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PREFACE TO THE ELECTRONIC BOOK

Below is a simplified description of the current functionality of the electronic form of this
book.

Interactivity

Where a figure caption contains a pushbutton (word in a box), you can press the button to
interact with the figure. Most figure captions (except artist’s line drawings and some old
scanned figures) contain pushbuttons. Some of these pushbuttons launch fun interactive
programs. Most simply bring up the figure in a graphics window and all you can do is to
resize the window. That is not much fun, but it is a strong indicator that the reproducibility
mechanisms are in place, and a later version of this book should have on-screen sliders, etc,
for interactive parameter adjustment.

Reproducibility

Each figure caption is followed by an [R] or an [NR] which denotes Reproducible or Not
Reproducible. If you burn a reproducible figure (see below), you should be able to get it
back exactly, including any changes you may have made to the parameters, programs, or
data. Most figures denoted Not Reproducible are actually reproducible in a weaker sense.
Pressing the interactivity button should either (1) bring up an interactive program whose
screen resembles the Non-Reproducible figure, or (2) display or recompute a figure like the
reproducible figures except that hand annotation is missing or only part of a plot assemblage
is shown.

Limitations on SEP-CD-3 version

On the version produced for CD-ROM on October 8, 1992 many figures will not be repro-
ducible because there was not sufficient room on the CD-ROM for their raw data. I kept the
CDP gathers used extensively in the early chapters but cut out the constant-offset sections
which will particularly impact the DMO chapter.



Chapter 1

Field recording geometry

The basic equipment for reflection seismic prospecting is a source for impulsive sound waves,
a geophone (something like a microphone), and a multichannel waveform display system.
A survey line is defined along the earth’s surface. It could be the path for a ship, in which
case the receiver is called a hydrophone. About every 25 meters the source is activated, and
the echoes are recorded nearby. The sound source and receiver have almost no directional
tuning capability because the frequencies that penetrate the earth have wavelengths longer
than the ship. Consequently, echoes can arrive from several directions at the same time.
It is the joint task of geophysicists and geologists to interpret the results. Geophysicists
assume the quantitative, physical, and statistical tasks. Their main goals, and the goal to
which this book is mainly directed, is to make good pictures of the earth’s interior from the
echoes.

1.1 RECORDING GEOMETRY

Along the horizontal x-axis we define two points, s, where the source (or shot or sender) is
located, and g, where the geophone (or hydrophone or microphone) is located. Then, define
the midpoint y between the shot and geophone, and define h to be half the horizontal
offset between the shot and geophone:

y =
g + s

2
(1.1)

h =
g − s

2
(1.2)

The reason for using half the offset in the equations is to simplify and symmetrize many
later equations. Offset is defined with g − s rather than with s − g so that positive offset
means waves moving in the positive x direction. In the marine case, this means the ship
is presumed to sail negatively along the x-axis. In reality the ship may go either way, and
shot points may either increase or decrease as the survey proceeds. In some situations you
can clarify matters by setting the field observer’s shot-point numbers to negative values.

Data is defined experimentally in the space of (s, g). Equations (1.1) and (1.2) represent
a change of coordinates to the space of (y, h). Midpoint-offset coordinates are especially
useful for interpretation and data processing. Since the data is also a function of the travel

1



2 CHAPTER 1. FIELD RECORDING GEOMETRY

time t, the full dataset lies in a volume. Because it is so difficult to make a satisfactory
display of such a volume, what is customarily done is to display slices. The names of slices
vary slightly from one company to the next. The following names seem to be well known
and clearly understood:

(y, h = 0, t) zero-offset section
(y, h = hmin , t) near-trace section
(y, h = const, t) constant-offset section
(y, h = hmax , t) far-trace section
(y = const, h, t) common-midpoint gather
(s = const, g, t) field profile (or common-shot gather)
(s, g = const, t) common-geophone gather
(s, g, t = const) time slice
(h, y, t = const) time slice

A diagram of slice names is in Figure 1.1. Figure 1.2 shows three slices from the data
volume. The first mode of display is “engineering drawing mode.” The second mode
of display is on the faces of a cube. But notice that although the data is displayed on
the surface of a cube, the slices themselves are taken from the interior of the cube. The
intersections of slices across one another are shown by dark lines.

A common-depth-point (CDP) gather is defined by the industry and by common usage
to be the same thing as a common-midpoint (CMP) gather. But in this book a distinction
will be made. A CDP gather is a CMP gather with its time axis stretched according to
some velocity model, say,

(y = const, h,
√

t2 − 4h2/v2) common-depth-point gather

This offset-dependent stretching makes the time axis of the gather become more like a depth
axis, thus providing the D in CDP. The stretching is called normal moveout correction
(NMO). Notice that as the velocity goes to infinity, the amount of stretching goes to zero.

There are basically two ways to get two-dimensional information from three-dimensional
information. The most obvious is to cut out the slices defined above. A second possibility is
to remove a dimension by summing over it. In practice, the offset axis is the best candidate
for summation. Each CDP gather is summed over offset. The resulting sum is a single
trace. Such a trace can be constructed at each midpoint. The collection of such traces, a
function of midpoint and time, is called a CDP stack. Roughly speaking, a CDP stack is
like a zero-offset section, but it has a less noisy appearance.

The construction of a CDP stack requires that a numerical choice be made for the
moveout-correction velocity. This choice is called the stacking velocity. The stacking velocity
may be simply someone’s guess of the earth’s velocity. Or the guess may be improved by
stacking with some trial velocities to see which gives the strongest and least noisy CDP
stack.

Figures 1.3 and 1.4 show typical marine and land profiles (common-shot gathers).

The land data has geophones on both sides of the source. The arrangement shown is
called an uneven split spread. The energy source was a vibrator. The marine data happens
to nicely illustrate two or three head waves. The marine energy source was an air gun.
These field profiles were each recorded with about 120 geophones.
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Figure 1.1: Top shows field recording of marine seismograms from a shot at location s to
geophones at locations labeled g. There is a horizontal reflecting layer to aid interpretation.
The lower diagram is called a stacking diagram. (It is not a perspective drawing). Each
dot in this plane depicts a possible seismogram. Think of time running out from the plane.
The center geophone above (circled) records the seismogram (circled dot) that may be found
in various geophysical displays. Lines in this (s, g)-plane are planes in the (t, s, g)-volume.
Planes of various orientations have the names given in the text. VIEW fld/. sg
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Figure 1.2: Slices from within a cube of data. Top: Slices displayed as a mechanical
drawing. Bottom: Same slices shown on perspective of cube faces. VIEW fld/. cube
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Figure 1.3: A seismic land profile.
There is a gap where there are no
receivers near the shot. You can see
events of three different velocities.
(Western Geophysical). VIEW

fld/. yc02

Figure 1.4: A marine profile off
the Aleutian Islands. (Western Geo-
physical). VIEW fld/. yc20
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1.1.1 Fast ship versus slow ship

For marine seismic data, the spacing between shots ∆s is a function of the speed of the
ship and the time interval between shots. Naturally we like ∆s small (which means more
shots) but that means either the boat slows down, or one shot follows the next so soon
that it covers up late arriving echos. The geophone spacing ∆g is fixed when the marine
streamer is designed. Modern streamers are designed for more powerful computers and
they usually have smaller ∆g. Much marine seismic data is recorded with ∆s = ∆g and
much is recorded with ∆s = ∆g/2. There are unexpected differences in what happens in the
processing. Figure 1.5 shows ∆s = ∆g, and Figure 1.6 shows ∆s = ∆g/2. When ∆s = ∆g

Figure 1.5: ∆g = ∆s. The zero-
offset section lies under the zeros.
Observe the common midpoint gath-
ers. Notice that even numbered
receivers have a different geometry
than odd numbers. Thus there are
two kinds of CMP gathers with dif-
ferent values of the lead-in x0 = x0

VIEW fld/. geqs

there are some irritating complications that we do not have for ∆s = ∆g/2. When ∆s = ∆g,
even-numbered traces have a different midpoint than odd-numbered traces. For a common-
midpoint analysis, the evens and odds require different processing. The words “lead-in”
describe the distance (x0 = x0) from the ship to the nearest trace. When ∆s = ∆g the
lead-in of a CMP gather depends on whether it is made from the even or the odd traces.
In practice the lead-in is about 3∆s. Theoretically we would prefer no lead in, but it is
noisy near the ship, the tension on the cable pulls it out of the water near the ship, and the
practical gains of a smaller lead-in are evidently not convincing.

Figure 1.6: ∆g = 2∆s. This is like
Figure 1.5 with odd valued receivers
omitted. Notice that each common-
midpoint gather has the same geom-
etry. VIEW fld/. geq2s

1.2 TEXTURE

Gravity is a strong force for the stratification of rocks, and many places in the world rocks
are laid down in horizontal beds. Yet even in the most ideal environment the bedding is not
mirror smooth; it has some texture. We begin with synthetic data that mimics the most
ideal environment. Such an environment is almost certainly marine, where sedimentary
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deposition can be slow and uniform. The wave velocity will be taken to be constant, and all
rays will reflect as from horizontally lying mirrors. Mathematically, texture is introduced by
allowing the reflection coefficients of the beds to be laterally variable. The lateral variation
is presumed to be a random function, though not necessarily with a white spectrum. Let
us examine the appearance of the resulting field data.

1.2.1 Texture of horizontal bedding, marine data

Randomness is introduced into the earth with a random function of midpoint y and depth
z. This randomness is impressed on some geological “layer cake” function of depth z. This
is done in the first half of subroutine synmarine() on this page.

synthetic marine.rt

subrout ine synmarine ( data , nt , nh , ny , nz )
i n t e g e r nt , nh , ny , nz , i t , ih , iy , i s , i z , ns , i s e e d

r e a l data ( nt , nh , ny ) , l ayer , rand01
temporary r e a l r e f l ( nz , ny ) , depth ( nz )
i s e ed= 1992 ; ns = ny
do i z= 1 , nz { # 0 < rand01 ( ) < 1

depth ( i z ) = nt ∗ rand01 ( i s e ed ) # Re f l e c t o r depth
l ay e r = 2 . ∗ rand01 ( i s e ed ) − 1 . # Re f l e c t o r s t r ength
do i y= 1 , ny { # Impose t ex ture on l ay e r

r e f l ( i z , i y ) = l ay e r ∗ ( 1 . + rand01 ( i s e ed ) )
}

}
c a l l nu l l ( data , nt∗nh∗ny ) # era s e data space
do i s= 1 , ns { # shots
do ih= 1 , nh { # down cab l e h = (g−s )/2
do i z= 1 , nz { # Add hyperbola for each l ay e r

i y = ( ns− i s )+( ih −1) # y = midpoint
iy = 1 + ( iy−ny∗( i y /ny ) ) # pe r i o d i c with midpoint
i t = 1 + sq r t ( depth ( i z )∗∗2 + 25 .∗ ( ih −1)∗∗2 )
i f ( i t <= nt )

data ( i t , ih , i s ) = data ( i t , ih , i s ) + r e f l ( i z , i y )
}}}

return ; end

The second half of subroutine synmarine() on the current page scans all shot and geophone
locations and depths and finds the midpoint, and the reflection coefficient for that midpoint,
and adds it into the data at the proper travel time.

There are two confusing aspects of subroutine synmarine() on this page. First, refer to
figure 1.1 and notice that since the ship drags the long cable containing the receivers, the
ship must be moving to the left, so data is recorded for sequentially decreasing values of s.
Second, to make a continuous movie from a small number of frames, it is necessary only
to make the midpoint axis periodic, i.e. when a value of iy is computed beyond the end of
the axis ny, then it must be moved back an integer multiple of ny.

What does the final data space look like? This question has little meaning until we
decide how the three-dimensional data volume will be presented to the eye. Let us view the
data much as it is recorded in the field. For each shot point we see a frame in which the
vertical axis is the travel time and the horizontal axis is the distance from the ship down
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the towed hydrophone cable. The next shot point gives us another frame. Repetition gives
us the accompanying program that produces a cube of data, hence a movie. This cube is
synthetic data for the ideal marine environment. And what does the movie show?

Figure 1.7: Output from
synmarine() subroutine (with
temporal filtering on the t-axis).
VIEW fld/. synmarine

A single frame shows hyperbolas with imposed texture. The movie shows the texture
moving along each hyperbola to increasing offsets. (I find that no sequence of still pictures
can give the impression that the movie gives). Really the ship is moving; the texture of
the earth is remaining stationary under it. This is truly what most marine data looks like,
and the computer program simulates it. Comparing the simulated data to real marine-data
movies, I am impressed by the large amount of random lateral variation required in the
simulated data to achieve resemblance to field data. The randomness seems too great to
represent lithologic variation. Apparently it is the result of something not modeled. Perhaps
it results from our incomplete understanding of the mechanism of reflection from the quasi-
random earth. Or perhaps it is an effect of the partial focusing of waves sometime after
they reflect from minor topographic irregularities. A full explanation awaits more research.

1.2.2 Texture of land data: near-surface problems

Reflection seismic data recorded on land frequently displays randomness because of the
irregularity of the soil layer. Often it is so disruptive that the seismic energy sources are
deeply buried (at much cost). The geophones are too many for burial. For most land
reflection data, the texture caused by these near-surface irregularities exceeds the texture
resulting from the reflecting layers.

To clarify our thinking, an ideal mathematical model will be proposed. Let the reflecting
layers be flat with no texture. Let the geophones suffer random time delays of several time
points. Time delays of this type are called statics. Let the shots have random strengths. For
this movie, let the data frames be common-midpoint gathers, that is, let each frame show
data in (h, t) -space at a fixed midpoint y. Successive frames will show successive midpoints.
The study of Figure 1.1 should convince you that the traveltime irregularities associated
with the geophones should move leftward, while the amplitude irregularities associated
with the shots should move rightward (or vice versa). In real life, both amplitude and time
anomalies are associated with both shots and geophones.
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Figure 1.8: Press button for
field data movie. VIEW

fld/. shotmovie

EXERCISES:

1 Modify the program of Figure 1.7 to produce a movie of synthetic midpoint gathers
with random shot amplitudes and random geophone time delays. Observing this movie

Figure 1.9: VIEW

fld/. wirecube

you will note the perceptual problem of being able to see the leftward motion along
with the rightward motion. Try to adjust anomaly strengths so that both left-moving
and right-moving patterns are visible. Your mind will often see only one, blocking out
the other, similar to the way you perceive a 3-D cube, from a 2-D projection of its
edges.

2 Define recursive dip filters to pass and reject the various textures of shot, geophone,
and midpoint.
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Chapter 2

Adjoint operators

A great many of the calculations we do in science and engineering are really matrix mul-
tiplication in disguise. The first goal of this chapter is to unmask the disguise by showing
many examples. Second, we see how the adjoint operator (matrix transpose) back-projects
information from data to the underlying model.

Geophysical modeling calculations generally use linear operators that predict data from
models. Our usual task is to find the inverse of these calculations; i.e., to find models (or
make maps) from the data. Logically, the adjoint is the first step and a part of all subsequent
steps in this inversion process. Surprisingly, in practice the adjoint sometimes does a better
job than the inverse! This is because the adjoint operator tolerates imperfections in the
data and does not demand that the data provide full information.

Using the methods of this chapter, you will find that once you grasp the relationship
between operators in general and their adjoints, you can obtain the adjoint just as soon as
you have learned how to code the modeling operator.

If you will permit me a poet’s license with words, I will offer you the following table of
operators and their adjoints:

matrix multiply conjugate-transpose matrix multiply
convolve crosscorrelate
truncate zero pad
replicate, scatter, spray sum or stack
spray into neighborhood sum in bins
derivative (slope) negative derivative
causal integration anticausal integration
add functions do integrals
assignment statements added terms
plane-wave superposition slant stack / beam form
superpose on a curve sum along a curve
stretch squeeze
upward continue downward continue
hyperbolic modeling normal moveout and CDP stack
diffraction modeling imaging by migration
ray tracing tomography

11
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The left column above is often called “modeling,” and the adjoint operators on the
right are often used in “data processing.”

The adjoint operator is sometimes called the “back projection” operator because
information propagated in one direction (earth to data) is projected backward (data to
earth model). For complex-valued operators, the transpose goes together with a complex
conjugate. In Fourier analysis, taking the complex conjugate of exp(iωt) reverses the
sense of time. With more poetic license, I say that adjoint operators undo the time and
phase shifts of modeling operators. The inverse operator does this too, but it also divides
out the color. For example, when linear interpolation is done, then high frequencies are
smoothed out, so inverse interpolation must restore them. You can imagine the possibilities
for noise amplification. That is why adjoints are safer than inverses.

Later in this chapter we relate adjoint operators to inverse operators. Although inverse
operators are more well known than adjoint operators, the inverse is built upon the adjoint
so the adjoint is a logical place to start. Also, computing the inverse is a complicated
process fraught with pitfalls whereas the computation of the adjoint is easy. It’s a natural
companion to the operator itself.

Much later in this chapter is a formal definition of adjoint operator. Throughout the
chapter we handle an adjoint operator as a matrix transpose, but we hardly ever write
down any matrices or their transposes. Instead, we always prepare two subroutines, one
that performs y = Ax and another that performs x̃ = A′y. So we need a test that the two
subroutines really embody the essential aspects of matrix transposition. Although the test
is an elegant and useful test and is itself a fundamental definition, curiously, that definition
does not help construct adjoint operators, so we postpone a formal definition of adjoint
until after we have seen many examples.

2.1 FAMILIAR OPERATORS

The operation yi =
∑

j bijxj is the multiplication of a matrix B by a vector x. The
adjoint operation is x̃j =

∑
i bijyi. The operation adjoint to multiplication by a matrix is

multiplication by the transposed matrix (unless the matrix has complex elements, in which
case we need the complex-conjugated transpose). The following pseudocode does matrix
multiplication y = Bx and multiplication by the transpose x̃ = B′y:
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if operator itself
then erase y

if adjoint
then erase x

do iy = 1, ny {
do ix = 1, nx {

if operator itself
y(iy) = y(iy) + b(iy,ix) × x(ix)

if adjoint
x(ix) = x(ix) + b(iy,ix) × y(iy)

} }

Notice that the “bottom line” in the program is that x and y are simply interchanged. The
above example is a prototype of many to follow, so observe carefully the similarities and
differences between the operation and its adjoint.

A formal subroutine1 for matrix multiply and its adjoint is found below. The first
step is a subroutine, adjnull(), for optionally erasing the output. With the option add=1,
results accumulate like y=y+B*x.

erase output.rt
subrout ine ad j nu l l ( adj , add , x , nx , y , ny )
i n t e g e r ix , iy , adj , add , nx , ny
r e a l x ( nx ) , y ( ny )
i f ( add == 0 )

i f ( adj == 0 )
do i y= 1 , ny

y ( iy ) = 0 .
else

do i x= 1 , nx
x ( ix ) = 0 .

return ; end

The subroutine matmult() for matrix multiply and its adjoint exhibits the style that we
will use repeatedly.

matrix multiply.rt
# matrix mult ip ly and i t s ad j o i n t
#
subrout ine matmult ( adj , add , bb , x , nx , y , ny )
i n t e g e r ix , iy , adj , add , nx , ny
r e a l bb (ny , nx ) , x (nx ) , y (ny )
c a l l a d j nu l l ( adj , add , x , nx , y , ny )
do i x= 1 , nx {
do i y= 1 , ny {

i f ( adj == 0 )
y ( iy ) = y( iy ) + bb( iy , i x ) ∗ x ( ix )

else
x ( ix ) = x( ix ) + bb( iy , i x ) ∗ y ( iy )

1 The programming language used in this book is Ratfor, a dialect of Fortran. For more details, see
Appendix A.
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}}
return ; end

Sometimes a matrix operator reduces to a simple row or a column.

A row is a summation operation.

A column is an impulse response.

If the inner loop of a matrix multiply ranges within a

row, the operator is called sum or pull.

column, the operator is called spray or push.

A basic aspect of adjointness is that the adjoint of a row matrix operator is a column
matrix operator. For example, the row operator [a, b]

y = [ a b ]

[
x1

x2

]
= ax1 + bx2 (2.1)

has an adjoint that is two assignments:[
x̂1

x̂2

]
=

[
a
b

]
y (2.2)

The adjoint of a sum of N terms is a collection of N assignments.

2.1.1 Adjoint derivative

Given a sampled signal, its time derivative can be estimated by convolution with the filter
(1,−1)/∆t, expressed as the matrix-multiply below:

y1

y2

y3

y4

y5

y6


=



−1 1 . . . .
. −1 1 . . .
. . −1 1 . .
. . . −1 1 .
. . . . −1 1
. . . . . 0





x1

x2

x3

x4

x5

x6


(2.3)

Technically the output should be n-1 points long, but I appended a zero row, a small loss
of logical purity, so that the size of the output vector will match that of the input. This is
a convenience for plotting and for simplifying the assembly of other operators building on
this one.

The filter impulse response is seen in any column in the middle of the matrix, namely
(1,−1). In the transposed matrix, the filter-impulse response is time-reversed to (−1, 1).
So, mathematically, we can say that the adjoint of the time derivative operation is the
negative time derivative. This corresponds also to the fact that the complex conjugate of
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−iω is iω. We can also speak of the adjoint of the boundary conditions: we might say that
the adjoint of “no boundary condition” is a “specified value” boundary condition.

A complicated way to think about the adjoint of equation (2.3) is to note that it is the
negative of the derivative and that something must be done about the ends. A simpler way
to think about it is to apply the idea that the adjoint of a sum of N terms is a collection
of N assignments. This is done in subroutine igrad1(), which implements equation (2.3)
and its adjoint.

first difference.rt
subrout ine ig rad1 ( adj , add , xx , n , yy )
i n t e g e r i , adj , add , n
r e a l xx (n ) , yy (n)
c a l l a d j nu l l ( adj , add , xx , n , yy , n )
do i= 1 , n−1 {

i f ( adj == 0 )
yy ( i ) = yy ( i ) + xx ( i +1) − xx ( i )

else {
xx ( i +1) = xx ( i +1) + yy ( i )
xx ( i ) = xx ( i ) − yy ( i )
}

}
return ; end

Notice that the do loop in the code covers all the outputs for the operator itself, and that
in the adjoint operation it gathers all the inputs. This is natural because in switching from
operator to adjoint, the outputs switch to inputs.

As you look at the code, think about matrix elements being +1 or −1 and think about
the forward operator “pulling” a sum into yy(i), and think about the adjoint operator
“pushing” or “spraying” the impulse yy(i) back into xx().

You might notice that you can simplify the program by merging the “erase output”
activity with the calculation itself. We will not do this optimization however because in
many applications we do not want to include the “erase output” activity. This often happens
when we build complicated operators from simpler ones.

2.1.2 Zero padding is the transpose of truncation

Surrounding a dataset by zeros (zero padding) is adjoint to throwing away the extended
data (truncation). Let us see why this is so. Set a signal in a vector x, and then to make
a longer vector y, add some zeros at the end of x. This zero padding can be regarded as
the matrix multiplication

y =

[
I
0

]
x (2.4)

The matrix is simply an identity matrix I above a zero matrix 0. To find the transpose to
zero-padding, we now transpose the matrix and do another matrix multiply:

x̃ =
[

I 0
]

y (2.5)
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So the transpose operation to zero padding data is simply truncating the data back to its
original length. Subroutine zpad1() below pads zeros on both ends of its input. Subroutines
for two- and three-dimensional padding are in the library named zpad2() and zpad3().

zero pad 1-D.rt
# Zero pad . Surround data by ze ro s . 1−D
#
subrout ine zpad1 ( adj , add , data , nd , padd , np )
i n t e g e r adj , add , d , nd , p , np
r e a l data (nd ) , padd (np)
c a l l a d j nu l l ( adj , add , data , nd , padd , np)
do d= 1 , nd { p = d + (np−nd)/2

i f ( adj == 0 )
padd (p) = padd (p) + data (d)

else
data (d) = data (d) + padd (p)

}
return ; end

2.1.3 Adjoints of products are reverse-ordered products of adjoints

Here we examine an example of the general idea that adjoints of products are reverse-
ordered products of adjoints. For this example we use the Fourier transformation. No
details of Fourier transformation are given here and we merely use it as an example of
a square matrix F. We denote the complex-conjugate transpose (or adjoint) matrix with
a prime, i.e., F′. The adjoint arises naturally whenever we consider energy. The statement
that Fourier transforms conserve energy is y′y = x′x where y = Fx. Substituting gives
F′F = I, which shows that the inverse matrix to Fourier transform happens to be the
complex conjugate of the transpose of F.

With Fourier transforms, zero padding and truncation are especially prevalent. Most
subroutines transform a dataset of length of 2n, whereas dataset lengths are often of length
m×100. The practical approach is therefore to pad given data with zeros. Padding followed
by Fourier transformation F can be expressed in matrix algebra as

Program = F

[
I
0

]
(2.6)

According to matrix algebra, the transpose of a product, say AB = C, is the product
C′ = B′A′ in reverse order. So the adjoint subroutine is given by

Program′ =
[

I 0
]

F′ (2.7)

Thus the adjoint subroutine truncates the data after the inverse Fourier transform. This
concrete example illustrates that common sense often represents the mathematical abstrac-
tion that adjoints of products are reverse-ordered products of adjoints. It is also nice to see
a formal mathematical notation for a practical necessity. Making an approximation need
not lead to collapse of all precise analysis.
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2.1.4 Nearest-neighbor coordinates

In describing physical processes, we often either specify models as values given on a uniform
mesh or we record data on a uniform mesh. Typically we have a function f of time t or
depth z and we represent it by f(iz) corresponding to f(zi) for i = 1, 2, 3, . . . , nz where
zi = z0 + (i − 1)∆z. We sometimes need to handle depth as an integer counting variable
i and we sometimes need to handle it as a floating-point variable z. Conversion from the
counting variable to the floating-point variable is exact and is often seen in a computer
idiom such as either of

do iz= 1, nz { z = z0 + (iz-1) * dz
do i3= 1, n3 { x3 = o3 + (i3-1) * d3

The reverse conversion from the floating-point variable to the counting variable is inexact.
The easiest thing is to place it at the nearest neighbor. This is done by solving for iz, then
adding one half, and then rounding down to the nearest integer. The familiar computer
idioms are:

iz = .5 + 1 + ( z - z0) / dz
iz = 1.5 + ( z - z0) / dz
i3 = 1.5 + (x3 - o3) / d3

A small warning is in order: People generally use positive counting variables. If you also
include negative ones, then to get the nearest integer, you should do your rounding with
the Fortran function NINT().

2.1.5 Data-push binning

Binning is putting data values in bins. Nearest-neighbor binning is an operator. There
is both a forward operator and its adjoint. Normally the model consists of values given
on a uniform mesh, and the data consists of pairs of numbers (ordinates at coordinates)
sprinkled around in the continuum (although sometimes the data is uniformly spaced and
the model is not).

In both the forward and the adjoint operation, each data coordinate is examined and
the nearest mesh point (the bin) is found. For the forward operator, the value of the bin is
added to that of the data. The adjoint is the reverse: we add the value of the data to that
of the bin. Both are shown in two dimensions in subroutine dpbin2().

push data into bin.rt
# Data−push binning in 2−D.
#
subrout ine dpbin2 ( adj , add , o1 , d1 , o2 , d2 , xy , mm,m1,m2, dd , nd)
i n t e g e r i1 , i2 , adj , add , id , m1,m2, nd
r e a l o1 , d1 , o2 , d2 , xy (2 , nd ) , mm(m1,m2) , dd ( nd)
c a l l a d j nu l l ( adj , add , mm,m1∗m2, dd , nd)
do id =1,nd {

i 1 = 1 .5 + (xy (1 , id )−o1 )/d1
i 2 = 1 .5 + (xy (2 , id )−o2 )/d2
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i f ( 1<=i1 && i1<=m1 &&
1<=i2 && i2<=m2 )

i f ( adj == 0)
dd( id ) = dd( id ) + mm( i1 , i 2 )

else
mm( i1 , i 2 ) = mm( i1 , i 2 ) + dd( id )

}
return ; end

The most typical application requires an additional step, inversion. In the inversion appli-
cations each bin contains a different number of data values. After the adjoint operation is
performed, the inverse operator divides the bin value by the number of points in the bin.
It is this inversion operator that is generally called binning. To find the number of data
points in a bin, we can simply apply the adjoint of dpbin2() to pseudo data of all ones.

2.1.6 Linear interpolation

The linear interpolation operator is much like the binning operator but a little fancier.
When we perform the forward operation, we take each data coordinate and see which two
model mesh points bracket it. Then we pick up the two bracketing model values and weight
each of them in proportion to their nearness to the data coordinate, and add them to get
the data value (ordinate). The adjoint operation is adding a data value back into the model
vector; using the same two weights, this operation distributes the ordinate value between
the two nearest points in the model vector. For example, suppose we have a data point
near each end of the model and a third data point exactly in the middle. Then for a model
space 6 points long, as shown in Figure 2.1, we have the operator in (2.8).

Figure 2.1: Uniformly sampled
model space and irregularly sampled
data space corresponding to (2.8).
VIEW conj/. helgerud
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The two weights in each row sum to unity. If a binning operator were used for the same
data and model, the binning operator would contain a “1.” in each row. In one dimension
(as here), data coordinates are often sorted into sequence, so that the matrix is crudely
a diagonal matrix like equation (2.8). If the data coordinates covered the model space
uniformly, the adjoint would roughly be the inverse. Otherwise, when data values pile up
in some places and gaps remain elsewhere, the adjoint would be far from the inverse.

Subroutine lint1() does linear interpolation and its adjoint.
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linear interp.rt
# Linear i n t e r p o l a t i o n 1−D, uniform model mesh to data coo rd ina t e s and va lue s .
#
subrout ine l i n t 1 ( adj , add , o1 , d1 , coord inate , mm,m1, dd , nd)
i n t e g e r i , im , adj , add , id , m1, nd
r e a l f , fx , gx , o1 , d1 , coord inate (nd ) , mm(m1) , dd( nd)
c a l l a d j nu l l ( adj , add , mm,m1, dd , nd)
do id= 1 , nd {

f = ( coord inate ( id )−o1 )/d1 ; i=f ; im= 1+i
i f ( 1<=im && im<m1) { fx=f−i ; gx= 1.− fx

i f ( adj == 0)
dd( id ) = dd( id ) + gx ∗ mm( im) + fx ∗ mm( im+1)

else {
mm( im ) = mm( im ) + gx ∗ dd( id )
mm( im+1) = mm( im+1) + fx ∗ dd( id )
}

}
}

return ; end

2.1.7 Causal integration

Causal integration is defined as

y(t) =
∫ t

−∞
x(t) dt (2.9)

Sampling the time axis gives a matrix equation which we should call causal summation, but
we often call it causal integration.

y0

y1

y2

y3

y4

y5

y6

y7

y8

y9


=



1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1
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(2.10)

(In some applications the 1 on the diagonal is replaced by 1/2.) Causal integration is
the simplest prototype of a recursive operator. The coding is trickier than operators we
considered earlier. Notice when you compute y5 that it is the sum of 6 terms, but that this
sum is more quickly computed as y5 = y4 + x5. Thus equation (2.10) is more efficiently
thought of as the recursion

yt = yt−1 + xt for increasing t (2.11)

(which may also be regarded as a numerical representation of the differential equation
dy/dt = x.)
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When it comes time to think about the adjoint, however, it is easier to think of equa-
tion (2.10) than of (2.11). Let the matrix of equation (2.10) be called C. Transposing to
get C′ and applying it to y gives us something back in the space of x, namely x̃ = C′y.
From it we see that the adjoint calculation, if done recursively, needs to be done backwards
like

x̃t−1 = x̃t + yt−1 for decreasing t (2.12)

We can sum up by saying that the adjoint of causal integration is anticausal integration.

A subroutine to do these jobs is causint() on the current page. The code for anticausal
integration is not obvious from the code for integration and the adjoint coding tricks we
learned earlier. To understand the adjoint, you need to inspect the detailed form of the
expression x̃ = C′y and take care to get the ends correct.

causal integral.rt
# causa l i n t e g r a t i o n (1 ’ s on d iagona l )
#
subrout ine caus in t ( adj , add , n , xx , yy )
i n t e g e r i , n , adj , add ; r e a l xx (n ) , yy (n )
temporary r e a l t t ( n)
c a l l a d j nu l l ( adj , add , xx , n , yy , n )
i f ( adj == 0){ t t (1 ) = xx (1)

do i= 2 , n
t t ( i ) = t t ( i −1) + xx ( i )

do i= 1 , n
yy ( i ) = yy ( i ) + t t ( i )

}
else { t t (n) = yy (n)

do i= n , 2 , −1
t t ( i −1) = t t ( i ) + yy ( i −1)

do i= 1 , n
xx ( i ) = xx ( i ) + t t ( i )

}
return ; end

Figure 2.2: in1 is an input pulse. C
in1 is its causal integral. C’ in1 is
the anticausal integral of the pulse.
in2 is a separated doublet. Its causal
integration is a box and its anti-
causal integration is the negative. CC
in2 is the double causal integral of
in2. How can an equilateral triangle
be built? VIEW conj/. causint

Later we will consider equations to march wavefields up towards the earth’s surface, a
layer at a time, an operator for each layer. Then the adjoint will start from the earth’s
surface and march down, a layer at a time, into the earth.
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EXERCISES:

1 Modify the calculation in Figure 2.2 to make a triangle waveform on the bottom row.

2.2 ADJOINTS AND INVERSES

Consider a model m and an operator F which creates some theoretical data dtheor.

dtheor = Fm (2.13)

The general task of geophysicists is to begin from observed data dobs and find an estimated
model mest that satisfies the simultaneous equations

dobs = Fmest (2.14)

This is the topic of a large discipline variously called “inversion” or “estimation”. Basically,
it defines a residual r = dobs − dtheor and then minimizes its length r · r. Finding mest this
way is called the least squares method. The basic result (not proven here) is that

mest = (F′F)−1F′dobs (2.15)

In many cases including all seismic imaging cases, the matrix F′F is far too large to be
invertible. People generally proceed by a rough guess at an approximation for (F′F)−1.
The usual first approximation is the optimistic one that (F′F)−1 = I. To this happy
approximation, the inverse F−1 is the adjoint F′.

In this book we’ll see examples where F′F ≈ I is a good approximation and other
examples where it isn’t. We can tell how good the approximation is. We take some hypo-
thetical data and convert it to a model, and use that model to make some reconstructed
data drecon = FF′dhypo. Likewise we could go from a hypothetical model to some data
and then to a reconstructed model mrecon = F′Fmhypo. Luckily, it often happens that the
reconstructed differs from the hypothetical in some trivial way, like by a scaling factor, or
by a scaling factor that is a function of physical location or time, or a scaling factor that is
a function of frequency. It isn’t always simply a matter of a scaling factor, but it often is,
and when it is, we often simply redefine the operator to include the scaling factor. Observe
that there are two places for scaling functions (or filters), one in model space, the other in
data space.

We could do better than the adjoint by iterative modeling methods (conjugate gradients)
that are also described elsewhere. These methods generally demand that the adjoint be
computed correctly. As a result, we’ll be a little careful about adjoints in this book to
compute them correctly even though this book does not require them to be exactly correct.

2.2.1 Dot product test

We define an adjoint when we write a program that computes one. In an abstract logical
mathematical sense, however, every adjoint is defined by a dot product test. This abstract
definition gives us no clues how to code our program. After we have finished coding, however,
this abstract definition (which is actually a test) has considerable value to us.
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Conceptually, the idea of matrix transposition is simply a′ij = aji. In practice, however,
we often encounter matrices far too large to fit in the memory of any computer. Sometimes
it is also not obvious how to formulate the process at hand as a matrix multiplication.
(Examples are differential equations and fast Fourier transforms.) What we find in practice
is that an application and its adjoint amounts to two subroutines. The first subroutine
amounts to the matrix multiplication Fx. The adjoint subroutine computes F′y, where F′

is the conjugate-transpose matrix. Most methods of solving inverse problems will fail if the
programmer provides an inconsistent pair of subroutines for F and F′. The dot product
test described next is a simple test for verifying that the two subroutines really are adjoint
to each other.

The matrix expression y′Fx may be written with parentheses as either (y′F)x or y′(Fx).
Mathematicians call this the “associative” property. If you write matrix multiplication
using summation symbols, you will notice that putting parentheses around matrices simply
amounts to reordering the sequence of computations. But we soon get a very useful result.
Programs for some linear operators are far from obvious, for example causint() on page 20.
Now we build a useful test for it.

y′(Fx) = (y′F)x (2.16)
y′(Fx) = (F′y)′x (2.17)

For the dot-product test, load the vectors x and y with random numbers. Compute the
vector ỹ = Fx using your program for F, and compute x̃ = F′y using your program for F′.
Inserting these into equation (2.17) gives you two scalars that should be equal.

y′(Fx) = y′ỹ = x̃′x = (F′y)′x (2.18)

The left and right sides of this equation will be computationally equal only if the program
doing F′ is indeed adjoint to the program doing F (unless the random numbers do something
miraculous). Note that the vectors x and y are generally of different lengths.

Of course passing the dot product test does not prove that a computer code is correct, but
if the test fails we know the code is incorrect. More information about adjoint operators,
and much more information about inverse operators is found in my other books, Earth
Soundings Analysis: Processing versus inversion (PVI) and Geophysical Estimation by
Example (GEE).



Chapter 3

Waves in strata

The waves of practical interest in reflection seismology are usually complicated because the
propagation velocities are generally complex. In this book, we have chosen to build up the
complexity of the waves we consider, chapter by chapter. The simplest waves to under-
stand are simple plane waves and spherical waves propagating through a constant-velocity
medium. In seismology however, the earth’s velocity is almost never well approximated by
a constant. A good first approximation is to assume that the earth’s velocity increases with
depth. In this situation, the simple planar and circular wavefronts are modified by the effects
of v(z). In this chapter we study the basic equations describing plane-like and spherical-like
waves propagating in media where the velocity v(z) is a function only of depth. This is
a reasonable starting point, even though it neglects the even more complicated distortions
that occur when there are lateral velocity variations. We will also examine data that shows
plane-like waves and spherical-like waves resulting when waves from a point source bounce
back from a planar reflector.

3.1 TRAVEL-TIME DEPTH

Echo soundings give us a picture of the earth. A zero-offest section, for example, is a planar
display of traces where the horizontal axis runs along the earth’s surface and the vertical
axis, running down, seems to measure depth, but actually measures the two-way echo delay
time. Thus, in practice the vertical axis is almost never depth z; it is the vertical travel time
τ . In a constant-velocity earth the time and the depth are related by a simple scale factor,
the speed of sound. This is analogous to the way that astronomers measure distances in
light-years, always referencing the speed of light. The meaning of the scale factor in seismic
imaging is that the (x, τ)-plane has a vertical exaggeration compared to the (x, z)-plane.
In reconnaissance work, the vertical is often exaggerated by about a factor of five. By the
time prospects have been sufficiently narrowed for a drill site to be selected, the vertical
exaggeration factor in use is likely to be about unity (no exaggeration).

In seismic reflection imaging, the waves go down and then up, so the traveltime depth
τ is defined as two-way vertical travel time.

τ =
2 z

v
. (3.1)

23
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This is the convention that I have chosen to use throughout this book.

3.1.1 Vertical exaggeration

The first task in interpretation of seismic data is to figure out the approximate numerical
value of the vertical exaggeration. The vertical exaggeration is 2/v because it is the
ratio of the apparent slope ∆τ/∆x to the actual slope ∆z/∆x where ∆τ = 2 ∆z/v. Since
the velocity generally increases with depth, the vertical exaggeration generally decreases
with depth.

For velocity-stratified media, the time-to-depth conversion formula is

τ(z) =
∫ z

0

2 dz

v(z)
or

dτ

dz
=

2
v

(3.2)

3.2 HORIZONTALLY MOVING WAVES

In practice, horizontally going waves are easy to recognize because their travel time is a
linear function of the offset distance between shot and receiver. There are two kinds of
horizontally going waves, one where the traveltime line goes through the origin, and the
other where it does not. When the line goes through the origin, it means the ray path is
always near the earth’s surface where the sound source and the receivers are located. (Such
waves are called “ground roll” on land or “guided waves” at sea; sometimes they are
just called “direct arrivals”.)

When the traveltime line does not pass through the origin it means parts of the ray
path plunge into the earth. This is usually explained by the unlikely looking rays shown
in Figure 3.1 which frequently occur in practice. Later in this chapter we will see that

Figure 3.1: Rays associated
with head waves. VIEW

wvs/. headray

Snell’s law predicts these rays in a model of the earth with two layers, where the deeper
layer is faster and the ray bottom is along the interface between the slow medium and the
fast medium. Meanwhile, however, notice that these ray paths imply data with a linear
travel time versus distance corresponding to increasing ray length along the ray bottom.
Where the ray is horizontal in the lower medium, its wavefronts are vertical. These waves
are called “head waves,” perhaps because they are typically fast and arrive ahead of other
waves.

3.2.1 Amplitudes

The nearly vertically-propagating waves (reflections) spread out essentially in three dimen-
sions, whereas the nearly horizontally-going waves never get deep into the earth because,
as we will see, they are deflected back upward by the velocity gradient. Thus horizontal
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waves spread out in essentially two dimensions, so that energy conservation suggests that
their amplitudes should dominate the amplitudes of reflections on raw data. This is often
true for ground roll. Head waves, on the other hand, are often much weaker, often being
visible only because they often arrive before more energetic waves. The weakness of head
waves is explained by the small percentage of solid angle occupied by the waves leaving a
source that eventually happen to match up with layer boundaries and propagate as head
waves. I selected the examples below because of the strong headwaves. They are nearly as
strong as the guided waves. To compensate for diminishing energy with distance, I scaled
data displays by multiplying by the offset distance between the shot and the receiver.

In data display, the slowness (slope of the time-distance curve) is often called the
stepout p. Other commonly-used names for this slope are time dip and reflection
slope. The best way to view waves with linear moveout is after time shifting to re-
move a standard linear moveout such as that of water. An equation for the shifted time
is

τ = t− px (3.3)

where p is often chosen to be the inverse of the velocity of water, namely, about 1.5 km/s,
or p = .66s/km and x = 2h is the horizontal separation between the sound source and
receiver, usually referred to as the offset.

Ground roll and guided waves are typically slow because materials near the earth’s
surface typically are slow. Slow waves are steeply sloped on a time-versus-offset display.
It is not surprising that marine guided waves typically have speeds comparable to water
waves (near 1.47 km/s approximately 1.5 km/s). It is perhaps surprising that ground roll
also often has the speed of sound in water. Indeed, the depth to underground water is
often determined by seismology before drilling for water. Ground roll also often has a speed
comparable to the speed of sound in air, 0.3 km/sec, though, much to my annoyance I could
not find a good example of it today. Figure 3.2 is an example of energetic ground roll
(land) that happens to have a speed close to that of water.

The speed of a ray traveling along a layer interface is the rock speed in the faster layer
(nearly always the lower layer). It is not an average of the layer above and the layer below.

Figures 3.3 and 3.4 are examples of energetic marine guided waves. In Figure 3.3 at
τ = 0 (designated t-t water) at small offset is the wave that travels directly from the
shot to the receivers. This wave dies out rapidly with offset (because it interferes with a
wave of opposite polarity reflected from the water surface). At near offset slightly later
than τ = 0 is the water bottom reflection. At wide offset, the water bottom reflection is
quickly followed by multiple reflections from the bottom. Critical angle reflection is defined
as where the head wave comes tangent to the reflected wave. Before (above) τ = 0 are
the head waves. There are two obvious slopes, hence two obvious layer interfaces. Figure
3.4 is much like Figure 3.3 but the water bottom is shallower.

Figure 3.5 shows data where the first arriving energy is not along a few straight line
segments, but is along a curve. This means the velocity increases smoothly with depth as
soft sediments compress.
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Figure 3.2: Land shot profile (Yilmaz and Cumro) #39 from the Middle East before (left)
and after (right) linear moveout at water velocity. VIEW wvs/. wzl-34

Figure 3.3: Marine shot profile (Yilmaz and Cumro) #20 from the Aleutian Islands.
VIEW wvs/. wzl-20
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Figure 3.4: ; Marine shot profile (Yilmaz and Cumro) #32 from the North Sea. VIEW

wvs/. wzl-32

Figure 3.5: A common midpoint gather from the Gulf of Mexico before (left) and after
(right) linear moveout at water velocity. Later I hope to estimate velocity with depth in
shallow strata. Press button for movie over midpoint. VIEW wvs/. wglmo
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3.2.2 LMO by nearest-neighbor interpolation

To do linear moveout (LMO) correction, we need to time-shift data. Shifting data re-
quires us to interpolate it. The easiest interpolation method is the nearest-neighbor method.
We begin with a signal given at times t = t0+dt*(it-1) where it is an integer. Then we
can use equation (3.3), namely τ = t − px. Given the location tau of the desired value
we backsolve for an integer, say itau. In Fortran, conversion of a real value to an integer
is done by truncating the fractional part of the real value. To get rounding up as well as
down, we add 0.5 before conversion to an integer, namely itau=int(1.5+(tau-tau0)/dt).
This gives the nearest neighbor. The way the program works is to identify two points, one
in (t, x)-space and one in (τ, x)-space. Then the signal value at one point in one space is
carried to the other space. The adjoint operation carries points back again. The subroutine
used in the illustrations above is lmo() on the current page with adj=1.

linear moveout.rt
# l i n e a r moveout
#
subrout ine lmo ( adj , add , slow , tau0 , t0 , dt , x0 , dx , modl , nt , nx , data )
i n t e g e r adj , add , nt , nx , i t , ix , iu
r e a l t , x , tau , slow , tau0 , t0 , dt , x0 , dx , modl ( nt , nx ) , data ( nt , nx )
c a l l a d j nu l l ( adj , add , modl , nt∗nx , data , nt∗nx )
do i x= 1 , nx { x= x0 + dx ∗ ( ix −1)
do i t= 1 , nt { t= t0 + dt ∗ ( i t −1)

tau = t − x ∗ s low
iu = 1.5001 + ( tau−tau0 )/ dt

i f ( 0 < iu && iu <= nt )
i f ( adj == 0 )

data ( i t , i x ) = data ( i t , i x ) + modl ( iu , i x )
else

modl ( iu , i x ) = modl ( iu , i x ) + data ( i t , i x )
}}

return ; end

Nearest neighbor rounding is crude but ordinarily very reliable. I discovered a very rare
numerical roundoff problem peculiar to signal time-shifting, a problem which arises in the
linear moveout application when the water velocity, about 1.48km/sec is approximated by
1.5=3/2. The problem arises only where the amount of the time shift is a numerical value
(like 12.5000001 or 12.499999) and the fractional part should be exactly 1/2 but numerical
rounding pushes it randomly in either direction. We would not care if an entire signal was
shifted by either 12 units or by 13 units. What is troublesome, however, is if some random
portion of the signal shifts 12 units while the rest of it shifts 13 units. Then the output
signal has places which are empty while adjacent places contain the sum of two values.
Linear moveout is the only application where I have ever encountered this difficulty. A
simple fix here was to modify the lmo() on this page subroutine changing the “1.5” to
“1.5001”. The problem disappears if we use a more accurate sound velocity or if we switch
from nearest-neighbor interpolation to linear interpolation.

