed from the equations 
- 

zeros 

X 0 

Xn - 
Such a filter is called the prediction errorj l ter  for unit span because the a, 

operate on (x,-,, x,-, , . . .) attempting to cancel x , .  Thus, the a, on the (x ,-,, 
x,-, , . . .) gives the negative of a best prediction of x, based on (x, - ,, x,-, , . . .). 
The normal equations implied by (7-1-6) are the square set 

I t  may be noted that the calculation of a prediction error filter depends only on 
the autocorrelation of the time series and not on the time series itself. As we have 
seen (from 3-3-3), the solutions to these equations are coefficients of a minimum- 
phase polynomial. 



Solutions to Toeplitz equations when the right-hand side takes the more arbi- 
trary form (7-1-3) are not generally minimum-phase, but the Levinson recursion 
may be generalized to make the calculation speedy. This is done in Sec. 7-5 on the 
multichannel Levinson recursion. 

EXERCISES 

I Find a three-term zero delay inverse to the wavelet (1, 2). Compare the error to the 
error of (2, 1). Compare the waveform. An extensive discussion of the error in least- 
squares inverse filters is given in Reference 26. One conclusion is that the sum of the 
squared errors goes to zero as the filter length becomes infinite in two situations: 
(a) Zero delay inverse if and only if the wavelet being inverted is minimum-phase. 
(b) If the wavelet being inverted is not minimum-phase, the error goes to zero only 

if the output is delayed, that is, d = (. . . , 0,0, 1, 0,0, . . .). Calculate a three-term 
delayed inverse to (1, 2), that is, try d = (0, 1, 0,0) or d = (0, 0, I, 0). 

2 A pressure sensor in a deep well records upgoing seismic waves and, at some time to 
later, identical downgoing waves of opposite sign. Determine delayed and non- 
delayed least-squares filters of length m to eliminate the double pulse. (You should be 
able to guess the solution to large matrices of this type. Try filters of the form fk = 

a + pk where a and ,8 are scalars.) What is the error as a function of the filter length? 
3 Let b, = (. . . , 1, 1, -2, 1, 1, -2, . . .). Find by least squares the best one-term filter 

which predicts b, , using only 6,-, . Find the best two-term filter using b,-l and b,-2. 
Likewise find the best three-term filter. What is the error as a function of time in each 
case ? 

7-2 BURG SPECTRAL ESTIMATION [Ref. 271 

The uncertainty principle says that if a time function contains most of its energy 
in the time-span At, then its Fourier transform contains most of its energy in a 
bandwidth Af 2 IlAt. This is not the same as saying that if we have a sample of 
a stationary time series of length At, the best frequency resolution we can hope to 
attain will be Af = l/At. The difference lies in the difference between assuming a 
function is zero outside the interval At in which it is given and in assuming that it 
continues "in a sensible way" outside the given interval. If the data sample can be 
continued "in a sensible way" some distance beyond the interval in which it is 
given, then the frequency resolution Af may be considerably smaller than 1lAt. 
A finer resolution depends upon the predictability of the data off the ends of the 
sample. If one has a segment of a stationary series which is short compared to the 
autocorrelation of the stationary series, then the spectral estimation procedure of 
John P. Burg will be radically better than any truncated Fourier transform method. 
This comes about in physical problems when one is dealing with resonances which 
have decay times that are long compared to the observation time or when one is 
looking at  a function of space where each point in space represents another in- 
strument. 

If a spectrum R(Z) is estimated by X(l/Z)X(z) where X(Z) is a polynomial 



made up from N + I known data points, then the coefficients of R(Z) are com- 
puted by 

N-k  

Notice that ro is calculated from N + I terms, r1 from N terms, etc. If N is not 
large enough, this will have an undesirable biasing effect. The biasing is removed 
if the rk are computed instead by the formula 

The trouble with using (7-2-2) is that data samples can easily be found for which 
rk will not be a valid autocorrelation function. For example, the spectrum will 
not be positive a t  all frequencies, the solution to Toeplitz equations may blow up, 
etc. 