3.2.3 Muting

Surface waves are a mathematician’s delight because they exhibit many complex phenom-
ena. Since these waves are often extremely strong, and since the information they contain
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about the earth refers only to the shallowest layers, typically, considerable effort is applied
to array design in field recording to suppress these waves. Nevertheless, in many areas of
the earth, these pesky waves may totally dominate the data.

A simple method to suppress ground roll in data processing is to multiply a strip of
data by a near-zero weight (the mute). To reduce truncation artifacts, the mute should
taper smoothly to zero (or some small value). Because of the extreme variability from
place to place on the earth’s surface, there are many different philosophies about designing
mutes. Some mute programs use a data dependent weighting function (such as automatic
gain control). Subroutine mutter() on the current page, however, operates on a simpler
idea: the user supplies trajectories defining the mute zone.

mute.rt
# Data i s weighted by s i n e squared i n s i d e a mute zone .
# The weight i s ze ro when t < x ∗ s l ope0
# The weight i s one when t > tp + x ∗ s l opep
# Suggested d e f a u l t s : s l opep = s lope0= 1 . /1 . 4 5 sec /km; tp=.150 sec
#
subrout ine mutter ( tp , s lope0 , s lopep , dt , dx , t0 , x0 , data , nt , nx )
i n t e g e r i t , ix , nt , nx
r e a l t , x , wt , tp , s lope0 , s lopep , dt , dx , t0 , x0 , data ( nt , nx )
do i x =1,nx { x= x0+(ix −1)∗dx ; x = abs ( x )
do i t =1,nt { t= t0+( i t −1)∗dt ;

i f ( t < x ∗ s l ope0 ) wt = 0
else i f ( t > tp + x ∗ s l opep ) wt = 1 .
else wt = s i n (

0 . 5 ∗ 3.14159265 ∗ ( t−x∗ s l ope0 )/ ( tp+x∗( s lopep−s l ope0 ) ) ) ∗∗ 2
data ( i t , i x ) = data ( i t , i x ) ∗ wt
}}

return ; end

Figure 3.6 shows an example of use of the routine mutter() on this page on the shallow
water data shown in Figure 3.5.

Figure 3.6: Jim’s first gather before and after muting. VIEW wvs/. mutter
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3.3 DIPPING WAVES

Above we considered waves going vertically and waves going horizontally. Now let us con-
sider waves propagating at the intermediate angles. For the sake of definiteness, I have
chosen to consider only downgoing waves in this section. We will later use the concepts
developed here to handle both downgoing and upcoming waves.

3.3.1 Rays and fronts

It is natural to begin studies of waves with equations that describe plane waves in a medium
of constant velocity.

Figure 3.7 depicts a ray moving down into the earth at an angle θ from the vertical.
Perpendicular to the ray is a wavefront. By elementary geometry the angle between the

Figure 3.7: Downgoing ray and
wavefront. VIEW wvs/. front
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wavefront and the earth’s surface is also θ. The ray increases its length at a speed v. The
speed that is observable on the earth’s surface is the intercept of the wavefront with the
earth’s surface. This speed, namely v/ sin θ, is faster than v. Likewise, the speed of the
intercept of the wavefront and the vertical axis is v/ cos θ. A mathematical expression for
a straight line like that shown to be the wavefront in Figure 3.7 is

z = z0 − x tan θ (3.4)

In this expression z0 is the intercept between the wavefront and the vertical axis. To
make the intercept move downward, replace it by the appropriate velocity times time:

z =
v t

cos θ
− x tan θ (3.5)

Solving for time gives
t(x, z) =

z

v
cos θ +

x

v
sin θ (3.6)

Equation (3.6) tells the time that the wavefront will pass any particular location (x, z). The
expression for a shifted waveform of arbitrary shape is f(t − t0). Using (3.6) to define the
time shift t0 gives an expression for a wavefield that is some waveform moving on a ray.

moving wavefield = f

(
t − x

v
sin θ − z

v
cos θ

)
(3.7)
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3.3.2 Snell waves

In reflection seismic surveys the velocity contrast between shallowest and deepest reflectors
ordinarily exceeds a factor of two. Thus depth variation of velocity is almost always included
in the analysis of field data. Seismological theory needs to consider waves that are just
like plane waves except that they bend to accommodate the velocity stratification v(z).
Figure 3.8 shows this in an idealized geometry: waves radiated from the horizontal flight of
a supersonic airplane. The airplane passes location x at time t0(x) flying horizontally at a

speed at depth  z
2

speed at depth  z
1

Figure 3.8: Fast airplane radiating a sound wave into the earth. From the figure you can
deduce that the horizontal speed of the wavefront is the same at depth z1 as it is at depth
z2. This leads (in isotropic media) to Snell’s law. VIEW wvs/. airplane

constant speed. Imagine an earth of horizontal plane layers. In this model there is nothing
to distinguish any point on the x-axis from any other point on the x-axis. But the seismic
velocity varies from layer to layer. There may be reflections, head waves, shear waves,
converted waves, anisotropy, and multiple reflections. Whatever the picture is, it moves
along with the airplane. A picture of the wavefronts near the airplane moves along with the
airplane. The top of the picture and the bottom of the picture both move laterally at the
same speed even if the earth velocity increases with depth. If the top and bottom didn’t
go at the same speed, the picture would become distorted, contradicting the presumed
symmetry of translation. This horizontal speed, or rather its inverse ∂t0/∂x, has several
names. In practical work it is called the stepout. In theoretical work it is called the ray
parameter. It is very important to note that ∂t0/∂x does not change with depth, even
though the seismic velocity does change with depth. In a constant-velocity medium, the
angle of a wave does not change with depth. In a stratified medium, ∂t0/∂x does not change
with depth.
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Figure 3.9 illustrates the differential geometry of the wave. Notice that triangles have
their hypotenuse on the x-axis and the z-axis but not along the ray. That’s because this
figure refers to wave fronts. (If you were thinking the hypotenuse would measure v∆t, it
could be you were thinking of the tip of a ray and its projection onto the x and z axes.)
The diagram shows that

Figure 3.9: Downgoing fronts and rays in stratified medium v(z). The wavefronts are
horizontal translations of one another. VIEW wvs/. frontz

∂t0
∂x

=
sin θ

v
(3.8)

∂t0
∂z

=
cos θ

v
(3.9)

These two equations define two (inverse) speeds. The first is a horizontal speed, measured
along the earth’s surface, called the horizontal phase velocity. The second is a vertical
speed, measurable in a borehole, called the vertical phase velocity. Notice that both these
speeds exceed the velocity v of wave propagation in the medium. Projection of wave fronts
onto coordinate axes gives speeds larger than v, whereas projection of rays onto coordinate
axes gives speeds smaller than v. The inverse of the phase velocities is called the stepout
or the slowness.

Snell’s law relates the angle of a wave in one layer with the angle in another. The
constancy of equation (3.8) in depth is really just the statement of Snell’s law. Indeed,
we have just derived Snell’s law. All waves in seismology propagate in a velocity-stratified
medium. So they cannot be called plane waves. But we need a name for waves that are
near to plane waves. A Snell wave will be defined to be the generalization of a plane
wave to a stratified medium v(z). A plane wave that happens to enter a medium of depth-
variable velocity v(z) gets changed into a Snell wave. While a plane wave has an angle of
propagation, a Snell wave has instead a Snell parameter p = ∂t0/∂x.

It is noteworthy that Snell’s parameter p = ∂t0/∂x is directly observable at the surface,
whereas neither v nor θ is directly observable. Since p = ∂t0/∂x is not only observable, but
constant in depth, it is customary to use it to eliminate θ from equations (3.8) and (3.9):

∂t0
∂x

=
sin θ

v
= p (3.10)

∂t0
∂z

=
cos θ

v
=

√
1

v(z)2
− p2 (3.11)
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3.3.3 Evanescent waves

Suppose the velocity increases to infinity at infinite depth. Then equation (3.11) tells us
that something strange happens when we reach the depth for which p2 equals 1/v(z)2. That
is the depth at which the ray turns horizontal. We will see in a later chapter that below
this critical depth the seismic wavefield damps exponentially with increasing depth. Such
waves are called evanescent. For a physical example of an evanescent wave, forget the
airplane and think about a moving bicycle. For a bicyclist, the slowness p is so large that
it dominates 1/v(z)2 for all earth materials. The bicyclist does not radiate a wave, but
produces a ground deformation that decreases exponentially into the earth. To radiate a
wave, a source must move faster than the material velocity.

3.3.4 Solution to kinematic equations

The above differential equations will often reoccur in later analysis, so they are very im-
portant. Interestingly, these differential equations have a simple solution. Taking the Snell
wave to go through the origin at time zero, an expression for the arrival time of the Snell
wave at any other location is given by

t0(x, z) =
sin θ

v
x +

∫ z

0

cos θ

v
dz (3.12)

t0(x, z) = p x +
∫ z

0

√
1

v(z)2
− p2 dz (3.13)

The validity of equations (3.12) and (3.13) is readily checked by computing ∂t0/∂x and
∂t0/∂z, then comparing with (3.10) and (3.11).

An arbitrary waveform f(t) may be carried by the Snell wave. Use (3.12) and (3.13) to
define the time t0 for a delayed wave f [t− t0(x, z)] at the location (x, z).

SnellWave(t, x, z) = f

(
t − p x −

∫ z

0

√
1

v(z)2
− p2 dz

)
(3.14)

Equation (3.14) carries an arbitrary signal throughout the whole medium. Interestingly, it
does not agree with wave propagation theory or real life because equation (3.14) does not
correctly account for amplitude changes that result from velocity changes and reflections.
Thus it is said that Equation (3.14) is “kinematically” correct but “dynamically” incorrect.
It happens that most industrial data processing only requires things to be kinematically
correct, so this expression is a usable one.

3.4 CURVED WAVEFRONTS

The simplest waves are expanding circles. An equation for a circle expanding with velocity
v is

v2 t2 = x2 + z2 (3.15)
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Considering t to be a constant, i.e. taking a snapshot, equation (3.15) is that of a circle.
Considering z to be a constant, it is an equation in the (x, t)-plane for a hyperbola. Con-
sidered in the (t, x, z)-volume, equation (3.15) is that of a cone. Slices at various values of
t show circles of various sizes. Slices of various values of z show various hyperbolas.

Converting equation (3.15) to traveltime depth τ we get

v2 t2 = z2 + x2 (3.16)

t2 = τ2 +
x2

v2
(3.17)

The earth’s velocity typically increases by more than a factor of two between the earth’s
surface, and reflectors of interest. Thus we might expect that equation (3.17) would have
little practical use. Luckily, this simple equation will solve many problems for us if we know
how to interpret the velocity as an average velocity.

3.4.1 Root-mean-square velocity

When a ray travels in a depth-stratified medium, Snell’s parameter p = v−1 sin θ is constant
along the ray. If the ray emerges at the surface, we can measure the distance x that it has
traveled, the time t it took, and its apparent speed dx/dt = 1/p. A well-known estimate v̂
for the earth velocity contains this apparent speed.

v̂ =

√
x

t

dx

dt
(3.18)

To see where this velocity estimate comes from, first notice that the stratified velocity v(z)
can be parameterized as a function of time and take-off angle of a ray from the surface.

v(z) = v(x, z) = v′(p, t) (3.19)

The x coordinate of the tip of a ray with Snell parameter p is the horizontal component of
velocity integrated over time.

x(p, t) =
∫ t

0
v′(p, t) sin θ(p, t) dt = p

∫ t

0
v′(p, t)2 dt (3.20)

Inserting this into equation (3.18) and canceling p = dt/dx we have

v̂ = vRMS =

√
1
t

∫ t

0
v′(p, t)2 dt (3.21)

which shows that the observed velocity is the “root-mean-square” velocity.

When velocity varies with depth, the traveltime curve is only roughly a hyperbola. If
we break the event into many short line segments where the i-th segment has a slope pi and
a midpoint (ti, xi) each segment gives a different v̂(pi, ti) and we have the unwelcome chore
of assembling the best model. Instead, we can fit the observational data to the best fitting
hyperbola using a different velocity hyperbola for each apex, in other words, find V (τ) so
this equation will best flatten the data in (τ, x)-space.

t2 = τ2 + x2/V (τ)2 (3.22)
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Differentiate with respect to x at constant τ getting

2t dt/dx = 2x/V (τ)2 (3.23)

which confirms that the observed velocity v̂ in equation (3.18), is the same as V (τ) no
matter where you measure v̂ on a hyperbola.

3.4.2 Layered media

From the assumption that experimental data can be fit to hyperbolas (each with a different
velocity and each with a different apex τ) let us next see how we can fit an earth model
of layers, each with a constant velocity. Consider the horizontal reflector overlain by a
stratified interval velocity v(z) shown in Figure 3.10.

Figure 3.10: Raypath diagram for
normal moveout in a stratified earth.
VIEW wvs/. stratrms

The separation between the source and geophone, also called the offset, is 2h and the
total travel time is t. Travel times are not be precisely hyperbolic, but it is common practice
to find the best fitting hyperbolas, thus finding the function V 2(τ).

t2 = τ2 +
4h2

V 2(τ)
(3.24)

where τ is the zero-offset two-way traveltime.

An example of using equation (3.24) to stretch t into τ is shown in Figure 3.11. (The
programs that find the required V (τ) and do the stretching are coming up in chapter 4.)

Equation (3.21) shows that V (τ) is the “root-mean-square” or “RMS” velocity defined
by an average of v2 over the layers. Expressing it for a small number of layers we get

V 2(τ) =
1
τ

∑
i

v2
i ∆τi (3.25)

where the zero-offset traveltime τ is a sum over the layers:

τ =
∑

i

∆τi (3.26)
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Figure 3.11: If you are lucky and get a good velocity, when you do NMO, everything turns
out flat. Shown with and without mute. VIEW wvs/. nmogath

The two-way vertical travel time τi in the ith layer is related to the thickness ∆zi and the
velocity vi by

∆τi =
2 ∆zi

vi
. (3.27)

Next we examine an important practical calculation, getting interval velocities from
measured RMS velocities: Define in layer i, the interval velocity vi and the two-way vertical
travel time ∆τi. Define the RMS velocity of a reflection from the bottom of the i-th layer
to be Vi. Equation (3.25) tells us that for reflections from the bottom of the first, second,
and third layers we have

V 2
1 =

v2
1∆τ1

∆τ1
(3.28)

V 2
2 =

v2
1∆τ1 + v2

2∆τ2

∆τ1 + ∆τ2
(3.29)

V 2
3 =

v2
1∆τ1 + v2

2∆τ2 + v2
3∆τ3

∆τ1 + ∆τ2 + ∆τ3
(3.30)

Normally it is easy to measure the times of the three hyperbola tops, ∆τ1, ∆τ1 + ∆τ2

and ∆τ1 + ∆τ2 + ∆τ3. Using methods in chapter 4 we can measure the RMS velocities V2

and V3. With these we can solve for the interval velocity v3 in the third layer. Rearrange
(3.30) and (3.29) to get
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(∆τ1 + ∆τ2 + ∆τ3)V 2
3 = v2

1∆τ1 + v2
2∆τ2 + v2

3∆τ3 (3.31)
(∆τ1 + ∆τ2)V 2

2 = v2
1∆τ1 + v2

2∆τ2 (3.32)

and subtract getting the squared interval velocity v2
3

v2
3 =

(∆τ1 + ∆τ2 + ∆τ3)V 2
3 − (∆τ1 + ∆τ2)V 2

2

∆τ3
(3.33)

For any real earth model we would not like an imaginary velocity which is what could
happen if the squared velocity in (3.33) happened to be negative. You see that this means
that the RMS velocity we estimate for the third layer cannot be too much smaller than the
one we estimate for the second layer.

3.4.3 Nonhyperbolic curves

Occasionally data does not fit a hyperbolic curve very well. Two other simple fitting func-
tions are

t2 = τ2 +
x2

v2
+ x4 × parameter (3.34)

(t− t0)2 = (τ − t0)2 +
x2

v2
(3.35)

Equation (3.34) has an extra adjustable parameter of no simple interpretation other than
the beginning of a power series in x2. I prefer Equation (3.35) where the extra adjustable
parameter is a time shift t0 which has a simple interpretation, namely, a time shift such as
would result from a near-surface low velocity layer. In other words, a datum correction.

3.4.4 Velocity increasing linearly with depth

Theoreticians are delighted by velocity increasing linearly with depth because it happens
that many equations work out in closed form. For example, rays travel in circles. We will
need convenient expressions for velocity as a function of traveltime depth and RMS velocity
as a function of traveltime depth. Let us get them. We take the interval velocity v(z)
increasing linearly with depth:

v(z) = v0 + αz (3.36)

This presumption can also be written as a differential equation:

dv

dz
= α. (3.37)

The relationship between z and vertical two-way traveltime τ(z) (see equation (3.27)) is
also given by a differential equation:

dτ

dz
=

2
v(z)

. (3.38)
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Letting v(τ) = v(z(τ)) and applying the chain rule gives the differential equation for v(τ):

dv

dz

dz

dτ
=

dv

dτ
=

vα

2
, (3.39)

whose solution gives us the desired expression for interval velocity as a function of trav-
eltime depth.

v(τ) = v0 eατ/2. (3.40)

3.4.5 Prior RMS velocity

Substituting the theoretical interval velocity v(τ) from equation (3.40) into the definition
of RMS velocity V (τ) (equation (3.25)) yields:

τ V 2(τ) =
∫ τ

0
v2(τ ′) dτ ′ (3.41)

= v2
0

eατ − 1
α

. (3.42)

Thus the desired expression for RMS velocity as a function of traveltime depth is:

V (τ) = v0

√
eατ − 1

ατ
(3.43)

For small values of ατ , this can be approximated as

V (τ) ≈ v0

√
1 + ατ/2. (3.44)



Chapter 4

Moveout, velocity, and stacking

In this chapter we handle data as though the earth had no dipping reflectors. The earth
model is one of stratified layers with velocity a (generally increasing) function of depth. We
consider reflections from layers, which we process by normal moveout correction (NMO).
The NMO operation is an interesting example of many general principles of linear operators
and numerical analysis. Finally, using NMO, we estimate the earth’s velocity with depth
and we stack some data, getting a picture of an earth with dipping layers. This irony,
that techniques developed for a stratified earth can give reasonable images of non-stratified
reflectors, is one of the “lucky breaks” of seismic processing. We will explore the limitations
of this phenomenon in the chapter on dip-moveout.

First, a few words about informal language. The inverse to velocity arises more fre-
quently in seismology than the velocity itself. This inverse is called the “slowness.” In
common speech, however, the word “velocity” is a catch-all, so what is called a “velocity
analysis” might actually be a plane of slowness versus time.

4.1 INTERPOLATION AS A MATRIX

Here we see how general principles of linear operators are exemplified by linear interpolation.
Because the subject matter is so simple and intuitive, it is ideal to exemplify abstract
mathematical concepts that apply to all linear operators.

Let an integer k range along a survey line, and let data values xk be packed into a
vector x. (Each data point xk could also be a seismogram.) Next we resample the data
more densely, say from 4 to 6 points. For illustration, I follow a crude nearest-neighbor
interpolation scheme by sprinkling ones along the diagonal of a rectangular matrix that
is

y = Bx (4.1)

39
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where 

y1

y2

y3

y4

y5

y6


=



1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1




x1

x2

x3

x4

 (4.2)

The interpolated data is simply y = (x1, x2, x2, x3, x4, x4). The matrix multiplication (4.2)
would not be done in practice. Instead there would be a loop running over the space of the
outputs y that picked up values from the input.

4.1.1 Looping over input space

The obvious way to program a deformation is to take each point from the input space and
find where it goes on the output space. Naturally, many points could land in the same place,
and then only the last would be seen. Alternately, we could first erase the output space,
then add in points, and finally divide by the number of points that ended up in each place.
The biggest aggravation is that some places could end up with no points. This happens
where the transformation stretches. There we need to decide whether to interpolate the
missing points, or simply low-pass filter the output.

4.1.2 Looping over output space

The alternate method that is usually preferable to looping over input space is that our
program have a loop over the space of the outputs, and that each output find its input. The
matrix multiply of (4.2) can be interpreted this way. Where the transformation shrinks is
a small problem. In that area many points in the input space are ignored, where perhaps
they should somehow be averaged with their neighbors. This is not a serious problem unless
we are contemplating iterative transformations back and forth between the spaces.

We will now address interesting questions about the reversibility of these deformation
transforms.

4.1.3 Formal inversion

We have thought of equation (4.1) as a formula for finding y from x. Now consider the
opposite problem, finding x from y. Begin by multiplying equation (4.2) by the transpose
matrix to define a new quantity x̃:


x̃1

x̃2

x̃3

x̃4

 =


1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1





y1

y2

y3

y4

y5

y6


(4.3)
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x̃ is not the same as x, but these two vectors have the same dimensionality and in many
applications it may happen that x̃ is a good approximation to x. In general, x̃ may be
called an “image” of x. Finding the image is the first step of finding x itself. Formally, the
problem is

y = Bx (4.4)

And the formal solution to the problem is

x = (B′B)−1 B′ y (4.5)

Formally, we verify this solution by substituting (4.4) into (4.5).

x = (B′B)−1 (B′B)x = I x = x (4.6)

In applications, the possible nonexistence of an inverse for the matrix (B′B) is always a
topic for discussion. For now we simply examine this matrix for the interpolation problem.
We see that it is diagonal:

B′B =


1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1





1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1


=


1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2

 (4.7)

So, x̃1 = x1; but x̃2 = 2x2. To recover the original data, we need to divide x̃ by the diagonal
matrix B′B. Thus, matrix inversion is easy here.

Equation (4.5) has an illustrious reputation, which arises in the context of “least squares.”
Least squares is a general method for solving sets of equations that have more equations
than unknowns.

Recovering x from y using equation (4.5) presumes the existence of the inverse of B′B.
As you might expect, this matrix is nonsingular when B stretches the data, because then
a few data values are distributed among a greater number of locations. Where the trans-
formation squeezes the data, B′B must become singular, since returning uniquely to the
uncompressed condition is impossible.

We can now understand why an adjoint operator is often an approximate inverse. This
equivalency happens in proportion to the nearness of the matrix B′B to an identity matrix.
The interpolation example we have just examined is one in which B′B differs from an
identity matrix merely by a scaling.

4.2 THE NORMAL MOVEOUT MAPPING

Recall the traveltime equation (3.17).

v2 t2 = z2 + x2 (4.8)

t2 = τ2 +
x2

v2
(4.9)
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where τ is traveltime depth. This equation gives either time from a surface source to a
receiver at depth τ , or it gives time to a surface receiver from an image source at depth τ .

A seismic trace is a signal d(t) recorded at some constant x. We can convert the
trace to a “vertical propagation” signal m(τ) = d(t) by stretching t to τ . This process
is called “normal moveout correction” (NMO). Typically we have many traces at dif-
ferent x distances each of which theoretically produces the same hypothetical zero-offset
trace. Figure 4.1 shows a marine shot profile before and after NMO correction at the water
velocity. You can notice that the wave packet reflected from the ocean bottom is approx-
imately a constant width on the raw data. After NMO, however, this waveform broadens
considerably—a phenomenon known as “NMO stretch.”

Figure 4.1: Marine data moved
out with water velocity. Input on
the left, output on the right. Press
button for movie sweeping through
velocity (actually through slowness
squared). VIEW vela/. stretch

The NMO transformation N is representable as a square matrix. The matrix N is a (τ, t)-
plane containing all zeros except an interpolation operator centered along the hyperbola.
The dots in the matrix below are zeros. The input signal dt is put into the vector d. The
output vector m—i.e., the NMO’ed signal—is simply (d6, d6, d6, d7, d7, d8, d8, d9, d10, 0). In
real life examples such as Figure 4.1 the subscript goes up to about one thousand instead
of merely to ten.

m = Nd =



m1

m2

m3

m4

m5

m6

m7

m8

m9

m10


=



. . . . . 1 . . . .

. . . . . 1 . . . .

. . . . . 1 . . . .

. . . . . . 1 . . .

. . . . . . 1 . . .

. . . . . . . 1 . .

. . . . . . . 1 . .

. . . . . . . . 1 .

. . . . . . . . . 1

. . . . . . . . . .





d1

d2

d3

d4

d5

d6

d7

d8

d9

d10


(4.10)

You can think of the matrix as having a horizontal t-axis and a vertical τ -axis. The 1’s
in the matrix are arranged on the hyperbola t2 = τ2 +x2

0/v2. The transpose matrix defining
some d̃ from m gives synthetic data d̃ from the zero-offset (or stack) model m, namely,
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d̃ = N ′m =



d̃1

d̃2

d̃3

d̃4

d̃5

d̃6

d̃7

d̃8

d̃9

d̃10



=



. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .
1 1 1 . . . . . . .
. . . 1 1 . . . . .
. . . . . 1 1 . . .
. . . . . . . 1 . .
. . . . . . . . 1 .





m1

m2

m3

m4

m5

m6

m7

m8

m9

m10


(4.11)

A program for nearest-neighbor normal moveout as defined by equations (4.10)
and (4.11) is nmo0(). Because of the limited alphabet of programming languages, I used
the keystroke z to denote τ .

normal moveout.rt

subrout ine nmo0( adj , add , slow , x , t0 , dt , n , zz , t t )
i n t e g e r i t , i z , adj , add , n
r e a l xs , t , z , s low (n ) , x , t0 , dt , zz (n ) , t t (n)
c a l l a d j nu l l ( adj , add , zz , n , tt , n )
do i z= 1 , n { z = t0 + dt ∗( i z −1) # Travel−time depth

xs= x ∗ s low ( i z )
t = sq r t ( z ∗ z + xs ∗ xs )
i t= 1 + .5 + ( t − t0 ) / dt # Round to nea r e s t ne ighbor .
i f ( i t <= n )

i f ( adj == 0 )
t t ( i t ) = t t ( i t ) + zz ( i z )

else
zz ( i z ) = zz ( i z ) + t t ( i t )

}
return ; end

A program is a “pull” program if the loop creating the output covers each location in the
output and gathers the input from wherever it may be. A program is a “push” program if it
takes each input and pushes it to wherever it belongs. Thus this NMO program is a “pull”
program for doing the model building (data processing), and it is a “push” program for the
data building. You could write a program that worked the other way around, namely, a
loop over t with z found by calculation z =

√
t2/v2 − x2. What is annoying is that if you

want a push program going both ways, those two ways cannot be adjoint to one another.

Normal moveout is a linear operation. This means that data can be decomposed into any
two parts, early and late, high frequency and low, smooth and rough, steep and shallow dip,
etc.; and whether the two parts are NMO’ed either separately or together, the result is the
same. The reason normal moveout is a linear operation is that we have shown it is effectively
a matrix multiply operation and that operation fulfills N(d1 + d2) = Nd1 + Nd2.
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4.3 COMMON-MIDPOINT STACKING

Typically, many receivers record every shot, and there are many shots over the reflectors of
interest. It is common practice to define the midpoint y = (xs + xg)/2 and then to sort the
seismic traces into “common-midpoint gathers”. After sorting, each trace on a common-
midpoint gather can be transformed by NMO into an equivalent zero-offset trace and the
traces in the gather can all be added together. This is often called “common-depth-point
(CDP) stacking” or, more correctly, “common-midpoint stacking”.

The adjoint to this operation is to begin from a model that is identical to the zero-offset
trace and spray this trace to all offsets. There is no “official” definition of which operator
of an operator pair is the operator itself and which is the adjoint. On the one hand, I like
to think of the modeling operation itself as the operator. On the other hand, the industry
machinery keeps churning away at many processes that have well-known names, so people
often think of one of them as the operator. Industrial data-processing operators are typically
adjoints to modeling operators.

Figure 4.2 illustrates the operator pair, consisting of spraying out a zero-offset trace (the
model) to all offsets and the adjoint of the spraying, which is stacking. The moveout and
stack operations are in subroutine stack0().

NMO stack.rt
subrout ine stack0 ( adj , add , slow , t0 , dt , x0 , dx , nt , nx , stack , gather )
i n t e g e r ix , adj , add , nt , nx
r e a l x , s low ( nt ) , t0 , dt , x0 , dx , s tack ( nt ) , gather ( nt , nx )
c a l l a d j nu l l ( adj , add , stack , nt , gather , nt∗nx )
do i x= 1 , nx {

x = x0 + dx ∗ ( ix −1)
c a l l nmo0( adj , 1 , slow , x , t0 , dt , nt , stack , gather (1 , i x ) )
}

return ; end

Let S′ denote NMO, and let the stack be defined by invoking stack0() with the adj=1
argument. Then S is the modeling operation defined by invoking stack0() with the adj=0
argument. Figure 4.2 illustrates both. Notice the roughness on the waveforms caused

Figure 4.2: Top is a model trace
m. Center shows the spraying to
synthetic traces, Sm. Bottom is the
stack of the synthetic data, S′Sm.
VIEW vela/. stack

by different numbers of points landing in one place. Notice also the increase of AVO
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(amplitude versus offset) as the waveform gets compressed into a smaller space. Finally,
notice that the stack is a little rough, but the energy is all in the desired time window.

We notice a contradiction of aspirations. On the one hand, an operator has smooth
outputs if it “loops over output space” and finds its input where ever it may. On the
other hand, it is nice to have modeling and processing be exact adjoints of each other.
Unfortunately, we cannot have both. If you loop over the output space of an operator, then
the adjoint operator has a loop over input space and a consequent roughness of its output.

4.3.1 Crossing traveltime curves

Since velocity increases with depth, at wide enough offset a deep enough path will arrive
sooner than a shallow path. In other words, traveltime curves for shallow events must
cut across the curves of deeper events. Where traveltime curves cross, NMO is no longer
a one-to-one transformation. To see what happens to the stacking process I prepared
Figures 4.3-4.5 using a typical marine recording geometry (although for clarity I used larger
(∆t, ∆x)) and we will use a typical Texas gulf coast average velocity, v(z) = 1.5+αz where
α = .5.

First we repeat the calculation of Figure 4.2 with constant velocity α = 0 and more
reflectors. We see in Figure 4.3 that the stack reconstructs the model except for two
details: (1) the amplitude diminishes with time, and (2) the early waveforms have become
rounded.

Figure 4.3: Synthetic CMP
gather for constant velocity earth
and reconstruction. VIEW

vela/. nmo0alfa0

Then we repeat the calculation with the Gulf coast typical velocity gradient α = 1/2.
The polarity reversal on the first arrival of the wide offset trace in Figure 4.4 is evidence
that in practice traveltime curves do cross. (As was plainly evident in Figures 3.2, 3.3 and
3.4 crossing traveltime curves are even more significant elsewhere in the world.) Comparing
Figure 4.3 to Figure 4.4 we see that an effect of the velocity gradient is to degrade the stack’s
reconstruction of the model. Velocity gradient has ruined the waveform on the shallowest
event, at about 400ms. If the plot were made on a finer mesh with higher frequencies, we
could expect ruined waveforms a little deeper too.

Our NMO and stack subroutines can be used for modeling or for data processing. In
designing these programs we gave no thought to signal amplitudes (although results showed
an interesting AVO effect in Figure 4.2.) We could redesign the programs so that the
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Figure 4.4: Synthetic CMP gather
for velocity linearly increasing with
depth (typical of Gulf of Mexico)
and reconstruction. VIEW

vela/. nmo0alfa-5

modeling operator has the most realistic amplitude that we can devise. Alternately, we
could design the amplitudes to get the best approximation to S′S ≈ I which should result
in “Stack” being a good approximation to “Model.” I experimented with various weighting
functions until I came up with subroutines nmo1() on the next page and stack1() (like
stack0() on page 44) which embodies the weighting function (τ/t)(1/

√
t) and which

produces the result in Figure 4.5.

Figure 4.5: Synthetic CMP
gather for velocity linearly increas-
ing with depth and reconstruction
with weighting functions in subrou-
tine nmo1(). Lots of adjustable
parameters here. VIEW

vela/. nmo1alfa-5

The result in Figure 4.5 is very pleasing. Not only is the amplitude as a function of
time better preserved, more importantly, the shallow wavelets are less smeared and have
recovered their rectangular shape. The reason the reconstruction is much better is the cosine
weighting implicit in τ/t. It has muted away much of the energy in the shallow asymptote.
I think this energy near the asymptote is harmful because the waveform stretch is so large
there. Perhaps a similar good result could be found by experimenting with muting programs
such as mutter() on page 29. However, subroutine nmo1() on the facing page differs from
mutter() in two significant respects: (1) nmo1() is based on a theoretical concept whereas
mutter() requires observational parameters and (2) mutter() applies a weighting in the
coordinates of the (t, x) input space, while nmo1() does that but also includes the coordinate
τ of the the output space. With nmo1() events from different τ depths see different mutes
which is good where a shallow event asymptote crosses a deeper event far from its own
asymptote. In practice the problem of crossing traveltime curves is severe, as evidenced by
Figures 3.2-3.4 and both weighting during NMO and muting should be used.
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weighted NMO.rt
subrout ine nmo1( adj , add , slow , x , t0 , dt , n , zz , t t )
i n t e g e r i t , i z , adj , add , n
r e a l xs , t , z , s low (n ) , x , t0 , dt , zz (n ) , t t (n ) , wt
c a l l a d j nu l l ( adj , add , zz , n , tt , n )
do i z= 1 , n { z = t0 + dt ∗( i z −1)

xs = x ∗ s low ( i z )
t = sq r t ( z ∗ z + xs ∗ xs ) + 1 . e−20
wt = z/ t ∗ ( 1 . / sq r t ( t ) ) # weight ing func t i on
i t = 1 + .5 + ( t − t0 ) / dt
i f ( i t <= n )

i f ( adj == 0 )
t t ( i t ) = t t ( i t ) + zz ( i z ) ∗ wt

else
zz ( i z ) = zz ( i z ) + t t ( i t ) ∗ wt

}
return ; end

It is important to realize that the most accurate possible physical amplitudes are not
necessarily those for which S′S ≈ I. Physically accurate amplitudes involve many theoretical
issues not covered here. It is easy to include some effects (spherical divergence based on
velocity depth variation) and harder to include others (surface ghosts and arrays). We omit
detailed modeling here because it is the topic of so many other studies.

4.3.2 Ideal weighting functions for stacking

The difference between stacking as defined by nmo0() on page 43 and by nmo1() on this
page is in the weighting function (τ/t)(1/

√
t). This weight made a big difference in the

resolution of the stacks but I cannot explain whether this weighting function is the best
possible one, or what systematic procedure leads to the best weighting function in general.
To understand this better, notice that (τ/t)(1/

√
t) can be factored into two weights, τ and

t−3/2. One weight could be applied before NMO and the other after. That would also
be more efficient than weighting inside NMO, as does nmo1(). Additionally, it is likely
that these weighting functions should take into account data truncation at the cable’s end.
Stacking is the most important operator in seismology. Perhaps some objective measure
of quality can be defined and arbitrary powers of t, x, and τ can be adjusted until the
optimum stack is defined. Likewise, we should consider weighting functions in the spectral
domain. As the weights τ and t−3/2 tend to cancel one another, perhaps we should filter
with opposing filters before and after NMO and stack.

4.3.3 Gulf of Mexico stack and AGC

Next we create a “CDP stack” of our the Gulf of Mexico data set. Recall the moved out
common-midpoint (CMP) gather Figure 3.11. At each midpoint there is one of these CMP
gathers. Each gather is summed over its offset axis. Figure 4.6 shows the result of stacking
over offset, at each midpoint. The result is an image of a cross section of the earth.

In Figure 4.6 the early signals are too weak to see. This results from the small number
of traces at early times because of the mute function. (Notice missing information at wide
offset and early time on Figure 3.11.) To make the stack properly, we should divide by the
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Figure 4.6: Stack done with a given velocity profile for all midpoints. VIEW

vela/. wgstack

number of nonzero traces. The fact that the mute function is tapered rather than cut off
abruptly complicates the decision of what is a nonzero trace. In general we might like to
apply a weighting function of offset. How then should the stack be weighted with time to
preserve something like the proper signal strength? A solution is to make constant synthetic
data (zero frequency). Stacking this synthetic data gives a weight that can be used as a
divisor when stacking field data. I prepared code for such weighted stacking, but it cluttered
the NMO and stack program and required two additional new subroutines, so I chose to
leave the clutter in the electronic book and not to display it here. Instead, I chose to solve
the signal strength problem by an old standby method, Automatic Gain Control (AGC).
A divisor for the data is found by smoothing the absolute values of the data over a moving
window. To make Figure 4.7 I made the divisor by smoothing in triangle shaped windows
about a half second long. To do this, I used subroutine triangle() on page 216.

4.4 VELOCITY SPECTRA

An important transformation in exploration geophysics takes data as a function of shot-
receiver offset and transforms it to data as a function of apparent velocity. Data is summed
along hyperbolas of many velocities. This important industrial process is adjoint to another
that may be easier to grasp: data is synthesized by a superposition of many hyperbolas.
The hyperbolas have various asymptotes (velocities) and various tops (apexes). Pseudocode
for these transformations is
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Figure 4.7: Stack of Figure 4.6 after AGC. VIEW vela/. agcstack

do v {
do τ {
do x {

t =
√

τ2 + x2/v2

if hyperbola superposition
data(t, x) = data(t, x) + vspace(τ, v)

else if velocity analysis
vspace(τ, v) = vspace(τ, v) + data(t, x)

}}}

This pseudocode transforms one plane to another using the equation t2 = τ2 + x2/v2. This
equation relates four variables, the two coordinates of the data space (t, x) and the two of
the model space (τ, v). Suppose a model space is all zeros except for an impulse at (τ0, v0).
The code copies this inpulse to data space everywhere where t2 = τ2

0 + x2/v2
0. In other

words, the impulse in velocity space is copied to a hyperbola in data space. In the opposite
case an impulse at a point in data space (t0, x0) is copied to model space everywhere that
satisfies the equation t20 = τ2 + x2

0/v2. Changing from velocity space to slowness space this
equation t20 = τ2 +x2

0s
2 has a name. In (τ, s)-space it is an ellipse (which reduces to a circle

when x2
0 = 1.

Look carefully in the model space of Figure 4.8. Can you detect any ellipses? For each
ellipse, does it come from a large x0 or a small one? Can you identify the point (t0, x0)
causing the ellipse?
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We can ask the question, if we transform data to velocity space, and then return to
data space, will we get the original data? Likewise we could begin from the velocity space,
synthesize some data, and return to velocity space. Would we come back to where we
started? The answer is yes, in some degree. Mathematically, the question amounts to this:
Given the operator A, is A′A approximately an identity operator, i.e. is A nearly a unitary
operator? It happens that A′A defined by the pseudocode above is rather far from an
identity transformation, but we can bring it much closer by including some simple scaling
factors. It would be a lengthy digression here to derive all these weighting factors but let
us briefly see the motivation for them. One weight arises because waves lose amplitude
as they spread out. Another weight arises because some angle-dependent effects should
be taken into account. A third weight arises because in creating a velocity space, the near
offsets are less important than the wide offsets and we do not even need the zero-offset data.
A fourth weight is a frequency dependent one which is explained in chapter 6. Basically, the
summations in the velocity transformation are like integrations, thus they tend to boost low
frequencies. This could be compensated by scaling in the frequency domain with frequency
as
√
−iω with subroutine halfdifa() on page 96.

The weighting issue will be examined in more detail later. Meanwhile, we can see
nice quality examples from very simple programs if we include the weights in the physical
domain, w =

√
1/t

√
x/v τ/t. (Typographical note: Do not confuse the weight w (double

you) with omega ω.) To avoid the coding clutter of the frequency domain weighting
√
−iω I

omit that, thus getting smoother results than theoretically preferable. Figure 4.8 illustrates
this smoothing by starting from points in velocity space, transforming to offset, and then
back and forth again.

There is one final complication relating to weighting. The most symmetrical approach
is to put w into both A and A′. This is what subroutine velsimp() on the current page
does. Thus, because of the weighting by

√
x, the synthetic data in Figure 4.8 is nonphysical.

An alternate view is to define A (by the pseudo code above, or by some modeling theory)
and then for reverse transformation use w2A′.

velocity spectra.rt
# vels imp −−− s imple v e l o c i t y trans form
#
subrout ine vels imp ( adj , add , t0 , dt , x0 , dx , s0 , ds , nt , nx , ns , modl , data )
i n t e g e r i t , ix , i s , adj , add , nt , nx , ns , i z , nz
r e a l x , s , sx , t , z , z0 , dz , wt , t0 , dt , x0 , dx , s0 , ds , modl ( nt , ns ) , data ( nt , nx )
c a l l a d j nu l l ( adj , add , modl , nt∗ns , data , nt∗nx )
nz= nt ; z0=t0 ; dz= dt ; # z i s t r a v e l time depth
do i s= 1 , ns { s = s0 + ( i s −1) ∗ ds
do i x= 1 , nx { x = x0 + ( ix −1) ∗ dx
do i z= 2 , nz { z = z0 + ( iz −1) ∗ dz

sx = abs ( s ∗ x )
t = sq r t ( z ∗ z + sx ∗ sx )
i t = 1 .5 + ( t − t0 ) / dt
i f ( i t <= nt ) { wt= ( z/ t ) / sq r t ( t )

i f ( adj == 0 )
data ( i t , i x ) = data ( i t , i x ) + modl ( i z , i s ) ∗ s q r t ( sx ) ∗ wt

else
modl ( i z , i s ) = modl ( i z , i s ) + data ( i t , i x ) ∗ s q r t ( sx ) ∗ wt

}
}}}

return ; end
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Figure 4.8: Iteration between spaces. Left are model spaces. Right are data spaces.
Right derived from left. Lower model space derived from upper data space. VIEW

vela/. velvel
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An example of applying subroutine velsimp() on page 50 to field data is shown in
Figure 4.9. The principal value of this plot is that you can see the energy concentrating along

Figure 4.9: Transformation of data as a function of offset (left) to data as a function of
slowness (velocity scans) on the right using subroutine velsimp(). VIEW vela/. mutvel

a trajectory of slowness decreasing with depth, i.e. velocity increasing with depth. Why
this happens and many subtle features of the plot follow from some simple mathematics.
Start with the equation of circles in (x, z) expanding with velocity v.

v2t2 = z2 + x2 (4.12)

Introduce travel-time depth τ = z/v and slowness s = 1/v.

t2 = τ2 + s2x2 (4.13)

This equation contains four quantities, two from data space (t, x) and two from model
space (τ, s). An impulse in model space at (τ0, s0) gives a hyperbola in data (x, t)-space.
We see those hyperbolas in Figure 4.9.

Instead of taking (τ, s) to be constants in model space, take constants (t0, x0) in data
space. This gives t20 = τ2 + s2x2

0 which for x0 = 1 is a circle in model (τ, s) space. More
generally it is an ellipse in model space. When you look at velocity scans of real data you
are very likely to see ellipses. They could come from isolated bad data points, but more
commonly they come from the truncation of data at the beginning of the cable, at the end
of the cable, and along the mute zone. Each point in data space superposes an ellipsoid in
slowness space. Everything in slowness space is made out of ellipsoids. We can see many
many ellipsoids in Figure 4.9. Start by testing yourself with this question: When we see
something near a horizontal line in slowness space, what data points in data space are
responsible?
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4.4.1 Velocity picking

For many kinds of data analysis, we need to know the velocity of the earth as a function
of depth. To derive such information we begin from Figure 4.9 and draw a line through
the maxima. In practice this is often a tedious manual process, and it needs to be done
everywhere we go. There is no universally accepted way to automate this procedure, but
we will consider one that is simple enough that it can be fully described here, and which
works well enough for these demonstrations. (I plan to do a better job later.)

Theoretically we can define the velocity or slowness as a function of traveltime depth
by the moment function. Take the absolute value of the data scans and smooth them a
little on the time axis to make something like an unnormalized probability function, say
p(τ, s) > 0. Then the slowness s(τ) could be defined by the moment function, i.e.,

s(τ) =
∑

s s p(τ, s)∑
s p(τ, s)

(4.14)

The problem with defining slowness s(τ) by the moment is that it is strongly influenced by
noises away from the peaks, particularly water velocity noises. Thus, better results can be
obtained if the sums in equation (4.14) are limited to a range about the likely solution. To
begin with, we can take the likely solution to be defined by universal or regional experience.
It is sensible to begin from a one-parameter equation for velocity increasing with depth where
the form of the equation allows a ray tracing solution such as equation (3.43). Experience
with Gulf of Mexico data shows that α ≈ 1/2 sec−1 is reasonable there for equation (3.43),
and that is the smooth curve in Figure 4.10.

Experience with moments, equation (4.14), shows they are reasonable when the desired
result is near the guessed center of the range. Otherwise, the moment is biased towards the
initial guess. This bias can be reduced in stages. At each stage we shrink the width of the
zone used to compute the moment. This procedure is used in subroutine slowfit() on the
current page which after smoothing to be described, gives the oscillatory curve you see in
Figure 4.10.

velocity est..rt
subrout ine s l ow f i t ( vsur face , alpha , t0 , dt , s0 , ds , scan , nt , ns , reg , s low )
i n t e g e r i range , i t , i s , nt , ns
r e a l num, den , t , s , v sur face , alpha , t0 , dt , s0 , ds , scan ( nt , ns ) , reg ( nt ) , s low ( nt )
do i t= 1 , nt { t= t0 + dt ∗( i t −1) + dt

reg ( i t ) = 1 . / ( v su r f a c e ∗ s q r t ( ( exp ( alpha ∗ t ) − 1 . ) / ( alpha ∗ t ) ) )
s low ( i t ) = reg ( i t )
}

do i r ange= ns /4 , 5 , −1 { # shr ink the fa i rway
do i t= 1 , nt { t= t0 + dt ∗( i t −1)

do i s= 1 , ns { s= s0 + ds ∗( i s −1)
i f ( s > s low ( i t ) + i range ∗ds ) scan ( i t , i s ) = 0 .
i f ( s < s low ( i t ) − i r ange ∗ds ) scan ( i t , i s ) = 0 .
i f ( s > 1 . / 1 . 6 ) scan ( i t , i s ) = 0 . # water
}

den= 0 . 0 ; num= 0.0
do i s= 1 , ns { s= s0 + ds ∗( i s −1)

num = num + scan ( i t , i s ) ∗ s
den = den + scan ( i t , i s )
}
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s low ( i t ) = num / ( den + 1 . e−20)
i f ( s low ( i t ) == 0 . ) slow ( i t ) = 1 ./ v su r f a c e
}}

return ; end

A more customary way to view velocity space is to square the velocity scans and normal-
ize them by the sum of the squares of the signals. This has the advantage that the remaining
information represents velocity spectra and removes variation due to seismic amplitudes.
Since in practice, reliability seems somehow proportional to amplitude the disadvantage
of normalization is that reliability becomes more veiled.

An appealing visualization of velocity is shown in the right side of Figure 4.10. This
was prepared from the absolute value of left side, followed by filtering spatially with an
antisymmetric leaky integral function. (See PVI page 57). An example is shown on the
right side of Figure 4.10.

Figure 4.10: Left is the slowness scans. Right is the slowness scans after absolute value,
smoothing a little in time, and antisymmetric leaky integration over slowness. Overlaying
both is the line of slowness picks. VIEW vela/. slowfit

4.4.2 Stabilizing RMS velocity

With velocity analysis, we estimate the RMS velocity. Later we will need both the RMS
velocity and the interval velocity. (The word “interval” designates an interval between
two reflectors.) Recall from chapter 3 equation (3.24)

t2 = τ2 +
4h2

V 2(τ)
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Routine vint2rms() on this page converts from interval velocity to RMS velocity and
vice versa.

interval to/from RMS vel.rt
# I n v e r t i b l e trans form from i n t e r v a l v e l o c i t y to RMS.
#
subrout ine vint2rms ( inve r s e , vminallow , dt , v int , nt , vrms )
i n t e g e r i t , wide , inve r s e , nt
r e a l vmin , vminallow , dt , v in t ( nt ) , vrms ( nt )
temporary r e a l v i s ( nt ) , sum( nt )
i f ( i n v e r s e == 0) { do i t= 1 , nt

v i s ( i t ) = v int ( i t ) ∗∗ 2
sum(1) = 0 . ; do i t= 2 , nt

sum( i t ) = sum( i t −1) + v i s ( i t ) ∗ dt
vrms (1 ) = v int ( 1 ) ; do i t= 2 , nt

vrms ( i t ) = sq r t ( sum( i t ) / ( ( i t −1)∗dt ) )
}

else { do i t= 1 , nt
sum( i t )= ( ( i t −1)∗dt ) ∗ amax1( vrms ( i t )∗∗2 , vminallow ∗∗2 )

v i s (1 ) = vrms (1 ) ∗∗ 2
do i t= 2 , nt

v i s ( i t ) = ( sum( i t ) − sum( i t −1) )/ dt
wide= 2 ; repeat {

vmin = v i s ( 1 ) ; do i t =1,nt { i f ( v i s ( i t )<vmin ) vmin = v i s ( i t ) }
i f ( vmin > vminallow ∗∗2 ) break
c a l l t r i a n g l e ( wide , 1 , nt , v i s , v i s ) # smooth v i s ( )
wide = wide + 1
i f ( wide >= nt /3) c a l l e r e x i t ( ’ Ve l oc i ty l e s s than a l l owab l e . ’ )
}

do i t= 1 , nt
v in t ( i t ) = sq r t ( v i s ( i t ) )

}
return ; end

The forward conversion follows in straightforward steps: square, integrate, square root.
The inverse conversion, like an adjoint, retraces the steps of the forward transform but it
does the inverse at every stage. There is however, a messy problem with nearly all field
data that must be handled along the inverse route. The problem is that the observed
RMS velocity function is generally a rough function, and it is generally unreliable over a
significant portion of its range. To make matters worse, deriving an interval velocity
begins as does a derivative, roughening the function further. We soon find ourselves taking
square roots of negative numbers, which requires judgement to proceed. The technique
used in vint2rms() on the current page is to average the squared interval velocity in ever
expanding neighborhoods until there are no longer any negative squared interval velocities.
As long as we are restricting v2 from being negative, it is easy to restrict it to be above
some allowable velocity, say vminallow. Figures 4.11 and 4.12 were derived from the velocity
scans in Figure 4.10. Figure 4.11 shows the RMS velocity before and after a trip backward
and forward through routine vint2rms() on this page. The interval velocity associated
with the smoothed velocity is in figure 4.12.
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Figure 4.11: Left is the raw RMS velocity. Right is a superposition of RMS velocities, the
raw one, and one constrained to have realistic interval velocities. VIEW vela/. rufsmo

Figure 4.12: Interval velocity
associated with the smoothed
RMS velocity of Figure 4.11.
Pushbutton allows experimenta-
tion with vminallow. VIEW

vela/. vrmsint



Chapter 5

Zero-offset migration

In chapter 4 we discussed methods of imaging horizontal reflectors and of estimating velocity
v(z) from the offset dependence of seismic recordings. In this chapter, we turn our attention
to imaging methods for dipping reflectors. These imaging methods are usually referred to
as “migration” techniques.

Offset is a geometrical nuisance when reflectors have dip. For this reason, we develop
migration methods here and in the next chapter for forming images from hypothetical
zero-offset seismic experiments. Although there is usually ample data recorded near zero-
offset, we never record purely zero-offset seismic data. However, when we consider offset
and dip together in chapter 8 we will encounter a widely-used technique (dip-moveout)
that often converts finite-offset data into a useful estimate of the equivalent zero-offset
data. For this reason, zero-offset migration methods are widely used today in industrial
practice. Furthermore the concepts of zero-offset migration are the simplest starting point
for approaching the complications of finite-offset migration.

5.1 MIGRATION DEFINED

The term “migration” probably got its name from some association with movement. A
casual inspection of migrated and unmigrated sections shows that migration causes many
reflection events to shift their positions. These shifts are necessary because the apparent
positions of reflection events on unmigrated sections are generally not the true positions of
the reflectors in the earth. It is not difficult to visualize why such “acoustic illusions” occur.
An analysis of a zero-offset section shot above a dipping reflector illustrates most of the key
concepts.

5.1.1 A dipping reflector

Consider the zero-offset seismic survey shown in Figure 5.1. This survey uses one source-
receiver pair, and the receiver is always at the same location as the source. At each position,
denoted by S1, S2, andS3 in the figure, the source emits waves and the receiver records the
echoes as a single seismic trace. After each trace is recorded, the source-receiver pair is
moved a small distance and the experiment is repeated.

57
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Figure 5.1: Raypaths and wave-
fronts for a zero-offset seismic line
shot above a dipping reflector. The
earth’s propagation velocity is con-
stant. VIEW krch/. reflexpt

As shown in the figure, the source at S2 emits a spherically-spreading wave that bounces
off the reflector and then returns to the receiver at S2. The raypaths drawn between Si

and Ri are orthogonal to the reflector and hence are called normal rays. These rays reveal
how the zero-offset section misrepresents the truth. For example, the trace recorded at S2

is dominated by the reflectivity near reflection point R2, where the normal ray from S2

hits the reflector. If the zero-offset section corresponding to Figure 5.1 is displayed, the
reflectivity at R2 will be falsely displayed as though it were directly beneath S2, which it
certainly is not. This lateral mispositioning is the first part of the illusion. The second part
is vertical: if converted to depth, the zero-offset section will show R2 to be deeper than it
really is. The reason is that the slant path of the normal ray is longer than a vertical shaft
drilled from the surface down to R2.

5.1.2 Dipping-reflector shifts

A little geometry gives simple expressions for the horizontal and vertical position errors
on the zero-offset section, which are to be corrected by migration. Figure 5.2 defines the
required quantities for a reflection event recorded at S corresponding to the reflectivity at
R. The two-way travel time for the event is related to the length d of the normal ray by

Figure 5.2: Geometry of the nor-
mal ray of length d and the vertical
“shaft” of length z for a zero-offset
experiment above a dipping reflec-
tor. VIEW krch/. reflkine

t =
2 d

v
, (5.1)
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where v is the constant propagation velocity. Geometry of the triangle CRS shows that the
true depth of the reflector at R is given by

z = d cos θ , (5.2)

and the lateral shift between true position C and false position S is given by

∆x = d sin θ =
v t

2
sin θ . (5.3)

It is conventional to rewrite equation (5.2) in terms of two-way vertical traveltime τ :

τ =
2 z

v
= t cos θ . (5.4)

Thus both the vertical shift t− τ and the horizontal shift ∆x are seen to vanish when the
dip angle θ is zero.

5.1.3 Hand migration

Geophysicists recognized the need to correct these positioning errors on zero-offset sections
long before it was practical to use computers to make the corrections. Thus a number
of hand-migration techniques arose. It is instructive to see how one such scheme works.
Equations (5.3) and (5.4) require knowledge of three quantities: t, v, and θ. Of these, the
event time t is readily measured on the zero-offset section. The velocity v is usually not
measurable on the zero offset section and must be estimated from finite-offset data, as was
shown in chapter 4. That leaves the dip angle θ. This can be related to the reflection slope
p of the observed event, which is measurable on the zero-offset section:

p0 =
∂t

∂y
, (5.5)

where y (the midpoint coordinate) is the location of the source-receiver pair. The slope p0

is sometimes called the “time-dip of the event” or more loosely as the “dip of the event”.
It is obviously closely related to Snell’s parameter, which we discussed in chapter 3. The
relationship between the measurable time-dip p0 and the dip angle θ is called “Tuchel’s
law”:

sin θ =
v p0

2
. (5.6)

This equation is clearly just another version of equation (3.8), in which a factor of 2 has
been inserted to account for the two-way traveltime of the zero-offset section.

Rewriting the migration shift equations in terms of the measurable quantities t and p
yields usable “hand-migration” formulas:

∆x =
v2 p t

4
(5.7)

τ = t

√
1 − v2p2

4
. (5.8)

Hand migration divides each observed reflection event into a set of small segments for which
p has been measured. This is necessary because p is generally not constant along real seismic
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events. But we can consider more general events to be the union of a large number of very
small dipping reflectors. Each such segment is then mapped from its unmigrated (y, t)
location to its migrated (y, τ) location based on the equations above. Such a procedure is
sometimes also known as “map migration.”

Equations (5.7) and (5.8) are useful for giving an idea of what goes on in zero-offset
migration. But using these equations directly for practical seismic migration can be tedious
and error-prone because of the need to provide the time dip p as a separate set of input
data values as a function of y and t. One nasty complication is that it is quite common to
see crossing events on zero-offset sections. This happens whenever reflection energy coming
from two different reflectors arrives at a receiver at the same time. When this happens
the time dip p becomes a multi-valued function of the (y, t) coordinates. Furthermore, the
recorded wavefield is now the sum of two different events. It is then difficult to figure out
which part of summed amplitude to move in one direction and which part to move in the
other direction.

For the above reasons, the seismic industry has generally turned away from hand-
migration techniques in favor of more automatic methods. These methods require as inputs
nothing more than

• The zero-offset section

• The velocity v .

There is no need to separately estimate a p(y, t) field. The automatic migration program
somehow “figures out” which way to move the events, even if they cross one another. Such
automatic methods are generally referred to as “wave-equation migration” techniques, and
are the subject of the remainder of this chapter. But before we introduce the automatic
migration methods, we need to introduce one additional concept that greatly simplifies the
migration of zero-offset sections.

5.1.4 A powerful analogy

Figure 5.3 shows two wave-propagation situations. The first is realistic field sounding. The
second is a thought experiment in which the reflectors in the earth suddenly explode. Waves
from the hypothetical explosion propagate up to the earth’s surface where they are observed
by a hypothetical string of geophones.

Notice in the figure that the ray paths in the field-recording case seem to be the same
as those in the exploding-reflector case. It is a great conceptual advantage to imagine
that the two wavefields, the observed and the hypothetical, are indeed the same. If they are
the same, the many thousands of experiments that have really been done can be ignored,
and attention can be focused on the one hypothetical experiment. One obvious difference
between the two cases is that in the field geometry waves must first go down and then
return upward along the same path, whereas in the hypothetical experiment they just go
up. Travel time in field experiments could be divided by two. In practice, the data of the
field experiments (two-way time) is analyzed assuming the sound velocity to be half its true
value.
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Figure 5.3: Echoes collected with a source-receiver pair moved to all points on the
earth’s surface (left) and the “exploding-reflectors” conceptual model (right). VIEW

krch/. expref

5.1.5 Limitations of the exploding-reflector concept

The exploding-reflector concept is a powerful and fortunate analogy. It enables us to think
of the data of many experiments as though it were a single experiment. Unfortunately, the
exploding-reflector concept has a serious shortcoming. No one has yet figured out how to
extend the concept to apply to data recorded at nonzero offset. Furthermore, most data is
recorded at rather large offsets. In a modern marine prospecting survey, there is not one
hydrophone, but hundreds, which are strung out in a cable towed behind the ship. The
recording cable is typically 2-3 kilometers long. Drilling may be about 3 kilometers deep.
So in practice the angles are big. Therein lie both new problems and new opportunities,
none of which will be considered until chapter 8.

Furthermore, even at zero offset, the exploding-reflector concept is not quantitatively
correct. For the moment, note three obvious failings: First, Figure 5.4 shows rays that are
not predicted by the exploding-reflector model. These rays will be present in a zero-offset

s
g

v
1

v
2

s
g

velocity lens

reflector

Figure 5.4: Two rays, not predicted by the exploding-reflector model, that would never-
theless be found on a zero-offset section. VIEW krch/. fail
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section. Lateral velocity variation is required for this situation to exist.

Second, the exploding-reflector concept fails with multiple reflections. For a flat sea
floor with a two-way travel time t1, multiple reflections are predicted at times 2t1, 3t1, 4t1,
etc. In the exploding-reflector geometry the first multiple goes from reflector to surface, then
from surface to reflector, then from reflector to surface, for a total time 3t1. Subsequent
multiples occur at times 5t1, 7t1, etc. Clearly the multiple reflections generated on the
zero-offset section differ from those of the exploding-reflector model.

The third failing of the exploding-reflector model is where we are able to see waves
bounced from both sides of an interface. The exploding-reflector model predicts the waves
emitted by both sides have the same polarity. The physics of reflection coefficients says
reflections from opposite sides have opposite polarities.

5.2 HYPERBOLA PROGRAMMING

Consider an exploding reflector at the point (z0, x0). The location of a circular wave front
at time t is v2t2 = (x − x0)2 + (z − z0)2. At the surface, z = 0, we have the equation of
the hyperbola where and when the impulse arrives on the surface data plane (t, x). We can
make a “synthetic data plane” by copying the explosive source amplitude to the hyperbolic
locations in the (t, x) data plane. (We postpone including the amplitude reduction caused
by the spherical expansion of the wavefront.) Forward modeling amounts to taking every
point from the (z, x)-plane and adding it into the appropriate hyperbolic locations in the
(t, x) data plane. Hyperbolas get added on top of hyperbolas.

x 

z 

y 

t 

x 

z 

y 

t 

  push 

pull 

  push 

pull 

Figure 5.5: Point response model to data and converse. VIEW krch/. yaxun

Now let us think backwards. Suppose we survey all day long and record no echos except
for one echo at time t0 that we can record only at location x0. Our data plane is thus filled
with zero values except the one nonzero value at (t0, x0). What earth model could possibly
produce such data?
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An earth model that is a spherical mirror with bottom at (z0, x0) will produce a reflection
at only one point in data space. Only when the source is at the center of the circle will all
the reflected waves return to the source. For any other source location, the reflected waves
will not return to the source. The situation is summarized in Figure 5.5.

The analysis for migration imaging is analogous to that of velocity spectrum. Let us
again start with the equation of a circle expanding. This time the circle is not centered at
x = 0, but at x = x0 = y. This time data space is (t, y) and model space is (z, x).

v2t2 = z2 + (x− y)2 (5.9)

An impulse in model space (z0, x0) yields a hyperbola v2t2 = z2
0 + (y − x0)2 in data (t, y)-

space. Likewise an impulse in data space (t0, y0) yields semicircles v2t20 = z2 + (x − y0)2

in model space. Likewise, in practice, the migrated images we create often show semicir-
cles. The earth almost never contains semicircular reflectors. We see them from various
departures of theoretical data from observed data. For example a trace might be too weak
or too strong. This would create a pattern of concentric semicircles in the model space
(migrated data). A whole lot of traces are missing at the end of the survey. That makes
concentric quarter circles off the end of the survey as well as matching quarter circles of
opposite polarity in the interior of the migrated data.

Velocity (slowness) analysis programs look very much like migration programs. There
are four variables, two in the input space and two in the output space. Any three variables
can be scanned over by the three looping statements. The fourth variable then emerges from
the equation of the conic section. It seems there is a lot of freedom for the programmer,
but normally, two of the three variables being scanned will be chosen to be of the output
space. This avoids the danger of producing an output space with holes in it, although that
introduces more subtle problems connected with sampling gaps in the input space. We’ll
return to these technicalities in a later chapter.

Above explains how an impulse at a point in image space can transform to a hyperbola
in data space, likewise, on return, an impulse in data space can transform to a semicircle in
image space. We can simulate a straight line in either space by superposing points along a
line. Figure 5.6 shows how points making up a line reflector diffract to a line reflection, and
how points making up a line reflection migrate to a line reflector. Figure 5.6 has a take-home
message. You should understand this message from the left-side plots and independently
from the right-side plots. The lesson is that a straight line in (x, τ)-space corresponds to a
straight line in (y, t)-space. On both sides you see a straight line in one of the spaces and
visualize a straight line in the other space. The two spaces are plotted atop each other. The
take-home message (you should have figured out by now) is that the line is more steeply
sloped in model space than it is in data space.

5.2.1 Tutorial Kirchhoff code

First we will look at the simplest, most tutorial migration subroutine I could devise. Then
we will write an improved version and look at some results.

Subroutine kirchslow() below is the best tutorial Kirchhoff migration-modeling
program I could devise. A nice feature of this program is that it works OK while the
edge complications do not clutter it. The program copies information from data space



64 CHAPTER 5. ZERO-OFFSET MIGRATION

Figure 5.6: Left is a superposition of many hyperbolas. The top of each hyperbola lies
along a straight line. That line is like a reflector, but instead of using a continuous line, it is
a sequence of points. Constructive interference gives an apparent reflection off to the side.
Right shows a superposition of semicircles. The bottom of each semicircle lies along a line
that could be the line of a reflector. Instead the plane wave is broken into point arrivals,
each being interpreted as coming from a semicircular mirror. Adding the mirrors yields a
more steeply dipping reflector. VIEW krch/. dip
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data(it,iy) to model space modl(iz,ix) or vice versa. Notice that of these four axes,
three are independent (stated by loops) and the fourth is derived by the circle-hyperbola
relation t2 = τ2 + (x − y)2/v2. Subroutine kirchslow() for adj=0 copies information
from model space to data space, i.e. from the hyperbola top to its flanks. For adj=1, data
summed over the hyperbola flanks is put at the hyperbola top.

hyperbola sum.rt
# Kirchho f f migrat ion and d i f f r a c t i o n . ( t u t o r i a l , s low )
#
subrout ine k i r chs l ow ( adj , add , v e l h a l f , t0 , dt , dx , modl , nt , nx , data )
i n t e g e r ix , iy , i t , i z , nz , adj , add , nt , nx
r e a l x0 , y0 , dy , z0 , dz , t , x , y , z , hs , v e l h a l f , t0 , dt , dx , modl ( nt , nx ) , data ( nt , nx )
c a l l a d j nu l l ( adj , add , modl , nt∗nx , data , nt∗nx )
x0 =0. ; y0=0; dy=dx ; z0=t0 ; dz=dt ; nz=nt
do i x= 1 , nx { x = x0 + dx ∗ ( ix −1)
do i y= 1 , nx { y = y0 + dy ∗ ( iy −1)
do i z= 1 , nz { z = z0 + dz ∗ ( i z −1) # z = trave l−time depth

hs= (x−y ) / v e l h a l f
t = sq r t ( z ∗ z + hs ∗ hs )
i t = 1 .5 + ( t−t0 ) / dt
i f ( i t <= nt )

i f ( adj == 0 )
data ( i t , i y ) = data ( i t , i y ) + modl ( i z , i x )

else
modl ( i z , i x ) = modl ( i z , i x ) + data ( i t , i y )

}}}
return ; end

Notice how this program has the ability to create a hyperbola given an input impulse in
(x, z)-space, and a circle given an input impulse in (x, t)-space.

The three loops in subroutine kirchslow() may be interchanged at will without chang-
ing the result. To emphasize this flexibility, the loops are set at the same indentation
level. We tend to think of fixed values of the outer two loops and then describe what hap-
pens on the inner loop. For example, if the outer two loops are those of the model space
modl(iz,ix), then for adj=1 the program sums data along the hyperbola into the “fixed”
point of model space. When loops are reordered, we think differently and opportunities
arise for speed improvements.

5.2.2 Fast Kirchhoff code

Subroutine kirchslow() can easily be speeded by a factor that is commonly more than
30. The philosopy of this book is to avoid minor optimizations, but a factor of 30 really
is significant, and the analysis required for the speed up is also interesting. Much of the
inefficiency of kirchslow() arises when xmax � vtmax because then many values of t are
computed beyond tmax. To avoid this, we notice that for fixed offset (ix-iy) and variable
depth iz, as depth increases, time it eventually goes beyond the bottom of the mesh and,
as soon as this happens, it will continue to happen for all larger values of iz. Thus we can
break out of the iz loop the first time we go off the mesh to avoid computing anything
beyond as shown in subroutine kirchfast(). (Some quality compromises, limiting the
aperture or the dip, also yield speedup, but we avoid those.) Another big speedup arises
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from reusing square roots. Since the square root depends only on offset and depth, once
computed it can be used for all ix. Finally, these changes of variables have left us with more
complicated side boundaries, but once we work these out, the inner loops can be devoid of
tests and in kirchfast() they are in a form that is highly optimizable by many compilers.

hyperbola sum.rt
# Kirchho f f migrat ion and d i f f r a c t i o n . ( greased l i g h t n i n g )
#
subrout ine k i r c h f a s t ( adj , add , vrms , t0 , dt , dx , modl , nt , nx , data )
i n t e g e r ix , i z , i t , ib , adj , add , nt , nx
r e a l amp, t , z , b , vrms ( nt ) , t0 , dt , dx , modl ( nt , nx ) , data ( nt , nx )
c a l l a d j nu l l ( adj , add , modl , nt∗nx , data , nt∗nx )
do ib= −nx , nx { b = dx ∗ ib # b = o f f s e t

do i z= 2 , nt { z = t0 + dt ∗ ( i z −1) # z = trave l−time depth
t = sq r t ( z ∗∗2 + (b∗2/vrms ( i z ) )∗∗2 )
i t = 1 .5 + ( t − t0 ) / dt

i f ( i t > nt ) break
amp = ( z / t ) ∗ s q r t ( nt∗dt / t )
do i x= max0(1 , 1− ib ) , min0 (nx , nx−ib )

i f ( adj == 0 )
data ( i t , i x+ib )=data ( i t , i x+ib )+modl ( i z , i x )∗amp

else
modl ( i z , i x )=modl ( i z , i x )+data ( i t , i x+ib )∗amp

}
}

return ; end

Originally the two Kirchhoff programs produced identical output, but finally I could not
resist adding an important feature to the fast program, scale factors z/t = cos θ and 1/

√
t

that are described elsewhere. The fast program allows for velocity variation with depth.
When velocity varies laterally the story becomes much more complicated.

Figure 5.7 shows an example. The model includes dipping beds, syncline, anticline, fault,
unconformity, and buried focus. The result is as expected with a “bow tie” at the buried
focus. On a video screen, I can see hyperbolic events originating from the unconformity
and the fault. At the right edge are a few faint edge artifacts. We could have reduced or
eliminated these edge artifacts if we had extended the model to the sides with some empty
space.

5.2.3 Kirchhoff artifacts

Reconstructing the earth model with the adjoint option in kirchfast() on the current page
yields the result in Figure 5.8. The reconstruction generally succeeds but is imperfect in a
number of interesting ways. Near the bottom and right side, the reconstruction fades away,
especially where the dips are steeper. Bottom fading results because in modeling the data
we abandoned arrivals after a certain maximum time. Thus energy needed to reconstruct
dipping beds near the bottom was abandoned. Likewise along the side we abandoned rays
shooting off the frame.

Difficult migrations are well known for producing semicircular reflectors. Here we have
controlled everything fairly well so none are obvious, but on a video screen I see some
semicircles.
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Figure 5.7: Left is the model. Right is diffraction to synthetic data. VIEW

krch/. kfgood

Figure 5.8: Left is the original model. Right is the reconstruction. VIEW krch/. skmig
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Next is the problem of the spectrum. Notice in Figure 5.8 that the reconstruction lacks
the sharp crispness of the original. It is shown in chapter 6 that the spectrum of our
reconstruction loses high frequencies by a scale of 1/|ω|. Philosophically, we can think of
the hyperbola summation as integration, and integration boosts low frequencies. Figure 5.9
shows the average over x of the relevant spectra. First, notice the high frequencies are weak

Figure 5.9: Top is the spectrum of
the the model, i.e. the left side of
Figure 5.8. Bottom is the spectrum
of the the reconstruction, i.e. the
right side of Figure 5.8. Middle is
the reconstruction times frequency
f . VIEW krch/. kirspec

because there is little high frequency energy in the original model. Then notice that our
cavalier approach to interpolation created more high frequency energy. Finally, notice that
multiplying the spectrum of our migrated model by frequency, f , brought the important
part of the spectral bands into agreement. This suggests applying an |ω| filter to our
reconstruction, or

√
−iω operator to both the modeling and the reconstruction, an idea

implemented in subroutine halfdifa() on page 96.

Neither of these Kirchhoff codes addresses the issue of spatial aliasing. Spatial alias-
ing is a vexing issue of numerical analysis. The Kirchhoff codes shown here do not work
as expected unless the space mesh size is suitably more refined than the time mesh. Fig-
ure 5.10 shows an example of forward modeling with an x mesh of 50 and 100 points.
(Previous figures used 200 points on space. All use 200 mesh points on the time.) Subrou-
tine kirchfast() on page 66 does interpolation by moving values to the nearest neighbor
of the theoretical location. Had we taken the trouble to interpolate the two nearest points,
our results would have been a little better, but the basic problem (resolved in chapter 11)
would remain.

5.2.4 Sampling and aliasing

Spatial aliasing means insufficient sampling of the data along the space axis. This difficulty
is so universal, that all migration methods must consider it.

Data should be sampled at more than two points per wavelength. Otherwise the wave
arrival direction becomes ambiguous. Figure 5.11 shows synthetic data that is sampled with
insufficient density along the x-axis. You can see that the problem becomes more acute at
high frequencies and steep dips.

There is no generally-accepted, automatic method for migrating spatially aliased data.
In such cases, human beings may do better than machines, because of their skill in rec-
ognizing true slopes. When the data is adequately sampled however, computer migrations



5.2. HYPERBOLA PROGRAMMING 69

Figure 5.10: Left is model. Right is synthetic data from the model. Top has 50 points on
the x-axis, bottom has 100. VIEW krch/. skmod

Figure 5.11: Insufficient spatial
sampling of synthetic data. To bet-
ter perceive the ambiguity of arrival
angle, view the figures at a graz-
ing angle from the side. VIEW

krch/. alias
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give better results than manual methods.

5.2.5 Kirchhoff migration of field data

Figure 5.12 shows migrated field data.

The on-line movie behind the figure shows the migration before and after amplitude
gain with time. You can get a bad result if you gain up the data, say with automatic gain
or with t2, for display before doing the migration. What happens is that the hyperbola
flanks are then included incorrectly with too much strength.

The proper approach is to gain it first with
√

t which converts it from 3-D wavefields to
2-D. Then migrate it with a 2-D migration like kirchfast(), and finally gain it further for
display (because deep reflectors are usually weaker).
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Figure 5.12: Kirchhoff migration of Figure 4.7. Press button for movie comparing stack to
migrated stack. VIEW krch/. wgkirch
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Chapter 6

Waves and Fourier sums

An important concept in wave imaging is the extrapolation of a wavefield from one depth
z to another. Fourier transforms are an essential basic tool. There are many books and
chapters of books on the theory of Fourier transformation. The first half of this chapter
is an introduction to practice with Fourier sums. It assumes you already know something
of the theory and takes you through the theory rather quickly emphasizing practice by
examining examples, and by performing two-dimensional Fourier transformation of data
and interpreting the result. For a somewhat more theoretical background, I suggest my
previous book PVI at http://sepwww.stanford.edu/sep/prof/.

The second half of this chapter uses Fourier transformation to explain the Hankel wave-
form we observed in chapter 4 and chapter 5. Interestingly, it is the Fourier transform of√
−iω, which is half the derivative operator.

6.1 FOURIER TRANSFORM

We first examine the two ways to visualize polynomial multiplication. The two ways lead
us to the most basic principle of Fourier analysis that a product in the Fourier domain is a
convolution in the physical domain

A product in the Fourier domain is a convolution in the physical domain

Look what happens to the coefficients when we multiply polynomials.

X(Z) B(Z) = Y (Z) (6.1)
(x0 + x1Z + x2Z

2 + · · ·) (b0 + b1Z + b2Z
2) = y0 + y1Z + y2Z

2 + · · · (6.2)

Identifying coefficients of successive powers of Z, we get

y0 = x0b0

y1 = x1b0 + x0b1

y2 = x2b0 + x1b1 + x0b2 (6.3)
y3 = x3b0 + x2b1 + x1b2

73



74 CHAPTER 6. WAVES AND FOURIER SUMS

y4 = x4b0 + x3b1 + x2b2

= · · · · · · · · · · · · · · · · · ·

In matrix form this looks like

y0

y1

y2

y3

y4

y5

y6


=



x0 0 0
x1 x0 0
x2 x1 x0

x3 x2 x1

x4 x3 x2

0 x4 x3

0 0 x4



 b0

b1

b2

 (6.4)

The following equation, called the “convolution equation,” carries the spirit of the group
shown in (6.3)

yk =
∑
i=0

xk−ibi (6.5)

The second way to visualize polynomial multiplication is simpler. Above we did not
think of Z as a numerical value. Instead we thought of it as “a unit delay operator”. Now
we think of the product X(Z)B(Z) = Y (Z) numerically. For all possible numerical values
of Z, each value Y is determined from the product of the two numbers X and B. Instead of
considering all possible numerical values we limit ourselves to all values of unit magnitude
Z = eiω for all real values of ω. This is Fourier analysis, a topic we consider next.

6.1.1 FT as an invertible matrix

A Fourier sum may be written

B(ω) =
∑

t

bt eiωt =
∑

t

bt Zt (6.6)

where the complex value Z is related to the real frequency ω by Z = eiω. This Fourier
sum is a way of building a continuous function of ω from discrete signal values bt in the
time domain. Here we specify both time and frequency domains by a set of points. Begin
with an example of a signal that is nonzero at four successive instants, (b0, b1, b2, b3). The
transform is

B(ω) = b0 + b1Z + b2Z
2 + b3Z

3 (6.7)

Consider that Z has a numerical value W , and we will evaluate this polynomial at four
numerical values of W which are W 0, W 1, W 2, and W 3. The evaluation of this polynomial
can be organized as a matrix times a vector.

B0

B1

B2

B3

 =


1 1 1 1
1 W W 2 W 3

1 W 2 W 4 W 6

1 W 3 W 6 W 9




b0

b1

b2

b3

 (6.8)

Observe that the top row of the matrix evaluates the polynomial at Z = 1, a point where
also ω = 0. The second row evaluates B1 = B(Z = W = eiω0), where ω0 is some base
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frequency. The third row evaluates the Fourier transform for 2ω0, and the bottom row for
3ω0. The matrix could have more than four rows for more frequencies and more columns
for more time points. I have made the matrix square in order to show you next how we
can find the inverse matrix. The size of the matrix in (6.8) is N = 4. If we choose the base
frequency ω0 and hence W correctly, the inverse matrix will be

b0

b1

b2

b3

 = 1/N


1 1 1 1
1 1/W 1/W 2 1/W 3

1 1/W 2 1/W 4 1/W 6

1 1/W 3 1/W 6 1/W 9




B0

B1

B2

B3

 (6.9)

Multiplying the matrix of (6.9) with that of (6.8), we first see that the diagonals are +1 as
desired. To have the off diagonals vanish, we need various sums, such as 1 + W + W 2 + W 3

and 1 + W 2 + W 4 + W 6, to vanish. Every element (W 6, for example, or 1/W 9) is a unit
vector in the complex plane. In order for the sums of the unit vectors to vanish, we must
ensure that the vectors pull symmetrically away from the origin. A uniform distribution of
directions meets this requirement. In other words, W should be the N -th root of unity, i.e.,

W = N
√

1 = e2πi/N (6.10)

The lowest frequency is zero, corresponding to the top row of (6.8). The next-to-the-
lowest frequency we find by setting W in (6.10) to Z = eiω0 . So ω0 = 2π/N ; and for (6.9)
to be inverse to (6.8), the frequencies required are

ωk = (0, 1, 2, . . . , N − 1)
2π

N
(6.11)

6.1.2 The Nyquist frequency

The highest frequency in equation (6.11), ω = 2π(N − 1)/N , is almost 2π. This fre-
quency is twice as high as the Nyquist frequency ω = π. The Nyquist frequency is
normally thought of as the “highest possible” frequency, because eiπt, for integer t, plots
as (· · · , 1,−1, 1,−1, 1,−1, · · ·). The double Nyquist frequency function, ei2πt, for integer t,
plots as (· · · , 1, 1, 1, 1, 1, · · ·). So this frequency above the highest frequency is really zero
frequency! We need to recall that B(ω) = B(ω − 2π). Thus, all the frequencies near the
upper end of the range equation (6.11) are really small negative frequencies. Negative fre-
quencies on the interval (−π, 0) were moved to interval (π, 2π) by the matrix form of Fourier
summation.

A picture of the Fourier transform matrix is shown in Figure 6.1. Notice the Nyquist
frequency is the center row and center column of each matrix.

6.1.3 Laying out a mesh

In theoretical work and in programs, the unit delay operator definition Z = eiω∆t is often
simplified to ∆t = 1, leaving us with Z = eiω. How do we know whether ω is given in
radians per second or radians per sample? We may not invoke a cosine or an exponential
unless the argument has no physical dimensions. So where we see ω without ∆t, we know
it is in units of radians per sample.
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Figure 6.1: Two different graphical means of showing the real and imaginary parts of the
Fourier transform matrix of size 32× 32. VIEW ft1/. matrix
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In practical work, frequency is typically given in cycles/sec or Hertz, f , rather than
radians, ω (where ω = 2πf). Here we will now switch to f . We will design a computer
mesh on a physical object (such as a waveform or a function of space). We often take the
mesh to begin at t = 0, and continue till the end tmax of the object, so the time range
trange = tmax. Then we decide how many points we want to use. This will be the N used
in the discrete Fourier-transform program. Dividing the range by the number gives a mesh
interval ∆t.

Now let us see what this choice implies in the frequency domain. We customarily take
the maximum frequency to be the Nyquist, either fmax = .5/∆t Hz or ωmax = π/∆t
radians/sec. The frequency range frange goes from −.5/∆t to .5/∆t. In summary:

• ∆t = trange/N is time resolution.

• frange = 1/∆t = N/trange is frequency range.

• ∆f = frange/N = 1/trange is frequency resolution.

In principle, we can always increase N to refine the calculation. Notice that increasing
N sharpens the time resolution (makes ∆t smaller) but does not sharpen the frequency
resolution ∆f , which remains fixed. Increasing N increases the frequency range, but not
the frequency resolution.

What if we want to increase the frequency resolution? Then we need to choose trange

larger than required to cover our object of interest. Thus we either record data over a larger
range, or we assert that such measurements would be zero. Three equations summarize the
facts:

∆t frange = 1 (6.12)
∆f trange = 1 (6.13)

∆f ∆t =
1
N

(6.14)

Increasing range in the time domain increases resolution in the frequency domain and
vice versa. Increasing resolution in one domain does not increase resolution in the
other.

6.2 INVERTIBLE SLOW FT PROGRAM

Typically, signals are real valued. But the programs in this chapter are for complex-valued
signals. In order to use these programs, copy the real-valued signal into a complex array,
where the signal goes into the real part of the complex numbers; the imaginary parts are
then automatically set to zero.

There is no universally correct choice of scale factor in Fourier transform: choice of
scale is a matter of convenience. Equations (6.8) and (6.9) mimic the Z-transform, so their
scaling factors are convenient for the convolution theorem—that a product in the frequency



78 CHAPTER 6. WAVES AND FOURIER SUMS

domain is a convolution in the time domain. Obviously, the scaling factors of equations (6.8)
and (6.9) will need to be interchanged for the complementary theorem that a convolution
in the frequency domain is a product in the time domain. I like to use a scale factor that
keeps the sums of squares the same in the time domain as in the frequency domain. Since I
almost never need the scale factor, it simplifies life to omit it from the subroutine argument
list. When a scaling program is desired, we can use a simple one like scale() on this page.
Complex-valued data can be scaled with scale() merely by doubling the value of n.

scale an array.rt
subrout ine s c a l e ( f a c to r , n , data )
i n t e g e r i , n
r e a l f a c to r , data (n)
do i= 1 , n

data ( i ) = f a c t o r ∗ data ( i )
return ; end

6.2.1 The simple FT code

Subroutine simpleft() on the current page exhibits features found in many physics and
engineering programs. For example, the time-domain signal (which is denoted “tt()”), has
nt values subscripted, from tt(1) to tt(nt). The first value of this signal tt(1) is located
in real physical time at t0. The time interval between values is dt. The value of tt(it) is
at time t0+(it-1)*dt. We do not use “if” as a pointer on the frequency axis because if
is a keyword in most programming languages. Instead, we count along the frequency axis
with a variable named ie.

slow FT.rt
subrout ine s imp l e f t ( adj , add , t0 , dt , tt , nt , f0 , df , f f , n f )
i n t e g e r i t , i e , adj , add , nt , nf
complex cexp , cmplx , t t ( nt ) , f f ( nf )
r e a l pi2 , f r eq , time , s ca l e , t0 , dt , f0 , d f
c a l l a d j nu l l ( adj , add , tt , nt ∗2 , f f , n f ∗2 )

p i2= 2 . ∗ 3 .14159265 ; s c a l e = 1 ./ sq r t ( 1 .∗ nt )
df = (1 . / dt ) / nf
f 0 = − . 5/ dt

do i e = 1 , nf { f r e q= f0 + df ∗( i e −1)
do i t = 1 , nt { time= t0 + dt ∗( i t −1)

i f ( adj == 0 )
f f ( i e )= f f ( i e ) + t t ( i t ) ∗ cexp ( cmplx ( 0 . , p i2 ∗ f r e q ∗ time ) ) ∗ s c a l e

else
t t ( i t )= t t ( i t ) + f f ( i e ) ∗ cexp ( cmplx (0. ,− pi2 ∗ f r e q ∗ time ) ) ∗ s c a l e

}}
return ; end

The total frequency band is 2π radians per sample unit or 1/∆t Hz. Dividing the total
interval by the number of points nf gives ∆f . We could choose the frequencies to run
from 0 to 2π radians/sample. That would work well for many applications, but it would be
a nuisance for applications such as differentiation in the frequency domain, which require
multiplication by −iω including the negative frequencies as well as the positive. So it
seems more natural to begin at the most negative frequency and step forward to the most
positive frequency.
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6.3 CORRELATION AND SPECTRA

The spectrum of a signal is a positive function of frequency that says how much of each
tone is present. The Fourier transform of a spectrum yields an interesting function called
an “autocorrelation,” which measures the similarity of a signal to itself shifted.

6.3.1 Spectra in terms of Z-transforms

Let us look at spectra in terms of Z-transforms. Let a spectrum be denoted S(ω), where

S(ω) = |B(ω)|2 = B(ω)B(ω) (6.15)

Expressing this in terms of a three-point Z-transform, we have

S(ω) = (b̄0 + b̄1e
−iω + b̄2e

−i2ω)(b0 + b1e
iω + b2e

i2ω) (6.16)

S(Z) =

(
b̄0 +

b̄1

Z
+

b̄2

Z2

)
(b0 + b1Z + b2Z

2) (6.17)

S(Z) = B

(
1
Z

)
B(Z) (6.18)

It is interesting to multiply out the polynomial B̄(1/Z) with B(Z) in order to examine the
coefficients of S(Z):

S(Z) =
b̄2b0

Z2
+

(b̄1b0 + b̄2b1)
Z

+ (b̄0b0 + b̄1b1 + b̄2b2) + (b̄0b1 + b̄1b2)Z + b̄0b2Z
2

S(Z) =
s−2

Z2
+

s−1

Z
+ s0 + s1Z + s2Z

2 (6.19)

The coefficient sk of Zk is given by

sk =
∑

i

b̄ibi+k (6.20)

Equation (6.20) is the autocorrelation formula. The autocorrelation value sk at lag 10
is s10. It is a measure of the similarity of bi with itself shifted 10 units in time. In the
most frequently occurring case, bi is real; then, by inspection of (6.20), we see that the
autocorrelation coefficients are real, and sk = s−k.

Specializing to a real time series gives

S(Z) = s0 + s1

(
Z +

1
Z

)
+ s2

(
Z2 +

1
Z2

)
(6.21)

S(Z(ω)) = s0 + s1(eiω + e−iω) + s2(ei2ω + e−i2ω) (6.22)
S(ω) = s0 + 2s1 cos ω + 2s2 cos 2ω (6.23)
S(ω) =

∑
k

sk cos kω (6.24)

S(ω) = cosine transform of sk (6.25)

This proves a classic theorem that for real-valued signals can be simply stated as follows:

For any real signal, the cosine transform of the autocorrelation equals the magnitude
squared of the Fourier transform.
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6.3.2 Two ways to compute a spectrum

There are two computationally distinct methods by which we can compute a spectrum: (1)
compute all the sk coefficients from (6.20) and then form the cosine sum (6.24) for each
ω; and alternately, (2) evaluate B(Z) for some value of Z on the unit circle, and multiply
the resulting number by its complex conjugate. Repeat for many values of Z on the unit
circle. When there are more than about twenty lags, method (2) is cheaper, because the
fast Fourier transform (coming up soon) can be used.

6.3.3 Common signals

Figure 6.2 shows some common signals and their autocorrelations. Figure 6.3 shows
the cosine transforms of the autocorrelations. Cosine transform takes us from time to
frequency and it also takes us from frequency to time. Thus, transform pairs in Figure 6.3
are sometimes more comprehensible if you interchange time and frequency. The various
signals are given names in the figures, and a description of each follows:

Figure 6.2: Common signals and one side of their autocorrelations. VIEW

ft1/. autocor

cos The theoretical spectrum of a sinusoid is an impulse, but the sinusoid was truncated
(multiplied by a rectangle function). The autocorrelation is a sinusoid under a triangle,
and its spectrum is a broadened impulse (which can be shown to be a narrow sinc-
squared function).

sinc The sinc function is sin(ω0t)/(ω0t). Its autocorrelation is another sinc function, and its
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Figure 6.3: Autocorrelations and their cosine transforms, i.e., the (energy) spectra of the
common signals. VIEW ft1/. spectra

spectrum is a rectangle function. Here the rectangle is corrupted slightly by “Gibbs
sidelobes,” which result from the time truncation of the original sinc.

wide box A wide rectangle function has a wide triangle function for an autocorrelation
and a narrow sinc-squared spectrum.

narrow box A narrow rectangle has a wide sinc-squared spectrum.

near Two pulses close together. This one is easy to understand theoretically. Notice that
(1+1/Z)(1+Z) = 1/Z +2+Z = 2+2 cos ω. Pulses close together in the time domain
make a broad function in the frequency domain.

far Two pulses further apart. Pulses further apart make narrower “beads” in the frequency
domain.

2 boxes Convolving two widely spaced pulses with a short box gives us these two short
boxes. Notice that the spectrum of one box times the spectrum of the two pulses gives
us this spectrum.

comb Fine-toothed-comb functions are like rectangle functions with a lower Nyquist fre-
quency. Coarse-toothed-comb functions have a spectrum which is a fine-toothed comb.

exponential The autocorrelation of a transient exponential function is a double-sided
exponential function. The spectrum (energy) is a Cauchy function, 1/(ω2+ω2

0). The
curious thing about the Cauchy function is that the amplitude spectrum diminishes
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inversely with frequency to the first power; hence, over an infinite frequency axis, the
function has infinite integral. The sharp edge at the onset of the transient exponential
has much high-frequency energy.

Gauss The autocorrelation of a Gaussian function is another Gaussian, and the spectrum
is also a Gaussian.

Oil A basic function of interest in ecology is the same one used by M.King Hubbert to model
the depletion of petroleum. It is 1/(eα(t−t0) + e−α(t−t0))2. This function is known as
the derivative of the logistic function. It looks similar to the Gaussian function, but
it grows and decays more gently as an exponential function of time instead of time
squared.

random Random numbers have an autocorrelation that is an impulse surrounded by some
short grass. The spectrum is positive random numbers.

smoothed random Smoothed random numbers are much the same as random numbers,
but their spectral bandwidth is limited.