Burg's approach avoids the end-effect problems of (7-2-1) and the possibility 
of impossible results from (7-2-2). Instead of estimating the autocorrelation r, 
directly from the data he estimates a minimum-phase prediction-error filter directly 
from the data. The output of a prediction-error filter has a white spectrum. (If it 
did not, then the color could be used to improve prediction.) Since the spectrum 
of the output is the spectrum of the input times the spectrum of the filter, the 
spectrum of the input may be estimated as the inverse of the spectrum of the 
prediction-error filter. As we have seen, narrow spectral peaks are far more easily 
represented by a denominator than by a numerator. 

Let the given segment of data be denoted by x, , xl,  . . . , x, . Then a two-term 
prediction-error filter ( I ,  a) of the time series x, is given by the choice of a which 
minimizes 

N 

E(a) = I x, + ax, -, 1 (7-2-3) 
t =  1 

Unfortunately, consideration of a few examples shows that there exist time series 
[like (1, 2)] for which I a I may turn out to be greater than unity. This is unaccept- 
able because the prediction-error filter is not minimum-phase, the spectrum is not 
positive, etc. Recall that a prediction-error filter defined in the previous section 
depends only on the autocorrelation of the data and not the data per se. This 
means that the same filter is computed from both a time series and from the 
(complex-conjugate) time-reversed time series. This suggests that the error of 
forward prediction (7-2-3) be augmented by the error of backward prediction. 
That is 

N 

E ( ~ ) = ~ I X ~ + ~ X , - , / ~ + I Z , - ~ + ~ Z , ~ ~  (7-2-4) 
t =  1 

We will later establish that the minimization of (7-2-4) always leads to an (a1 less 
than unity. The power spectral estimate associated with this value of a is 



R = 1/[(1 + a/Z)(l + aZ)]. The value of Af may be very small if a turns out very 
close to the unit circle. 

A natural extension of (7-2-4) to filters with more terms would seem to be to  
minimize 

Unfortunately, Burg discovered time series for which the computed filter 
A(Z) = 1 + a,Z + a2Z2 was not minimum-phase. If A(Z) is not minimum-phase, 
then R = l/[A(l/Z)A(Z)] is not a satisfactory spectral estimate because R(Z) is to 
be evaluated on the unit circle and l/A(Z) would not be convergent there. 

Burg noted that the Levinson recursion always gives minimum-phase filters. 
In the Levinson recursion a filter of order 3 is built up from one of order 2 by 

Thus Burg decided that instead of using least squares to determine a,  and a, as in 
(7-2-5), he would take a to be given from (7-2-4) and then do a least-squares 
problem to solve for c. This would be done in such a way as to ensure that I cl 
comes out less than unity, which guarantees that A(Z) =1  + a ,Z  + a2Z2 is 
minimum-phase. Thus he suggested rewriting (7-2-5) as 

Now the error (7-2-6), which is the sum of the error of forward prediction plus 
the error of backward prediction, is minimized with respect to variation of c. (In 
a later chapter we will see fit to call c a reflection coefficient.) The quantity a remains 
fixed by the minimization of (7-2-4). Now let us establish that I c 1 is less than unity. 
Denote by e +  the time series x, + ax,-, which is the error in forward prediction 
of x, . Denote by e -  the time series x,-, + ax,-, of error on backward prediction. 
With this, (7-2-6) becomes 

Setting the derivative with respect to E equal to zero 



(One may note that aE/dc = 0 gives the same result.) That I c 1 is always less than 
unity may be seen by noting that the length of the vector e+ f e -  is always 
positive. In particular 

If we now redefine e+ and e -  as 

we have the forward and backward prediction errors of the three-term filter 
(1, a; ,  a;) = ( 1 ,  a ,  - cZ,, -c). One can then return to  (7-2-7) and proceed recur- 
sively. As the recursion proceeds e+ and e-  gradually become unpredictable 
random numbers. We have then found a filter A ( Z )  which filters X(Z) either forward 
or  backward and the output is white light. Since the output has a constant spectrum, 
the spectrum of the input must be the inverse of the spectrum of the filter. 

In later chapters we will discover a wave-propagation interpretation of the 
Burg algorithm. In a layered medium the parameters c, have the interpretation of 
reflection coefficients; the e f  and e -  vectors have the interpretation of up- and 
downgoing waves; and the whole process of calculating a succession of c, amounts 
to  downward continuing surface seismograms into the earth, determining an earth 
model c, as you go. 