These many functions in Figures 6.2 and 6.3 exemplify what is best known as the
“uncertainty principle” because of its interpretation in Physics. Ignoring physics here, the
mathematical statement is that you cannot find any function that is narrow in both the
time domain and the frequency domain. Squeezing it in one domain makes it bulge out in
the other. More formally you need to choose some way to measure the width of a function.
The product of the two widths, one in time, the other in frequency must be greater than
a constant. It has been proven that if the width of a function is defined by the second
moment, then the Gaussian function has the smallest possible time-bandwidth product.
It is rather easy to find functions that are wide in both domains, for example the comb
functions and the random functions.

6.4 SETTING UP THE FAST FOURIER TRANSFORM

Typically we Fourier transform seismograms about a thousand points long. Under these
conditions another Fourier summation method works about a hundred times faster than
those already given. Unfortunately, the faster Fourier transform program is not so trans-
parently clear as the programs given earlier. Also, it is slightly less flexible. The speedup
is so overwhelming, however, that the fast program is always used in routine work.

Flexibility may be lost because the basic fast program works with complex-valued sig-
nals, so we ordinarily convert our real signals to complex ones (by adding a zero imaginary
part). More flexibility is lost because typical fast FT programs require the data length to
be an integral power of 2. Thus geophysical datasets often have zeros appended (a process
called “zero padding”) until the data length is a power of 2. From time to time I notice
clumsy computer code written to deduce a number that is a power of 2 and is larger than
the length of a dataset. An answer is found by rounding up the logarithm to base 2. The
more obvious and the quicker way to get the desired value, however, is with the simple
Fortran function pad2().
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round up to power of two.rt
i n t e g e r func t i on pad2 ( n )
i n t e g e r n
pad2 = 1
while ( pad2 < n )

pad2 = pad2 ∗ 2
return ; end

How fast is the fast Fourier transform method? The answer depends on the size of the
data. The matrix times vector operation in (6.8) requires N2 multiplications and additions.
That determines the speed of the slow transform. For the fast method the number of adds
and multiplies is proportional to N log2 N . Since 210 = 1024, the speed ratio is typically
1024/10 or about 100. In reality, the fast method is not quite that fast, depending on
certain details of overhead and implementation.

Below is ftu(), a version of the fast Fourier transform program. There are many
versions of the program—I have chosen this one for its simplicity. Considering the complex-
ity of the task, it is remarkable that no auxiliary memory vectors are required; indeed, the
output vector lies on top of the input vector. To run this program, your first step might be
to copy your real-valued signal into a complex-valued array. Then append enough zeros to
fill in the remaining space.

unitary FT.rt
subrout ine f tu ( s i gn i , nx , cx )
# complex f o u r i e r trans form with un i tary s c a l i n g
#
# 1 nx s i g n i ∗2∗ pi ∗ i ∗( j −1)∗(k−1)/nx
# cx (k ) = −−−−−−−− ∗ sum cx ( j ) ∗ e
# s q r t ( nx ) j=1 for k =1 , 2 , . . . , nx=2∗∗ i n t e g e r
#
i n t e g e r nx , i , j , k , m, i s t ep , pad2
r e a l s i gn i , s ca l e , arg
complex cx (nx ) , cmplx , cw , cde l , c t
i f ( nx != pad2 (nx ) ) c a l l e r e x i t ( ’ f t u : nx not a power o f 2 ’ )
s c a l e = 1 . / sq r t ( 1 .∗ nx )
do i= 1 , nx

cx ( i ) = cx ( i ) ∗ s c a l e
j = 1 ; k = 1
do i= 1 , nx {

i f ( i<=j ) { ct = cx ( j ) ; cx ( j ) = cx ( i ) ; cx ( i ) = ct }
m = nx/2
! ”&&” means .AND.
while ( j>m && m>1) { j = j−m; m = m/2 }
j = j+m
}

repeat {
i s t e p = 2∗k ; cw = 1 . ; arg = s i g n i ∗3.14159265/k
cde l = cmplx ( cos ( arg ) , s i n ( arg ) )
do m= 1 , k {

do i= m, nx , i s t e p
{ ct=cw∗cx ( i+k ) ; cx ( i+k)=cx ( i )−ct ; cx ( i )=cx ( i )+ct }

cw = cw ∗ cde l
}

k = i s t e p
i f (k>=nx) break
}
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return ; end

The following two lines serve to Fourier transform a vector of 1024 complex-valued
points, and then to inverse Fourier transform them back to the original data:

call ftu( 1., 1024, cx)
call ftu( -1., 1024, cx)

A reference given at the end of this chapter contains many other versions of the FFT
program. One version transforms real-valued signals to complex-valued frequency functions
in the interval 0 ≤ ω < π. Others that do not transform data on top of itself may be faster
with specialized computer architectures.

6.4.1 Shifted spectrum

Subroutine simpleft() on page 78 sets things up in a convenient manner: The frequency
range runs from minus Nyquist up to (but not including) plus Nyquist. Thus there is
no problem with the many (but not all) user programs that have trouble with aliased
frequencies. Subroutine ftu() on the previous page, however has a frequency range from
zero to double the Nyquist. Let us therefore define a friendlier “front end” to ftu() which
looks more like simpleft().

Recall that a time shift of t0 can be implemented in the Fourier domain by multiplication
by e−iωt0 . Likewise, in the Fourier domain, the frequency interval used by subroutine ftu()
on the preceding page, namely, 0 ≤ ω < 2π, can be shifted to the friendlier interval
−π ≤ ω < π by a weighting function in the time domain. That weighting function is e−iω0t

where ω0 happens to be the Nyquist frequency, i.e. alternate points on the time axis are to
be multiplied by −1. A subroutine for this purpose is fth().

FT- Hale style.rt
# FT a vecto r in a matrix , with f i r s t omega = − pi
#
subrout ine f th ( adj , s ign , m1, n12 , cx )
i n t e g e r i , adj , m1, n12
r e a l s i gn
complex cx (m1, n12 )
temporary complex temp( n12 )
do i= 1 , n12

temp( i ) = cx (1 , i )
i f ( adj == 0) { do i= 2 , n12 , 2

temp( i ) = −temp( i )
c a l l f t u ( s ign , n12 , temp)

}
else { c a l l f t u ( −s ign , n12 , temp)

do i= 2 , n12 , 2
temp( i ) = −temp( i )

}
do i= 1 , n12

cx (1 , i ) = temp( i )
return ; end
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To Fourier transform a 1024-point complex vector cx(1024) and then inverse transform it,
we would write

call fth( 0, 1., 1, 1024, cx)
call fth( 1, 1., 1, 1024, cx)

You might wonder about the apparent redundancy of using both the argument adj and
the argument sign. Having two arguments instead of one allows us to define the forward
transform for a time axis with the opposite sign as the forward transform for a space axis.

The subroutine fth() is somewhat cluttered by the inclusion of a frequently needed
practical feature—namely, the facility to extract vectors from a matrix, transform the vec-
tors, and then restore them into the matrix.

6.5 SETTING UP 2-D FT

The program fth() is set up so that the vectors transformed can be either rows or columns
of a two-dimensional array. In any computer language there is a way to extract a vector
(column or row) from a matrix. In some languages the vector can be processed directly
without extraction. To see how this works in Fortran, recall a matrix allocated as (n1,n2)
can be subscripted as a matrix (i1,i2) or as a long vector (i1 + n1*(i2-1),1), and call
sub(x(i1,i2)) passes the subroutine a pointer to the (i1,i2) element. To transform an
entire axis, the subroutines ft1axis() and ft2axis() are given. For a two-dimensional
FT, we simply call both ft1axis() and ft2axis() in either order.

FT 1-axis.rt
# 1D Four i e r trans form on a 2D data s e t a long the 1−ax i s
#
subrout ine f t 1 a x i s ( adj , s ign1 , n1 , n2 , cx )
i n t e g e r i2 , adj , n1 , n2
complex cx (n1 , n2 )
r e a l s i gn1
do i 2= 1 , n2

c a l l f t h ( adj , s ign1 , 1 , n1 , cx (1 , i 2 ) )
return ; end

FT 2-axis.rt
# 1D Four i e r trans form on a 2D data s e t a long the 2−ax i s
#
subrout ine f t 2 a x i s ( adj , s ign2 , n1 , n2 , cx )
i n t e g e r i1 , adj , n1 , n2
complex cx (n1 , n2 )
r e a l s i gn2
do i 1= 1 , n1

c a l l f t h ( adj , s ign2 , n1 , n2 , cx ( i1 , 1 ) )
return ; end

6.5.1 Basics of two-dimensional Fourier transform

Let us review some basic facts about two-dimensional Fourier transform. A two-
dimensional function is represented in a computer as numerical values in a matrix, whereas
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a one-dimensional Fourier transform in a computer is an operation on a vector. A 2-D
Fourier transform can be computed by a sequence of 1-D Fourier transforms. We can
first transform each column vector of the matrix and then each row vector of the matrix.
Alternately, we can first do the rows and later do the columns. This is diagrammed as
follows:

p(t, x) ←→ P (t, kx)xy xy
P (ω, x) ←→ P (ω, kx)

The diagram has the notational problem that we cannot maintain the usual convention
of using a lower-case letter for the domain of physical space and an upper-case letter for
the Fourier domain, because that convention cannot include the mixed objects P (t, kx) and
P (ω, x). Rather than invent some new notation, it seems best to let the reader rely on the
context: the arguments of the function must help name the function.

An example of two-dimensional Fourier transforms on typical deep-ocean data is
shown in Figure 6.4. In the deep ocean, sediments are fine-grained and deposit slowly
in flat, regular, horizontal beds. The lack of permeable rocks such as sandstone severely
reduces the potential for petroleum production from the deep ocean. The fine-grained shales
overlay irregular, igneous, basement rocks. In the plot of P (t, kx), the lateral continuity
of the sediments is shown by the strong spectrum at low kx. The igneous rocks show a
kx spectrum extending to such large kx that the deep data may be somewhat spatially
aliased (sampled too coarsely). The plot of P (ω, x) shows that the data contains no low-
frequency energy. The dip of the sea floor shows up in (ω, kx)-space as the energy crossing
the origin at an angle.

Altogether, the two-dimensional Fourier transform of a collection of seismograms
involves only twice as much computation as the one-dimensional Fourier transform of each
seismogram. This is lucky. Let us write some equations to establish that the asserted
procedure does indeed do a 2-D Fourier transform. Say first that any function of x and t
may be expressed as a superposition of sinusoidal functions:

p(t, x) =
∫ ∫

e−iωt+ikxx P (ω, kx) dω dkx (6.26)

The double integration can be nested to show that the temporal transforms are done first
(inside):

p(t, x) =
∫

ei kxx
[∫

e−iωt P (ω, kx) dω

]
dkx

=
∫

ei kxx P (t, kx) dkx

The quantity in brackets is a Fourier transform over ω done for each and every kx. Alter-
nately, the nesting could be done with the kx-integral on the inside. That would imply rows
first instead of columns (or vice versa). It is the separability of exp(−iωt + i kxx) into a
product of exponentials that makes the computation easy and cheap.
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Figure 6.4: A deep-marine dataset p(t, x) from Alaska (U.S. Geological Survey) and the
real part of various Fourier transforms of it. Because of the long traveltime through the
water, the time axis does not begin at t = 0. VIEW ft1/. plane4
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6.5.2 Guide through the 2-D FT of real data

You can understand most of Figure 6.4 merely by knowing that the shifted impulse δ(t− t0)
and eiωt0 are a Fourier transform pair.

Take the impulse to be the water bottom and begin thinking about what Figure 6.4
shows in (ω, x)-space and in (t, k)-space. The (ω, x)-space panel oscillates on ω at a rate
t0 which is the water depth. This is a little faster on the left where the water is a little
deeper. Connecting zero crossings of the cosine on the left with corresponding crossings of
the slower oscillating cosine on the right we see gently sloping lines, the slope increasing
with ω.

The (t, k)-space vanishes at earliest times before the water-bottom signal arrives. Then
while the layers are almost flat we see energy concentrating at low spatial frequency (near
zero on the k axis). Finally at late times when the earth gets rough on x, its spectrum
broadens out on k.

The final result is the (ω, k)-plane. We’ll be seeing many important practical applications
of this plane. In Figure 6.4 this plane is a rough signal on a steeply tilted line. We easily
understand the 2-D Fourier transform of an impulse on a horizontal line δ(t)const(x) in
(t, x)-space is the vertical line const(ω)δ(k) in (ω, k)-space. Now let us see why the slightly
tilted water bottom turns out to be a steep line in (ω, k) space and why the signal on that
line is rapidly oscillating.

An impulse on a sloping water bottom is a shifted impulse δ(t−t0−p(x−x0)). The shift
has two parts, a constant part t1 = t0 − px0 and a part that grows with x, namely px. We
take our doubly shifted signal δ(t−t1−px) to the ω domain where it is eiω(t1+px) = eiωt1eiωpx.

Since the Fourier transform over x of eik0x is δ(k + k0), the Fourier transform over x of
eiωpx is δ(k +ωp). So the 2-D FT of the whole thing eiωt1eiωpx is eiωt1δ(k +ωp). Thus when
p is small the (t, x) space has a gently sloping water bottom while the (ω, k)-space has a
steeply sloping line. Furthermore, the line contains the oscillating function of ω, namely
eiωt1 . This describes what we expect to see and what we can see in Figure 6.4.

We have just gone through some formal mathematics to see that the 2-D FT of a line
is a line. That denies us the insights that come along with thinking about the components
of the data picture. Seeing the steep line in the (ω, k) panel and knowing an impulse on
a line is a one dimensional impulse function both in (ω0, k)-space and in (ω, k0)-space we
can easily go back to (ω, x) and (k, t) and find the oscillating functions and observe them
oscillate more rapidly away from ω = 0 and k = 0.

Beyond the main features of geophysical interest in Figure 6.4 are some data processing
artifacts. An strong artifact is explained by Fourier wrap around (this is a hint). Geophys-
ical recording equipment often rejects signal near zero frequencies, and this is what we see
in the (ω, x)-plane between ±10 Hz except for some very low frequency (almost constant)
vertical streaks. Can you explain them and tell how to eliminate them?

6.5.3 Signs in Fourier transforms

In Fourier transforming t-, x-, and z-coordinates, we must choose a sign convention for each
coordinate. Of the two alternative sign conventions, electrical engineers have chosen one
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and physicists another. While both have good reasons for their choices, our circumstances
more closely resemble those of physicists, so we will use their convention. For the inverse
Fourier transform, our choice is

p(t, x, z) =
∫ ∫ ∫

e−iωt + ikxx + ikzz P (ω, kx, kz) dω dkx dkz (6.27)

For the forward Fourier transform, the space variables carry a negative sign, and time carries
a positive sign.

Let us see the reasons why electrical engineers have made the opposite choice, and why
we go with the physicists. Essentially, engineers transform only the time axis, whereas
physicists transform both time and space axes. Both are simplifying their lives by their
choice of sign convention, but physicists complicate their time axis in order to simplify their
many space axes. The engineering choice minimizes the number of minus signs associated
with the time axis, because for engineers, d/dt is associated with iω instead of, as is the case
for us and for physicists, with −iω. We confirm this with equation (6.27). Physicists and
geophysicists deal with many more independent variables than time. Besides the obvious
three space axes are their mutual combinations, such as midpoint and offset.

You might ask, why not make all the signs positive in equation (6.27)? The reason is
that in that case waves would not move in a positive direction along the space axes. This
would be especially unnatural when the space axis was a radius. Atoms, like geophysical
sources, always radiate from a point to infinity, not the other way around. Thus, in equation
(6.27) the sign of the spatial frequencies must be opposite that of the temporal frequency.

The only good reason I know to choose the engineering convention is that we might
compute with an array processor built and microcoded by engineers. Conflict of sign con-
vention is not a problem for the programs that transform complex-valued time functions to
complex-valued frequency functions, because there the sign convention is under the user’s
control. But sign conflict does make a difference when we use any program that converts
real-time functions to complex frequency functions. The way to live in both worlds is to
imagine that the frequencies produced by such a program do not range from 0 to +π as the
program description says, but from 0 to −π. Alternately, we could always take the complex
conjugate of the transform, which would swap the sign of the ω-axis.

6.5.4 Simple examples of 2-D FT

An example of a two-dimensional Fourier transform of a pulse is shown in Figure 6.5.
Notice the location of the pulse. It is closer to the time axis than the space axis. This will
affect the real part of the FT in a certain way (see exercises). Notice the broadening of the
pulse. It was an impulse smoothed over time (vertically) by convolution with (1,1) and over
space (horizontally) with (1,4,6,4,1). This will affect the real part of the FT in another way.

Another example of a two-dimensional Fourier transform is given in Figure 6.6. This
example simulates an impulsive air wave originating at a point on the x-axis. We see a wave
propagating in each direction from the location of the source of the wave. In Fourier space
there are also two lines, one for each wave. Notice that there are other lines which do not
go through the origin; these lines are called “spatial aliases.” Each actually goes through
the origin of another square plane that is not shown, but which we can imagine alongside
the one shown. These other planes are periodic replicas of the one shown.
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Figure 6.5: A broadened pulse (left) and the real part of its FT (right). VIEW

ft1/. ft2dofpulse

Figure 6.6: A simulated air wave (left) and the amplitude of its FT (right). VIEW

ft1/. airwave
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EXERCISES:

1 Most time functions are real. Their imaginary part is zero. Show that this means that
F (ω, k) can be determined from F (−ω,−k).

2 What would change in Figure 6.5 if the pulse were moved (a) earlier on the t-axis, and
(b) further on the x-axis? What would change in Figure 6.5 if instead the time axis
were smoothed with (1,4,6,4,1) and the space axis with (1,1)?

3 What would Figure 6.6 look like on an earth with half the earth velocity?

4 Consider a signal that vanishes everywhere in (t, x, y)-space but is a constant on a plane
in that space. Show that its 3-D Fourier transform is a line in (ω, kx, ky)-space.

5 Numerically (or theoretically) compute the two-dimensional spectrum of a plane wave
[δ(t − px)], where the plane wave has a randomly fluctuating amplitude: say, rand(x)
is a random number between ±1, and the randomly modulated plane wave is [(1 +
.2 rand(x)) δ(t− px)].

6.5.5 Magic with 2-D Fourier transforms

We have struggled through some technical details to learn how to perform a 2-D Fourier
transformation. An immediate reward next is a few ”magical” results on data.

In this book waves go down into the earth; they reflect; they come back up; and then
they disappear. In reality after they come back up they reflect from the earth surface and
go back down for another episode. Such waves, called multiple reflections, in real life are
in some places negligible while in other places they overwhelm. Some places these multiply
reflected waves can be suppressed because their RMS velocity tends to be slower because
they spend more time in shallower regions. In other places this is not so. We can always
think of making an earth model, using it to predict the multiply reflected waveforms, and
subtracting the multiples from the data. But a serious pitfall is that we would need to have
the earth model in order to find the earth model.

Fortunately, a little Fourier transform magic goes a long way towards solving the prob-
lem. Take a shot profile d(t, x). Fourier transform it to D(ω, kx). For every ω and kx,
square this value D(ω, kx)2. Inverse Fourier transform. In Figure 6.7 we inspect the result.
For the squared part the x-axis is reversed to facilitate comparison at zero offset. A great
many reflections on the raw data (right) carry over into the predicted multiples (left). If
not, they are almost certainly primary reflections. This data shows more multiples than
primaries.

Why does this work? Why does squaring the Fourier Transform of the raw data give
us this good looking estimate of the multiple reflections? Recall Z-transforms Z = eiω∆t.
A Z-transform is really a Fourier transform. Take a signal that is an impulse of amplitude
r at time t = 100∆t. Its Z-transform is rZ100. The square of this Z-transform is r2Z200,
just what we expect of a multiple reflection — squared amplitude and twice the travel
time. That explains vertically propagating waves. When a ray has a horizontal component,
an additional copy of the ray doubles the horizontal distance traveled. Remember what
squaring a Fourier transformation does – a convolution. Here the convolution is over both
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Figure 6.7: Data (right) with its FT squared (left). VIEW ft1/. brad1
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t and x. Every bit of the echo upon reaching the earth surface turns around and pretends
it is a new little shot. Mathematically, every point in the upcoming wave d(t, x) launches a
replica of d(t, x) shifted in both time and space – an autoconvolution.

In reality, multiple reflections offer a considerable number of challenges that I’m not
mentioning. The point here is just that FT is a good tool to have.

6.5.6 Passive seismology

Signals go on and on, practically forever. Sometimes we like to limit our attention to
something more limited such as their spectrum, or equivalently, their autocorrelation. We
can compute the autocorrelation in the Fourier domain. We multiply the FT times its
complex conjugate D(ω, kx)D(ω, kx). Transforming back to the physical domain we see
Figure 6.8. We expect a giant burst at zero offset (upper right corner). We do not see it
because it is ”clipped”, i.e. plot values above some threshhold are plotted at that threshhold.
I could scale the plot to see the zero-offset burst, but then the interesting signals shown
here would be too weak to be seen.

Figure 6.8 shows us that the 2-D autocorrelation of a shot profile shares a lot in common
with the shot profile itself. This is interesting news. If we had a better understanding of
this we might find some productive applications. We might find a situation where we do not
have (or do not want) the data itself but we do wish to build an earth model. For example,
suppose we have permanently emplaced geophones. The earth is constantly excited by
seismic noise. Some of it is man made; some results from earthquakes elsewhere in the world;
most probably results from natural sources such as ocean waves, wind in trees, etc. Recall
every bit of acoustic energy that arrives at the surface from below becomes a little bit of a
source for a second reflection seismic experiment. So, by autocorrelating the data of hours
and days duration we convert the chaos of continuing microseismic noise to something that
might be the impulse response of the earth, or something like it. Autocorrelation converts
a time axis of length of days to one of seconds. From the autocorrelation we might be able
to draw conclusions in usual ways, alternately, we might learn how to make earth models
from autocorrelations.

Notice from Figure 6.8 that since the first two seconds of the signal vanishes (travel time
to ocean bottom), the last two seconds of the autocorrelation must vanish (longest nonzero
lag on the data).

There are many issues on Figure 6.8 to intrigue an interpreter (starting with signal
polarity). We also notice that the multiples on the autocorrelation die off rapidly with
increasing offset and wonder why, and whether the same is true of primaries. But today is
not the day to start down these paths.

In principal an autocorrelation is not comparable to the raw data or to the ideal shot
profile because forming a spectrum squares amplitudes. We can overcome this difficulty
by use of multidimensional spectral factorization — but that’s an advanced mathematical
concept not defined in this book. See my other book, Image Estimation.
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Figure 6.8: The 2-D autocorrelation of a shot profile resembles itself. VIEW

ft1/. brad2
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6.5.7 The Stolt method of migration

On most computers the Stolt [1978] method of migration is the fastest one—by a very wide
margin. It’s almost magic! Like other methods, this migration method can be reversed
making it into a modeling program. The most serious drawback of the Stolt method is that
it does not handle depth variation in velocity, although attempts to repair this deficit have
been partially successful. A single line sketch of the Stolt method is this:

p(x, t) → P (kx, ω) → P ′(kx, kz =
√

ω2/v2 − k2
x) → p′(x, z) (6.28)

The steps of the algorithm are

1. Double Fourier transform z = 0 data from p(t, x, 0) to P (ω, kx, 0).

2. Interpolate P onto a new mesh so that it is a function of kx and kz.

3. Scale P by the cosine cos θ = |kz|/
√

k2
z + k2

x. (The cosine is the Jacobian of the
transformation.)

4. Inverse Fourier transform to (x, z)-space.

The Stolt method is sometimes described as “normal moveout done in the Fourier do-
main”. Unfortunately, unlike normal moveout, it does not correctly describe a medium
where the velocity depends on depth z. The action of gravity generally does make earth
velocity change rather strongly with depth, and computers are rather powerful these days,
so we will pass by the Stolt method and move on to methods that work well with v(z).

6.6 THE HALF-ORDER DERIVATIVE WAVEFORM

Causal integration is represented in the time domain by convolution with a step function.
In the frequency domain this amounts to multiplication by 1/(−iω). (There is also delta
function behavior at ω = 0 which may be ignored in practice and since at ω = 0, wave
theory reduces to potential theory). Integrating twice amounts to convolution by a ramp
function, t step(t), which in the Fourier domain is multiplication by 1/(−iω)2. Integrating
a third time is convolution with t2 step(t) which in the Fourier domain is multiplication by
1/(−iω)3. In general

tn−1 step(t) = FT
(

1
(−iω)n

)
(6.29)

Proof of the validity of equation (6.29) for integer values of n is by repeated indefinite
integration which also indicates the need of an n! scaling factor. Proof of the validity of
equation (6.29) for fractional values of n would take us far afield mathematically. Fractional
values of n, however, are exactly what we need to interpret Huygen’s secondary wave sources
in 2-D. The factorial function of n in the scaling factor becomes a gamma function. The
poles suggest that a more thorough mathematical study of convergence is warranted, but
this is not the place for it.
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The principal artifact of the hyperbola-sum method of 2-D migration is the waveform
represented by equation (6.29) when n = 1/2. For n = 1/2, ignoring the scale factor,
equation (6.29) becomes

1√
t

step(t) = FT
(

1√
−iω

)
(6.30)

A waveform that should come out to be an impulse actually comes out to be equation (6.30)
because Kirchhoff migration needs a little more than summing or spreading on a hyperbola.
To compensate for the erroneous filter response of equation (6.30) we need its inverse filter.
We need

√
−iω. To see what

√
−iω is in the time domain, we first recall that

d

dt
= FT (−iω) (6.31)

A product in the frequency domain corresponds to a convolution in the time domain. A
time derivative is like convolution with a doublet (1,−1)/∆t. Thus, from equation (6.30)
and equation (6.31) we obtain

d

dt

1√
t

step(t) = FT
(√
−iω

)
(6.32)

Thus, we will see the way to overcome the principal artifact of hyperbola summation is
to apply the filter of equation (6.32). In chapter 7 we will learn more exact methods of
migration. There we will observe that an impulse in the earth creates not a hyperbola
with an impulsive waveform but in two dimensions, a hyperbola with the waveform of
equation (6.32), and in three dimensions, a hyperbola of revolution (umbrella?) carrying a
time-derivative waveform.

6.6.1 Hankel tail

The waveform in equation (6.32) often arises in practice (as the 2-D Huygens wavelet).
Because of the discontinuities on the left side of equation (6.32), it is not easy to visualize.
Thinking again of the time derivative as a convolution with the doublet (1,−1)/∆t, we
imagine the 2-D Huygen’s wavelet as a positive impulse followed by negative signal decaying
as −t−3/2. This decaying signal is sometimes called the “Hankel tail.” In the frequency
domain −iω = |ω|e−i90◦ has a 90 degree phase angle and

√
−iω = |ω|1/2e−i45◦ has a 45

degree phase angle.

half derivative.rt
# Hal f order causa l d e r i v a t i v e . OK to equiv (xx , yy )
#
subrout ine h a l f d i f a ( adj , add , n , xx , yy )
i n t e g e r n2 , i , adj , add , n
r e a l omega , xx (n ) , yy (n)
complex cz , cv (4096)
n2=1; while (n2<n) n2=2∗n2 ; i f ( n2 > 4096) c a l l e r e x i t ( ’ h a l f d i f memory ’ )
do i= 1 , n2 { cv ( i ) = 0 .}
do i= 1 , n

i f ( adj == 0) { cv ( i ) = xx ( i )}
else { cv ( i ) = yy ( i )}

c a l l a d j nu l l ( adj , add , xx , n , yy , n)
c a l l f t u ( +1. , n2 , cv )
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do i= 1 , n2 {
omega = ( i −1.) ∗ 2 .∗3 .14159265 / n2
cz = c sq r t ( 1 . − cexp ( cmplx ( 0 . , omega ) ) )
i f ( adj != 0) cz = conjg ( cz )
cv ( i ) = cv ( i ) ∗ cz
}

c a l l f t u ( −1. , n2 , cv )
do i= 1 , n

i f ( adj == 0) { yy ( i ) = yy ( i ) + cv ( i )}
else { xx ( i ) = xx ( i ) + cv ( i )}

return ; end

In practice, it is easiest to represent and to apply the 2-D Huygen’s wavelet in the
frequency domain. Subroutine halfdifa() on the preceding page is provided for that
purpose. Instead of using

√
−iω which has a discontinuity at the Nyquist frequency and a

noncausal time function, I use the square root of a causal representation of a finite difference,
i.e.
√

1− Z, which is well behaved at the Nyquist frequency and has the advantage that
the modeling operator is causal (vanishes when t < t0). Fourier transform is done using
subroutine ftu() on page 83. Passing an impulse function into subroutine halfdifa()
gives the response seen in Figure 6.9.

Figure 6.9: Impulse response (de-
layed) of finite difference operator
of half order. Twice applying this
filter is equivalent to once applying
(1,−1). VIEW ft1/. hankel

6.7 References

Special issue on fast Fourier transform, June 1969: IEEE Trans. on Audio and Electroacous-
tics (now known as IEEE Trans. on Acoustics, Speech, and Signal Processing), AU-17,
entire issue (66-172).
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Chapter 7

Downward continuation

7.1 MIGRATION BY DOWNWARD CONTINUATION

Given waves observed along the earth’s surface, some well-known mathematical techniques
that are introduced here enable us to extrapolate (downward continue) these waves down
into the earth. Migration is a simple consequence of this extrapolation.

7.1.1 Huygens secondary point source

Waves on the ocean have wavelengths comparable to those of waves in seismic prospecting
(15-500 meters), but ocean waves move slowly enough to be seen. Imagine a long harbor
barrier parallel to the beach with a small entrance in the barrier for the passage of ships.
This is shown in Figure 7.1. A plane wave incident on the barrier from the open ocean will
send a wave through the gap in the barrier. It is an observed fact that the wavefront in
the harbor becomes a circle with the gap as its center. The difference between this beam of
water waves and a light beam through a window is in the ratio of wavelength to hole size.

Linearity is a property of all low-amplitude waves (not those foamy, breaking waves
near the shore). This means that two gaps in the harbor barrier make two semicircular
wavefronts. Where the circles cross, the wave heights combine by simple linear addition.

It is interesting to view of a barrier with many holes. In the limiting case of very many
holes, the barrier disappears, being nothing but one gap alongside another. Semicircular
wavefronts combine to make only the incident plane wave. Hyperbolas do the same. We see
this in Figure 7.2 which shows hyperbolas increasing in density from left to right. Where
there is no barrior (all holes) the hyperbolas interfere with one another to extinguish.

There are many other things to notice in Figure 7.2. Visually it may seem like some
hyperbolas average to a positive signal while others are negative. Actually, each hyperbola
carries a waveform that averages to zero. The waveform turns out to be the Hankel tail,
namely

√
−iω which vanishes at ω = 0 so the mean is zero thus allowing for hyperbolas

densely squeezed together to extinguish one another.

Notice the antisymmetric hyperbola at the truncation of the barrior in Figure 7.2. Imag-
ine a short barrior. On each end would be an antisymmetric hyperbola. As the shortness

99
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z

z 1

z 2

z 3

z
0

x
beach

harbor

storm barrier

open ocean

incident wave

Huygens Secondary

Point Source

Figure 7.1: Waves going through a gap in a barrier have semicircular wavefronts (if the
wavelength is long compared to the gap size). VIEW dwnc/. storm

of the barrior tends to zero the two hyperbolas suddenly overlap and extinguish.

A Cartesian coordinate system has been superimposed on the ocean surface with x
going along the beach and z measuring the distance from shore. For the analogy with
reflection seismology, people are confined to the beach (the earth’s surface) where they
make measurements of wave height as a function of x and t. From this data they can make
inferences about the existence of gaps in the barrier out in the (x, z)-plane. The first frame
of Figure 7.3 shows the arrival time at the beach of a wave from the ocean through a gap.
The earliest arrival occurs nearest the gap. What mathematical expression determines the
shape of the arrival curve seen in the (x, t)-plane?

The waves are expanding circles. An equation for a circle expanding with velocity v
about a point (x3, z3) is

(x− x3)
2 + (z − z3)

2 = v2 t2 (7.1)

Considering t to be a constant, i.e. taking a snapshot, equation (7.1) is that of a circle. Con-
sidering z to be a constant, it is an equation in the (x, t)-plane for a hyperbola. Considered
in the (t, x, z)-volume, equation (7.1) is that of a cone. Slices at various values of t show
circles of various sizes. Slices of various values of z show various hyperbolas. Figure 7.3
shows four hyperbolas. The first is the observation made at the beach z0 = 0. The second is
a hypothetical set of observations at some distance z1 out in the water. The third set of ob-
servations is at z2, an even greater distance from the beach. The fourth set of observations
is at z3, nearly all the way out to the barrier, where the hyperbola has degenerated to a
point. All these hyperbolas are from a family of hyperbolas, each with the same asymptote.
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Figure 7.2: A barrier with many holes (top). The holes in the barrior (center). Waves,
(x, t)-space, seen beyond the barrier (bottom). VIEW dwnc/. stormhole

Figure 7.3: The left frame shows the hyperbolic wave arrival time seen at the beach. Frames
to the right show arrivals at increasing distances out in the water. The x-axis is compressed
from Figure 7.1. VIEW dwnc/. dc
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The asymptote refers to a wave that turns nearly 90◦ at the gap and is found moving nearly
parallel to the shore at the speed dx/dt of a water wave. (For this water wave analogy it is
presumed—incorrectly—that the speed of water waves is a constant independent of water
depth).

If the original incident wave was a positive pulse, the Huygens secondary source must
consist of both positive and negative polarities to enable the destructive interference of all
but the plane wave. So the Huygens waveform has a phase shift. In the next section, mathe-
matical expressions will be found for the Huygens secondary source. Another phenomenon,
well known to boaters, is that the largest amplitude of the Huygens semicircle is in the
direction pointing straight toward shore. The amplitude drops to zero for waves moving
parallel to the shore. In optics this amplitude drop-off with angle is called the obliquity
factor.

7.1.2 Migration derived from downward continuation

A dictionary gives many definitions for the word run. They are related, but they are distinct.
Similarly, the word migration in geophysical prospecting has about four related but distinct
meanings. The simplest is like the meaning of the word move. When an object at some
location in the (x, z)-plane is found at a different location at a later time t, then we say it
moves. Analogously, when a wave arrival (often called an event ) at some location in the
(x, t)-space of geophysical observations is found at a different position for a different survey
line at a greater depth z, then we say it migrates.

To see this more clearly, imagine the four frames of Figure 7.3 being taken from a movie.
During the movie, the depth z changes beginning at the beach (the earth’s surface) and
going out to the storm barrier. The frames are superimposed in Figure 7.4(left). Mainly

Figure 7.4: Left shows a super-
position of the hyperbolas of Fig-
ure 7.3. At the right the superpo-
sition incorporates a shift, called re-
tardation t′ = t + z/v, to keep the
hyperbola tops together. VIEW

dwnc/. dcretard

what happens in the movie is that the event migrates upward toward t = 0. To remove
this dominating effect of vertical translation we make another superposition, keeping the
hyperbola tops all in the same place. Mathematically, the time t axis is replaced by a
so-called retarded time axis t′ = t + z/v, shown in Figure 7.4(right). The second, more
precise definition of migration is the motion of an event in (x, t′)-space as z changes. After
removing the vertical shift, the residual motion is mainly a shape change. By this definition,
hyperbola tops, or horizontal layers, do not migrate.

The hyperbolas in Figure 7.4 really extend to infinity, but the drawing cuts each one off
at a time equal

√
2 times its earliest arrival. Thus the hyperbolas shown depict only rays
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moving within 45◦ of the vertical. It is good to remember this, that the ratio of first arrival
time on a hyperbola to any other arrival time gives the cosine of the angle of propagation.
The cutoff on each hyperbola is a ray at 45◦. Notice that the end points of the hyperbolas
on the drawing can be connected by a straight line. Also, the slope at the end of each
hyperbola is the same. In physical space, the angle of any ray is tan θ = dx/dz. For any
plane wave (or seismic event that is near a plane wave), the slope v dt/dx is sin θ, as you
can see by considering a wavefront intercepting the earth’s surface at angle θ. So, energy
moving on a straight line in physical (x, z)-space migrates along a straight line in data
(x, t)-space. As z increases, the energy of all angles comes together to a focus. The focus
is the exploding reflector. It is the gap in the barrier. This third definition of migration is
that it is the process that somehow pushes observational data—wave height as a function
of x and t —from the beach to the barrier. The third definition stresses not so much the
motion itself, but the transformation from the beginning point to the ending point.

To go further, a more general example is needed than the storm barrier example. The
barrier example is confined to making Huygens sources only at some particular z. Sources
are needed at other depths as well. Then, given a wave-extrapolation process to move data
to increasing z values, exploding-reflector images are constructed with

Image (x, z) = Wave (t = 0, x, z) (7.2)

The fourth definition of migration also incorporates the definition of diffraction as the
opposite of migration.

observations model

z = 0

all t

migration
−→
←−

diffraction

t = 0

all z

Diffraction is sometimes regarded as the natural process that creates and enlarges hy-
perboloids. Migration is the computer process that does the reverse.

Another aspect of the use of the word migration arises where the horizontal coordinate
can be either shot-to-geophone midpoint y, or offset h. Hyperboloids can be downward
continued in both the (y, t)- and the (h, t)-plane. In the (y, t)-plane this is called migration
or imaging, and in the (h, t)-plane it is called focusing or velocity analysis.

7.2 DOWNWARD CONTINUATION

Given a vertically upcoming plane wave at the earth’s surface, say u(t, x, z = 0) = u(t)const(x),
and an assumption that the earth’s velocity is vertically stratified, i.e. v = v(z), we can
presume that the upcoming wave down in the earth is simply time-shifted from what we
see on the surface. (This assumes no multiple reflections.) Time shifting can be repre-
sented as a linear operator in the time domain by representing it as convolution with an
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impulse function. In the frequency domain, time shifting is simply multiplying by a complex
exponential. This is expressed as

u(t, z) = u(t, z = 0) ∗ δ(t + z/v) (7.3)
U(ω, z) = U(ω, z = 0) e−iωz/v (7.4)

Sign conventions must be attended to, and that is explained more fully in chapter 6.

7.2.1 Continuation of a dipping plane wave.

Next consider a plane wave dipping at some angle θ. It is natural to imagine continuing such
a wave back along a ray. Instead, we will continue the wave straight down. This requires
the assumption that the plane wave is a perfect one, namely that the same waveform is
observed at all x. Imagine two sensors in a vertical well bore. They should record the same
signal except for a time shift that depends on the angle of the wave. Notice that the arrival
time difference between sensors at two different depths is greatest for vertically propagating
waves, and the time difference drops to zero for horizontally propagating waves. So the
time shift ∆t is v−1 cos θ ∆z where θ is the angle between the wavefront and the earth’s
surface (or the angle between the well bore and the ray). Thus an equation to downward
continue the wave is

U(ω, θ, z + ∆z) = U(ω, θ, z) exp(−iω ∆t) (7.5)

U(ω, θ, z + ∆z) = U(ω, θ, z) exp
(
−iω

∆z cos θ

v

)
(7.6)

Equation (7.6) is a downward continuation formula for any angle θ. Following methods of
chapter 3 we can generalize the method to media where the velocity is a function of depth.
Evidently we can apply equation (7.6) for each layer of thickness ∆z, and allow the velocity
vary with z. This is a well known approximation that handles the timing correctly but
keeps the amplitude constant (since |eiφ| = 1) when in real life, the amplitude should vary
because of reflection and transmission coefficients. Suffice it to say that in practical earth
imaging, this approximation is almost universally satisfactory.

In a stratified earth, it is customary to eliminate the angle θ which is depth variable, and
change it to the Snell’s parameter p which is constant for all depths. Thus the downward
continuation equation for any Snell’s parameter is

U(ω, p, z + ∆z) = U(ω, p, z) exp
(
− iω∆z

v(z)

√
1− p2v(z)2

)
(7.7)

It is natural to wonder where in real life we would encounter a Snell wave that we
could downward continue with equation (7.7). The answer is that any wave from real life
can be regarded as a sum of waves propagating in all angles. Thus a field data set should
first be decomposed into Snell waves of all values of p, and then equation (7.7) can be used
to downward continue each p, and finally the components for each p could be added. This
process akin to Fourier analysis. We now turn to Fourier analysis as a method of downward
continuation which is the same idea but the task of decomposing data into Snell waves
becomes the task of decomposing data into sinusoids along the x-axis.
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7.2.2 Downward continuation with Fourier transform

One of the main ideas in Fourier analysis is that an impulse function (a delta function)
can be constructed by the superposition of sinusoids (or complex exponentials). In the
study of time series this construction is used for the impulse response of a filter. In the
study of functions of space, it is used to make a physical point source that can manufacture
the downgoing waves that initialize the reflection seismic experiment. Likewise observed
upcoming waves can be Fourier transformed over t and x.

Recall in chapter 3, a plane wave carrying an arbitrary waveform, specified by equa-
tion (3.7). Specializing the arbitrary function to be the real part of the function exp[−iω(t−
t0)] gives

moving cosine wave = cos
[

ω

(
x

v
sin θ +

z

v
cos θ − t

) ]
(7.8)

Using Fourier integrals on time functions we encounter the Fourier kernel exp(−iωt).
To use Fourier integrals on the space-axis x the spatial angular frequency must be defined.
Since we will ultimately encounter many space axes (three for shot, three for geophone, also
the midpoint and offset), the convention will be to use a subscript on the letter k to denote
the axis being Fourier transformed. So kx is the angular spatial frequency on the x-axis
and exp(ikxx) is its Fourier kernel. For each axis and Fourier kernel there is the question
of the sign before the i. The sign convention used here is the one used in most physics
books, namely, the one that agrees with equation (7.8). Reasons for the choice are given
in chapter 6. With this convention, a wave moves in the positive direction along the space
axes. Thus the Fourier kernel for (x, z, t)-space will be taken to be

Fourier kernel = ei kxx ei kzz e− iωt = exp[i(kxx + kzz − ωt)] (7.9)

Now for the whistles, bells, and trumpets. Equating (7.8) to the real part of (7.9),
physical angles and velocity are related to Fourier components. The Fourier kernel has the
form of a plane wave. These relations should be memorized!

Angles and Fourier Components

sin θ =
v kx

ω
cos θ =

kz

ω

(7.10)

A point in (ω, kx, kz)-space is a plane wave. The one-dimensional Fourier kernel extracts
frequencies. The multi-dimensional Fourier kernel extracts (monochromatic) plane waves.

Equally important is what comes next. Insert the angle definitions into the familiar
relation sin2 θ + cos2 θ = 1. This gives a most important relationship:

k2
x + k2

z =
ω2

v2
(7.11)

The importance of (7.11) is that it enables us to make the distinction between an arbitrary
function and a chaotic function that actually is a wavefield. Imagine any function u(t, x, z).
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Fourier transform it to U(ω, kx, kz). Look in the (ω, kx, kz)-volume for any nonvanishing
values of U . You will have a wavefield if and only if all nonvanishing U have coordinates
that satisfy (7.11). Even better, in practice the (t, x)-dependence at z = 0 is usually known,
but the z-dependence is not. Then the z-dependence is found by assuming U is a wavefield,
so the z-dependence is inferred from (7.11).

Equation (7.11) also achieves fame as the “dispersion relation of the scalar wave equa-
tion,” a topic developed more fully in IEI.

Given any f(t) and its Fourier transform F (ω) we can shift f(t) by t0 if we multiply
F (ω) by eiωt0 . This also works on the z-axis. If we were given F (kz) we could shift it from
the earth surface z = 0 down to any z0 by multiplying by eikzz0 . Nobody ever gives us
F (kz), but from measurements on the earth surface z = 0 and double Fourier transform,
we can compute F (ω, kx). If we assert/assume that we have measured a wavefield, then
we have k2

z = ω2/v2 − k2
x, so knowing F (ω, kx) means we know F (kz). Actually, we know

F (kz, kx). Technically, we also know F (kz, ω), but we are not going to use it in this book.

We are almost ready to extrapolate waves from the surface into the earth but we need
to know one more thing — which square root do we take for kz? That choice amounts to
the assumption/assertion of upcoming or downgoing waves. With the exploding reflector
model we have no downgoing waves. A more correct analysis has two downgoing waves
to think about: First is the spherical wave expanding about the shot. Second arises when
upcoming waves hit the surface and reflect back down. The study of multiple reflections
requires these waves.

7.2.3 Linking Snell waves to Fourier transforms

To link Snell waves to Fourier transforms we merge equations (3.8) and (3.9) with equa-
tions (7.10)

kx

ω
=

∂t0
∂x

=
sin θ

v
= p (7.12)

kz

ω
=

∂t0
∂z

=
cos θ

v
=

√
1− p2v2

v
(7.13)

The basic downward continuation equation for upcoming waves in Fourier space follows
from equation (7.7) by eliminating p by using equation (7.12). For analysis of real seismic
data we introduce a minus sign because equation (7.13) refers to downgoing waves and
observed data is made from up-coming waves.

U(ω, kx, z + ∆z) = U(ω, kx, z) exp

− iω∆z

v

√
1− v2k2

x

ω2

 (7.14)

In Fourier space we delay signals by multiplying by eiω∆t, analogously, equation (7.14) says
we downward continue signals into the earth by multiplying by eikz∆z. Multiplication in
the Fourier domain means convolution in time which can be depicted by the engineering
diagram in Figure 7.5.

Downward continuation is a product relationship in both the ω-domain and the kx-
domain. Thus it is a convolution in both time and x. What does the filter look like in the
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Figure 7.5: Downward continuation of a downgoing wavefield. VIEW dwnc/. inout

time and space domain? It turns out like a cone, that is, it is roughly an impulse function of
x2 +z2−v2t2. More precisely, it is the Huygens secondary wave source that was exemplified
by ocean waves entering a gap through a storm barrier. Adding up the response of multiple
gaps in the barrier would be convolution over x.