EXERCISE 

I Considerthetimeserieswithtenpoints(1,I,1,-1,-1,-1,1,1, I , - ] ) .  ComputeC 
and A up to cubics in Z. Compare the autocorrelation r ,  calculated by Burg's method 
with R(Z) estimated from the truncated sample and with R(Z) estimated by intuitively 
extending the data sample in time to plus and minus infinity. 

2 Modify the program of Fig. 7-1 to compute and include the scale factor V which 
belongs in the spectrum. 

7-3 ADAPTIVE FILTERS 

An adaptive filter is one which changes with time t o  accommodate itself t o  changes 
in the time series being filtered. For example, suppose one were predicting one 
point ahead in a time series. One could take a lot of past data to  design the filter; 
then one could apply the filter to  present incoming data to  predict future incoming 



SUBROUTINE BURGC(LX,X,EP,EM,LC,C,A,N2048,S) 
C GIVEN A TIME SERIES X(l ... LX) GET ITS LOG SPECTRUM S(l ... N2048) 

DIMENSION X(LX) ,EP (LX) ,EM(LX) ,C (LC) ,A(LC) , S (N2048) 
COMPLEX X,EP,EM,C,A,S,TOP,BOT,EPI,CONJG,CLOG 
DO 10 I=l,N2048 

10 S(I)=O. 
A(l)=l. 
DO 20 I=l,LX 
EIf(I)=X(I) 

20 EP (I)=X(I) 
DO 60 J=2,LC 
TOP=O. 
BOT=O. 
DO 30 I=J,LX 
BOT=BOT+EP(I)*CONJG(EP(I))+EM(I-J+l)*CONJG(EM(I-J+l)) 

30 TOP=TOP+EP(I)*CONJG(EM(I-J+l)) 
c (J)=Z*TOP/BOT 
DO 40 I=J,LX 
EPI=EP (I) 
EP (I)=EP(I)-C(J)*EM(I-J+1) 

40 EM(1-J+l)=EM(I-J+1)-CONJG(C (J))*EPI 
A(J)=O. 
DO 50 I=1, J 

50 s(I)=A(I)-C(J)*CONJG(A(J-1+1)) 
DO 60 I=l,J 

60 A(I)=S(I) 
CALL FORK(N2048,S,+l.) 
DO 70 1=1,N2048 

70 S(I)=-CLOG(S(I))*2. 
RETURN 
END 

FIGURE 7-1 
Computer program to do Burg algorithm. The program follows the notation of 
the text. The data Xis  a vector of dimension given to be LX. Choice of LC < LX 
is a compromise between high resolution and high scatter. The density of points 
on the frequency axis, which is controlled by N2048 + LX, is chosen for plotting 
convenience and should be great enough to  resolve narrow spectral lines. 

data. As time goes on it might become desirable to recompute the filter on the 
basis of new data which have come in. How often should the filter be redesigned? 
In concept, there is no reason why it should not be reconlputed very often, perhaps 
after each new data point arrives. In practice, this is usually prohibitively expensive. 
For a filter of length n it requires n multiplies and adds to apply the filter to get one 
new output point. To recompute the filter with Levinson recursion requires about n2 

multiply-adds. However, it is usually expected that the filter need only be changed 
by a very small amount when a new data point arrives. For that reason we will 
give the Widrow [Ref. 281 adaptive-filter algorithm which modifies the filter by 
means of only n arithmetic operations. Thus, a new filter is computed after each 
data point comes in. 

For definiteness, consider a two-term prediction situation where et  is the error 
in predicting a time series xt  from two of its past values 

et  = x ,  - b x t - ,  - c x t - ,  (7-3-1) 
The sum squared error in the prediction is 



FIGURE 7-2 
The sign of the partial derivative tells 
whether b > b,i, or b < bn,in.  

* 
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If the parameter b has been chosen correctly, one should find that dE/db = 0. 
However, if the nature of the time series x ,  is changing with time, dE/ab may depart 
from zero when new data are included in the sum in (7-3-2). Since E is a positive 
quadratic function of b, if dE/db has become positive, then b should be reduced. 
If aE/ab has become negative, then b should be augmented. See Fig. 7-2. 

From (7-3-2) we have 

The change i n ' a ~ l d b  from the addition of the data point x, is just - 2e tx , - ,  ; thus, 
we are motivated to modify b and c in the following way 

Here the number k scales the amount of the readjustment which we are willing to 
make to b and c in one time step. If k is chosen very small, the adjustment will 
take place very slowly. If k is chosen too large, the adjustment will overshoot the 
minimum; however one may hope that it will bounce back, perhaps again over- 
shooting at the next step. The choice of k is dictated in part by the nature of the 
time series x, under study. 

There are many variations on these same ideas. For example, we could use 
the L, norm and minimize something like 

E(c) = C I cx,  - Y ,  I (7-3-5) 
t 

The resulting adaptation would be 
c c c - k x ,  sgn (cx,  - y , )  (7-3-6) 

Equation (7-3-5) is of course the weighted median. An even more robust procedure 
is the uniformly weighted median 

which leads to the adaptation 

c t c - k sgn c - - (7-3-8a) ( ::I 



which is identical to  
c t c - k sgn (x,) sgn (cx, - y,) (7-3-8b) 

The examples (7-3-5) and (7-3-7) could be extended, in a manner like the Burg 
algorithm, to stationary series. Like (7-3-7) we could minimize 

This leads to a choice of c within the proper bounds because 

(all t )  

EXERCISES 

I If x, has physical dimensions of volts, what should be the physical dimensions for 
k ?  If x, has an rms value of 100 V and At, the sampling interval, is 1 ms, what 
numerical value of k will allow the Widrow filter to adapt to new conditions in about 
a second ? 

2 Consider the time series x, = (. . ., I, 1, 1, I, - 4, 1, 1, 1, 1, - 4, 1, 1, 1, 1, -4, . . .). 
Consider self-prediction of the form xt+ = cx,. What are the results of least-squares 
prediction? What are the results of L1 norm prediction of data weighted and 
uniformly weighted types ? 

7-4 DESIGN .OF MULTICHANNEL FILTERS 

Multichannel filters are frequently useful. For example, with a vector-prediction 
filter one might wish to predict a time series, using its past and the past of a group 
of other series. With a matrix-prediction filter one could predict a group of series, 
using the past of the whole group. If the series are related, the group prediction 
should be better than self-prediction of individual channels. For definiteness, let 
us take two time series x, and y, and suppose we are to find a vector filter which 
converts them into a third series d,. If d, is x, + ,, this is a unit time-span prediction 
filter for x,. If d, is a vertical seismogram and x, and y, are horizontals, then the 
two-channel filter might be called an extrapolation filter. The set of equations 
which we wish to solve by least squares takes the form 



If this set of equations is abbreviated 

then, as we have seen in an earlier chapter, the solution is of the form 

We wish to inspect the matrix being inverted, call it R. For a filter with three time 
lags we get 

If we define 

and likewise for ryx(i) and ryy(i) the matrix (7-4-4) becomes 

We may take the 6 x 6 matrix of (7-4-5) and partition it into a 3 x 3 matrix 
of 2 x 2 submatrices. If we define the submatrix blocks as 

then (7-4-5) in terms of the blocks defined in (7-4-6) is 

The matrix in (7-4-7) is called block Toeplitz or multichannel Toeplitz. As with the 
ordinary Toeplitz matrix there is a trick method of solution. It will be taken up in 
the next section. 

The reader should note that the matrix R does not depend on the desired 
output d. This results in a computational saving when there is more than one 
possible output. An example would be when it is desired to predict several 
different series or distances into the future on a given series. 



EXERCISE 

I In the exercises of Chap. 2, we determined B(Z) and A(Z) such that some given power 
series C(Z) was expressed as C(Z) = B(Z)/A(Z). Write normal equations (do not 
solve them) for doing this in an approximate way by minimizing 

min (A, B) = (B, - 2 C,- ,  AJZ 
t 1 

where 

subject to the constraint A, = 1. (It can be proved that A(Z) comes out minimum- 
phase by examining the Levinson recursion.) 