A nuisance of using Fourier transforms in migration and modeling is that spaces become
periodic. This is demonstrated in Figure 7.6. Anywhere an event exits the frame at a side,
top, or bottom boundary, the event immediately emerges on the opposite side. In practice,
the unwelcome effect of periodicity is generally ameliorated by padding zeros around the
data and the model.

Figure 7.6: A reflectivity model on the left and synthetic data using a Fourier method on
the right. VIEW dwnc/. diag

7.3 PHASE-SHIFT MIGRATION

The phase-shift method of migration begins with a two-dimensional Fourier transform (2D-
FT) of the dataset. (See chapter 6.) This transformed data is downward continued with
exp(ikzz) and subsequently evaluated at t = 0 (where the reflectors explode). Of all migra-
tion methods, the phase-shift method most easily incorporates depth variation in velocity.
The phase angle and obliquity function are correctly included, automatically. Unlike Kirch-
hoff methods, with the phase-shift method there is no danger of aliasing the operator.
(Aliasing the data, however, remains a danger.)
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Equation (7.14) referred to upcoming waves. However in the reflection experiment, we
also need to think about downgoing waves. With the exploding-reflector concept of a zero-
offset section, the downgoing ray goes along the same path as the upgoing ray, so both
suffer the same delay. The most straightforward way of converting one-way propagation to
two-way propagation is to multiply time everywhere by two. Instead, it is customary to
divide velocity everywhere by two. Thus the Fourier transformed data values, are downward
continued to a depth ∆z by multiplying by

ei kz∆z = exp

 − i
2 ω

v

√
1 − v2 k2

x

4 ω2
∆z

 (7.15)

Ordinarily the time-sample interval ∆τ for the output-migrated section is chosen equal to
the time-sample rate of the input data (often 4 milliseconds). Thus, choosing the depth
∆z = (v/2)∆τ , the downward-extrapolation operator for a single time step ∆τ is

C = exp

 − i ω ∆τ

√
1 − v2 k2

x

4 ω2

 (7.16)

Data will be multiplied many times by C, thereby downward continuing it by many steps
of ∆τ .

7.3.1 Pseudocode to working code

Next is the task of imaging. Conceptually, at each depth an inverse Fourier transform is
followed by selection of its value at t = 0. (Reflectors explode at t = 0). Since only the
Fourier transform at one point, t = 0, is needed, other times need not be be computed.
We know the ω = 0 Fourier component is found by the sum over all time, analogously,
the t = 0 component is found as the sum over all ω. (This is easily shown by substituting
t = 0 into the inverse Fourier integral.) Finally, inverse Fourier transform kx to x. The
migration process, computing the image from the upcoming wave u, may be summarized
in the following pseudo code:

U(ω, kx, τ = 0) = FT [u(t, x)]
For τ = ∆τ, 2∆τ , . . . , end of time axis on seismogram

For all kx

For all ω

C = exp(−iω∆τ
√

1− v2k2
x/4ω2)

U(ω, kx, τ) = U(ω, kx, τ −∆τ) ∗ C
For all kx

Image(kx, τ) = 0.
For all ω

Image(kx, τ) = Image(kx, τ) + U(ω, kx, τ)
image(x, τ) = FT [Image(kx, τ)]
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This pseudo code Fourier transforms a wavefield observed at the earth’s surface τ = 0, and
then it marches that wavefield down into the earth (τ > 0) filling up a three-dimensional
function, U(ω, kx, τ). Then it selects t = 0, the time of the exploding reflectors by summing
over all frequencies ω. (Mathematically, this is like finding the signal at ω = 0 by summing
over all t).

Turning from pseudocode to real code, an important practical reality is that com-
puter memories are not big enough for the three-dimensional function U(ω, kx, τ). But
it is easy to intertwine the downward continuation with the summation over ω so a three-
dimensional function need not be kept in memory. This is done in the real code in subroutine
phasemig().

migration.rt

subrout ine phasemig ( up , nt , nx , dt , dx , image , ntau , dtau , v e l )
i n t e g e r nt , nx , ntau , iw ,nw, ikx , i t au
r e a l dt , dx , w,w0 ,dw, kx , kx0 , dkx , dtau , ve l , s ig1 , s ig2 , pi , w2 , vkx2
complex up( nt , nx ) , image ( ntau , nx ) , cc

p i = 3 .14159265 ; s i g 1 = +1. ; s i g 2 = −1.
c a l l f t 1 a x i s ( 0 , s ig1 , nt , nx , up)
c a l l f t 2 a x i s ( 0 , s ig2 , nt , nx , up)

nw = nt ; w0 = −pi /dt ; dw = 2.∗ pi /( nt∗dt )
kx0 = −pi /dx ; dkx= 2 .∗ pi /(nx∗dx )

c a l l nu l l ( image , ntau∗nx∗2)
do iw = 2 , nw { w = w0 + ( iw −1) ∗ dw
do ikx = 2 , nx { kx = kx0 + ( ikx −1) ∗ dkx

w2 = w ∗ w
vkx2 = ve l ∗ ve l ∗ kx∗kx / 4 .
i f ( w2 > vkx2 ) {

cc = cexp ( cmplx ( 0 . , − w ∗ dtau ∗ s q r t ( 1 . − vkx2/w2 ) ) )
do i t au = 1 , ntau {

up( iw , ikx ) = up( iw , ikx ) ∗ cc
image ( i tau , ikx ) = image ( i tau , ikx ) + up( iw , ikx )
}

}
}}

c a l l f t 2 a x i s ( 1 , s ig2 , ntau , nx , image )
return ; end

Conjugate migration (modeling) proceeds in much the same way. Beginning from an
upcoming wave that is zero at great depth, the wave is marched upward in steps by mul-
tiplication with exp(ikz∆z). As each level in the earth is passed, exploding reflectors from
that level are added into the upcoming wave. Pseudo code for modeling the upcoming wave
u is
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Image(kx, z) = FT [image(x, z)]
For all ω and all kx

U(ω, kx) = 0.
For all ω {
For all kx {
For z = zmax, zmax −∆z, zmax − 2∆z, . . . , 0 {

C = exp(+i∆zω
√

v−2 − kx
2/ω2)

U(ω, kx) = U(ω, kx) ∗ C
U(ω, kx) = U(ω, kx)+Image(kx, z)
} } }

u(t, x) = FT [U(ω, kx)]

Some real code for this job is in subroutine phasemod().

diffraction.rt

subrout ine phasemod ( image , nz , nx , dz , dx , up , nt , dt , v e l )
i n t e g e r nz , nx , nt , iw ,nw, ikx , i z
r e a l dt , dx , dz , w,w0 ,dw, kx , kx0 , dkx , ve l , s ig1 , s ig2 , pi , w2 , vkx2
complex up( nt , nx ) , image ( nz , nx ) , cc

p i = 3 .14159265 ; s i g 1 = +1. ; s i g 2 = −1.
c a l l f t 2 a x i s ( 0 , s ig2 , nz , nx , image )

nw = nt ; w0 = −pi /dt ; dw = 2.∗ pi /( nt∗dt )
kx0 = −pi /dx ; dkx= 2 .∗ pi /(nx∗dx )

c a l l nu l l ( up , nw∗nx∗2)
do iw = 2 , nw { w = w0 + ( iw−1) ∗ dw
do ikx = 2 , nx { kx = kx0 + ( ikx −1) ∗ dkx

w2 = w ∗ w
vkx2 = ve l ∗ ve l ∗ kx∗kx / 4 .
i f ( w2 > vkx2 ) {

cc = cexp ( cmplx ( 0 . , w ∗ dz ∗ s q r t ( 1 . − vkx2/w2) ) )
do i z = nz , 1 , −1

up( iw , ikx ) = up( iw , ikx ) ∗ cc + image ( iz , ikx )
}

}}
c a l l f t 1 a x i s ( 1 , s ig1 , nt , nx , up)
c a l l f t 2 a x i s ( 1 , s ig2 , nt , nx , up)
return ; end

The positive sign in the complex exponential is a combination of two negatives, the
up coming wave and the upward extrapolation. In principle, the three loops on ω, kx,
and z are interchangeable, however, since this tutorial program uses a velocity v that is
a constant function of depth, I speeded it by a large factor by putting the z-loop on the
inside and pulling the complex exponential out of the inner loop. Figure 7.2 was made with
subroutine phasemod() on the current page.
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7.3.2 Kirchhoff versus phase-shift migration

In chapter 5, we were introduced to the Kirchhoff migration and modeling method by means
of subroutines kirchslow() on page 65 and kirchfast() on page 66. From chapter 6
we know that these routines should be supplemented by a

√
−iω filter such as subroutine

halfdifa() on page 96. Here, however, we will compare results of the unadorned subroutine
kirchfast() on page 66 with our new programs, phasemig() on page 109 and phasemod()
on the preceding page. Figure 7.7 shows the result of modeling data and then migrating it.
Kirchhoff and phase-shift migration methods both work well. As expected, the Kirchhoff
method lacks some of the higher frequencies that could be restored by

√
−iω. Another

problem is the irregularity of the shallow bedding. This is an operator aliasing problem
addressed in chapter 11.

Figure 7.7: Reconstruction after modeling. Left is by the nearest-neighbor Kirchhoff
method. Right is by the phase shift method. VIEW dwnc/. comrecon

Figure 7.8 shows the temporal spectrum of the original sigmoid model, along with the
spectrum of the reconstruction via phase-shift methods. We see the spectra are essentially
identical with little growth of high frequencies as we noticed with the Kirchhoff method in
Figure 5.9.

Figure 7.8: Top is the temporal
spectrum of the model. Bottom is
the spectrum of the reconstructed
model. VIEW dwnc/. phaspec

7.3.3 Damped square root

The definition of kz as kz =
√

ω2/v2 − k2
x obscures two aspects of kz. First, which of the

two square roots is intended, and second, what happens when k2
x > ω2/v2. For both coding
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and theoretical work we need a definition of ikz that is valid for both positive and negative
values of ω and for all kx. Define a function R = ikz(ω, kz) by

R = ikz =
√

(−iω + ε)2 + k2
x (7.17)

It is proven in my earlier book IEI (Imaging the Earth’s Interior) that for any ε > 0, and
any real ω and real kx that the real part <R > 0 is positive. This means we can extrapolate
waves safely with e−Rz for increasing z or with e+Rz for decreasing z. To switch from
downgoing to upcoming we use the complex conjugate R. Thus we have disentangled the
damping from the direction of propagation.

In applications, ε would typically be chosen proportional to the maximum time on
the data. Thus the mathematical expression −iω + ε might be rendered in Fortran as
cmplx(qi,-omega) where qi=1./tmax and the whole concept implemented as in func-
tion eiktau() on this page. Do not set qi=0 because then the csqrt() function cannot
decipher positive from negative frequencies.

exp ikz.rt
complex func t i on e ik tau ( dt , w, vkx , q i )
r e a l dt , w, vkx , q i
e ik tau = cexp ( − dt ∗ c s q r t ( cmplx ( qi , −w) ∗∗ 2 + vkx ∗ vkx /4 . ) )
return ; end

7.3.4 Adjointness and ordinary differential equations

It is straightforward to adapt the simple programs phasemig() on page 109 and phasemod()
on page 110 to depth variable velocity. As you might suspect, the two processes are adjoint
to each other, and for reasons given at the end of chapter 2 it is desirable to code them to
be so. With differential equations and their boundary conditions, the concept of adjoint is
more subtle than previous examples. Thus, I postponed till here the development of adjoint
code for phase-shift migration. This coding is a little strenuous, but it affords a review of
many basic concepts, so we do so here. (Feel free to skip this section.) It is nice to have a
high quality code for this fundamental operation.

Many situations in physics are expressed by the differential equation

du

dz
− iα u = s(z) (7.18)

In the migration application, u(z) is the up-coming wave, α = −
√

ω2/v2 − k2
x, s(z) is the

exploding-reflector source. We take the medium to be layered (v constant in layers) so that
α is constant in a layer, and we put the sources at the layer boundaries. Thus within a
layer we have du/dz − iα u = 0 which has the solution

u(zk + ∆z) = u(zk) eiα∆z (7.19)

For convenience, we use the “delay operator” in the k-th layer Zk = e−iα∆z so the delay
of upward propagation is expressed by u(zk) = Zk u(zk + ∆z). (Since α is negative for
upcoming waves, Zk = e−iα∆z has a positive exponent which represents delay.) Besides
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crossing layers, we must cross layer boundaries where the (reflection) sources add to the
upcoming wave. Thus we have

uk−1 = Zk−1uk + sk−1 (7.20)

Recursive use of equation (7.20) across a medium of three layers is expressed in matrix form
as

Mu =


1 −Z0 . .
. 1 −Z1 .
. . 1 −Z2

. . . 1




u0

u1

u2

u3

 =


s0

s1

s2

s3

 = s (7.21)

A recursive solution begins at the bottom with u3 = s3 and propagates upward.

The adjoint (complex conjugate) of the delay operator Z is the time advance operator
Z̄. The adjoint of equation (7.21) is given by

M′ s̃ =


1 . . .
−Z̄0 1 . .

. −Z̄1 1 .

. . −Z̄2 1




s̃0

s̃1

s̃2

s̃3

 =


u0

u1

u2

u3

 = u (7.22)

where s̃(z) (summed over frequency) is the migrated image. The adjointness of equa-
tion (7.21) and (7.22) seems obvious, but it is not the elementary form we are familiar with
because the matrix multiplies the output (instead of multiplying the usual input). To prove
the adjointness, notice that equation (7.21) is equivalent to u = M−1s whose adjoint, by
definition, is s̃ = (M−1)′u which is s̃ = (M′)−1u (because of the basic mathematical fact
that the adjoint of an inverse is the inverse of the adjoint) which gives M′s̃ = u which is
equation (7.22).

We observe the wavefield only on the surface z = 0, so the adjointness of equations (7.21)
and (7.22) is academic because it relates the wavefield at all depths with the source at all
depths. We need to truncate u to its first coefficient u0 since the upcoming wave is known
only at the surface. This truncation changes the adjoint in a curious way. We rewrite
equation (7.21) using a truncation operator T that is the row matrix T = [1, 0, 0, · · ·]
getting u0 = Tu = TM−1s. Its adjoint is ŝ = (M−1)′T′u′0 = (M′)−1T′u′0 or M′ŝ = T′u0

which looks like

M′ s̃ =


1 . . .
−Z̄0 1 . .

. −Z̄1 1 .

. . −Z̄2 1




s̃0

s̃1

s̃2

s̃3

 =


u0

0
0
0

 (7.23)

The operator 7.23 is a recursion beginning from s̃0 = u0 and continuing downward with

s̃k = Z̄k−1 s̃k−1 (7.24)

A final feature of the migration application is that the image is formed from s̃ by
summing over all frequencies. Although I believe the mathematics above and the code in
subroutine gazadj() on the next page, I ran the dot product test to be sure!
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phase shift mig..rt
# Phase s h i f t modeling and migrat ion . (Warning : de s t roy s i t s input ! )
#
subrout ine gazadj ( adj , dt , dx , v , nt , nx , modl , data )
i n t e g e r adj , nt , nx , iw , ikx , i z , nz
complex e iktau , cup , modl ( nt , nx ) , data ( nt , nx )
r e a l dt , dx , v ( nt ) , pi , w,w0 ,dw, kx , kx0 , dkx , q i
c a l l a d j nu l l ( adj , 0 , modl , nt∗nx∗2 , data , nt∗nx∗2 )
p i = 4 .∗ atan ( 1 . ) ; w0 = −pi /dt ; dw = 2.∗ pi /( nt∗dt ) ; q i =.5/( nt∗dt )
nz = nt ; kx0 = −pi /dx ; dkx= 2 .∗ pi /(nx∗dx )
i f ( adj == 0) c a l l f t 2 a x i s ( 0 , −1. , nz , nx , modl )
else { c a l l f t 2 a x i s ( 0 , −1. , nt , nx , data )

c a l l f t 1 a x i s ( 0 , 1 . , nt , nx , data )
}

do ikx = 2 , nx { kx = kx0 + ( ikx −1) ∗ dkx
do iw = 2 , 1+nt /2 { w = w0 + ( iw −1) ∗ dw

i f ( adj== 0) { data ( iw , ikx ) = modl ( nz , ikx )
do i z = nz−1, 1 , −1

data ( iw , ikx ) = data ( iw , ikx ) ∗ e ik tau ( dt ,w, v ( i z )∗kx , q i ) +
modl ( i z , ikx )

}
else { cup = data ( iw , ikx )

do i z = 1 , nz {
modl ( i z , ikx ) = modl ( i z , ikx ) + cup
cup = cup ∗ conjg ( e ik tau ( dt ,w, v ( i z )∗kx , q i ) )
}

}
}}

i f ( adj == 0) { c a l l f t 1 a x i s ( 1 , 1 . , nt , nx , data )
c a l l f t 2 a x i s ( 1 , −1. , nt , nx , data ) }

else { c a l l f t 2 a x i s ( 1 , −1. , nz , nx , modl ) }
return ; end

Finally, a few small details about the code. The loop on spatial frequency ikx begins at
ikx=2. The reason for the 2, instead of a 1, is to omit the Nyquist frequency. If the Nyquist
frequency were to be included, it should be divided into one half at positive Nyquist and
one half at negative Nyquist, which would clutter the code without adding practical value.
Another small detail is that the loop on temporal frequency iw begins at iw=1+nt/2 which
effectly omits negative frequencies. This is purely an economy measure. Including the
negative frequencies would assure that the final image be real, no imaginary part. Omitting
negative frequencies simply gives an imaginary part that can be thrown away, and gives the
same real image, scaled by a half. The factor of two speed up makes these tiny compromises
well worthwhile.

7.3.5 Vertical exaggeration example

To examine questions of vertical exaggeration and spatial resolution we consider a line
of point scatters along a 45◦ dipping line in (x, z)-space. We impose a linear velocity gradient
such as that typically found in the Gulf of Mexico, i.e. v(z) = v0 + αz with α = 1/2s−1.
Viewing our point scatterers as a function of traveltime depth, τ = 2

∫ z
0 dz/v(z) in Figure 7.9

we see, as expected, that the points, although separated by equal intervals in x, are separated
by shorter time intervals with increasing depth. The points are uniformly separated along
a straight line in (x, z)-space, but they are nonuniformly separated along a curved line in
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(x, τ)-space. The curve is steeper near the earth’s surface where v(z) yields the greatest
vertical exaggeration. Here the vertical exaggeration is about unity (no exageration) but
deeper the vertical exaggeration is less than unity (horizontal exaggeration).

Figure 7.9: Points along a 45
degree slope as seen as a func-
tion of traveltime depth. VIEW

dwnc/. sagmod

Applying subroutine gazadj() on the facing page the points spray out into hyperboloids
(like hyperbolas, but not exactly) shown in Figure 7.10. The obvious feature of this synthetic
data is that the hyperboloids appear to have different asymptotes. In fact, there are no

Figure 7.10: The points of Fig-
ure 7.9 diffracted into hyperboloids.
VIEW dwnc/. sagdat

asymptotes because an asymptote is a ray going horizontal at a more-or-less constant depth,
which will not happen in this model because the velocity increases steadily with depth.

(I should get energetic and overlay these hyperboloids on top of the exact hyperbolas of
the Kirchhoff method, to see if there are perceptible traveltime differences.)

7.3.6 Vertical and horizontal resolution

In principle, migration converts hyperbolas to points. In practice, a hyperbola does not
collapse to a point, it collapses to a focus. A focus has measurable dimensions. Vertical
resolution is easily understood. For a given frequency, higher velocity gives longer vertical
wavelength and thus less resolution. When the result of migration is plotted as a function
of traveltime depth τ instead of true depth z, however, enlargement of focus with depth is
not visible.
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Horizontal resolution works a little differently. Migration is said to be “good” because it
increases spatial resolution. It squeezes a large hyperbola down to a tiny focus. Study the
focal widths in Figure 7.11. Notice the water-velocity focuses hardly broaden with depth.
We expect some broadening with depth because the late hyperbolas are cut off at their sides
and bottom (an aperture effect), but there is no broadening here because the periodicity of
the Fourier domain means that events are not truncated but wrapped around.

Figure 7.11: Left is migration back to a focus with a constant, water-velocity model.
Right is the same, but with a Gulf of Mexico velocity, i.e. the hyperboloids of Figure 7.10
migrated back to focuses. Observe focus broadening with depth, on the left because of
hyperbola truncation, on the right because velocity, hence wavelength, is increasing with
depth. VIEW dwnc/. sagres

When the velocity increases with depth, wider focuses are found at increasing depth.
Why is this? Consider each hyperbola to be made of many short plane wave segments.
Migration moves all the little segments on top of each other. The sharpness of a focus
cannot be narrower than the width of each of the many plane-wave segments that superpose
to make the focus. The narrowest of these plane-wave segments is at the steepest part of a
hyperbola asymptote. Deeper reflectors (which have later tops) have less steep asymptotes
because of the increasing velocity. Thus deeper reflectors with faster RMS velocities have
wider focuses so the deeper part of the image is more blurred.

A second way to understand increased blurring with depth is from equation (7.12),
that the horizontal frequency kx = ωp = ωv−1 sin θ is independent of depth. The steepest
possible angle occurs when | sin θ| = 1. Thus, considering all possible angles, the largest
|kx| is |kx| = |ω|/v(z). Larger values of horizontal frequency |kx| could help us get narrower
focuses, but the deeper we go (faster velocity we encounter), the more these high frequencies
are lost because of the evanescent limit |kx| ≤ |ω/v(z)|. The limit is where the ray goes no
deeper but bends around and comes back up again without ever reflecting. Any ray that
does this many times is said to be a surface-trapped wave. It cannot sharpen a deep focus.
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7.3.7 Field data migration

Application of subroutine gazadj() on page 114 to the Gulf of Mexico data set processed
in earlier chapters yields the result in Figure 7.12.

EXERCISES:

1 Devise a mathematical expression for a plane wave that is an impulse function of time
with a propagation angle of 15◦ from the vertical z-axis in the plus z direction. Express
the result in the domain of

(a) (t, x, z)

(b) (ω, x, z)

(c) (ω, kx, z)

(d) (ω, p, z)

(e) (ω, kx, kz)

(f) (t, kx, kz)
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Figure 7.12: Phase shift migration of Figure 4.7. Press button for movie to compare to
stack and Kirchhoff migration of Figure 4.6. VIEW dwnc/. wgphase



Chapter 8

Dip and offset together

1When dip and offset are combined, some serious complications arise. For many years
it was common industry practice to ignore these complications and to handle dip and
offset separately. Thus offset was handled by velocity analysis, normal moveout and stack
(chapter 4). And dip was handled by zero-offset migration after stack (chapters 5 and 7).
This practice is a good approximation only when the dips on the section are small. We
need to handle large offset angles at the same time we handle large dip angles at the same
time we are estimating rock velocity. It is confusing! Here we see the important steps of
bootstrapping yourself towards both the velocity and the image.

8.1 PRESTACK MIGRATION

Prestack migration creates an image of the earth’s reflectivity directly from prestack data. It
is an alternative to the “exploding reflector” concept that proved so useful in zero-offset
migration. In prestack migration, we consider both downgoing and upcoming waves.

A good starting point for discussing prestack migration is a reflecting point within the
earth. A wave incident on the point from any direction reflects waves in all directions.
This geometry is particularly important because any model is a superposition of such point
scatterers. The point-scatterer geometry for a point located at (x, z) is shown in Figure 8.1.
The equation for travel time t is the sum of the two travel paths is

t v =
√

z2 + (s − x)2 +
√

z2 + (g − x)2 (8.1)

We could model field data with equation (8.1) by copying reflections from any point in
(x, z)-space into (s, g, t)-space. The adjoint program would form an image stacked over all
offsets. This process would be called prestack migration. The problem here is that the
real problem is estimating velocity. In this chapter we will see that it is not satisfactory
to use a horizontal layer approximation to estimate velocity, and then use equation (8.1)
to do migration. Migration becomes sensitive to velocity when wide angles are involved.
Errors in the velocity would spoil whatever benefit could accrue from prestack (instead of
poststack) migration.

1 Matt Schwab prepared a draft of the Gardner DMO derivation. Shuki Ronen gave me the “law of
cosines” proof.
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Figure 8.1: Geometry of a
point scatterer. VIEW

dpmv/. pgeometry
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8.1.1 Cheops’ pyramid

Because of the importance of the point-scatterer model, we will go to considerable lengths to
visualize the functional dependence among t, z, x, s, and g in equation (8.1). This picture
is more difficult—by one dimension—than is the conic section of the exploding-reflector
geometry.

To begin with, suppose that the first square root in (8.1) is constant because everything
in it is held constant. This leaves the familiar hyperbola in (g, t)-space, except that a
constant has been added to the time. Suppose instead that the other square root is constant.
This likewise leaves a hyperbola in (s, t)-space. In (s, g)-space, travel time is a function of
s plus a function of g. I think of this as one coat hanger, which is parallel to the s-axis,
being hung from another coat hanger, which is parallel to the g-axis.

A view of the traveltime pyramid on the (s, g)-plane or the (y, h)-plane is shown in
Figure 8.2a. Notice that a cut through the pyramid at large t is a square, the corners of
which have been smoothed. At very large t, a constant value of t is the square contoured
in (s, g)-space, as in Figure 8.2b. Algebraically, the squareness becomes evident for a point
reflector near the surface, say, z → 0. Then (8.1) becomes

v t = |s − x| + |g − x| (8.2)

The center of the square is located at (s, g) = (x, x). Taking travel time t to increase
downward from the horizontal plane of (s, g)-space, the square contour is like a horizontal
slice through the Egyptian pyramid of Cheops. To walk around the pyramid at a constant
altitude is to walk around a square. Alternately, the altitude change of a traverse over g
(or s) at constant s (or g) is simply a constant plus an absolute-value function.

More interesting and less obvious are the curves on common-midpoint gathers and
constant-offset sections. Recall the definition that the midpoint between the shot and
geophone is y. Also recall that h is half the horizontal offset from the shot to the geophone.

y =
g + s

2
(8.3)

h =
g − s

2
(8.4)

A traverse of y at constant h is shown in Figure 8.2. At the highest elevation on the traverse,
you are walking along a flat horizontal step like the flat-topped hyperboloids of Figure 8.8.
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Figure 8.2: Left is a picture of the traveltime pyramid of equation ((8.1)) for fixed x and
z. The darkened lines are constant-offset sections. Right is a cross section through the
pyramid for large t (or small z). (Ottolini) VIEW dpmv/. cheop

Some erosion to smooth the top and edges of the pyramid gives a model for nonzero reflector
depth.

For rays that are near the vertical, the traveltime curves are far from the hyperbola
asymptotes. Then the square roots in (8.1) may be expanded in Taylor series, giving a
parabola of revolution. This describes the eroded peak of the pyramid.

8.1.2 Prestack migration ellipse

Denoting the horizontal coordinate x of the scattering point by y0 Equation (8.1) converted
to (y, h)-space is

t v =
√

z2 + (y − y0 − h)2 +
√

z2 + (y − y0 + h)2 (8.5)

A basic insight into equation (8.5) is to notice that at constant-offset h and constant travel
time t the locus of possible reflectors is an ellipse in the (y, z)-plane centered at y0. The
reason it is an ellipse follows from the geometric definition of an ellipse. To draw an ellipse,
place a nail or tack into s on Figure 8.1 and another into g. Connect the tacks by a string
that is exactly long enough to go through (y0, z). An ellipse going through (y0, z) may be
constructed by sliding a pencil along the string, keeping the string tight. The string keeps
the total distance tv constant as is shown in Figure 8.3

Replacing depth z in equation (8.5) by the vertical traveltime depth τ = 2z/v = z/vhalf
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Figure 8.3: Prestack migration
ellipse, the locus of all scatter-
ers with constant traveltime for
source S and receiver G. VIEW

dpmv/. ellipse1

we get

t =
1
2

(√
τ2 + [(y − y0)− h]2/v2

half +
√

τ2 + [(y − y0) + h]2/v2
half

)
(8.6)

8.1.3 Constant offset migration

Considering h in equation (8.6) to be a constant, enables us to write a subroutine for mi-
grating constant-offset sections. Subroutine flathyp() on this page is easily prepared from
subroutine kirchfast() on page 66 by replacing its hyperbola equation with equation (8.6).

const offset migration.rt
# Flat topped hyperbo las and constant−o f f s e t s e c t i o n migrat ion
#
subrout ine f l a thyp ( adj , add , v e l , h , t0 , dt , dx , modl , nt , nx , data )
i n t e g e r ix , i z , i t , ib , adj , add , nt , nx
r e a l t , amp, z , b , v e l ( nt ) , h , t0 , dt , dx , modl ( nt , nx ) , data ( nt , nx )
c a l l a d j nu l l ( adj , add , modl , nt∗nx , data , nt∗nx )
do ib= −nx , nx { b = dx ∗ ib # b = midpt s epa ra t i on y−y0

do i z= 2 , nt { z = t0 + dt ∗ ( i z −1) # z = zero−o f f s e t time
t = .5 ∗ ( s q r t ( z ∗∗2 +((b−h)∗2/ ve l ( i z ) )∗∗2) +

sq r t ( z ∗∗2 +((b+h)∗2/ ve l ( i z ) )∗∗2) )
i t = 1 .5 + ( t − t0 ) / dt

i f ( i t > nt ) break
amp = ( z/ t )/ sq r t ( t )
do i x= max0(1 , 1− ib ) , min0 (nx , nx−ib )

i f ( adj == 0 )
data ( i t , i x+ib )= data ( i t , i x+ib ) + modl ( i z , i x ) ∗ amp

else
modl ( i z , i x )= modl ( i z , i x ) + data ( i t , i x+ib ) ∗ amp

}
}

return ; end

The amplitude in subroutine flathyp() should be improved when we have time to do
so. Forward and backward responses to impulses of subroutine flathyp() are found in
Figures 8.4 and 8.5.

It is not easy to show that equation (8.5) can be cast in the standard mathematical form
of an ellipse, namely, a stretched circle. But the result is a simple one, and an important
one for later analysis. Feel free to skip forward over the following verification of this ancient
wisdom. To help reduce algebraic verbosity, define a new y equal to the old one shifted by
y0. Also make the definitions

t v = 2 A (8.7)
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Figure 8.4: Migrating impulses on
a constant-offset section with sub-
routine flathyp(). Notice that
shallow impulses (shallow compared
to h) appear ellipsoidal while deep
ones appear circular. VIEW

dpmv/. Cos-1

Figure 8.5: Forward modeling
from an earth impulse with sub-
routine flathyp(). VIEW

dpmv/. Cos-0
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α = z2 + (y + h)2

β = z2 + (y − h)2

α − β = 4 y h

With these definitions, (8.5) becomes

2 A =
√

α +
√

β

Square to get a new equation with only one square root.

4 A2 − (α + β) = 2
√

αβ

Square again to eliminate the square root.

16 A4 − 8 A2 (α + β) + (α + β)2 = 4 α β

16 A4 − 8 A2 (α + β) + (α − β)2 = 0

Introduce definitions of α and β.

16 A4 − 8 A2 [ 2 z2 + 2 y2 + 2 h2] + 16 y2 h2 = 0

Bring y and z to the right.

A4 − A2 h2 = A2 (z2 + y2) − y2 h2

A2 (A2 − h2) = A2 z2 + (A2 − h2) y2

A2 =
z2

1 − h2

A2

+ y2 (8.8)

Finally, recalling all earlier definitions and replacing y by y − y0, we obtain the canonical
form of an ellipse with semi-major axis A and semi-minor axis B:

(y − y0)2

A2
+

z2

B2
= 1 , (8.9)

where

A =
v t

2
(8.10)

B =
√

A2 − h2 (8.11)

Fixing t, equation (8.9) is the equation for a circle with a stretched z-axis. The above
algebra confirms that the “string and tack” definition of an ellipse matches the “stretched
circle” definition. An ellipse in earth model space corresponds to an impulse on a constant-
offset section.

8.2 INTRODUCTION TO DIP

We can consider a data space to be a superposition of points and then analyze the point
response, or we can consider data space or model space to be a superposition of planes and
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Figure 8.6: Simplest earth model. VIEW dpmv/. simple

then do an analysis of planes. Analysis of points is often easier than planes, but planes,
particularly local planes, are more like observational data and earth models.

The simplest environment for reflection data is a single horizontal reflection interface,
which is shown in Figure 8.6. As expected, the zero-offset section mimics the earth model.
The common-midpoint gather is a hyperbola whose asymptotes are straight lines with slopes
of the inverse of the velocity v1. The most basic data processing is called common-depth-
point stack or CDP stack. In it, all the traces on the common-midpoint (CMP) gather
are time shifted into alignment and then added together. The result mimics a zero-offset
trace. The collection of all such traces is called the CDP-stacked section. In practice
the CDP-stacked section is often interpreted and migrated as though it were a zero-offset
section. In this chapter we will learn to avoid this popular, oversimplified assumption.

The next simplest environment is to have a planar reflector that is oriented vertically
rather than horizontally. This might not seem typical, but the essential feature (that the
rays run horizontally) really is common in practice (see for example Figure 8.9.) Also, the
effect of dip, while generally complicated, becomes particularly simple in the extreme case.
If you wish to avoid thinking of wave propagation along the air-earth interface you can take
the reflector to be inclined a slight angle from the vertical, as in Figure 8.7.

Figure 8.7 shows that the travel time does not change as the offset changes. It may
seem paradoxical that the travel time does not increase as the shot and geophone get
further apart. The key to the paradox is that midpoint is held constant, not shotpoint.
As offset increases, the shot gets further from the reflector while the geophone gets closer.
Time lost on one path is gained on the other.

A planar reflector may have any dip between horizontal and vertical. Then the common-
midpoint gather lies between the common-midpoint gather of Figure 8.6 and that of Fig-
ure 8.7. The zero-offset section in Figure 8.7 is a straight line, which turns out to be the
asymptote of a family of hyperbolas. The slope of the asymptote is the inverse of the
velocity v1.
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Figure 8.7: Near-vertical reflector, a gather, and a section. VIEW dpmv/. vertlay

It is interesting to notice that at small dips, information about the earth velocity is essen-
tially carried on the offset axis whereas at large dips, the velocity information is essentially
on the midpoint axis.

8.2.1 The response of two points

Another simple geometry is a reflecting point within the earth. A wave incident on the point
from any direction reflects waves in all directions. This geometry is particularly important
because any model is a superposition of such point scatterers. Figure 8.8 shows an example.
The curves in Figure 8.8 include flat spots for the same reasons that some of the curves in

Figure 8.8: Response of two point scatterers. Note the flat spots. VIEW

dpmv/. twopoint

Figures 8.6 and 8.7 were straight lines.
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Figure 8.9: Undocumented data from a recruitment brochure. This data may be assumed
to be of textbook quality. The speed of sound in water is about 1500 m/sec. Identify the
events at A, B, and C. Is this a common-shotpoint gather or a common-midpoint gather?
(Shell Oil Company) VIEW dpmv/. shell
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8.2.2 The dipping bed

While the traveltime curves resulting from a dipping bed are simple, they are not simple to
derive. Before the derivation, the result will be stated: for a bed dipping at angle α from
the horizontal, the traveltime curve is

t2 v2 = 4 (y − y0)2 sin2 α + 4 h2 cos2 α (8.12)

For α = 45◦, equation (8.12) is the familiar Pythagoras cone—it is just like t2 = z2 + x2.
For other values of α, the equation is still a cone, but a less familiar one because of the
stretched axes.

For a common-midpoint gather at y = y1 in (h, t)-space, equation (8.12) looks like
t2 = t20 + 4h2/v2

apparent. Thus the common-midpoint gather contains an exact hyperbola,
regardless of the earth dip angle α. The effect of dip is to change the asymptote of the
hyperbola, thus changing the apparent velocity. The result has great significance in applied
work and is known as Levin’s dip correction [1971]:

vapparent =
vearth

cos(α)
(8.13)

(See also Slotnick [1959]). In summary, dip increases the stacking velocity.

Figure 8.10 depicts some rays from a common-midpoint gather. Notice that each ray

Figure 8.10: Rays from a common-
midpoint gather. VIEW

dpmv/. dipray

yyo

strikes the dipping bed at a different place. So a common-midpoint gather is not a common-
depth-point gather. To realize why the reflection point moves on the reflector, recall the
basic geometrical fact that an angle bisector in a triangle generally doesn’t bisect the op-
posite side. The reflection point moves up dip with increasing offset.

Finally, equation (8.12) will be proved. Figure 8.11 shows the basic geometry along
with an “image” source on another reflector of twice the dip. For convenience, the bed
intercepts the surface at y0 = 0. The length of the line s′g in Figure 8.11 is determined by
the trigonometric Law of Cosines to be

t2 v2 = s2 + g2 − 2 s g cos 2α

t2 v2 = (y − h)2 + (y + h)2 − 2 (y − h)(y + h) cos 2α

t2 v2 = 2 (y2 + h2) − 2 (y2− h2) (cos2 α − sin2 α)
t2 v2 = 4 y2 sin2 α + 4h2 cos2 α

which is equation (8.12).

Another facet of equation (8.12) is that it describes the constant-offset section. Sur-
prisingly, the travel time of a dipping planar bed becomes curved at nonzero offset—it too
becomes hyperbolic.
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Figure 8.11: Travel time from image
source at s′ to g may be expressed
by the law of cosines. VIEW

dpmv/. lawcos

o s y
g

s ’

8.3 TROUBLE WITH DIPPING REFLECTORS

The “standard process” is NMO, stack, and zero-offset migration. Its major shortcoming
is the failure of NMO and stack to produce a section that resembles the true zero-offset
section. In chapter 4 we derived the NMO equations for a stratified earth, but then applied
them to seismic field data that was not really stratified. That this works at all is a little
surprising, but it turns out that NMO hyperbolas apply to dipping reflectors as well as
horizontal ones. When people try to put this result into practice, however, they run into a
nasty conflict: reflectors generally require a dip-dependent NMO velocity in order to produce
a “good” stack. Which NMO velocity are we to apply when a dipping event is near (or even
crosses) a horizontal event? Using conventional NMO/stack techniques generally forces
velocity analysts to choose which events they wish to preserve on the stack. This inability
to simultaneously produce a good stack for events with all dips is a serious shortcoming,
which we now wish to understand more quantitatively.

8.3.1 Gulf of Mexico example

Recall the Gulf of Mexico dataset presented in chapter 4. We did a reasonably careful job of
NMO velocity analysis in order to produce the stack shown in Figure 4.7. But is this the best
possible stack? To begin to answer this question, Figure 8.12 shows some constant-velocity
stacks of this dataset done with subroutine velsimp() on page 50. This figure clearly
shows that there are some very steeply-dipping reflections that are missing in Figure 4.7.
These steep reflections appear only when the NMO velocity is quite high compared with the
velocity that does a good job on the horizontal reflectors. This phenomenon is consistent
with the predictions of equation (8.12), which says that dipping events require a higher
NMO velocity than nearby horizontal events.

Another way of seeing the same conflict in the data is to look at a velocity-analysis
panel at a single common-midpoint location such as the panel shown in Figure 8.13 made
by subroutine velsimp() on page 50. In this figure it is easy to see that the velocity which
is good for the dipping event at 1.5 sec is too high for the horizontal events in its vicinity.
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Figure 8.12: Stacks of Gulf of Mexico data with two different constant NMO velocities.
Press button to see a movie in which each frame is a stack with a different constant velocity.
VIEW dpmv/. cvstacks
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Figure 8.13: Velocity analysis panel
of one of the panels in Figure 8.12
before (left) and after (right) DMO.
Before DMO, at 2.2 sec you can no-
tice two values of slowness, the main
branch at .5 sec/km, and another at
.4 sec/km. The faster velocity s = .4
is a fault-plane reflection. VIEW

dpmv/. velscan

8.4 SHERWOOD’S DEVILISH

The migration process should be thought of as being interwoven with the velocity estima-
tion process. J.W.C. Sherwood [1976] indicated how the two processes, migration and
velocity estimation, should be interwoven. The moveout correction should be considered in
two parts, one depending on offset, the NMO, and the other depending on dip. This latter
process was conceptually new. Sherwood described the process as a kind of filtering, but
he did not provide implementation details. He called his process Devilish, an acronym for
“dipping-event velocity inequalities licked.” The process was later described more function-
ally by Yilmaz as prestack partial migration, and now the process is usually called
dip moveout (DMO) although some call it MZO, migration to zero offset. We will first see
Sherwood’s results, then Rocca’s conceptual model of the DMO process, and finally two
conceptually distinct, quantitative specifications of the process.

Figure 8.14 contains a panel from a stacked section. The panel is shown several times;
each time the stacking velocity is different. It should be noted that at the low velocities,
the horizontal events dominate, whereas at the high velocities, the steeply dipping events
dominate. After the Devilish correction was applied, the data was restacked as before.
Figure 8.15 shows that the stacking velocity no longer depends on the dip. This means
that after Devilish, the velocity may be determined without regard to dip. In other words,
events with all dips contribute to the same consistent velocity rather than each dipping
event predicting a different velocity. So the Devilish process should provide better velocities
for data with conflicting dips. And we can expect a better final stack as well.

In early days an important feature of Dip Moveout was that it avoided the cost of
prestack migration. Today, prestack migration is cheap, but dip moveout is still needed.
Prestack migration sounds easy and wonderful, but it is no better than the velocity model
it depends on. DMO helps you find that velocity model.
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Figure 8.14: Conventional stacks with varying velocity. (distributed by Digicon, Inc.)
VIEW dpmv/. digicon

Figure 8.15: Devilish stacks with varying velocity. (distributed by Digicon, Inc.) VIEW

dpmv/. devlish
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Prestack migration is no better than the velocity model it depends on. DMO helps you
find that model.

8.5 ROCCA’S SMEAR OPERATOR

Fabio Rocca developed a clear conceptual model for Sherwood’s dip corrections. We start
with a common offset section. We consider only a single point on that common offset
section. Later on, what we do with our chosen point will need to be done with all the other
points on our common offset section. Our single data point migrates to an ellipse. (We did
this with subroutine flathyp() on page 122 using some constant-offset h.) For clarity I
broke the smooth elliptical curve into a bunch of isolated points. We will track only one of
the isolated point, but later on we need to do the same thing with all the other points. This
one point is a point in model space, so in data space, on a zero offset section, it is a simple
hyperbola. Figure 8.16 shows the result from including more of the points on the ellipse.
The hyperbolas are combining to make a little smile. In conclusion, a single point on a
constant-offset section becomes a little smile on a zero-offset section. You might notice the
hyperbola tops are not on the strong smear function that results from the superposition.

Figure 8.16: Rocca’s prestack
partial-migration operator is a su-
perposition of hyperbolas, each with
its top on an ellipse. VIEW

dpmv/. rocca-seq

The strong smear function that you see in Figure 8.16 is Rocca’s DMO+NMO operator,
the operator that converts a point on a constant-offset section to a zero-offset section. An
important feature of this operator is that the bulk of the energy is in a much narrower region
than the big ellipse of migration. The narrowness of the Rocca operator is important since
it means that energies will not move far, so the operator will not have a drastic effect and
be unduly affected by remote data. (Being a small operator also makes it cheaper to apply).
The little signals you see away from the central burst in Figure 8.16 result mainly from my
modulating the ellipse curve into a sequence of dots. However, noises from sampling and
nearest-neighbor interpolation also yield a figure much like Figure 8.16. This warrants a
more careful theoretical study to see how to represent the Rocca operator directly (rather
than as a sequence of two nearly opposite operators).

To get a sharper, more theoretical view of the Rocca operator, Figure 8.17 shows line
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drawings of the curves in a Rocca construction. It happens, and we will later show, that
the Rocca operator lies along an ellipse that passes through ±h (and hence is independent
of velocity!) Now we see something we could not see on Figure 8.16, that the Rocca curve
ends part way up the ellipse; it does not reach the surface. The precise location where
the Rocca operator ends and the velocity independent ellipse continues does turn out to be
velocity dependent as we will see. The Rocca operator is along the curve of osculation in
Figure 8.17, i.e., the smile-shaped curve where the hyperbolas reinforce one another.

Figure 8.17: Rocca’s smile. (Ronen) Observe the smile does not continue all the way up
to t = 0. VIEW dpmv/. rocca2

8.5.1 Push and pull

Migration and diffraction operators can be conceived and programmed in two different ways.
Let ~t denote data and ~z denote the depth image. We have

~z = Ch
~t spray or push an ellipse into the output (8.14)

~t = Hh ~z spray or push a flattened hyperbola into the output (8.15)

where h is half the shot-geophone offset. The adjoints are

~t = C′
h ~z sum or pull a semiCircle from the input (8.16)

~z = H′
h

~t sum or pull a flattened Hyperbola from the input (8.17)

In practice we can choose either of C ≈ H′. A natural question is which is more correct
or better. The question of “more correct” applies to modeling and is best answered by
theoreticians (who will find more than simply a hyperbola; they will find its waveform
including its amplitude and phase as a function of frequency). The question of “better” is
something else. An important practical issue is that the transformation should not leave
miscellaneous holes in the output. It is typically desirable to write programs that loop over
all positions in the output space, “pulling” in whatever inputs are required. It is usually
less desirable to loop over all positions in the input space, “pushing” or “spraying” each
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input value to the appropriate location in the output space. Programs that push the input
data to the output space might leave the output too sparsely distributed. Also, because
of gridding, the output data might be irregularly positioned. Thus, to produce smooth
outputs, we usually prefer the summation operators H′ for migration and C′ for diffraction
modeling. Since one could always force smooth outputs by lowpass filtering, what we really
seek is the highest possible resolution.

Given a nonzero-offset section, we seek to convert it to a zero-offset section. Rocca’s
concept is to first migrate the constant offset data with an ellipsoid push operator Ch and
then take each point on the ellipsoid and diffract it out to a zero-offset hyperbola with a
push operator H0. The product of push operators R = H0Ch is known as Rocca’s smile.
This smile operator includes both normal moveout and dip moveout. (We could say that
dip moveout is defined by Rocca’s smile after restoring the normal moveout.)

Because of the approximation H ≈ C′, we have four different ways to express the Rocca
smile:

R = H0Ch ≈ H0H′
h ≈ C′

0H
′
h ≈ C′

0Ch (8.18)

H0H′
h says sum over a flat-top and then spray a regular hyperbola.