7-5 LEVINSON RECURSION 

The Levinson recursion is a simplified method for solving normal equations. It  may 
be shown to  be equivalent t o  a recurrence relation in orthogonal polynomial theory. 
The simplification in Levinson's method is possible because the matrix B has 
actually only N different elements when a general matrix could have N2 different 
elements. 

Levinson developed his recursion with single time series in mind (the basic idea 
was presented in Sec. 3-3). It is very little extra trouble to  d o  the recursion for 
multiple time series. Let us begin with the prediction-error normal equation. 
With multiple time series, unlike single time series, the prediction problem is 
changed if time is reversed. We may write both the forward and the backward 
prediction-error normal equations as one equation in the form of (7-5-1). 

Since end effects play an important role, we will show how, when given the 
solution for 3-term filters, d and 99 

to find the solution d' and .@' four-term filters to  

by forming a linear combination of d and a. This can be done by choosing con- 
stant matrices a and p in 
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Make d by choosing a and $ so that the bottom element on the right-hand 
side of (7-5-3) vanishes. That is, a = I, b = - V, E, . Make 3 by choosinga and $ 
so that the top element on the right-hand side vanishes. That is, f3 = I, a = - V, E, . 

Of course, one will want to solve more than just the prediction-error problem. 
We will also want to go from 3 x 3 to 4 x 4 in the solution of the filter problem 
with arbitrary right-hand side 9. This is accomplished by choosing y in the fol- 
lowing construction (7-5-4) so that Ef + V,y = G, 

7-6 CONSTRAINED FILTERS 

A common geophysical situation is a plane wave (signal) incident on a group of 
receivers. One expects to see the same waveform at each receiver. However, there 
is corrupting noise present at each receiver, and the noise may or may not be 
coherent from one receiver to the next. In fact, we may suppose there is so much 
noise on each receiver that the signal might not be detectable at all if there were 
only one receiver. This was the situation facing M. J. Levin [Ref. 291 when he was 
trying to detect weak underground nuclear explosions with an array of seismo- 
meters. He suggested a multichannel filter with constraints. First suppose that 
either all the signals arrive at  the same time or that, if the times differ, at least they 
are known so that the data channels may be shifted into alignment. Now the prob- 
lem is to filter each channel and then add up the channels; the noise should be 
rejected but the signal shape should be maintained. Let f,(j) represent the filter 
weight on the ith channel at the jth lag. For illustration, consider two channels and 
three time lags. Then Levin's constraints which prevent signal distortion are 

1 =f1(0) +f2(0) 

0 = f I (U +f2(1) (7-6-1) 

0 =f1(2) +f2(2) 

That this does not cause signal distortion follows, since if the same signal s(Z) 
comes into each channel, the output is merely s(Z)[ fl(Z) + f2(Z)]. But fl + f2 is just 
(1, 0, 0) in this case or a delta function in general. We call the equation set (7-6-1) 
constraint equations because there are fewer equations than unknowns. The con- 
straint equations may be written in usual form as 



which we may abbreviate as Gf = 0. If we use the method of least squares to 
minimize the total energy in the filter output, we will be attempting to suppress 
both signal and noise. But the constraint equations prevent the suppression of 
signal; hence only the noise is attenuated. If we let R denote the spectral matrix 
of the input data, then the filter f is determined by solving equations like 

We have solved equations of this type in preceding sections. 

EXERCISES 

I In one application, where the channel amplifications were not well controlled, the 
lead terms of the filter were fi(0) = 100 and f2(0) = - 99. Although this filter satisfied 
all that it was designed for, it was deemed inappropriate because the assumption of 
identical signals on each channel was a reasonable approximation but not exactly 
true. Can you suggest a more suitable constraint matrix? 

2 Consider three seismometers in a row on the surface of the earth. The constraints 
considered so far have implied that all signals arrive at the same time, i.e., vertically 
incident waves. Define a constraint matrix to pass both the vertically incident wave 
and the wave which causes xl(t) = x2(t + 1) = x3(t + 2). What is the shortest filter 
which can both satisfy the constraints and still have some possibility of rejecting noise? 

3 Consider a Levin filter on m channels with filters containing k lags. What is the size 
of the matrix in (7-6-3)? 