The operator C′
0H

′
h, having two pull operators should have smoothest output. Sergey

Fomel suggests an interesting illustration of it: Its adjoint is two push operators, R′ =
HhC0. R′ takes us from zero offset to nonzero offset first by pushing a data point to
a semicircle and then by pushing points on the semicircle to flat-topped hyperbolas. As
before, to make the hyperbolas more distinct, I broke the circle into dots along the circle
and show the result in Figure 8.18. The whole truth is a little more complicated. Subroutine
flathyp() on page 122 implements H and H′. Since I had no subroutine for C, Figures
8.16 and 8.18 were actually made with only H and H′. We discuss the C′

0Ch representation

Figure 8.18: The adjoint of Rocca’s
smile is a superposition of flattened
hyperbolas, each with its top on a
circle. VIEW dpmv/. sergey

of R in the next section.

8.5.2 Dip moveout with v(z)

It is worth noticing that the concepts in this section are not limited to constant velocity
but apply as well to v(z). However, the circle operator C presents some difficulties. Let us
see why. Starting from the Dix moveout approximation, t2 = τ2 +x2/v(τ)2, we can directly
solve for t(τ, x) but finding τ(t, x) is an iterative process at best. Even worse, at wide
offsets, hyperbolas cross one another which means that τ(t, x) is multivalued. The spray
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(push) operators C and H loop over inputs and compute the location of their outputs. Thus
~z = Ch

~t requires we compute τ from t so it is one of the troublesome cases. Likewise,
the sum (pull) operators C′ and H′ loop over outputs. Thus ~t = C′

h ~z causes us the
same trouble. In both cases, the circle operator turns out to be the troublesome one. As a
consequence, most practical work is done with the hyperbola operator.

A summary of the meaning of the Rocca smile and its adjoint is found in Figures 8.19
and 8.20, which were computed using subroutine flathyp() on page 122.

Figure 8.19: Impulses on a zero-offset section migrate to semicircles. The corresponding
constant-offset section contains the adjoint of the Rocca smile. VIEW dpmv/. yalei2

Figure 8.20: Impulses on a constant-offset section become ellipses in depth and Rocca
smiles on the zero-offset section. VIEW dpmv/. yalei1

8.5.3 Randomly dipping layers

On a horizontally layered earth, a common shotpoint gather looks like a common midpoint
gather. For an earth model of random dipping planes the two kinds of gathers have quite
different traveltime curves as we see in Figure 8.21.

The common-shot gather is more easily understood. Although a reflector is dipping, a
spherical wave incident remains a spherical wave after reflection. The center of the reflected
wave sphere is called the image point. The traveltime equation is again a cone centered
at the image point. The traveltime curves are simply hyperbolas topped above the image
point having the usual asymptotic slope. The new feature introduced by dip is that the
hyperbola is laterally shifted which implies arrivals before the fastest possible straight-line
arrivals at vt = |g|. Such arrivals cannot happen. These hyperbolas must be truncated
where vt = |g|. This discontinuity has the physical meaning of a dipping bed hitting the
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Shallow rock 

Figure 8.21: Seismic arrival times on an earth of random dipping planes. Left is a common-
shot profile (CSP) resembling the field data of Figure 8.9. Note the backscatters. Right is a
CMP. Note horizontal events like the middle panel of Figure 8.7. VIEW dpmv/. randip-2

surface at geophone location |g| = vt. Beyond the truncation, either the shot or the receiver
has gone beyond the intersection. Eventually both are beyond. When either is beyond the
intersection, there are no reflections.

On the common-midpoint gather we see hyperbolas all topping at zero offset, but with
asymptotic velocities higher (by the Levin cosine of dip) than the earth velocity. Hyperbolas
truncate, now at |h| = tv/2, again where a dipping bed hits the surface at a geophone.

On a CMP gather, some hyperbolas may seem high velocity, but it is the dip, not the
earth velocity itself that causes it. Imagine Figure 8.21 with all layers at 90◦ dip (abandon
curves and keep straight lines). Such dip is like the backscattered groundroll seen on the
common-shot gather of Figure 8.9. The backscattered groundroll becomes a “flat top” on
the CMP gather in Figure 8.21.

8.5.4 Many rocks on a shallow water bottom

Many rocks on a shallow water bottom in the (x, y)-plane give rise to a large collection of flat-
topped hyperbolas on a constant offset survey line. On a CDP stack the hyperbolas coming
from abeam (perpendicular to ship’s travel) are simple water velocity easily suppressed by
conventional stacking. Rocks along the survey line have flat tops Those tops would stack
well at infinite velocity. The rocks that are really annoying are those off at some angle to
the side, neither in-line nor cross line. Some of those rocks should stack well at the rock
velocity of deep reservoir rocks (part way between infinity and water velocity).

Let us see how these flat-tops in offset create the diagonal streaks you see in midpoint
in Figure 8.22.
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Figure 8.22: CDP stack with water noise from the Shelikof Strait, Alaska. (by permission
from Geophysics, Larner et al.[1983]) VIEW dpmv/. shelikof

Figure 8.23: Rocks on a shallow water bottom. High latitude glacier gouges frequently
exhibit this situation. VIEW dpmv/. adam
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Refer to Figure 8.23. Consider 24 rocks of random sizes scattered in an exact circle of
2 km diameter on the ocean floor. The rocks are distributed along fifteen degree intervals.
Our survey ship sails from south to north towing a streamer across the exact center of the
circle, coincidentally crossing directly over two rocks. Let us consider the common midpoint
gather corresponding to the midpoint in the center of the circle. Rocks that the ship crosses
at 0◦ and 180◦ produce flat-top hyperbolas. The top is perfectly flat for 0 < |h| < 1 km,
then it falls off to the usual water asymptote. Rocks at 90◦ and at 270◦ are in the cross-
line direction, off the survey line. Rays to those rocks propagate entirely within the water
layer. At midpoint location “X” the travel time expression of these rocks is a simple water
hyperbola function of offset. Our CMP gather at the circle center has a “flat top” and a
simple hyperbola both going through zero offset at time t = 2/v (diameter 2 km, water
velocity). Both curves have the same water velocity asymptote and zero offset travel time
so they would be tangent (not shown) at zero offset.

Now consider all the other rocks. They give curves between the simple water hyperbola
and the flat top. Near zero offset, these curves range in apparent velocity between water
velocity and infinity. One of these curves will have an apparent velocity that matches that
of sediment velocity. This one is trouble. This rock (and all those near the same azimuth)
will stack in strongly.

Now let us think about the appearance of the CDP stack. We turn attention from
offset to midpoint. The easiest way to imagine the CDP stack is to imagine the zero-offset
section. Every rock has a water velocity asymptote. These asymptotes are evident on the
CDP stack in Figure 8.22. This result was first recognized by Ken Larner.

Thus, backscattered low-velocity noises have a way of showing up on higher-velocity
stacked data. Knowing what you know now, how would you get rid of this noise? (trick
question)

8.6 GARDNER’S SMEAR OPERATOR

It is not easy to derive the equation for dip moveout. I did it once and found it required a
branch of calculus (osculating curves) included in elementary calculus but long forgotten by
me. A more geometric approach based on circles and ellipses was devised by Gerry Gardner.
But it still isn’t easy, so we will look at the heart of the final result before investigating
the derivation of the full result. Let tn denote travel time on data that has already been
NMOed. Let t0 denote travel time after both NMO and DMO. The heart is.

t20 = t2n

(
1− b2

h2

)
(8.19)

Here b is the same variable we have seen in constant offset migration. It is the separation
of a hyperboloid top from somewhere along it. It is the variable we sum over when doing
migration or DMO. An amazing aspect of this expression is that it does not contain velocity!

t20 =

(
t2h −

h2

v2
half

)(
1− b2

h2

)
. (8.20)
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As with the Rocca operator, equation (8.20) includes both dip moveout DMO and
NMO.

Instead of implementing equation (8.20) in one step we can split it into two steps. The
first step converts raw data at time th to NMOed data at time tn.

t2n = t2h −
h2

v2
half

(8.21)

The second step is the DMO step which like Kirchhoff migration itself is a convolution
over the x-axis (or b-axis) with

t20 = t2n

(
1− b2

h2

)
(8.22)

and it converts time tn to time t0. Substituting (8.21) into (8.22) leads back to (8.20). As
equation (8.22) clearly states, the DMO step itself is essentially velocity independent, but
the NMO step naturally is not.

Now the program. Backsolving equation (8.22) for tn gives

t2n =
t20

1− b2/h2
. (8.23)

Like subroutine flathyp() on page 122, our DMO subroutine dmokirch() on this
page is based on subroutine kirchfast() on page 66. It is just the same, except where
kirchfast() has a hyperbola we put equation (8.23). In the program, the variable t0 is
called z and the variable tn is called t. Note, that the velocity velhalf does exclusively
occur in the break condition (which we have failed to derive, but which is where the circle
and ellipse touch at z = 0).

fast Kirchhoff dip-moveout.rt
subrout ine dmokirch ( adj , add , v e l h a l f , h , t0 , dt , dx , modl , nt , nx , data )
i n t e g e r ix , i z , i t , ib , adj , add , nt , nx
r e a l amp, t , z , b , v e l h a l f , h , t0 , dt , dx , modl ( nt , nx ) , data ( nt , nx )
c a l l a d j nu l l ( adj , add , modl , nt∗nx , data , nt∗nx )
i f ( h == 0) c a l l e r e x i t ( ’h=0 ’ )
do ib= −nx , nx { b = dx ∗ ib # b = midpt s epa ra t i on

do i z= 2 , nt { z = t0 + dt ∗ ( i z −1) # z = zero−o f f s e t time

i f ( h∗∗2 <= b∗∗2 ) next
t= sq r t ( z ∗∗2 / (1−b∗∗2/h∗∗2) )
amp= sq r t ( t ) ∗ dx/h
i f ( v e l h a l f ∗abs (b) ∗ t ∗ t > h∗∗2∗ z ) break
i t = 1 .5 + ( t − t0 ) / dt
i f ( i t > nt ) break
do i x= max0(1 , 1− ib ) , min0 (nx , nx−ib )

i f ( adj == 0 )
data ( i t , i x+ib ) = data ( i t , i x+ib ) + modl ( i z , i x ) ∗ amp

else
modl ( i z , i x ) = modl ( i z , i x ) + data ( i t , i x+ib ) ∗ amp

}
}

return ; end
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Figures 8.24 and 8.25 were made with subroutine dmokirch() on the facing page.
Notice the big noise reduction over Figure 8.16.

Figure 8.24: Impulse response
of DMO and NMO VIEW

dpmv/. dmatt

Figure 8.25: Synthetic Cheop’s
pyramid VIEW dpmv/. coffs

8.6.1 Residual NMO

Unfortunately, the theory above shows that DMO should be performed after NMO. DMO
is a convolutional operator, and significantly more costly than NMO. This is an annoyance
because it would be much nicer if it could be done once and for all, and not need to be
redone for each new NMO velocity.

Much practical work is done with using constant velocity for the DMO process. This
is roughly valid since DMO, unlike NMO, does little to the data so the error of using the
wrong velocity is much less.

It is not easy to find a theoretical impulse response for the DMO operator in v(z) media,
but you can easily compute the impulse response in v(z) by using R = H0H′

h from equation
(8.18).
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8.6.2 Results of our DMO program

We now return to the field data from the Gulf of Mexico, which we have processed earlier
in this chapter and in chapter 4.
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Figure 8.26: Stack after the dip-moveout correction. Compare this result with Figure 4.7.
This one has fault plane reflections to the right of the faults. VIEW dpmv/. wgdmostk
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Figure 8.27: Kirchhoff migration of the previous figure. Now the fault plane reflections
jump to the fault. VIEW dpmv/. wgdmomig



Chapter 9

Finite-difference migration

This chapter is a condensation of wave extrapolation and finite-difference basics from IEI
which is now out of print. On the good side, this new organization is more compact and
several errors have been corrected. On the bad side, to follow up on many many interesting
details you will need to find a copy of IEI (http://sepwww.stanford.edu/sep/prof/).

In chapter 7 we learned how to extrapolate wavefields down into the earth. The
process proceeded simply, since it is just a multiplication in the frequency domain by
exp[ikz(ω, kx)z]. In this chapter instead of multiplying a wavefield by a function of kx

to downward continue waves, we will convolve them along the x-axis with a small filter
that represents a differential equation. On space axes, a concern is the seismic velocity
v. With lateral velocity variation, say v(x), then the operation of extrapolating wave-
fields upward and downward can no longer be expressed as a product in the kx-domain.
(Wave-extrapolation procedures in the spatial frequency domain are no longer multiplica-
tion, but convolution.) The alternative we choose here is to go to finite differences which
are convolution in the physical x domain. This is what the wave equation itself does.

9.1 THE PARABOLIC EQUATION

Here we derive the most basic migration equation via the dispersion relation, equation (7.11).
Recall this equation basically says cos θ =

√
1− sin2 θ.

kz =
ω

v

√
1 − v2k2

x

ω2
(9.1)

The dispersion relation above is the foundation for downward continuing wavefields by
Fourier methods in chapter 7. Recall that nature extrapolates forward in time from t = 0
whereas a geophysicist extrapolates information in depth from z = 0. We get ideas for our
task, and then we hope to show that our ideas are consistent with nature. Suppose we
substitute ikz = ∂/∂z into equation (9.1), multiply by P , and interpret velocity as depth
variable.

∂P

∂z
=

i ω

v(z)

√
1 − v(z)2 k2

x

ω2
P (9.2)

145
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A wonderful feature of equation (ean:gophase) is that being first order in z it has only
one solution on the z-axis. Unlike the wave equation itself, which has two solutions, one
upgoing and one downgoing, and requires we specify boundary conditions on both the top
and bottom of the earth, this equation requires only that we specify boundary conditions
on the top where we actually have observations. Changing the sign of the z axis we get
an equation for waves going the other direction. Having the two of them enables us to
distinguish up going from downgoing waves, just what we need for image estimation.

Since the above steps are unorthodox, we need to enquire about their validity. Suppose
that equation (9.2) were valid. Then we could restrict it to constant velocity and take a
trial solution P = P0 exp(−ikzz) and we would immediately have equation (9.1). Why do
we believe the introduction of v(z) in equation (9.2) has any validity? We can think about
the phase shift migration method in chapter 7. It handled v(z) by having the earth velocity
being a staircase function of depth. Inside a layer we had the solution to equation (9.2).
To cross a layer boundary, we simply asserted that the wavefield at the bottom of one
layer would be the same as the wavefield at the top of the next which is also the solution
to equation (9.2). (Let ∆z → 0 be the transition from one layer to the next. Then
∆P = 0 since ∂P/∂z is finite.) Although equation (9.2) is consistent with chapter 7, it is
an approximation of limited validity. It assumes there is no reflection at a layer boundary.
Reflection would change part of a downgoing wave to an upcoming wave and the wave
that continued downward would have reduced amplitude because of lost energy. Thus,
by our strong desire to downward continue wavefields (extrapolate in z) whereas nature
extrapolates in t, we have chosen to ignore reflection and transmission coefficients. Perhaps
we can recover them, but now we have bigger fish to fry. We want to be able to handle
v(x, z), lateral velocity variation. This requires us to get rid of the square root in
equation (9.2). Make a power series for it and drop higher terms.

∂P

∂z
=

i ω

v(z)

(
1 − v(z)2 k2

x

2 ω2

)
P + · · · (9.3)

The first dropped term is sin4 θ where θ is the dip angle of a wavefront. The dropped terms
increase slowly with angle, but they do increase, and dropping them will limit the range of
angles that we can handle with this equation. This is the price we must pay for the benefit
of handling v(x, z). Later we return to patch it up (unlike the transmission coefficient
problem). There are many minus signs cropping up, so I give you another equation to
straighten them out.

∂P

∂z
=

(
i ω

v(z)
− v(z) k2

x

− i ω 2

)
P (9.4)

Now we are prepared to leap to our final result, an equation for downward continuing waves
in the presence of depth and lateral velocity variation v(x, z). Substitute ∂xx = −k2

x

into equation (9.4) and revise interpretation of P from P (ω, kx, z) to P (ω, x, z).

∂P

∂z
=

i ω

v(x, z)
P +

v(x, z)
− i ω 2

∂2P

∂x2
(9.5)

As with v(z), there is a loss of lateral transmission and reflection coefficients. We plan to
forget this minor problem. It is the price of being a data handler instead of a modeler.
Equation (9.5) is the basis for our first program and examples.
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9.2 SPLITTING AND SEPARATION

Two processes, A and B, which ordinarily act simultaneously, may or may not be intercon-
nected. The case where they are independent is called full separation. In this case it
is often useful, for thought and for computation, to imagine process A going to completion
before process B is begun. Where the processes are interconnected it is possible to allow
A to run for a short while, then switch to B, and continue in alternation. This alternation
approach is called splitting.

9.2.1 The heat-flow equation

We wish to solve equation (9.5) by a method involving splitting. Since equation (9.5) is an
unfamiliar one, we turn to the heat-flow equation which besides being familiar, has no
complex numbers. A two-sentence derivation of the heat-flow equation follows. (1) The
heat flow Hx in the x-direction equals the negative of the gradient −∂/∂x of temperature
T times the heat conductivity σ. (2) The decrease of temperature −∂T/∂t is proportional
to the divergence of the heat flow ∂Hx/∂x divided by the heat storage capacity C of the
material. Combining these, extending from one dimension to two, taking σ constant and
C = 1, gives the equation

∂T

∂t
=

(
σ

∂2

∂x2
+ σ

∂2

∂y2

)
T (9.6)

9.2.2 Splitting

The splitting method for numerically solving the heat-flow equation is to replace the
two-dimensional heat-flow equation by two one-dimensional equations, each of which is used
on alternate time steps:

∂T

∂t
= σ

∂2T

∂x2
(all y) (9.7)

∂T

∂t
= σ

∂2T

∂y2
(all x ) (9.8)

In equation (9.7) the heat conductivity σ has been doubled for flow in the x-direction and
zeroed for flow in the y-direction. The reverse applies in equation (9.8). At odd moments
in time heat flows according to (9.7) and at even moments in time it flows according to
(9.8). This solution by alternation between (9.7) and (9.8) can be proved mathematically
to converge to the solution to (9.6) with errors of the order of ∆t. Hence the error goes to
zero as ∆t goes to zero.

9.2.3 Full separation

Splitting can turn out to be much more accurate than might be imagined. In many cases
there is no loss of accuracy. Then the method can be taken to an extreme limit. Think
about a radical approach to equations (9.7) and (9.8) in which, instead of alternating back
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and forth between them at alternate time steps, what is done is to march (9.7) through all
time steps. Then this intermediate result is used as an initial condition for (9.8), which
is marched through all time steps to produce a final result. It might seem surprising that
this radical method can produce the correct solution to equation (9.6). But if σ is a
constant function of x and y, it does. The process is depicted in Figure 9.1 for an impulsive
initial disturbance. A differential equation like (9.6) is said to be fully separable when the

Figure 9.1: Temperature distribution in the (x, y)-plane beginning from a delta function
(left). After heat is allowed to flow in the x-direction but not in the y-direction the heat
is located in a “wall” (center). Finally allowing heat to flow for the same amount of time
in the y-direction but not the x-direction gives the same symmetrical Gaussian result that
would have been found if the heat had moved in x- and y-directions simultaneously (right).
VIEW fdm/. temperature2

correct solution is obtainable by the radical method. It should not be too surprising that
full separation works when σ is a constant, because then Fourier transformation may be
used, and the two-dimensional solution exp[−σ (k2

x + k2
y)t] equals the succession of one-

dimensional solutions exp(−σ k2
xt) exp(−σ k2

yt). It turns out, and will later be shown, that
the condition required for applicability of full separation is that σ ∂2/∂x2 should commute
with σ ∂2/∂y2, that is, the order of differentiation should be irrelevant. Technically there
is also a boundary-condition requirement, but it creates no difficulty when the disturbance
dies out before reaching a boundary.

There are circumstances which dictate a middle road between splitting and full sepa-
ration, for example if σ were a slowly variable function of x or y. Then you might find that
although σ ∂2/∂x2 does not strictly commute with σ ∂2/∂y2, it comes close enough that a
number of time steps may be made with (9.7) before you transpose the data and switch
over to (9.8). Circumstances like this one but with more geophysical interest arise with the
wave-extrapolation equation that is considered next.

9.2.4 Splitting the parabolic equation

In discussing and solving the parabolic wave equation it is convenient to rearrange it to
recognize the role of an averaged stratified medium of velocity of v̄(z) and departures from
it.

∂P

∂z
= i ω

(
1

v̄(z)

)
P + i ω

(
1

v(x, z)
− 1

v̄(z)

)
P +

(
v(x, z)
− i ω 2

∂2

∂x2

)
P (9.9)
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= A P + B P + C P

= shift + thin lens + diffraction

The shift term in (9.9) commutes with the thin-lens term, that is, ABP = BAP . the shift
term also commutes with the diffraction term because ACP = CAP . But the thin-lens
term and the diffraction term do not commute with one another because (BC−CB)P 6= 0,
because

0 6= (BC − CB)P = v(x, z)

[(
−2

d2

dx2

1
v(x, z)

)
+

1
v(x, z)2

dv(x, z)
dx

∂

∂x

]
P

(9.10)

Mathematicians look at the problem this way: Consider any fixed wave propagation
angle so vkx/ω is a constant. Now let frequency ω (and hence kx) tend together to infinity.
The terms in BCP and CBP grow in proportion to the second power of frequency, whereas
those in (BC − CB)P grow as lower powers. There is however, a catch. The material
properties have a “wavelength” too. We can think of (dv/dx)/v as a spatial wavenumber
for the material just as kx is a spatial wavenumber for the wave. If the material contains
a step function change in its properties, that is an infinite spatial frequency (dv/dx)/v for
the material. Then the (BC − CB)P terms dominate near the place where one material
changes to another. If we drop the (BC−CB)P terms, we’ll get the transmission coefficient
incorrect, although everything would be quite fine everywhere else except at the boundary.

A question is, to what degree do the terms commute? The problem is just that of
focusing a slide projector. Adjusting the focus knob amounts to repositioning the thin-
lens term in comparison to the free-space diffraction term. There is a small range of knob
positions over which no one can notice any difference, and a larger range over which the
people in the back row are not disturbed by misfocus. Much geophysical data processing
amounts to downward extrapolation of data. The lateral velocity variation occurring in
the lens term is known only to a limited accuracy and we often wish to determine v(x) by
the extrapolation procedure.

In practice it seems best to forget the (BC−CB)P terms because we hardly ever know
the material properties very well anyway. Then we split, doing the shift and the thin-lens
part analytically while doing the diffraction part by a numerical method.

9.2.5 Validity of the splitting and full-separation concepts

Feel free to skip forward over this subsection which is merely a mathematical proof.

When Fourier transformation is possible, extrapolation operators are complex numbers
like eikzz. With complex numbers a and b there is never any question that ab = ba. Then
both splitting and full separation are always valid.

Suppose Fourier transformation has not been done, or could not be done because of
some spatial variation of material properties. Then extrapolation operators are built up by
combinations of differential operators or their finite-difference representations. Let A and
B denote two such operators. For example, A could be a matrix containing the second x
differencing operator. Seen as matrices, the boundary conditions of a differential operator
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are incorporated in the corners of the matrix. The bottom line is whether AB = BA, so
the question clearly involves the boundary conditions as well as the differential operators.

Extrapolation downward a short distance can be done with the operator (I + A∆z).
Let p denote a vector where components of the vector designate the wavefield at various
locations on the x-axis. Numerical analysis gives us a matrix operator, say A, which enables
us to project forward, say,

p(z + ∆z) = A1 p(z) (9.11)

The subscript on A denotes the fact that the operator may change with z. To get a step
further the operator is applied again, say,

p(z + 2 ∆z) = A2 [A1 p(z)] (9.12)

From an operational point of view the matrix A is never squared, but from an analytical
point of view, it really is squared.

A2 [A1 p(z)] = (A2 A1) p(z) (9.13)

To march some distance down the z-axis we apply the operator many times. Take
an interval z1 − z0, to be divided into N subintervals. Since there are N intervals, an
error proportional to 1/N in each subinterval would accumulate to an unacceptable level
by the time z1 was reached. On the other hand, an error proportional to 1/N2 could only
accumulate to a total error proportional to 1/N . Such an error would disappear as the
number of subintervals increased.

To prove the validity of splitting, we take ∆z = (z1−z0)/N . Observe that the operator
I + (A + B)∆z differs from the operator (I + A∆z)(I + B∆z) by something in proportion
to ∆z2 or 1/N2. So in the limit of a very large number of subintervals, the error disappears.

It is much easier to establish the validity of the full-separation concept. Commutativity
is whether or not AB = BA. Commutativity is always true for scalars. With finite
differencing the question is whether the two matrices commute. Taking A and B to be
differential operators, commutativity is defined with the help of the family of all possible
wavefields P . Then A and B are commutative if ABP = BAP .

The operator representing ∂P/∂z will be taken to be A + B. The simplest numerical
integration scheme using the splitting method is

P (z0 + ∆z) = (I + A∆z) (I + B∆z) P (z0) (9.14)

Applying (9.14) in many stages gives a product of many operators. The operators A and
B are subscripted with j to denote the possibility that they change with z.

P (z1) =
N∏

j=1

[(I + Aj ∆z)(I + Bj ∆z)] P (z0) (9.15)

As soon as A and B are assumed to be commutative, the factors in (9.15) may be rearranged
at will. For example, the A operator could be applied in its entirety before the B operator
is applied:

P (z1) =

 N∏
j=1

(I + Bj ∆z)

  N∏
j=1

(I + Aj ∆z)

P (z0) (9.16)

Thus the full-separation concept is seen to depend on the commutativity of operators.
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9.3 FINITE DIFFERENCING IN (omega,x)-SPACE

The basic method for solving differential equations in a computer is finite differencing. The
nicest feature of the method is that it allows analysis of objects of almost any shape, such as
earth topography or geological structure. Ordinarily, finite differencing is a straightforward
task. The main pitfall is instability. It often happens that a seemingly reasonable approach
to a reasonable physical problem leads to wildly oscillatory, divergent calculations. Luckily,
a few easily learned tricks go a long way, and we will be covering them here.

9.3.1 The lens equation

The parabolic wave-equation operator can be split into two parts, a complicated part called
the diffraction or migration part, and an easy part called the lens part. The lens equation
applies a time shift that is a function of x. The lens equation acquires its name because it
acts just like a thin optical lens when a light beam enters on-axis (vertically). Corrections
for nonvertical incidence are buried somehow in the diffraction part. The lens equation
has an analytical solution, namely, exp[iωt0(x)]. It is better to use this analytical solution
than to use a finite-difference solution because there are no approximations in it to go bad.
The only reason the lens equation is mentioned at all in a chapter on finite differencing
is that the companion diffraction equation must be marched forward along with the lens
equation, so the analytic solutions are marched along in small steps.

9.3.2 First derivatives, explicit method

The inflation of money q at a 10% rate can be described by the difference equation

qt+1 − qt = .10 qt (9.17)
(1.0) qt+1 + (−1.1) qt = 0 (9.18)

This one-dimensional calculation can be reexpressed as a differencing star and a data table.
As such it provides a prototype for the organization of calculations with two-dimensional
partial-differential equations. Consider

differencing star = −1.1 1.0

data table = · · · 2.00 2.20 2.42 2.66 · · · −→ t

Since the data in the data table satisfy the difference equations (9.17) and (9.18), the
differencing star may be laid anywhere on top of the data table, the numbers in the star
may be multiplied by those in the underlying table, and the resulting cross products will
sum to zero. On the other hand, if all but one number (the initial condition) in the data
table were missing then the rest of the numbers could be filled in, one at a time, by sliding
the star along, taking the difference equations to be true, and solving for the unknown data
value at each stage.

Less trivial examples utilizing the same differencing star arise when the numerical con-
stant .10 is replaced by a complex number. Such examples exhibit oscillation as well as
growth and decay.
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9.3.3 First derivatives, implicit method

Let us solve the equation
dq

dt
= 2 r q (9.19)

by numerical methods. The most obvious (but not the only) approach is the basic definition
of elementary calculus. For the time derivative, this is

dq

dt
≈ q(t + ∆t) − q(t)

∆t
(9.20)

Using this in equation (9.19) yields the the inflation-of-money equations (9.17) and (9.18),
where 2 r = .1. Thus in the inflation-of-money equation the expression of dq/dt is centered
at t+∆t/2, whereas the expression of q by itself is at time t. There is no reason the q on the
right side of equation (9.19) cannot be averaged at time t with time t + ∆t, thus centering
the whole equation at t+∆t/2. When writing difference equations, it is customary to write
q(t + ∆t) more simply as qt+1. (Formally one should say t = n∆t and write qn+1 instead
of qt+1, but helpful mnemonic information is carried by using t as the subscript instead of
some integer like n.) Thus, a centered approximation of (9.19) is

qt+1 − qt = 2 r ∆t
qt+1 + qt

2
(9.21)

Letting α = r∆t, this becomes

(1− α) qt+1 − (1 + α) qt = 0 (9.22)

which is representable as the difference star

differencing star = −1− α +1− α

For a fixed ∆t this star gives a more accurate solution to the differential equation (9.19) than
does the star for the inflation of money. The reasons for the names “explicit method”
and “implicit method” above will become clear only after we study a more complicated
equation such as the heat-flow equation.

9.3.4 Explicit heat-flow equation

The heat-flow equation (9.6) is a prototype for migration. Let us recopy the heatflow
equation letting q denote the temperature.

∂q

∂t
=

σ

C

∂2 q

∂x2
(9.23)

Implementing (9.23) in a computer requires some difference approximations for the partial
differentials. As before we use a subscript notation that allows (9.20) to be compacted into

∂q

∂t
≈ qt+1 − qt

∆t
(9.24)
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where t + ∆t is denoted by t + 1. The second-derivative formula may be obtained by doing
the first derivative twice. This leads to qt+2−2 qt+1+qt. The formula is usually treated more
symmetrically by shifting it to qt+1 − 2 qt + qt−1. These two versions are equivalent as ∆t
tends to zero, but the more symmetrical arrangement will be more accurate when ∆t is not
zero. Using superscripts to describe x-dependence gives a finite-difference approximation
to the second space derivative:

∂2q

∂x2
≈ qx+1 − 2 qx + qx−1

∆x2
(9.25)

Inserting the last two equations into the heat-flow equation (and using = to denote ≈)
gives Figure 9.2.

Figure 9.2: Differencing star and
table for one-dimensional heat-flow
equation VIEW fdm/. heatstar

qx
t+1 − qx

t

∆t
=

σ

C

qx+1
t − 2 qx

t + qx−1
t

∆x2
(9.26)

(Of course it is not justified to use = to denote ≈, but the study of errors must be deferred
until the concepts have been laid out. Errors are studied in IEI chapter 4. Letting α =
σ ∆t/(C ∆x2), equation (9.26) becomes

qx
t+1 − qx

t − α (qx+1
t − 2 qx

t + qx−1
t ) = 0 (9.27)

Equation (9.27) can be explicitly solved for q for any x at the particular time t + 1 given q
at all x for the particular time t and hence the name explicit method.

Equation (9.27) can be interpreted geometrically as a computational star in the (x, t)-
plane, as depicted in Table 9.1. By moving the star around in the data table you will note
that it can be positioned so that only one number at a time (the 1) lies over an unknown
element in the data table. This enables the computation of subsequent rows beginning
from the top. By doing this you are solving the partial-differential equation by the finite-
difference method. There are many possible arrangements of initial and side conditions,
such as zero-value side conditions. Next is a computer program for the job and its result.

Heat equation.rt
# Exp l i c i t heat−f l ow equat ion
r e a l q (12 ) , qp (12)
nx = 12
do i a= 1 , 2 { # stab l e and unstab le ca s e s

alpha = ia ∗ . 3 3 33 ; wr i t e (6 , ’ (/” alpha =”, f 5 . 2 ) ’ ) alpha
do i x= 1 ,6 { q ( ix ) = 0 .} # I n i t i a l temperature s tep
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do i x= 7 ,12 { q ( ix ) = 1 .}
do i t= 1 , 6 {

wr i t e (6 , ’ (20 f6 . 2 ) ’ ) ( q ( ix ) , i x =1,nx )
do i x= 2 , nx−1

qp ( ix ) = q( ix ) + alpha ∗( q ( ix −1)−2.∗q ( ix )+q( ix +1))
qp (1 ) = qp ( 2 ) ; qp (nx ) = qp (nx−1)
do i x= 1 , nx

q ( ix ) = qp ( ix )
}

}
c a l l e x i t ( 0 ) ; end

Output.rt

alpha = 0.33
0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00
0 .00 0 .00 0 .00 0 .00 0 .00 0 .33 0 .67 1 .00 1 .00 1 .00 1 .00 1 .00
0 .00 0 .00 0 .00 0 .00 0 .11 0 .33 0 .67 0 .89 1 .00 1 .00 1 .00 1 .00
0 .00 0 .00 0 .00 0 .04 0 .15 0 .37 0 .63 0 .85 0 .96 1 .00 1 .00 1 .00
0 .00 0 .00 0 .01 0 .06 0 .19 0 .38 0 .62 0 .81 0 .94 0 .99 1 .00 1 .00
0 .00 0 .00 0 .02 0 .09 0 .21 0 .40 0 .60 0 .79 0 .91 0 .98 1 .00 1 .00

alpha = 0.67
0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00
0 .00 0 .00 0 .00 0 .00 0 .00 0 .67 0 .33 1 .00 1 .00 1 .00 1 .00 1 .00
0 .00 0 .00 0 .00 0 .00 0 .44 0 .00 1 .00 0 .56 1 .00 1 .00 1 .00 1 .00
0 .00 0 .00 0 .00 0 .30 −0.15 0 .96 0 .04 1 .15 0 .70 1 .00 1 .00 1 .00
0 .00 0 .00 0 .20 −0.20 0 .89 −0.39 1 .39 0 .11 1 .20 0 .80 1 .00 1 .00
0 .13 0 .13 −0.20 0 .79 −0.69 1 .65 −0.65 1 .69 0 .21 1 .20 0 .87 0 .87

9.3.5 The leapfrog method

A difficulty with the given program is that it doesn’t work for all possible numerical values
of α. You can see that when α is too large (when ∆x is too small) the solution in the
interior region of the data table contains growing oscillations. What is happening is that
the low-frequency part of the solution is OK (for a while), but the high-frequency part is
diverging. The mathematical reason the divergence occurs is the subject of mathematical
analysis found in IEI section 2.8. Intuitively, at wavelengths long compared to ∆x or ∆t, we
expect the difference approximation to agree with the true heat-flow equation, smoothing
out irregularities in temperature. At short wavelengths the wild oscillation shows that the
difference equation can behave in a way almost opposite to the way the differential equation
behaves. The short wavelength discrepancy arises because difference operators become equal
to differential operators only at long wavelengths. The divergence of the solution is a fatal
problem because the subsequent round-off error will eventually destroy the low frequencies
too.

By supposing that the instability arises because the time derivative is centered at a
slightly different time t + 1/2 than the second x-derivative at time t, we are led to the
so-called leapfrog method, in which the time derivative is taken as a difference between
t− 1 and t + 1:

∂q

∂t
≈ qt+1 − qt−1

2 ∆t
(9.28)
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Here the result is even worse. An analysis found in IEI shows that the solution is now
divergent for all real numerical values of α. Although it was a good idea to center both
derivatives in the same place, it turns out that it was a bad idea to express a first derivative
over a span of more mesh points. The enlarged operator has two solutions in time instead
of just the familiar one. The numerical solution is the sum of the two theoretical solutions,
one of which, unfortunately (in this case), grows and oscillates for all real values of α.

To avoid all these problems (and get more accurate answers as well), we now turn to
some slightly more complicated solution methods known as implicit methods.

9.3.6 The Crank-Nicolson method

The Crank-Nicolson method solves both the accuracy and the stability problem. Recall
the difference representation of the heat-flow equation (9.27).

qx
t+1 − qx

t = a
(
qx+1
t − 2qx

t + qx−1
t

)
(9.29)

Now, instead of expressing the right-hand side entirely at time t, it will be averaged at t
and t + 1, giving

qx
t+1 − qx

t =
a

2

[(
qx+1
t − 2qx

t + qx−1
t

)
+
(
qx+1
t+1 − 2qx

t+1 + qx−1
t+1

) ]
(9.30)

This is called the Crank-Nicolson method. Defining a new parameter α = a/2, the
difference star is

differencing star =
−α 2α− 1 −α

−α 2α + 1 −α
(9.31)

When placing this star over the data table, note that, typically, three elements at a time
cover unknowns. To say the same thing with equations, move all the t + 1 terms in (9.30)
to the left and the t terms to the right, obtaining

− αqx+1
t+1 + (1 + 2α)qx

t+1 − αqx−1
t+1 = αqx+1

t + (1− 2α)qx
t + αqx−1

t (9.32)

Now think of the left side of equation (9.32) as containing all the unknown quantities and
the right side as containing all known quantities. Everything on the right can be combined
into a single known quantity, say, dx

t . Now we can rewrite equation (9.32) as a set of
simultaneous equations. For definiteness, take the x-axis to be limited to five points. Then
these equations are:

eleft

−α
0
0
0

−α
1 + 2α
−α
0
0

0
−α

1 + 2α
−α
0

0
0
−α

1 + 2α
−α

0
0
0
−α
eright




q1
t+1

q2
t+1

q3
t+1

q4
t+1

q5
t+1

 =


d1

t

d2
t

d3
t

d4
t

d5
t

 (9.33)

Equation (9.32) does not give us each qx
t+1 explicitly, but equation (9.33) gives them implic-

itly by the solution of simultaneous equations.
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The values eleft and eright are adjustable and have to do with the side boundary con-
ditions. The important thing to notice is that the matrix is tridiagonal, that is, except
for three central diagonals all the elements of the matrix in (9.33) are zero. The solution to
such a set of simultaneous equations may be economically obtained. It turns out that the
cost is only about twice that of the explicit method given by (9.27). In fact, this implicit
method turns out to be cheaper, since the increased accuracy of (9.32) over (9.27) allows
the use of a much larger numerical choice of ∆t. A program that demonstrates the stability
of the method, even for large ∆t, is given next.

A tridiagonal simultaneous equation solving subroutine rtris() explained in the next
section. The results are stable, as you can see.

Heat equation -Implicit output.rt

a = 8.00
0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00
0 .17 0 .17 0 .21 0 .30 0 .47 0 .76 0 .24 0 .53 0 .70 0 .79 0 .83 0 .83
0 .40 0 .40 0 .42 0 .43 0 .40 0 .24 0 .76 0 .60 0 .57 0 .58 0 .60 0 .60
0 .44 0 .44 0 .44 0 .44 0 .48 0 .68 0 .32 0 .52 0 .56 0 .56 0 .56 0 .56

Implicit heat equation.rt
# Imp l i c i t heat−f l ow equat ion
r e a l q (12 ) , d (12)
nx=12; a = 8 . ; wr i t e (6 , ’ (/” a =”, f 5 . 2 ) ’ ) a ; alpha = .5∗ a
do i x= 1 ,6 { q ( ix ) = 0 .} # I n i t i a l temperature s tep
do i x= 7 ,12 { q ( ix ) = 1 .}
do i t= 1 ,4 {

wr i t e (6 , ’ (20 f6 . 2 ) ’ ) ( q ( ix ) , i x =1,nx )
d (1 ) = 0 . ; d (nx ) = 0 .
do i x= 2 , nx−1

d( ix ) = q( ix ) + alpha ∗( q ( ix −1)−2.∗q ( ix )+q( ix +1))
c a l l r t r i s ( nx , alpha , −alpha , (1 .+2 .∗ alpha ) , −alpha , alpha , d , q )
}

c a l l e x i t ( 0 ) ; end

9.3.7 Solving tridiagonal simultaneous equations

Much of the world’s scientific computing power gets used up solving tridiagonal simulta-
neous equations. For reference and completeness the algorithm is included here.

Let the simultaneous equations be written as a difference equation

aj qj+1 + bj qj + cj qj−1 = dj (9.34)

Introduce new unknowns ej and fj , along with an equation

qj = ej qj+1 + fj (9.35)

Write (9.35) with shifted index:

qj−1 = ej−1 qj + fj−1 (9.36)
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Insert (9.36) into (9.34)

aj qj+1 + bj qj + cj (ej−1 qj + fj−1) = dj (9.37)

Now rearrange (9.37) to resemble (9.35)

qj =
− aj

bj + cj ej−1
qj+1 +

dj − cj fj−1

bj + cj ej−1
(9.38)

Compare (9.38) to (9.35) to see recursions for the new unknowns ej and fj :

ej =
− aj

bj + cj ej−1
(9.39)

fj =
dj − cj fj−1

bj + cj ej−1
(9.40)

First a boundary condition for the left-hand side must be given. This may involve
one or two points. The most general possible end condition is a linear relation like equation
(9.35) at j = 0, namely, q0 = e0q1 + f0. Thus, the boundary condition must give us
both e0 and f0. With e0 and all the aj , bj , cj , we can use (9.39) to compute all the ej .

On the right-hand boundary we need a boundary condition. The general two-point
boundary condition is

cn−1 qn−1 + eright qn = dn (9.41)

Equation (9.41) includes as special cases the zero-value and zero-slope boundary condi-
tions. Equation (9.41) can be compared to equation (9.36) at its end.

qn−1 = en−1 qn + fn−1 (9.42)

Both qn and qn−1 are unknown, but in equations (9.41) and (9.42) we have two equations,
so the solution is easy. The final step is to take the value of qn and use it in (9.36) to
compute qn−1, qn−2, qn−3, etc. The subroutine rtris() solves equation (9.33) for q where
n=5, endl= eleft, endr= eright, a=c= −α, and b= 1− 2α.

real tridiagonal solver.rt
# r e a l t r i d i a g o n a l equat ion s o l v e r
subrout ine r t r i s ( n , endl , a , b , c , endr , d , q )
i n t e g e r i , n
r e a l q (n ) , d (n ) , a , b , c , den , endl , endr
temporary r e a l f (n ) , e (n)
e (1 ) = −a/ endl ; f ( 1 ) = d (1)/ endl
do i= 2 , n−1 {

den = b+c∗e ( i −1); e ( i ) = −a/den ; f ( i ) = (d( i )−c∗ f ( i −1))/den
}

q (n) = (d(n)−c∗ f (n−1)) / ( endr+c∗e (n−1))
do i= n−1, 1 , −1

q ( i ) = e ( i ) ∗ q ( i +1) + f ( i )
return ; end

If you wish to squeeze every last ounce of power from your computer, note some facts
about this algorithm. (1) The calculation of ej depends on the medium through aj , bj ,
cj , but it does not depend on the solution qj (even through dj). This means that it may
be possible to save and reuse ej . (2) In many computers, division is much slower than
multiplication. Thus, the divisor in (9.39) or (9.40) can be inverted once (and perhaps
stored for reuse).
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9.3.8 Finite-differencing in the time domain

IEI develops time-domain finite differencing methods. Since the earth velocity is unvarying
in time, a “basics only” book such as this omits this topic since you can, in principle,
accomplish the same goals in the ω-domain. There are some applications, however, that
give rise to time-variable coefficients in their partial differential equations. Recursive dip
filtering is one application. Residual migration is another. Some formulations of DMO are
another.

9.4 WAVEMOVIE PROGRAM

Here we see solutions to exercises stated in figure captions. The problems and solutions were
worked over by former teaching assistants. (Lynn, Gonzalez, JFC, Hale, Li, Karrenbach,
Fomel). The various figures are all variations of the computer subroutine wavemovie(). It
makes a movie of a sum of monochromatic waves. As it stands it will produce a movie
(three-dimensional matrix) of waves propagating through a focus. The whole process from
compilation through computation to finally viewing the film loop takes a few seconds.
A sample frame of the movie is in Figure 9.3. It shows a snapshot of the (x, z)-plane.

Figure 9.3: First frame of movie
generated by wavemovie(). (Press
button for movie.) VIEW

fdm/. Mfocus1590

Collapsing spherical waves enter from the top, go through a focus and then expand again.
Notice that the wavefield is small but not zero in the region of geometrical shadow. In
the shadow region you see waves that appear to be circles emanating from point sources
at the top corners. Notice that the amplitudes of expanding spherical waves drop off with
distance and collapsing spherical waves grow towards the focus. We will study the program
that made this figure and see many features of waves and mathematics.

9.4.1 Earth surface boundary condition

The program that created Figure 9.3 begins with an initial condition along the top boundary,
and then this initial wavefield is extrapolated downward. So, the first question is: what is the
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mathematical function of x that describes a collapsing spherical (actually cylindrical) wave?
An expanding spherical wave has an equation exp[−iω(t− r/v)], where the radial distance
is r =

√
(x− x0)2 + (z − z0)2 from the source. For a collapsing spherical wave we need

exp[−iω(t+r/v)]. Parenthetically, I’ll add that the theoretical solutions are not really these,
but something more like these divided by

√
r; actually they should be a Hankel functions,

but the picture is hardly different when the exact initial condition is used. If you have been
following this analysis, you should have little difficulty changing the initial conditions in
the program to create the downgoing plane wave shown in Figure 9.4. Notice the weakened

Figure 9.4: Specify program changes
that give an initial plane wave prop-
agating downward at an angle of 15◦

to the right of vertical. VIEW

fdm/. Mdipplane90

waves in the zone of theoretical shadow that appear to arise from a point source on the
top corner of the plot. You have probably learned in physics classes of “standing waves”.
This is what you will see near the reflecting side boundary if you recompute the plot with
a single frequency nw=1. Then the plot will acquire a “checkerboard” appearance near the
reflecting boundary. Even this figure with nw=4 shows the tendency.

9.4.2 Frames changing with time

For a film loop to make sense to a viewer, the subject of the movie must be periodic, and
organized so that the last frame leads naturally into the first. In the movie created by
wavemovie() there is a parameter lambda that controls the basic repetition rate of wave
pulses fired onto the screen from the top. When a wavelet travels one-quarter of the way
down the frame, another is sent in. This is defined by the line

lambda = nz * dz / 4 =
Nz ∆z

4

Take any point in (x, z)-space. The signal there will be a superposition of sinusoids of
various frequencies, ωj . We can choose what frequencies we will use in the calculation and
what amplitudes and phases we will attach to the initial conditions at those frequencies.
Here we will simply take uniformly spaced sinusoids of unit amplitude and no phase. The
nw frequencies are ωj = ∆ω, 2∆ω, ..., nw∆ω. The lowest frequency dw = ∆ω must be
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inversely proportional to the wavelength lambda = λ

dw = v * pi2 / lambda =
2 π v

λ

Finally, the time duration of the film loop must equal the period of the lowest-frequency
sinusoid

Nt ∆t =
2 π

∆ω

This latter equation defines the time interval on the line

dt = pi2 / ( nt * dw )

If you use more frequencies, you might like the result better because the wave pulses will
be shorter, and the number of wavelengths between the pulses will increase. Thus the
quiet zones between the pulses will get quieter. The frequency components can be weighted
differently—but this becomes a digression into simple Fourier analysis.

2-D wave movie.rt
# from par : i n t e g e r n3 : nt=12, n2 : nx=48, n1 : nz=96, nw=2, nlam=4
# from par : r e a l dx=2, dz=1, v=1
#
subrout ine wavemovie ( nt , nx , nz , nw, nlam , dx , dz , v , p , cd , q )
i n t e g e r i t , nt , ix , nx , i z , nz , iw ,nw, nlam
r e a l dx , dz , v , phase , pi2 , z0 , x0 , dt , dw, lambda ,w, wov , x , p( nz , nx , nt )
complex aa , a , b , c , c s h i f t , cd (nx ) , q (nx )
lambda=nz∗dz/nlam ; pi2 =2.∗3 .141592 ; dw=v∗pi2 /lambda ; dt=pi2 /( nt∗dw)
x0 = nx∗dx /3 ; z0 = nz∗dz/3
c a l l nu l l ( p , nz∗nx∗nt )
do iw = 1 ,nw { # superimpose nw f r e qu en c i e s

w = iw∗dw; wov = w/v # frequency / v e l o c i t y
do i x = 1 ,nx { # i n i t i a l c ond i t i on s for a

x = ix ∗dx−x0 ; # c o l l a p s i n g s ph e r i c a l wave
phase = −wov∗ s q r t ( z0∗∗2+x∗∗2)
q ( ix ) = cexp ( cmplx ( 0 . , phase ) )
}

aa = ( 0 . , 1 . ) ∗ dz / (4 .∗ dx∗∗2∗wov) # t r i d i a g o n a l matrix c o e f f i c i e n t s
a = −aa ; b = 1.+2.∗ aa ; c = −aa
do i z = 1 , nz { # ext r apo l a t i on in depth

do i x = 2 ,nx−1 # d i f f r a c t i o n term
cd ( ix ) = aa∗q ( ix+1) + (1. −2.∗ aa )∗q ( ix ) + aa∗q ( ix −1)

cd (1 ) = 0 . ; cd (nx ) = 0 .
c a l l c t r i s ( nx,−a , a , b , c ,−c , cd , q )

# So lve s complex t r i d i a g on a l equat ions
c s h i f t = cexp ( cmplx ( 0 . , wov∗dz ) )
do i x = 1 ,nx # s h i f t i n g term

q( ix ) = q( ix ) ∗ c s h i f t
do i t =1,nt { # evo lu t i on in time

c s h i f t = cexp ( cmplx ( 0. ,−w∗ i t ∗dt ) )
do i x = 1 ,nx

p( iz , ix , i t ) = p( iz , ix , i t ) + q ( ix )∗ c s h i f t
}

}
}

return ; end
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9.4.3 Internals of the film-loop program

The differential equation solved by the program is equation (9.5), copied here as

∂P

∂z
=

i ω

v(x, z)
P +

v

− i ω 2
∂2P

∂x2
(9.43)

For each ∆ z-step the calculation is done in two stages. The first stage is to solve

∂P

∂z
=

v

− i ω 2
∂2P

∂x2
(9.44)

Using the Crank-Nicolson differencing method this becomes

px
z+1 − px

z

∆z
=

v

−iω2

(
px+1

z − 2px
z + px−1

z

2 ∆x2
+

px+1
z+1 − 2px

z+1 + px−1
z+1

2 ∆x2

)
(9.45)

Absorb all the constants into one and define

α =
v ∆z

− i ω 4 ∆x2
(9.46)

getting

px
z+1 − px

z = α
[
( px+1

z − 2 px +
z px−1

z ) + ( px+1
z+1 − 2 px

z+1 + px−1
z+1)

]
(9.47)

Bring the unknowns to the left:

− αpx+1
z+1 + (1 + 2α)px

z+1 − αpx−1
z+1 = αpx+1

z + (1− 2α)px
z + αpx−1

z (9.48)

We will solve this as we solved equations (9.32) and (9.33). The second stage is to solve the
equation

∂P

∂z
=

i ω

v
P (9.49)

analytically by
P (z + ∆z) = P (z) ei∆z ω/v (9.50)

By alternating between (9.48) and (9.50), which are derived from (9.44) and (9.49), the
program solves (9.43) by a splitting method. The program uses the tridiagonal solver
discussed earlier, like subroutine rtris() on page 157 except that version needed here,
ctris(), has all the real variables declared complex.

Figure 9.5 shows a change of initial conditions where the incoming wave on the top
frame is defined to be an impulse, namely, p(x, z = 0) = (· · · , 0, 0, 1, 0, 0, · · ·). The result
is alarmingly noisy. What is happening is that for any frequencies anywhere near the
Nyquist frequency, the difference equation departs from the differential equation that it
should mimic. This problem is addressed, analyzed, and ameliorated in IEI. For now, the
best thing to do is to avoid sharp corners in the initial wave field.
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Figure 9.5: Observe and describe
various computational artifacts by
testing the program using a point
source at (x, z) = (xmax/2,0). Such
a source is rich in the high spa-
tial frequencies for which difference
equations do not mimic their dif-
ferential counterparts. VIEW

fdm/. Mcompart90

9.4.4 Side-boundary analysis

In geophysics, we usually wish the side-boundary question did not arise. The only real
reason for side boundaries is that either our survey or our processing activity is necessarily
limited in extent. Given that side boundaries are inevitable, we must think about them. The
subroutine wavemovie() included zero-slope boundary conditions. This type of boundary
treatment resulted from taking

d(1) = 0. ; d(nx) = 0.

and in the call to ctris taking

endl = - a ; endr = - c

A quick way to get zero-value side-boundary conditions is to take

endl = endr = 1030 ≈ ∞

Compare the side-boundary behavior of Figures 9.6 and 9.7.

The zero slope boundary condition is explicitly visible as identical signal on the two
end columns. Likewise, the zero-value side boundary condition has a column of zero-valued
signal on each side.

9.4.5 Lateral velocity variation

Lateral velocity variation v = v(x) has not been included in the program, but it is not
difficult to install. It enters in two places. It enters first in equation (9.50). If the wavefield
is such that kx is small enough, then equation (9.50) is the only place it is needed. Second,
it enters in the tridiagonal coefficients through the v in equation (9.46). The so-called
thin-lens approximation of optics seems to amount to including the equation (9.50) part
only. An example of lateral velocity variation is in Figure 9.8.
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Figure 9.6: Given that the domain
of computation is 0 ≤ x ≤ xmax and
0 ≤ z ≤zmax, how would you mod-
ify the initial conditions at z = 0 to
simulate a point source at (x, z) =
(xmax/3, -zmax/2)? VIEW

fdm/. Mexpandsphere90

Figure 9.7: Modify the pro-
gram so that zero-slope side bound-
aries are replaced by zero-value
side boundaries. VIEW

fdm/. Mzeroslope90

Figure 9.8: Make changes to the
program to include a thin-lens term
with a lateral velocity change of 40%
across the frame produced by a con-
stant slowness gradient. Identify
other parts of the program which
are affected by lateral velocity vari-
ation. You need not make these
other changes. Why are they ex-
pected to be small? VIEW

fdm/. Mlateralvel90
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9.4.6 Migration in (omega,x)-space

The migration program is similar to the film loop program. But there are some differences.
The film loop program has “do loops” nested four deep. It produces results for many values
of t. Migration requires a value only at t = 0. So one loop is saved, which means that for
the same amount of computer time, the space volume can be increased. Unfortunately, loss
of a loop seems also to mean loss of a movie. With ω-domain migration, it seems that the
only interesting thing to view is the input and the output.

The input for this process will probably be field data, unlike for the film loop movie,
so there will not be an analytic representation in the ω-domain. The input will be in the
time domain and will have to be Fourier transformed. The beginning of the program defines
some pulses to simulate field data. The pulses are broadened impulses and should migrate to
approximate semicircles. Exact impulses were not used because the departure of difference
operators from differential operators would make a noisy mess.

Next the program Fourier transforms the pseudodata from the time domain into the
ω-frequency domain.

Then comes the downward continuation of each frequency. This is a loop on depth z
and on frequency ω. Either of these loops may be on the inside. The choice can be made
for machine-dependent efficiency.

For migration an equation for upcoming waves is required, unlike the downgoing wave
equation required for the film loop program. Change the sign of the z-axis in equation
(9.43). This affects the sign of aa and the sign of the phase of cshift.

Another difference with the film loop program is that the input now has a time axis
whereas the output is still a depth axis. It is customary and convenient to reorganize the
calculation to plot traveltime depth, instead of depth, making the vertical axes on both
input and output the same. Using τ = z/v , equivalently dτ/dz = 1/v , the chain rule gives

∂

∂z
=

∂τ

∂z

∂

∂τ
=

1
v

∂

∂τ
(9.51)

Substitution into (9.43) gives

∂P

∂τ
= − i ω P − v2

− i ω 2
∂2P

∂x2
(9.52)

In the program, the time sample size dt = ∆t and the traveltime depth sample dtau
= ∆τ are taken to be unity, so the maximum frequency is the Nyquist. Notice that the
frequency loop covers only the negative frequency axis. The positive frequencies serve only
to keep the time function real, a task that is more quickly done by simply taking the real
part. A program listing follows

Example.rt
#% Migrat ion in the (omega , x , z)−domain
program k j a r t j a c {
r e a l p (48 , 64 ) , pi , alpha , dt , dtau , dw, w0 , omega
complex cp (48 , 64 ) , cd (48 ) , ce (48 ) , c f ( 48 ) , aa , a , b , c , c s h i f t
i n t e g e r ix , nx , i z , nz , iw , nw, i t , nt , e s i z e
nt= 64 ; nz= nt ; nx= 48 ; p i= 3.141592
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dt= 1 . ; dtau= 1 . ; w0=−pi /dt ; dw= 2∗ pi /( dt∗nt ) ; nw= nt /2 ;
alpha = .25 # alpha = v∗v∗dtau /(4∗dx∗dx )

do i z= 1 , nz { do i x =1,nx { p( ix , i z ) = 0 . ; cp ( ix , i z )=0. }}
# Broadened impulse source
do i t= nt /3 , nt , nt /4{
do i x= 1 , 4 {

cp ( ix , i t ) = (5.− i x ) ; cp ( ix , i t +1) = (5.− i x )
}}

c a l l f t 2 a x i s ( 0 , 1 . , nx , nt , cp )
do i z= 1 , nz {
do iw= 2 , nw { omega = w0 + dw∗( iw−1)

aa = − alpha /( (0 . , −1 . )∗ omega )
a = −aa ; b = 1.+2.∗ aa ; c = −aa
do i x= 2 , nx−1

cd ( ix ) = aa∗cp ( ix +1, iw ) + (1. −2.∗ aa )∗ cp ( ix , iw ) + aa∗cp ( ix −1, iw )
cd (1 ) = 0 . ; cd (nx ) = 0 .
c a l l c t r i s ( nx , −a , a , b , c , −c , cd , cp (1 , iw ) )
c s h i f t = cexp ( cmplx ( 0. ,−omega∗dtau ) )
do i x= 1 , nx

cp ( ix , iw ) = cp ( ix , iw ) ∗ c s h i f t
do i x= 1 , nx

p( ix , i z ) = p( ix , i z )+cp ( ix , iw ) # p( t=0) = Sum P(omega )
}}

e s i z e=4
to h i s t o r y : i n t e g e r n1 : nx , n2 : nz , e s i z e
c a l l s r i t e ( ’ out ’ , p , nx∗nz∗4 )
c a l l h c l o s e ( )
}

The output of the program is shown in Figure 9.9. Mainly, you see semicircle approx-
imations. There are also some artifacts at late time that may be ω-domain wraparounds.
The input pulses were apparently sufficiently broad-banded in dip that the figure provides a
preview of the fact, to be proved later, that the actual semicircle approximation is an ellipse
going through the origin. Output of the program kjartjac: semicircle approximations.

VIEW

Notice that the waveform of the original pulses was a symmetric function of time,
whereas the semicircles exhibit a waveform that is neither symmetric nor antisymmetric, but
is a 45◦ phase-shifted pulse. Waves from a point in a three-dimensional world would have a
phase shift of 90◦. Waves from a two-dimensional exploding reflector in a three-dimensional
world have the 45◦ phase shift.

9.5 HIGHER ANGLE ACCURACY

A wave-extrapolation equation is an expression for the derivative of a wavefield (usually in
the depth z direction). When the wavefield and its derivative are known, extrapolation can
proceed by various numerical representations of

P (z + ∆z) = P (z) + ∆z
dP

dz
(9.53)
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Figure 9.9: kjartjac fdm/. kjartjac

Extrapolation is moving information from z to z + ∆z and what we need to do it is a way
to find dP/dz. Two theoretical methods for finding dP/dz are the original transformation
method and the newer dispersion-relation method.

9.5.1 Another way to the parabolic wave equation

Here we review the historic “transformation method” of deriving the parabolic wave equa-
tion.

A vertically downgoing plane wave is represented mathematically by the equation

P (t, x, z) = P0 e− iω (t− z/v) (9.54)

In this expression, P0 is absolutely constant. A small departure from vertical incidence can
be modeled by replacing the constant P0 with something, say, Q(x, z), which is not strictly
constant but varies slowly.

P (t, x, z) = Q(x, z) e− i ω (t− z/v) (9.55)

Inserting (9.55) into the scalar wave equation Pxx + Pzz = Ptt/v2 yields

∂2

∂x2
Q +

(
iω

v
+

∂

∂z

)2

Q = − ω2

v2
Q

∂2Q

∂x2
+

2 iω

v

∂Q

∂z
+

∂2Q

∂z2
= 0 (9.56)

The wave equation has been reexpressed in terms of Q(x, z). So far no approximations
have been made. To require the wavefield to be near to a plane wave, Q(x, z) must be near
to a constant. The appropriate means (which caused some controversy when it was first
introduced) is to drop the highest depth derivative of Q, namely, Qzz. This leaves us with
the parabolic wave equation

∂Q

∂z
=

v

− 2 iω

∂2Q

∂x2
(9.57)
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I called equation (9.57) the 15◦ equation. After using it for about a year I discovered
a way to improve on it by estimating the dropped ∂zz term. Differentiate equation (9.57)
with respect to z and substitute the result back into equation (9.56) getting

∂2Q

∂x2
+

2 iω

v

∂Q

∂z
+

v

− 2 iω

∂3Q

∂z∂x2
= 0 (9.58)

I named equation (9.58) the 45◦ migration equation. It is first order in ∂z, so it requires only
a single surface boundary condition, however, downward continuation will require something
more complicated than equation (9.53).

The above approach, the transformation approach, was and is very useful. But people
were confused by the dropping and estimating of the ∂zz derivative, and a philosophically
more pleasing approach was invented by Francis Muir, a way of getting equations to extrap-
olate waves at wider angles by fitting the dispersion relation of a semicircle by polynomial
ratios.

9.5.2 Muir square-root expansion

Muir’s method of finding wave extrapolators seeks polynomial ratio approximations to a
square-root dispersion relation. Then fractions are cleared and the approximate dispersion
relation is inverse transformed into a differential equation.

Recall equation (9.1)

kz =
ω

v

√
1 − v2 k2

x

ω2
(9.59)

To inverse transform the z-axis we only need to recognize that ikz corresponds to ∂/∂z.
Getting into the x-domain, however, is not simply a matter of substituting a second x
derivative for k2

x. The problem is the meaning of the square root of a differential operator.
The square root of a differential operator is not defined in undergraduate calculus courses
and there is no straightforward finite difference representation. The square root becomes
meaningful only when it is regarded as some kind of truncated series expansion. It is shown
in IEI that the Taylor series is a poor choice. Francis Muir showed that my original 15◦

and 45◦ methods were just truncations of a continued fraction expansion. To see this, define

X =
vkx

ω
and R =

vkz

ω
(9.60)

With the definitions (9.60) equation (9.59) is more compactly written as

R =
√

1 − X2 (9.61)

which you recognize as meaning that cosine is the square root of one minus sine squared.
The desired polynomial ratio of order n will be denoted Rn, and it will be determined by
the recurrence

Rn+1 = 1 − X2

1 + Rn
(9.62)
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The recurrence is a guess that we verify by seeing what it converges to (if it converges). Set
n =∞ in (9.62) and solve

R∞ = 1 − X2

1 + R∞

R∞ (1 + R∞) = 1 + R∞ − X2

R2 = 1 − X2 (9.63)

The square root of (9.63) gives the required expression (9.61). Geometrically, (9.63) says
that the cosine squared of the incident angle equals one minus the sine squared and truncat-
ing the expansion leads to angle errors. Muir said, and you can verify, that his recurrence
relationship formalizes what I was doing by re-estimating the ∂zz term. Although it is
pleasing to think of large values of n, in real life only the low-order terms in the expansion
are used. The first four truncations of Muir’s continued fraction expansion beginning from
R0 = 1 are

5◦ : R0 = 1 (9.64)

15◦ : R1 = 1−
X2

2

45◦ : R2 = 1−
X2

2−
X2

2

60◦ : R3 = 1−
X2

2−
X2

2−
X2

2

For various historical reasons, the equations in the above equations are often referred
to as the 5◦, 15◦, and 45◦ equations, respectively, the names giving a reasonable qualitative
(but poor quantitative) guide to the range of angles that are adequately handled. A trade-
off between complexity and accuracy frequently dictates choice of the 45◦ equation. It then
turns out that a slightly wider range of angles can be accommodated if the recurrence is
begun with something like R0 = cos 45◦. Figure 9.10 shows some plots.

Figure 9.10: Dispersion relation of
equation 9.65. The curve labeled
45◦+ was constructed with R0 =
cos 45◦. It fits exactly at 0◦ and 45◦.
VIEW fdm/. disper
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9.5.3 Dispersion relations

Substituting the definitions (9.60) into equation (9.65) et. seq. gives dispersion relationships
for comparison to the exact expression (9.59).

5◦ : kz =
ω

v
(9.65)

15◦ : kz =
ω

v
−

vk2
x

2ω

45◦ : kz =
ω

v
−

k2
x

2
ω

v
−

vk2
x

2ω

Identification of ikz with ∂/∂z converts the dispersion relations (9.65) into the differen-
tial equations

5◦ :
∂P

∂z
= i

(
ω

v

)
P (9.66)

15◦ :
∂P

∂z
= i

(
ω

v
−

vk2
x

2ω

)
P

45◦ :
∂P

∂z
= i

ω

v
−

k2
x

2
ω

v
−

vk2
x

2ω

P

which are extrapolation equations for when velocity depends only on depth.

The differential equations above in Table 9.4 were based on a dispersion relation that
in turn was based on an assumption of constant velocity. Surprisingly, these equations
also have validity and great utility when the velocity is depth-variable, v = v(z). The
limitation is that the velocity be constant over each depth “slab” of width ∆z over which
the downward-continuation is carried out.

9.5.4 The xxz derivative

The 45◦ diffraction equation differs from the 15◦ equation by the inclusion of a ∂3/∂x2∂z
-derivative. Luckily this derivative fits on the six-point differencing star

1
∆x2 ∆z

−1 2 −1
1 −2 1

So other than modifying the six coefficients on the star, it adds nothing to the com-
putational cost. Using this extra term allows in programs like subroutine wavemovie() on
page 160 yields wider angles.
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Figure 9.11: Figure 9.3 including
the 45◦ term, ∂xxz, for the collapsing
spherical wave. What changes must
be made to subroutine wavemovie()
to get this result? Mark an X at the
theoretical focus location. VIEW

fdm/. Mfortyfive90

Figure 9.12: The accuracy of the
x-derivative may be improved by a
technique that is analyzed in IEI
p 262-265. Briefly, instead of rep-
resenting k2

x ∆x2 by the tridiago-
nal matrix T with (−1, 2,−1) on
the main diagonal, you use T/(I −
T/6). Modify the extrapolation
analysis by multiplying through by
the denominator. Make the neces-
sary changes to the 45◦ collapsing
wave program. Left without 1/6
trick; right, with 1/6 trick. VIEW

fdm/. Mhi45b90
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Theory predicts that in two dimensions, waves going through a focus suffer a 90◦ phase
shift. You should be able to notice that a symmetrical waveform is incident on the focus,
but an antisymmetrical waveform emerges. This is easily seen in Figure 9.12.

In migrations, waves go just to a focus, not through it. So the migration impulse response
in two dimensions carries a 45◦ phase shift. Even though real life is three dimensional,
the two-dimensional response is appropriate for migrating seismic lines where focusing is
presumed to arise from cylindrical, not spherical, reflectors.

9.5.5 Time-domain parabolic equation

The parabolic wave extrapolation equation (9.57) is readily expressed in the time domain
(instead of the ω-domain). Simply replace −iω by a time derivative.

∂2q

∂z ∂t
=

v

2
∂2q

∂x2
(9.67)

In principal we never need the time domain because the earth velocity is a constant
function of time. In practice, processes (like DMO) might involve time-dependent coeffi-
cients. In the time domain, a more complicated numerical procedure is required (details in
my earlier book FGDP). An advantage of the time domain is that there is absolutely zero
noise preceding a first arrival — no time-domain wraparound. Another advantage is that
all signals are real valued — no complex arithmetic. A disadvantage arises when the t-axis
is not sampled densely enough — the propagation velocity becomes frequency dispersive.

9.5.6 Wavefront healing

When a planar (or spherical) wavefront encounters an inhomogeneity it can be said to be
“damaged”. If it continues to propagate for a long time, it might be said to “heal”. Here
we construct an example of this phenomena and see that while there is some healing on
the front edge, the overall destruction continues. The original simplicity of the wavefield is
further destroyed by further propagation.

We begin with a plane wave. Then we deform it as though it had propagated through
a slow lens of thickness h(x) = sinx. This is shown in the first frame of Figure 9.13. In
subsequent frames the wavefront has been extrapolated in z using equation (9.67).

In the second frame we notice convex portions of the wavefront weakening by something
like spherical divergence while concave portions of the wavefront strengthen by focusing.

In the third frame we have moved beyond the focus and we see something like a parabolic
wavefront emerge from each focus. Now we notice that the original waveform was a doublet
whereas the parabolic wavefronts all have a single polarity. Focusing in 2-D has turned an
asymmetrical wavelet into a symmetrical one.

In the fourth frame we see the paraboloids enlarging and crossing over one another.
Inspect the top or the bottom edges of the 4th and 5th frames. You’ll notice that the
intersections of the wavefronts on these side boundaries are moving forward — towards the
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Figure 9.13: Snapshots of a wavefront propagating to the right. The picture frame moves
along with the wavefront. (Press button for movie.) VIEW fdm/. heal

initial onset. This is peculiar. The phase fronts are moving forward while the energy is
falling further behind the original onset.

Finally, in the last frame, we notice the that the front edge of the wave packet has
“healed” into a plane wave — a plane wave like before encounting the original sin(x) velocity
lens. I felt some delight on first viewing this picture. I had spent a couple years of my life
looking at seismograms of earthquakes and nuclear explosions. For each event I had a seismic
trace at each of about a dozen locations. Each trace would have about a hundred wiggles.
Nothing would be consistent from trace to trace except for maybe the half wavelength of
the first arrivals. Quite often these all would luckily begin with the same polarity but then
become rapidly incoherent. Take a dozen random locations on the (vertical) x-axis of the
last frame in Figure 9.13. You’ll find the dozen time signals agree on the first arrival but
are randomly related at later times just as usually seen with nuclear explosion data.

Perhaps if we had very dense recordings of earthquakes we could extrapolate the wave-
field back towards its source and watch the waveform get simpler as we proceeded backward.
Often throughout my career I’ve wondered how I might approach this goal. As we step back
in z we wish, at each step, that we could find the best lens(x). My next book (GEE) has
some clues, but nothing yet concrete enough to begin. We need to optimize some (yet
unknown) expression of simplicity of the wavefield(t, x) at the next z as a function of the
lens between here and there.



Chapter 10

Imaging in shot-geophone space

Till now, we have limited our data processing to midpoint-offset space. We have not ana-
lyzed reflection data directly in shot-geophone space. In practice this is often satisfactory.
Sometimes it is not. The principal factor that drives us away from (y, h)-space into (s, g)-
space is lateral velocity variation v(x, z) 6= v(z). In this chapter, we will see how migration
can be performed in the presence of v(x, z) by going to (s, g)-space.

Unfortunately, this chapter has no prescription for finding v(x, z), although we will see
how the problem manifests itself even in apparently stratified regions. We will also see why,
in practice, amplitudes are dangerous.

10.1 TOMOGRAPY OF REFLECTION DATA

Sometimes the earth strata lie horizontally with little irregularity. There we may hope to
ignore the effects of migration. Seismic rays should fit a simple model with large reflection
angles occurring at wide offsets. Such data should be ideal for the measurement of reflection
coefficient as a function of angle, or for the measurement of the earth acoustic absorptivity
1/Q. In his doctoral dissertation, Einar Kjartansson reported such a study. The results
were so instructive that the study will be thoroughly reviewed here. I don’t know to what
extent the Grand Isle gas field typifies the rest of the earth, but it is an excellent place to
begin learning about the meaning of shot-geophone offset.

10.1.1 The grand isle gas field: a classic bright spot

The dataset Kjartansson studied was a seismic line across the Grand Isle gas field, off the
shore of Louisiana. The data contain several classic “bright spots” (strong reflections) on
some rather flat undisturbed bedding. Of interest are the lateral variations in amplitude on
reflections at a time depth of about 2.3 seconds on Figure 10.3. It is widely believed that
such bright spots arise from gas-bearing sands.

Theory predicts that reflection coefficient should be a function of angle. For an anoma-
lous physical situation like gas-saturated sands, the function should be distinctive. Evidence
should be found on common-midpoint gathers like those shown in Figure 10.1. Looking at

173
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Figure 10.1: Top left is shot point 210; top right is shot point 220. No processing has
been applied to the data except for a display gain proportional to time. Bottom shows shot
points 305 and 315. (Kjartansson) VIEW sg/. kjcmg
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any one of these gathers you will note that the reflection strength versus offset seems to
be a smooth, sensibly behaved function, apparently quite measurable. Using layered media
theory, however, it was determined that only the most improbably bizarre medium could
exhibit such strong variation of reflection coefficient with angle, particularly at small angles
of incidence. (The reflection angle of the energy arriving at wide offset at time 2.5 seconds
is not a large angle. Assuming constant velocity, arccos(2.3/2.6) = 28◦). Compounding the
puzzle, each common-midpoint gather shows a different smooth, sensibly behaved, measur-
able function. Furthermore, these midpoints are near one another, ten shot points spanning
a horizontal distance of 820 feet.

10.1.2 Kjartansson’s model for lateral variation in amplitude

The Grand Isle data is incomprehensible in terms of the model based on layered media
theory. Kjartansson proposed an alternative model. Figure 10.2 illustrates a geometry in
which rays travel in straight lines from any source to a flat horizontal reflector, and thence
to the receivers. The only complications are “pods” of some material that is presumed
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Figure 10.2: Kjartansson’s model. The model on the top produces the disturbed data
space sketched below it. Anomalous material in pods A, B, and C may be detected by its
effect on reflections from a deeper layer. VIEW sg/. kjidea

to disturb seismic rays in some anomalous way. Initially you may imagine that the pods
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absorb wave energy. (In the end it will be unclear whether the disturbance results from
energy focusing or absorbing).

Pod A is near the surface. The seismic survey is affected by it twice—once when the
pod is traversed by the shot and once when it is traversed by the geophone. Pod C is near
the reflector and encompasses a small area of it. Pod C is seen at all offsets h but only at
one midpoint, y0. The raypath depicted on the top of Figure 10.2 is one that is affected by
all pods. It is at midpoint y0 and at the widest offset hmax. Find the raypath on the lower
diagram in Figure 10.2.

Pod B is part way between A and C. The slope of affected points in the (y, h)-plane is
part way between the slope of A and the slope of C.

Figure 10.3 shows a common-offset section across the gas field. The offset shown is the
fifth trace from the near offset, 1070 feet from the shot point. Don’t be tricked into thinking
the water was deep. The first break at about .33 seconds is wide-angle propagation.

The power in each seismogram was computed in the interval from 1.5 to 3 seconds.
The logarithm of the power is plotted in Figure 10.4a as a function of midpoint and offset.
Notice streaks of energy slicing across the (y, h)-plane at about a 45◦ angle. The strongest
streak crosses at exactly 45◦ through the near offset at shot point 170. This is a missing
shot, as is clearly visible in Figure 10.3. Next, think about the gas sand described as pod C
in the model. Any gas-sand effect in the data should show up as a streak across all offsets
at the midpoint of the gas sand—that is, horizontally across the page. I don’t see such
streaks in Figure 10.4a. Careful study of the figure shows that the rest of the many clearly
visible streaks cut the plane at an angle noticeably less than ±45◦. The explanation for the
angle of the streaks in the figure is that they are like pod B. They are part way between
the surface and the reflector. The angle determines the depth. Being closer to 45◦ than to
0◦, the pods are closer to the surface than to the reflector.

Figure 10.4b shows timing information in the same form that Figure 10.4a shows am-
plitude. A CDP stack was computed, and each field seismogram was compared to it. A
residual time shift for each trace was determined and plotted in Figure 10.4b. The timing
residuals on one of the common-midpoint gathers is shown in Figure 10.5.

The results resemble the amplitudes, except that the results become noisy when the
amplitude is low or where a “leg jump” has confounded the measurement. Figure 10.4b
clearly shows that the disturbing influence on timing occurs at the same depth as that which
disturbs amplitudes.

The process of inverse slant stack (not described in this book) enables one to determine
the depth distribution of the pods. This distribution is displayed in figures 10.4c and 10.4d.

10.1.3 Rotten alligators

The sediments carried by the Mississippi River are dropped at the delta. There are sand
bars, point bars, old river bows now silted in, a crow’s foot of sandy distributary channels,
and between channels, swampy flood plains are filled with decaying organic material. The
landscape is clearly laterally variable, and eventually it will all sink of its own weight, aided
by growth faults and the weight of later sedimentation. After it is buried and out of sight
the lateral variations will remain as pods that will be observable by the seismologists of
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Figure 10.3: A constant-offset section across the Grand Isle gas field. The offset shown is
the fifth from the near trace. (Kjartansson, Gulf) VIEW sg/. kjcos
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Figure 10.4: (a) amplitude (h,y), (b) timing (h,y) (c) amplitude (z,y), (d) timing (d,y)
VIEW sg/. kja
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Figure 10.5: Midpoint gather 220
(same as timing of (h,y) in Fig-
ure 10.4b) after moveout. Shown is
a one-second window centered at 2.3
seconds, time shifted according to an
NMO for an event at 2.3 seconds,
using a velocity of 7000 feet/sec.
(Kjartansson) VIEW sg/. kjmid

the future. These seismologists may see something like Figure 10.6. Figure 10.6 shows a
three-dimensional seismic survey, that is, the ship sails many parallel lines about 70 meters
apart. The top plane, a slice at constant time, shows buried river meanders.

10.1.4 Focusing or absorption?

Highly absorptive rocks usually have low velocity. Behind a low velocity pod, waves should
be weakened by absorption. They should also be strengthened by focusing. Which effect
dominates? How does the phenomenon depend on spatial wavelength? Maybe you can
figure it out knowing that black on Figure 10.4c denotes low amplitude or high absorption,
and black on Figure 10.4d denotes low velocities.

I’m inclined to believe the issue is focusing, not absorption. Even with that assumption,
however, a reconstruction of the velocity v(x, z) for this data has never been done. This
falls within the realm of “reflection tomography”, a topic too difficult to cover here.
Tomography generally reconstructs a velocity model v(x, z) from travel time anomalies. It
is worth noticing that with this data, however, the amplitude anomalies seem to give more
reliable information.

EXERCISES:

1 Consider waves converted from pressure P waves to shear S waves. Assume an S-wave
speed of about half the P -wave speed. What would Figure 10.2 look like for these
waves?

10.2 SEISMIC RECIPROCITY IN PRINCIPLE AND IN PRACTICE

The principle of reciprocity says that the same seismogram should be recorded if the
locations of the source and geophone are exchanged. A physical reason for the validity
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Figure 10.6: Three-dimensional seismic data from the Gulf of Thailand. Data planes from
within the cube are displayed on the faces of the cube. The top plane shows ancient river
meanders now submerged. (Dahm and Graebner) VIEW sg/. meander

of reciprocity is that no matter how complicated a geometrical arrangement, the speed of
sound along a ray is the same in either direction.

Mathematically, the reciprocity principle arises because symmetric matrices arise. The
final result is that very complicated electromechanical systems mixing elastic and electro-
magnetic waves generally fulfill the reciprocal principle. To break the reciprocal principle,
you need something like a windy atmosphere so that sound going upwind has a different
velocity than sound going downwind.

Anyway, since the impulse-response matrix is symmetric, elements across the matrix
diagonal are equal to one another. Each element of any pair is a response to an impulsive
source. The opposite element of the pair refers to an experiment where the source and
receiver have had their locations interchanged.

A tricky thing about the reciprocity principle is the way antenna patterns must be
handled. For example, a single vertical geophone has a natural antenna pattern. It can-
not see horizontally propagating pressure waves nor vertically propagating shear waves.
For reciprocity to be applicable, antenna patterns must not be interchanged when source
and receiver are interchanged. The antenna pattern must be regarded as attached to the
medium.

I searched our data library for split-spread land data that would illustrate reciprocity
under field conditions. The constant-offset section in Figure 10.7 was recorded by vertical
vibrators into vertical geophones.

The survey was not intended to be a test of reciprocity, so there likely was a slight
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Figure 10.7: Constant-offset section from the Central Valley of California. (Chevron)
VIEW sg/. toldi
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lateral offset of the source line from the receiver line. Likewise the sender and receiver
arrays (clusters) may have a slightly different geometry. The earth dips in Figure 10.7
happen to be quite small although lateral velocity variation is known to be a problem in
this area.

In Figure 10.8, three seismograms were plotted on top of their reciprocals. Pairs were

Figure 10.8: Overlain reciprocal seismograms. VIEW sg/. reciptrace

chosen at near offset, at mid range, and at far offset. You can see that reciprocal seismograms
usually have the same polarity, and often have nearly equal amplitudes. (The figure shown
is the best of three such figures I prepared).

Each constant time slice in Figure 10.9 shows the reciprocity of many seismogram pairs.
Midpoint runs horizontally over the same range as in Figure 10.7. Offset is vertical. Data

Figure 10.9: Constant time slices after NMO at 1 second and 2.5 seconds. VIEW

sg/. recipslice

is not recorded near the vibrators leaving a gap in the middle. To minimize irrelevant
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variations, moveout correction was done before making the time slices. (There is a missing
source that shows up on the left side of the figure). A movie of panels like Figure 10.9 shows
that the bilateral symmetry you see in the individual panels is characteristic of all times.
On these slices, you notice that the long wavelengths have the expected bilateral symmetry
whereas the short wavelengths do not.

In the laboratory, reciprocity can be established to within the accuracy of measurement.
This can be excellent. (See White’s example in FGDP). In the field, the validity of reci-
procity will be dependent on the degree that the required conditions are fulfilled. A marine
air gun should be reciprocal to a hydrophone. A land-surface weight-drop source should
be reciprocal to a vertical geophone. But a buried explosive shot need not be reciprocal to
a surface vertical geophone because the radiation patterns are different and the positions
are slightly different. Under varying field conditions Fenati and Rocca found that small
positioning errors in the placement of sources and receivers can easily create discrepancies
much larger than the apparent reciprocity discrepancy.

Geometrical complexity within the earth does not diminish the applicability of the
principle of linearity. Likewise, geometrical complexity does not reduce the applicability of
reciprocity. Reciprocity does not apply to sound waves in the presence of wind. Sound
goes slower upwind than downwind. But this effect of wind is much less than the mundane
irregularities of field work. Just the weakening of echoes with time leaves noises that are
not reciprocal. Henceforth we will presume that reciprocity is generally applicable to the
analysis of reflection seismic data.

10.3 SURVEY SINKING WITH THE DSR EQUATION

Exploding-reflector imaging will be replaced by a broader imaging concept, survey sink-
ing. A new equation called the double-square-root (DSR) equation will be developed to
implement survey-sinking imaging. The function of the DSR equation is to downward
continue an entire seismic survey, not just the geophones but also the shots. Peek ahead at
equation (10.13) and you will see an equation with two square roots. One represents the
cosine of the wave arrival angle. The other represents the takeoff angle at the shot. One
cosine is expressed in terms of kg, the Fourier component along the geophone axis of the
data volume in (s, g, t)-space. The other cosine, with ks, is the Fourier component along
the shot axis.

10.3.1 The survey-sinking concept

The exploding-reflector concept has great utility because it enables us to associate the
seismic waves observed at zero offset in many experiments (say 1000 shot points) with the
wave of a single thought experiment, the exploding-reflector experiment. The exploding-
reflector analogy has a few tolerable limitations connected with lateral velocity variations
and multiple reflections, and one major limitation: it gives us no clue as to how to migrate
data recorded at nonzero offset. A broader imaging concept is needed.

Start from field data where a survey line has been run along the x-axis. Assume there
has been an infinite number of experiments, a single experiment consisting of placing a
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point source or shot at s on the x-axis and recording echoes with geophones at each possible
location g on the x-axis. So the observed data is an upcoming wave that is a two-dimensional
function of s and g, say P (s, g, t).

Previous chapters have shown how to downward continue the upcoming wave. Downward
continuation of the upcoming wave is really the same thing as downward continuation of
the geophones. It is irrelevant for the continuation procedures where the wave originates.
It could begin from an exploding reflector, or it could begin at the surface, go down, and
then be reflected back upward.

To apply the imaging concept of survey sinking, it is necessary to downward continue
the sources as well as the geophones. We already know how to downward continue geo-
phones. Since reciprocity permits interchanging geophones with shots, we really know how
to downward continue shots too.

Shots and geophones may be downward continued to different levels, and they may be
at different levels during the process, but for the final result they are only required to be
at the same level. That is, taking zs to be the depth of the shots and zg to be the depth of
the geophones, the downward-continued survey will be required at all levels z = zs = zg.

The image of a reflector at (x, z) is defined to be the strength and polarity of the echo
seen by the closest possible source-geophone pair. Taking the mathematical limit, this
closest pair is a source and geophone located together on the reflector. The travel time for
the echo is zero. This survey-sinking concept of imaging is summarized by

Image(x, z) = Wave(s = x, g = x, z, t = 0) (10.1)

For good quality data, i.e. data that fits the assumptions of the downward-continuation
method, energy should migrate to zero offset at zero travel time. Study of the energy
that doesn’t do so should enable improvement of the model. Model improvement usually
amounts to improving the spatial distribution of velocity.

10.3.2 Survey sinking with the double-square-root equation

An equation was derived for paraxial waves. The assumption of a single plane wave means
that the arrival time of the wave is given by a single-valued t(x, z). On a plane of constant
z, such as the earth’s surface, Snell’s parameter p is measurable. It is

∂t

∂x
=

sin θ

v
= p (10.2)

In a borehole there is the constraint that measurements must be made at a constant x,
where the relevant measurement from an upcoming wave would be

∂t

∂z
= − cos θ

v
= −

√
1
v2
−
(

∂t

∂x

)2

(10.3)

Recall the time-shifting partial-differential equation and its solution U as some arbitrary
functional form f :

∂U

∂z
= − ∂t

∂z

∂U

∂t
(10.4)

U = f

(
t −

∫ z

0

∂t

∂z
dz

)
(10.5)



10.3. SURVEY SINKING WITH THE DSR EQUATION 185

The partial derivatives in equation (10.4) are taken to be at constant x, just as is equation
(10.3). After inserting (10.3) into (10.4) we have

∂U

∂z
=

√
1
v2
−
(

∂t

∂x

)2 ∂U

∂t
(10.6)

Fourier transforming the wavefield over (x, t), we replace ∂/∂t by − iω. Likewise, for the
traveling wave of the Fourier kernel exp(− iωt + ikxx), constant phase means that ∂t/∂x =
kx/ω. With this, (10.6) becomes

∂U

∂z
= − iω

√
1
v2
− k2

x

ω2
U (10.7)

The solutions to (10.7) agree with those to the scalar wave equation unless v is a function
of z, in which case the scalar wave equation has both upcoming and downgoing solutions,
whereas (10.7) has only upcoming solutions. We go into the lateral space domain by re-
placing ikx by ∂/∂x. The resulting equation is useful for superpositions of many local plane
waves and for lateral velocity variations v(x).

10.3.3 The DSR equation in shot-geophone space

Let the geophones descend a distance dzg into the earth. The change of the travel time of
the observed upcoming wave will be

∂t

∂zg
= −

√
1
v2
−
(

∂t

∂g

)2

(10.8)

Suppose the shots had been let off at depth dzs instead of at z = 0. Likewise then,

∂t

∂zs
= −

√
1
v2
−
(

∂t

∂s

)2

(10.9)

Both (10.8) and (10.9) require minus signs because the travel time decreases as either
geophones or shots move down.

Simultaneously downward project both the shots and geophones by an identical vertical
amount dz = dzg = dzs. The travel-time change is the sum of (10.8) and (10.9), namely,

dt =
∂t

∂zg
dzg +

∂t

∂zs
dzs =

(
∂t

∂zg
+

∂t

∂zs

)
dz (10.10)

or
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∂z
= −
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√
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∂t

∂s

)2
 (10.11)

This expression for ∂t/∂z may be substituted into equation (10.4):
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∂z
= +

 √
1
v2
−
(

∂t
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)2

+

√
1
v2
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∂t
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 ∂U
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(10.12)
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Three-dimensional Fourier transformation converts upcoming wave data u(t, s, g) to
U(ω, ks, kg). Expressing equation (10.12) in Fourier space gives

∂U

∂z
= − i ω

 √ 1
v2
−
(

kg

ω

)2

+

√
1
v2
−
(

ks

ω

)2
 U (10.13)

Recall the origin of the two square roots in equation (10.13). One is the cosine of the arrival
angle at the geophones divided by the velocity at the geophones. The other is the cosine
of the takeoff angle at the shots divided by the velocity at the shots. With the wisdom
of previous chapters we know how to go into the lateral space domain by replacing ikg by
∂/∂g and iks by ∂/∂s. To incorporate lateral velocity variation v(x), the velocity at the
shot location must be distinguished from the velocity at the geophone location. Thus,

∂U

∂z
=

 √ ( − iω

v(g)

)2

− ∂2

∂g2
+

√ (− iω

v(s)

)2

− ∂2

∂s2

 U (10.14)

Equation (10.14) is known as the double-square-root (DSR) equation in shot-geophone
space. It might be more descriptive to call it the survey-sinking equation since it pushes
geophones and shots downward together. Recalling the section on splitting and full sepa-
ration we realize that the two square-root operators are commutative (v(s) commutes with
∂/∂g), so it is completely equivalent to downward continue shots and geophones separately
or together. This equation will produce waves for the rays that are found on zero-offset
sections but are absent from the exploding-reflector model.

10.3.4 The DSR equation in midpoint-offset space

By converting the DSR equation to midpoint-offset space we will be able to identify the
familiar zero-offset migration part along with corrections for offset. The transformation
between (g, s) recording parameters and (y, h) interpretation parameters is

y =
g + s

2
(10.15)

h =
g − s

2
(10.16)

Travel time t may be parameterized in (g, s)-space or (y, h)-space. Differential relations for
this conversion are given by the chain rule for derivatives:
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∂y

∂y
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)
(10.17)
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∂h

∂s
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2

(
∂t

∂y
− ∂t

∂h

)
(10.18)

Having seen how stepouts transform from shot-geophone space to midpoint-offset space,
let us next see that spatial frequencies transform in much the same way. Clearly, data could
be transformed from (s, g)-space to (y, h)-space with (10.15) and (10.16) and then Fourier
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transformed to (ky, kh)-space. The question is then, what form would the double-square-
root equation (10.13) take in terms of the spatial frequencies (ky, kh)? Define the seismic
data field in either coordinate system as

U(s, g) = U ′(y, h) (10.19)

This introduces a new mathematical function U ′ with the same physical meaning as U but,
like a computer subroutine or function call, with a different subscript look-up procedure for
(y, h) than for (s, g). Applying the chain rule for partial differentiation to (10.19) gives

∂U

∂s
=

∂y

∂s

∂U ′

∂y
+

∂h

∂s

∂U ′

∂h
(10.20)
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(10.21)

and utilizing (10.15) and (10.16) gives
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∂y
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)
(10.22)
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∂U ′
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)
(10.23)

In Fourier transform space where ∂/∂x transforms to ikx, equations (10.22) and (10.23),
when i and U = U ′ are cancelled, become

ks =
1
2

(ky − kh) (10.24)

kg =
1
2

(ky + kh) (10.25)

Equations (10.24) and (10.25) are Fourier representations of (10.22) and (10.23). Substi-
tuting (10.24) and (10.25) into (10.13) achieves the main purpose of this section, which is
to get the double-square-root migration equation into midpoint-offset coordinates:

∂

∂z
U = − i

ω

v

 √ 1 −
(

vky + vkh

2 ω

)2

+

√
1 −

(
vky − vkh

2 ω

)2
 U (10.26)

Equation (10.26) is the takeoff point for many kinds of common-midpoint seismogram
analyses. Some convenient definitions that simplify its appearance are

G =
v kg

ω
(10.27)

S =
v ks

ω
(10.28)

Y =
v ky

2 ω
(10.29)

H =
v kh

2 ω
(10.30)

The new definitions S and G are the sines of the takeoff angle and of the arrival angle of
a ray. When these sines are at their limits of ±1 they refer to the steepest possible slopes
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in (s, t)- or (g, t)-space. Likewise, Y may be interpreted as the dip of the data as seen on a
seismic section. The quantity H refers to stepout observed on a common-midpoint gather.
With these definitions (10.26) becomes slightly less cluttered:

∂

∂z
U = −

iω

v

(√
1− (Y + H)2 +

√
1− (Y −H)2

)
U (10.31)

EXERCISES:

1 Adapt equation (10.26) to allow for a difference in velocity between the shot and the
geophone.

2 Adapt equation (10.26) to allow for downgoing pressure waves and upcoming shear
waves.

10.4 THE MEANING OF THE DSR EQUATION

The double-square-root equation is not easy to understand because it is an operator in a
four-dimensional space, namely, (z, s, g, t). We will approach it through various applications,
each of which is like a picture in a space of lower dimension. In this section lateral velocity
variation will be neglected (things are bad enough already!).

One way to reduce the dimensionality of (10.14) is simply to set H = 0. Then the two
square roots become the same, so that they can be combined to give the familiar paraxial
equation:

dU

dz
= − iω

2
v

√
1 −

v2 k2
y

4 ω2
U (10.32)

In both places in equation (10.32) where the rock velocity occurs, the rock velocity is divided
by 2. Recall that the rock velocity needed to be halved in order for field data to correspond
to the exploding-reflector model. So whatever we did by setting H = 0, gave us the same
migration equation we used in chapter 7. Setting H = 0 had the effect of making the
survey-sinking concept functionally equivalent to the exploding-reflector concept.

10.4.1 Zero-dip stacking (Y = 0)

When dealing with the offset h it is common to assume that the earth is horizontally layered
so that experimental results will be independent of the midpoint y. With such an earth the
Fourier transform of all data over y will vanish except for ky = 0, or, in other words, for
Y = 0. The two square roots in (10.14) again become identical, and the resulting equation
is once more the paraxial equation:

dU

dz
= − iω

2
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√
1 −

v2 k2
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4 ω2
U (10.33)
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Using this equation to downward continue hyperboloids from the earth’s surface, we find
the hyperboloids shrinking with depth, until the correct depth where best focus occurs is
reached. This is shown in Figure 10.10.

Figure 10.10: With an earth model of three layers, the common-midpoint gathers are three
hyperboloids. Successive frames show downward continuation to successive depths where
best focus occurs. VIEW sg/. dc2

The waves focus best at zero offset. The focus represents a downward-continued exper-
iment, in which the downward continuation has gone just to a reflector. The reflection is
strongest at zero travel time for a coincident source-receiver pair just above the reflector.
Extracting the zero-offset value at t = 0 and abandoning the other offsets amounts to the
conventional procedure of summation along a hyperbolic trajectory on the original data.
Naturally the summation can be expected to be best when the velocity used for downward
continuation comes closest to the velocity of the earth.

Actually, the seismic energy will not all go precisely to zero offset; it goes to a focal
region near zero offset. A further analysis (not begun here) can analyze the focal region to
upgrade the velocity estimation. Dissection of this focal region can also provide information
about reflection strength versus angle.

10.4.2 Giving up on the DSR

The DSR operator defined by (10.31) is fun to think about, but it doesn’t really go to any
very popular place very easily. There is a serious problem with it. It is not separable into
a sum of an offset operator and a midpoint operator. Nonseparable means that a Taylor
series for (10.14) contains terms like Y 2 H2. Such terms cannot be expressed as a function
of Y plus a function of H. Nonseparability is a data-processing disaster. It implies that
migration and stacking must be done simultaneously, not sequentially. The only way to
recover pure separability would be to return to the space of S and G.

This chapter tells us that lateral velocity variation is very important. Where the velocity
is known, we have the DSR equation in shot-geophone space to use for migration. A popular
test data set is called the Marmousi data set. The DSR equation is particularly popular
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with it because with synthetic data, the velocity really is known. Estimating velocity v(x, z)
with real data is a more difficult task, one that is only crudely handled by by methods in
this book. In fact, it is not easily done by the even best of current industrial practice.



Chapter 11

Antialiased hyperbolas

A most universal practical problem in geophysics is that we never have enough recordings.
This leads to the danger of spatial aliasing of data. There is no universal cure for this
problem (although there are some specialized techniques of limited validity). A related, but
less severe problem arises with Kirchhoff type operators. This problem is called “operator-
aliasing”. It has a cure, which we investigate in this chapter.

Fourier and finite-difference methods of migration are immune to the operator-aliasing
malady suffered by hyperbola summation (Kirchhoff) migration. Here we will see a way
to overcome the operator-aliasing malady shared by all Kirchhoff-like operators and bring
them up to the quality of phase-shift methods. The antialiasing methods we develop here
also lead to natural ways of handling irregularly sampled data.

We like to imagine that our data is a continuum and that our sums are like integrals. For
practical purposes, our data is adequately sampled in time, but often it is not adequately
sampled in space. Sometimes the data is sampled adequately in space, but our operators,
such as hyperbolic integrations, are not adequately represented by a summation ranging
over the x-coordinate picking a value at the nearest time t(x). First we could improve
nearest-neighbor interpolation by using linear interpolation. Linear interpolation, however,
is not enough. Trouble arises when we jump from one trace to the next, x→ x + ∆x, and
find that t(x) jumps more than a single ∆t. Then we need a bigger “footprint” on the time
axis than the two neighboring points used by linear interpolation. See Figure 11.1. Note
that in some places each value of x corresponds to several values of t, and other places it is
the opposite where one value of t corresponds to several values of x. An aliasing problem
arises when we approximate a line integral by a simple sum of points, one for each value on
the x-axis instead of using the more complicated trajectory that you see in Figure 11.1.

11.0.3 Amplitude pitfall

In geophysics we often discuss signal amplitude versus offset distance. It sounds easy, but
there are some serious pitfalls. Such pitfalls are one reason why mathematicians often use
nonintuitive weasel words. The best way for you to appreciate the pitfall is for me to push
you into the pit.

Suppose we are writing a seismogram modeling program and we wish to model an

191
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Figure 11.1: To integrate along
hyperbolas without aliasing, you
should include (at least) the points
shown. VIEW trimo/. nmotraj

impulsive plane wave of unit amplitude. Say the signal seen at x is (· · · , 0, 0, 1, 0, 0, · · ·).
At x + ∆x the plane wave is shifted in time so that the impulse lies half way between two
points, say it is (· · · , 0, 0, a, a, 0, 0, · · ·). The question is, “what should be the value of a?”
There are three contradictory points of view:

1. The amplitude a should be 1 so that the peak amplitude is constant with x.

2. The amplitude a should be 1/
√

2 so that both seismic signals have the same energy.

3. The amplitude a should be 1/2 so that both seismic signals have the same area.

Make your choice before reading further.

What is important in the signal is not the high frequencies especially those near the
Nyquist. We cannot model the continuous universe with sampled data at frequencies above
the Nyquist frequency nor can we do it well or easily at frequencies approaching the Nyquist.
For example, at half the Nyquist frequency, a derivative is quite different from a finite
difference. What we must try to handle correctly is the low frequencies (the adequately
sampled signals). The above three points of view are contradictory at low frequencies.
Examine only the zero frequency of each. Sum over time. Only by choosing equal areas
a = 1/2 do the two signals have equal strength. The appropriate definition of amplitude on
a sampled representation of the continuum is the area per unit time. Think of each signal
value as representing the integral of the continuous amplitude from t −∆t/2 to t + ∆t/2.
Amplitude defined in this way cannot be confounded by functions oscillating between the
sampled values.

Consider the task of abandoning data: We must reduce data sampled at a two millisec-
ond rate to data sampled at a four millisecond rate. A method with aliasing is to abandon
alternate points. A method with reasonably effective antialiasing is to convolve with the
rectangle (1, 1) (add two neighboring values) and then abandon alternate values. Without
the antialiasing, you could lose the impulse on the (· · · , 0, 0, 1, 0, 0, · · ·) signal. A method
with no aliasing is to multiply in the frequency domain by a rectangle function between
± Nyquist/2 (equivalent to convolving with a sinc function) and then abandoning alter-
nate data points. This method perfectly preserves all frequencies up to the new Nyquist
frequency (which is half the original).
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11.1 MIMICING FIELD ARRAY ANTIALIASING

In geophysical data recording there is usually a local array whose elements are added locally
before a single channel is recorded. For example, the SEP student group once laid out more
than 4056 geophones in a two-dimensional array of 13 × 13 recorders with 24 geophones
added at each recorder. We may think of the local superposition as an integration over a
small interval of space to create a sampled space function from a continuous one. With
vibrator sources, it is also customary to vibrate on various nearby source locations and
sum them into a single signal. Figure 11.2 is a caricature of what happens. On the left a
data field appears to be a continuous function of space (it is actually 500 spatial locations)
with various impulsive signals at different times and distances. For simplicity, all signals

Figure 11.2: Quasicontinuous field (left) added in groups (right). VIEW

trimo/. oversamp

have unit amplitude. The 500 signals are segregated into 10 groups of 50 and each group
of 50 is summed into a single channel. The various signals sum to functions that could
be called “slump shouldered rectangles.” If both x and t-meshes were refined further, the
“slump shoulders” on the rectangles would diminish in importance and we would notice
that the rectangles were still imperfect. This is because the rectangle approximation arises
from the approximation that the hyperbola is a straight line within the group. In reality,
there is curvature and the effect of curvature is strongest near the apex, so the rectangle
approximation is poor at the apex.

Some of the rectangles are longer than others. The narrow ones are tall and the wide
ones are short because the area of each rectangle must be 50 (being the sum of 50 channels
each holding a 1). Since the rectangles all have the same area, were we to lowpass filter the
sparse data we would recover the original characteristic that all these signals have the same
amplitude.

Figure 11.3 shows a quasisinusoidal signal and compares subsampling to antialiasing
via field arrays as in Figure 11.2. We see that aliased energy has been surpressed but not
removed. Let us see how we can understand the result and how we could do better (but
we won’t). Suppose that the 500 channels had been individually recorded. The right panel
in Figure 11.3 was computed simply by adding in groups of 25. A lengthier explanation
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Figure 11.3: 500 channels (left), subsampled to 20 (middle), added in groups of 25(right).
VIEW trimo/. subsampvrsaa

of the calculation is that the 500 channels were convolved along the horizontal x-axis with
a 25 point long rectangle function. Then the 500 channel output was subsampled to 20
channels. This lengthier calculation gives the same result but has a simple Fourier expla-
nation: Convolving with a rectangle function of x is the Fourier equivalent to multiplying
by a sinc function sin(kx∆x)/(kx∆x) in the Fourier domain. We have convolved with a
rectangle in the physical domain which amounts to multiplication by a sinc function in
the Fourier domain. Theoretically we would prefer to have done it the other way around,
convolved with a sinc in the physical domain, equivalently multiplying with a rectangle in
the Fourier domain. The Fourier rectangle would drop to zero at half Nyquist and thus
subsampling would not fold back any energy from above the half Nyquist to below it. Al-
though Figure 11.3 shows that the aliased information is strongly suppressed, you can see
that it has not been eliminated. Had we instead convolved with a sinc on the x-axis, the
Fourier function would have been a rectangle. You would see the wavefronts in Figure 11.3
(right panel) vanishing where the dip reached a critical threshhold instead of seeing the
wavefronts gradually tapering off and weak aliased events still being visible.

11.1.1 Adjoint of data acquisition

Knowing how data is recorded, or how we would like it to be recorded, suggests various
possibilities for data processing. Should we ignore the little rectangle functions, or should
we include them in the data processing? Figure 11.4 shows a simple model and its implied
data, along with migrations, with and without attention to aliasing the horizontal space
axis. The figure shows that migration without attention to aliasing leads to systematic
noise and (apparently) random noise.

This figure is based on realistic parameters except that I compute and display the results
on a very coarse mesh (20× 100) to enable you to see clearly the phenomena of numerical
analysis. No additional values were used between mesh points or off the edges of what is
shown.
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Figure 11.4: Top left is a synthetic image. Top right is synthetic data from the syn-
thetic image. Bottom are migrations of the data with and without antialiasing. VIEW

trimo/. migalias

The practical need to limit operator aliasing is often reduced by three indirect measures.
First is temporal low pass filtering which has the unfortunate side effect of reducing the
temporal bandwidth. Second is dip limiting (limiting the aperture of the hyperbola) which
has the unfortunate side effect of limiting the dip bandwidth. Third is interlacing the data
traces. Interpolating the data also interpolates the operator so if enough trace interpolation
is done, the operator is no longer subsampled. A disadvantage of data interpolation is that
the data becomes more bulky. Here we attack the operator aliasing problem directly.

A simple program designed for antialiasing gave the result in Figure 11.5. A zero-offset
signal is input to adjoint NMO to make synthetic data which is then NMO’ed and stacked.
Notice that the end of each rectangle is the beginning of the rectangle at the next offset.
You might fear the coding that led up to Figure 11.5 is a fussy and inefficient business
because of all the short little summation loops. Luckily, there is a marvelous little formula
that allows us to express the integral under any of the little rectangles, no matter how
many points it contains, by a single subtraction. Integration is the key. It is only necessary
to realize that the sums are, like a definite integral, representable by the difference of the
indefinite integral at each end. In other words, to find the sum of all the values between it
and it+n we begin with a recursive summation such as qq(it)=qq(it-1)+pp(it). Then,
any sum of values like pp(it)+· · ·+p(it+n) is simply qq(it+n+1) - qq(it) .

Figure 11.5 is not fully consistent with Figure 11.1. In Figure 11.5 notice that the last
point in each rectangular area overlaps the next rectangular area by one point. Overlap
could be avoided by shortening each rectangle by one point, but then rectangles near the
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Figure 11.5: Rectangle smooth-
ing during NMO and stacking. No-
tice that the end of one rectan-
gle exactly coincides with the be-
ginning of the rectangle at next
larger offset. Thus, rectangle
width increases with offset and de-
creases with time. (antialias=1.)
VIEW trimo/. boxmo1

apex of the hyperbola would have zero length which is wholly unacceptable. Should we
write a code to match Figure 11.1? This would be better, but far from perfect. Notice
in Figure 11.1 that a horizontal sum of the number of boxes is not a smooth function of
time. To achieve more smoothness, we later turn to triangles, but first we look at some
implementation details for rectangles.

11.1.2 NMO and stack with a rectangle footprint

A subroutine for causal summation is subroutine causint() on page 20. Recall that the
adjoint of causal integration is anticausal integration. For each reflector, data modeling
proceeds by throwing out two pulses of opposite polarity. Then causal summation produces
a rectangle between the pulses (sometimes called “box car”). Since the last step in the
modeling operator is causal summation, the first step in the adjoint operator (which does
NMO) is anticausal summation. Thus each impulse in the data becomes a rectangle from
the impulse to t = 0. Then subtracting values at rectangle ends gives the desired integral of
data in the rectangle. The code is in subroutines boxmo() and boxstack(). The traveltime
depth τ is denoted by z in the code. The inverse of the earth velocity v(τ), called the
slowness s(τ), is denoted by slow(iz).

box footprint.rt
subrout ine boxmo( adj , add , t0 , dt , dx , x , nt , slow , a n t i a l i a s , zz , t t )
i n t e g e r i t , i z , i tp , adj , add , nt
r e a l t , tp , z , amp, t0 , dt , dx , x , s low ( nt ) , a n t i a l i a s , zz ( nt ) , t t ( nt )
temporary r e a l s s ( nt )
c a l l nu l l ( ss , nt ) ; c a l l a d j nu l l ( adj , add , zz , nt , tt , nt )
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i f ( adj != 0) c a l l c au s in t ( 1 , 0 , nt , ss , t t )
do i z= 2 , nt { z = t0 + dt ∗( i z −1)

t = sq r t ( z ∗∗2 + ( slow ( i z )∗ abs (x ) )∗∗2 ) ; i t = 1 .5 + ( t −t0 )/ dt
tp= sq r t ( z ∗∗2 + ( slow ( i z )∗ ( abs ( x)+abs (dx ) ) )∗∗2 )
tp = t + a n t i a l i a s ∗ ( tp − t ) + dt ; i t p= 1 .5 + ( tp−t0 )/ dt
amp = sq r t ( nt∗dt/ t ) ∗ z/ t / ( i t p − i t )
i f ( i t p < nt ) {

i f ( adj == 0 ) { s s ( i t ) = s s ( i t ) + amp ∗ zz ( i z )
s s ( i t p ) = s s ( i t p ) − amp ∗ zz ( i z )
}

else { zz ( i z ) = zz ( i z ) + amp ∗ s s ( i t )
zz ( i z ) = zz ( i z ) − amp ∗ s s ( i t p )
}

}
}

i f ( adj == 0) c a l l c au s in t ( 0 , add , nt , ss , t t )
return ; end

subrout ine boxstack ( adj , add , slow , a n t i a l i a s , t0 , dt , x0 , dx , nt , nx , stack , gather )
i n t e g e r adj , add , ix , nx , nt
r e a l x , s low ( nt ) , a n t i a l i a s , t0 , dt , x0 , dx , s tack ( nt ) , gather ( nt , nx )
c a l l a d j nu l l ( adj , add , stack , nt , gather , nt∗nx )
do i x= 1 , nx { x = x0 + dx ∗ ( ix −1)

c a l l boxmo( adj , 1 , t0 , dt , dx , x , nt , slow , a n t i a l i a s , stack , gather (1 , i x ) )
}

return ; end

To find the end points of the rectangular intervals, given the vertical travel time, I get
the time t, in the usual way. Likewise I get the time, tp, on the next further-out trace
for the ending location of the rectangle wavelet. I introduce a parameter called antialias
that can be used to increase or decrease the tp-t gap. Normally antialias=1.

Theoretical solutions to various problems lead to various expressions for amplitude along
the hyperbola. I set the amplitude amp by a complicated expression that I do not defend
or explain fully here but merely indicate that: a “divergence” correction is in the factor
1/
√

t; a cosine like “obliquity” scale is z/t; and the wavelet area must be conserved, so the
height is inversely proportional to the pulse width (itp - it). Wavelet area is conserved
to assure that after low-pass filtering, the strength of a wave is independent of whether it
straddled two mesh points as (.5, .5) or lay wholly on one of them as (1, 0).

To test a limiting case, I set the antialias parameter to zero and show the result in
Figure 11.6 which is the same as the simple prescription to “sum over the x-axis.” We
notice that the final stack is not the perfect impulses that we began with. The explanation
is: information can be expanded in time and then compressed with no loss, but here it is
compressed first and then expanded, so the original location is smeared. Notice also that
the full amplitude is not recovered on the latest event. The explanation is that a significant
fraction of the angular aperture has been truncated at the widest offset.

11.1.3 Coding a triangle footprint

We should take some care with anti-aliasing in data processing. The anti-aliasing measures
we take, however, need not match the field recording. If the field arrays were rectangles,
we could use triangles or sincs in the data processing. It happens that triangles are an easy
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Figure 11.6: Rectangles short-
ened to one point duration.
(antialias=0.) VIEW

trimo/. boxmo0

extension of the rectangle work that we have been doing and triangles make a big step in
the right direction.

For an input pulse, the output of integration is a step. The output of a second integration
is a ramp. For an input triplet (1, 0, 0,−2, 0, 0, 1) the output of two integrations is a short
triangle. An easy way to assure time alignment of the triangle center with the triplet center
is to integrate once causally and once anticausally as done in subroutine doubint on this
page.

double integration.rt
# Double i n t e g r a t i on , f i r s t causa l , then an t i c au s a l .
#
subrout ine doubint ( adj , add , n , pp , qq )
i n t e g e r adj , add , n ; r e a l pp (n ) , qq (n)
temporary r e a l t t (n)
c a l l a d j nu l l ( adj , add , pp , n , qq , n)
i f ( adj == 0 ) { c a l l c au s in t ( 0 , 0 , n , pp , t t )

c a l l c au s in t ( 1 , add , n , qq , t t )
}

else { c a l l c au s in t ( 1 , 0 , n , tt , qq )
c a l l c au s in t ( 0 , add , n , tt , pp )

}
return ; end

You can imagine placing the ends and apex of each triangle at a nearest neighbor mesh
point as we did with the rectangles. Instead I place these ends more precisely on the mesh
with linear interpolation. Subroutine lint1() on page 19 does linear interpolation, but
here we need weighted results as provided by spotw() on this page.

weighted linear interp..rt
# Sca led l i n e a r i n t e r p o l a t i o n .
#
subrout ine spotw ( adj , add , s ca l e , nt , t0 , dt , t , val , vec )
i n t e g e r i t , i t c , adj , add , nt
r e a l tc , f r a c t i on , s ca l e , t0 , dt , t , val , vec ( nt )
c a l l a d j nu l l ( adj , add , val , 1 , vec , nt )
tc = .5+ ( t−t0 ) / dt ; i t c = tc ; i t = 1 + i t c ; f r a c t i o n = tc − i t c
i f ( 1 <= i t && i t < nt ) {
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i f ( adj == 0) {
vec ( i t ) = vec ( i t ) + (1.− f r a c t i o n ) ∗ va l ∗ s c a l e
vec ( i t +1) = vec ( i t +1) + f r a c t i o n ∗ va l ∗ s c a l e
}

else
va l = va l + ((1.− f r a c t i o n ) ∗ vec ( i t ) +

f r a c t i o n ∗ vec ( i t +1) ) ∗ s c a l e
}

else
c a l l e r e x i t ( ’ spotw : at boundary ’ )

return ; end

Using these subroutines, I assembled the stacking subroutine tristack() and the NMO
routine trimo() with triangle wavelets. The triangle routines are like those for rectangles
except for some minor changes. Instead of computing the theoretical locations of impulses on
nearer and further traces, I assumed a straight line tangent to the hyperbola t2 = τ2+x2/v2.
Differentiating by x at constant τ gives the slope dt/dx = x/(v2t). As before, the area of the
the wavelets, now triangles must be preserved. The area of a triangle is proportional to the
base times the height. Since the triangles are built from double integration ramp functions,
the height is proportional to the base length. Thus to preserve areas, each wavelet is scaled
by the inverse squared of the triangle’s base length. Results are shown in Figures 11.7
and 11.8.

Figure 11.7: Triangle wavelets, ac-
curately positioned, but aliased
(antialias=0.) VIEW

trimo/. trimo0

Figure 11.8: Antialiased triangle
wavelets. (antialias=1.) Where
ever triangle duration is more than
about three points, the end of one
triangle marks the apex of the next.
VIEW trimo/. trimo1
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stack with triangle footprint.rt
# Modeling and s tack ing us ing t r i a n g l e weighted moveout .
#
subrout ine t r i s t a c k ( adj , add , slow , ant i , t0 , dt , x0 , dx , nt , nx , stack , gather )
i n t e g e r ix , adj , add , nt , nx
r e a l x , s low ( nt ) , ant i , t0 , dt , x0 , dx , s tack ( nt ) , gather ( nt , nx )
c a l l a d j nu l l ( adj , add , stack , nt , gather , nt∗nx )
do i x= 1 , nx { x = x0 + dx ∗ ( ix −1)

c a l l tr imo ( adj , 1 , t0 , dt , dx , x , nt , slow , 0 . , 1 . , ant i , stack , gather (1 , i x ) )
}

return ; end

triangle footprint.rt
# moveout with t r i a n g l e shaped smoothing window .
#
subrout ine trimo ( adj , add , t0 , dt , dx , x , nt , slow , s02 , wt , ant i , zz , t t )
i n t e g e r i z , i tp , itm , adj , add , nt
r e a l t0 , dt , dx , x , s low ( nt ) , s02 , wt , ant i , zz ( nt ) , t t ( nt )
r e a l z , t , tm , tp , amp, s l ope
temporary r e a l s s ( nt )
c a l l nu l l ( ss , nt ) ; c a l l a d j nu l l ( adj , add , zz , nt , tt , nt )
i f ( adj != 0 ) c a l l doubint ( 1 , 0 , nt , ss , t t )
do i z= 2 , nt { z = t0 + dt ∗ ( i z −1)

t = sq r t ( z ∗∗2 + ( slow ( i z ) ∗ x )∗∗2 )
s l ope = ant i ∗ ( s low ( i z )∗∗2 − s02 ) ∗ x / t
tm = t − abs ( s l ope ∗ dx ) − dt ; itm = 1.5 + (tm−t0 ) / dt
i f ( itm <= 1 ) next
tp = t + abs ( s l ope ∗ dx ) + dt ; i t p = 1 .5 + ( tp−t0 ) / dt
i f ( i t p >= nt ) break
amp = wt ∗ s q r t ( nt∗dt/ t ) ∗ z/ t ∗ ( dt /( dt+tp−tm) ) ∗∗ 2
c a l l spotw ( adj , 1 , −amp, nt , t0 , dt , tm , zz ( i z ) , s s )
c a l l spotw ( adj , 1 , 2∗amp, nt , t0 , dt , t , zz ( i z ) , s s )
c a l l spotw ( adj , 1 , −amp, nt , t0 , dt , tp , zz ( i z ) , s s )
}

i f ( adj == 0) c a l l doubint ( 0 , add , nt , ss , t t )
return ; end

From the stack reconstruction of the model in Figure 11.8 we see the reconstruction is
more blured with antialiasing than it was without in Figure 11.7. The benefit of antialiasing
will become clear next in more complicated examples where events cross.

11.2 MIGRATION WITH ANTIALIASING

Subroutine aamig() below does migration and diffraction modeling using subroutine trimo()
as the workhorse.

antialias migration.rt
# ant i−a l i a s e d k i r c hh o f f migrat ion ( adj=1) and modeling ( adj=0)
#
subrout ine aamig ( adj , add , slow , a n t i a l i a s , t0 , dt , dx , nt , nx , image , data )
i n t e g e r adj , add , ix , nx , nt , i y
r e a l h , s low ( nt ) , a n t i a l i a s , t0 , dt , dx , image ( nt , nx ) , data ( nt , nx )
c a l l a d j nu l l ( adj , add , image , nt∗nx , data , nt∗nx )
do i x= 1 , nx {
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do i y= 1 , nx {
h = dx ∗ ( i y − i x )
c a l l tr imo ( adj , 1 , t0 , dt , dx , h , nt , slow , 0 . , 1 . , a n t i a l i a s ,

image (1 , i y ) , data (1 , i x ) )
}}

return ; end

Figure 11.9 shows the synthetic image that is used for testing. There is a horizontal layer, a
dipping layer, and a few impulses. The impulses are chosen stronger than the layers because
they will spread out in the synthetic data.

Figure 11.9: Model image for
migration study. VIEW

trimo/. aamod

The velocity is taken constant. Figure 11.10 shows synthetic data made without regard
for aliasing. The hyperbolas look fine—the way we expect. The horizontal layer, however,
is followed by many pseudo layers. These pseudo layers are the result of modeling with an
operator that is spatially aliased.

Figure 11.10: Synthetic data with-
out regard for aliasing. Made
from model image with aamig()

taking antialias=0. VIEW

trimo/. aad0

Figure 11.11 shows how the synthetic data improves dramatically when aliasing is taken
into account. The layers look fine now. The hyperbolas, however, have a waveform that
is rapidly changing with offset from the apex. This changing waveform is an inevitable



202 CHAPTER 11. ANTIALIASED HYPERBOLAS

consequence of the anti-aliasing. The apex has a huge amplitude because the temporal
bandwidth is widest at the apex (because the dip is zero there, there is no filtering away
of high spatial frequencies). Simple low-pass temporal filtering (not shown) will cause the
wavelet to be largely independent of offset.

Figure 11.11: Synthetic data ac-
counting for aliasing. Made from
model image with aamig() tak-
ing antialias=1. VIEW

trimo/. aad1

Do not confuse aliased data with synthetic data made by an aliased operator. To make
aliased data, you would start from good data, such as Figure 11.11, and throw out alternate
traces. More typically, the earth makes good data and we fail to record all the needed traces
for the quality of our field arrays.

The horizontal layer in Figure 11.11 has a waveform that resembles a damped step
function which is related to the Hankel tail we studied in chapter 6 where subroutine
halfdifa() on page 96 was introduced to provide the filter required to convert the waveform
on the horizontal layer in Figure 11.11 back to an impulse. This was done in Figure 11.12.
You can see the final flat-layer waveform is roughly the zero-phase shape we started with.

Figure 11.12: Best synthetic
data. Made from model image us-
ing aamig() with antialias=1 fol-
lowed by a causal half-order time
derivative. Lowpass temporal filter-
ing would make wavelets more inde-
pendent of location on a hyperbola.
VIEW trimo/. aad1h

Figure 11.13 shows my best migration of my best synthetic data. All the features of the
original model are apparent. Naturally, high frequencies are lost, more on the dipping bed
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than the level one. Likewise the broadening of the deeper point scatterer compared to the
shallow one is a well known aperture effect.

Figure 11.13: Best migration of
best synthetic data. Uses aamig()
with antialias=2 followed by an
anticausal half-order time derivative.
VIEW trimo/. aamig2

Figure 11.14 shows what happens when antialiasing is ignored in migration. Notice
many false layers above the given horizontal layer. Notice semicircles above the impulses.
Notice apparent noise everywhere. But notice also that the dipping bed is sharper than the
antialiased result in Figure 11.13.

Figure 11.14: Migration of best
synthetic data without regard for
aliasing. Uses aamig() with
antialias=0. (and an anticausal
half-order time derivative) VIEW

trimo/. aamig0

11.2.1 Use of the antialiasing parameter

Migration requires antialiasing, even where the earth has zero dip. This is because the
earth’s horizontal layers cut across the migration hyperbola. An interesting extension is
where the earth has dipping layers. There the slope parameter could be biased to account
for it.

Where the earth contains hyperbolas, they will cut steeply across our migration hyper-
bola. Figure 11.15 suggests that such hyperbolas require an antialias parameter greater
than unity, say antialias=2.
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Figure 11.15: Crossing hyperbolas
that do not touch. Thus the points
shown are not enough to prevent
spatial aliasing a line integral along
one trajectory of signal on the other.
VIEW trimo/. croshyp

11.2.2 Orthogonality of crossing plane waves

Normally, waves do not contain zero frequency. Thus the time integral of a waveform
normally vanishes. Likewise, for a dipping plane wave, the time integral vanishes. Likewise,
a line integral across the (t, x)-plane along a straight line that crosses a plane wave or a
dipping plane wave vanishes. Likewise, two plane waves with different slopes should be
orthogonal if one of them has zero mean.

I suggest that spatial aliasing may be defined and analyzed with reference to plane
waves rather than with reference to frequencies. Aliasing is when two planes that should
be orthogonal, are not. This is like two different frequency sinusoids. They are orthogonal
except perhaps if there is aliasing.

11.3 ANTIALIASED OPERATIONS ON A CMP GATHER

A common-midpoint gather holding data with only one velocity should stack OK with-
out need for antialiasing. It is nice when antialiasing is not required because then high
temporal frequencies need not be filtered away simply to avoid aliased spatial frequencies.
When several velocities are simultaneously present on a CDP gather, we will find crossing
waves. These waves will be curved, but aliasing concepts drawn from plane waves are still
applicable. We designed the antialiasing of migration by expecting hyperbola flanks to be
orthogonal to horizontal beds or dipping beds of some chosen dip. With a CDP gather we
chose not a dip, but a slowness s0. The slope of a wave of slowness s on a CDP gather
is xs2/t. The greater the contrast in dips, the more need for antialiasing. The slope of
a wave with slowness s0 is xs2

0/t. The difference between this slope and that of another
wave is xs2/t − xs2

0/t or (s2 − s2
0)x/t which in the program is the slope for the purpose

of antialiasing. The choice of s0 has yet to be determined according to the application.
For illustration, I prepared a figure with three velocities, a very slow surface wave, a water
wave, and a fast sediment wave. I chose s0 to match the water wave. In practice s0 might
be the earth’s slowness as a function of traveltime depth.
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Figure 11.16: The air wave and
fast wave are broadened increasingly
with offset, but the water wave does
not. This broadening enables cross-
ing events to maintain their orthog-
onality. trimo/. aacdp

11.3.1 Iterative velocity transform

After we use data to determine a velocity model (or slowness model) with an operator A
we may wonder whether synthetic data made from that model with the adjoint operator
A′ resembles the original data. In other words, we may wonder how close the velocity
transform A comes to being unitary. The first time I tried this, I discovered that large
offsets and large slownesses were attenuated. With a bit of experimentation I found that
the scale factor

√
sx seems to make the velocity transform approximately a unitary one.

Results are in Figure 11.17.

Figure 11.17 shows that on a second pass, the velocity spectrum of the slow wave is
much smoothed. This suggests that it might be more efficient to parameterize the data
with slowness squared rather than slowness itself. Another interesting thing about using
slowness squared as an independent variable is that when slowness squared is negative
(velocity imaginary) the data is matched by ellipses curving up instead of hyperbolas curving
down.

Figure 11.18 shows the effect of no antialiasing in either the field recording or the
processing. The velocity spectrum is as sharp, if not sharper, but it is marred by a large
amount of low-level noise.

Aliased data gives an interesting question. Should we use an aliased operator as in
Figure 11.18 or should we use an antialiased operator as that in Figure 11.17? Figure 11.19
shows the resulting velocity analysis. The antialiased operator seems well worth while, even
when applied to aliased data.

In real life, the field arrays are not “dynamic” (able to respond with space and time
variable s0) but the data processing can be dynamic. Fourier and finite-difference methods
of wave propagation and data processing are generally immune to aliasing difficulties. On
the other hand, dynamic arrays in the data processing are a helpful feature of the ray
approach whose counterparts seem unknown with Fourier and finite-difference techniques.

Since
√

sx does not appear in physical modeling, people are sometimes hesitant to put it
in the velocity analysis. If

√
sx is omitted from the modeling, then |sx| should be put in the
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Figure 11.17: Top left: Slowness model. Top right: Data derived from it using the pseu-
dounitary scale factor. Bottom left: the velocity spectrum of top right. Bottom right: data
made from velocity spectrum. trimo/. aavel1

Figure 11.18: Like Figure 11.17 but with antialias=0. This synthetic data presumes no
receiver groups in the field recording. trimo/. aavel0
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Figure 11.19: Aliased data analyzed
with antialiased operator. Compare
to the lower left of Figure 11.18.
trimo/. adataavel

velocity analysis. Failing to do so will give a result like in figure 11.20. The principal feature
of such a velocity analysis is the velocity smearing. A reason for smearing is that the zero-
offset signal is strong in all velocities. Multiplying by

√
sx kills that signal (which is never

recorded in the field anyway). The conceptual advantage of a pseudounitary transformation
like Figure 11.17 is that points in velocity space are orthogonal components like Fourier
components whereas for nonunitary transforms like with Figure 11.20 the different points
in velocity space are not orthogonal components.

Figure 11.20: Like Figure 11.17 omitting pseudounitary scaling. psun=0. Right is synthetic
data and left the analysis of it which is badly smeared. trimo/. velsmear

Subroutine veltran() does the work.

antialiased velocity transform.rt
# ve l t r an −−− v e l o c i t y trans form with ant i−a l i a s i n g and sq r t (− i omega )
#
subrout ine ve l t r an ( adj , add , psun , s02 , ant i , t0 , dt , x0 , dx , s0 , ds , nt , nx , ns , model , data )
i n t e g e r i t , ix , i s , adj , add , psun , nt , nx , ns
r e a l x , s , wt , s02 , ant i , t0 , dt , x0 , dx , s0 , ds , model ( nt , ns ) , data ( nt , nx )
temporary r e a l s low ( nt ) , h a l f ( nt , nx )
c a l l nu l l ( ha l f , nt∗nx )
c a l l a d j nu l l ( adj , add , model , nt∗ns , data , nt∗nx )
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i f ( adj != 0) do i x = 1 , nx
c a l l h a l f d i f a ( adj , 0 , nt , h a l f (1 , i x ) , data (1 , i x ) )

do i s= 1 , ns { s = s0 + ( i s −1) ∗ ds ; do i t =1,nt { s low ( i t ) = s }
do i x= 1 , nx { x = x0 + ( ix −1) ∗ dx

i f ( psun == 2 ) { wt = abs ( s ∗ x ) } # ve l tran
else i f ( psun == 1 ) { wt = sq r t ( abs ( s ∗ x ) ) } # pseudounitary
else { wt = 1 . } # modeling
c a l l tr imo ( adj , 1 , t0 , dt , dx , x , nt , slow , s02 ,

wt , ant i , model (1 , i s ) , h a l f (1 , i x ) )
}}

i f ( adj == 0) do i x = 1 , nx
c a l l h a l f d i f a ( adj , add , nt , h a l f (1 , i x ) , data (1 , i x ) )

return ; end
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RATional FORtran == Ratfor

Bare-bones Fortran is our most universal computer language for computational physics.
For general programming, however, it has been surpassed by C. “Ratfor” is Fortran with
C-like syntax. I believe Ratfor is the best available expository language for mathemati-
cal algorithms. Ratfor was invented by the people who invented C. Ratfor programs are
converted to Fortran with the Ratfor preprocessor. Since the preprocessor is publicly
available, Ratfor is practically as universal as Fortran.1

You will not really need the Ratfor preprocessor or any precise definitions if you already
know Fortran or almost any other computer language, because then the Ratfor language
will be easy to understand. Statements on a line may be separated by “;”. Statements
may be grouped together with braces { }. Do loops do not require statement numbers
because { } defines the range. Given that if( ) is true, the statements in the following
{ } are done. else{ } does what you expect. We may not contract else if to elseif.
We may always omit the braces { } when they contain only one statement. break will
cause premature termination of the enclosing { }. break 2 escapes from {{ }}. while(
) { } repeats the statements in { } while the condition ( ) is true. repeat { ... }
until( ) is a loop that tests at the bottom. A looping statement more general than do is
for(initialize; condition; reinitialize) { }. An example of one equivalent to do i=0,n-1
is the looping statement for(i=0;i<n;i=i+i). The statement next causes skipping to the
end of any loop and a retrial of the test condition. next is rarely used, but when it is,
we must beware of an inconsistency between Fortran and C-language. Where Ratfor uses
next, the C-language uses continue (which in Ratfor and Fortran is merely a place holder
for labels). The Fortran relational operators .gt., .ge., .ne., etc. may be written >, >=,
!=, etc. The logical operators .and. and .or. may be written & and |. Anything from a
# to the end of the line is a comment. Anything that does not make sense to the Ratfor
preprocessor, such as Fortran input-output, is passed through without change. (Ratfor has
a switch statement but we never use it because it conflicts with the implicit undefined
declaration. Anybody want to help us fix the switch in public domain Ratfor?)

Indentation in Ratfor is used for readability. It is not part of the Ratfor language.

1Kernighan, B.W. and Plauger, P.J., 1976, Software Tools: Addison-Wesley. Ratfor was invented at
AT&T, which makes it available directly or through many computer vendors. The original Ratfor trans-
forms Ratfor code to Fortran 66. See http://sepwww.stanford.edu/sep/prof for a public-domain Ratfor
translator to Fortran 77.
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Choose your own style. I have overcondensed. There are two pitfalls associated with
indentation. The beginner’s pitfall is to assume that a do loop ends where the indentation
ends. The loop ends after the first statement. A larger scope for the do loop is made by
enclosing multiple statements in braces. The other pitfall arises in any construction like
if() ... if() ... else. The else goes with the last if() regardless of indentation.
If you want the else with the earlier if(), you must use braces like if() { if() ... }
else ....

The most serious limitation of Fortran-77 is its lack of ability to allocate temporary
memory. I have written a preprocessor to Ratfor or Fortran to overcome this memory-
allocation limitation. This program, named sat, allows subroutines to include the declara-
tion temporary real data(n1,n2), so that memory is allocated during execution of the
subroutine where the declaration is written. Fortran-77 forces us to accomplish something
like this More recently Bob Clapp has prepared Ratfor90, a Perl-based preprocessor to
Fortran 90 that incorporates the desireable features of both ratfor and Fortran 90 and is
backward compatible to the codes of this book.
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Seplib and SEP software

Most of the seismic utility software at SEP1 Stanford Exploration Project (SEP) software
handles seismic data as a rectangular lattice or “cube” of numbers. Each cube-processing
program appends to the history file for the cube. Preprocessors extend Fortran (or Ratfor)
to enable it to allocate memory at run time, to facilitate input and output of data cubes,
and to facilitate self-documenting programs.

At SEP, a library of subroutines known as seplib evolved for routine operations. These
subroutines mostly handle data in the form of cubes, planes, and vectors. A cube is defined
by 14 parameters with standard names and two files: one the data cube itself, and the
other containing the 14 parameters and a history of the life of the cube as it passed through
a sequence of cube-processing programs. Most of these cube-processing programs have
been written by researchers, but several nonscientific cube programs have become highly
developed and are widely shared. Altogether there are (1) a library of subroutines, (2) a
library of main programs, (3) some naming conventions, and (4) a graphics library called
vplot. The subroutine library has good manual pages. The main programs rarely have
manual pages, their documentation being supplied by the on-line self-documentation that
is extracted from the comments at the beginning of the source file. Following is a list of the
names of popular main programs:

Byte Scale floats to brightness bytes for raster display.
Cat Concatenate conforming cubes along the 3-axis.
Contour Contour plot a plane.
Cp Copy a cube.
Dd Convert between ASCI, floats, complex, bytes, etc.
Dots Plot a plane of floats.
Ft3d Do three-dimensional Fourier transform.
Graph Plot a line of floats.
In Check the validity of a data cube.
Merge Merge conforming cubes side by side on any axis.
Movie View a cube with Rick Ottolini’s cube viewer.
Noise Add noise to data.

1 Old reports of the Stanford Exploration Project can be found in the library of the Society of Exploration
Geophysicists in Tulsa, Oklahoma.
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Reverse Reverse a cube axis.
Spike Make a plane wave of synthetic data.
Ta2vplot Convert a byte format to raster display with vplot.
Tpow Scale data by a power of time t (1-axis).
Thplot Make a hidden line plot.
Transpose Transpose cube axes.
Tube View a vplot file on a screen.
Wiggle Plot a plane of floats as “wiggle traces.”
Window Find a subcube by truncation or subsampling.

To use the cube-processing programs, read this document, and then for each command,
read its on-line self-documentation. To write cube-processing programs, read the manual
page for seplib and the subroutines mentioned there and here. To write vplot programs,
see the references on vplot.

13.1 THE DATA CUBE

The data cube itself is like a Fortran three-dimensional matrix. Its location in the computer
file system is denoted by in=PATHNAME, where in= is the literal occurrence of those three
characters, and PATHNAME is a directory tree location like /data/western73.F. Like the
Fortran cube, the data cube can be real, complex, double precision, or byte, and these
cases are distinguished by the element size in bytes. Thus the history file contains one
of esize=4, esize=8, or esize=1, respectively. Embedded blanks around the “=” are
always forbidden. The cube values are binary information; they cannot be printed or edited
(without the intervention of something like a Fortran “format”). To read and write cubes,
see the manual pages for such routines as reed, sreed, rite, srite, snap.

A cube has three axes. The number of points on the 1-axis is n1. A Fortran declaration
of a cube could be real mydata(n1,n2,n3). For a plane, n3=1, and for a line, n2=1.
In addition, many programs take “1” as the default for an undefined value of n2 or n3.
The physical location of the single data value mydata(1,1,1), like a mathematical origin
(o1, o2, o3), is denoted by the three real variables o1, o2, and o3. The data-cube values
are presumed to be uniformly spaced along these axes like the mathematical increments
(∆1,∆2,∆3), which may be negative and are denoted by the three real variables d1, d2,
and d3.

Each axis has a label, and naturally these labels are called label1, label2, and label3.
Examples of labels are kilometers, sec, Hz, and "offset, km". Most often, label1="time,
sec". Altogether that is 2+3× 4 parameters, and there is an optional title parameter that
is interpreted by most of the plot programs. An example is title="Yilmaz and Cumro
Canada profile 25". We reserve the names n4,o4,d4, and label4 (a few programs
support them already), and please do not use n5 etc. for anything but a five-dimensional
cubic lattice.



13.2. THE HISTORY FILE 213

13.2 THE HISTORY FILE

The 15 parameters above, and many more parameters defined by authors of cube-processing
programs, are part of the “history file” (which is ASCI, so we can print it). A great many
cube-processing programs are simple filters—i.e., one cube goes in and one cube comes
out—and that is the case I will describe in detail here. For other cases, such as where two
go in and one comes out, or none go in and one comes out (synthetic data), or one goes
in and none come out (plotting program), I refer you to the manual pages, particularly to
subroutine names beginning with aux (as in “auxiliary”).

Let us dissect an example of a simple cube-processing program and its use. Suppose we
have a seismogram in a data cube and we want only the first 500 points on it, i.e., the first
500 points on the 1-axis. A utility cube filter named Window will do the job. Our command
line looks like

< mygiven.H Window n1=500 > myshort.H

On this command line, mygiven.H is the name of the history file of the data we are given,
and myshort.H is the history file we will create. The moment Window, or any other seplib
program, begins, it copies mygiven.H to myshort.H; from then on, information can only be
appended to myshort.H. When Window learns that we want the 1-axis on our output cube
to be 500, it does call putch(’n1’,’i’,500), which appends n1=500 to myshort.H. But
before this, some other things happen. First, seplib’s internals will get our log-in name,
the date, the name of the computer we are using, and Window’s name (which is Window),
and append these to myshort.H. The internals will scan mygiven.H for in=somewhere to
find the input data cube itself, and will then figure out where we want to keep the output
cube. Seplib will guess that someone named professor wants to keep his data cube at some
place like /scr/professor/ Window.H@. You should read the manual page for datapath to
see how you can set up the default location for your datasets. The reason datapath exists
is to facilitate isolating data from text, which is usually helpful for archiving.

When a cube-processing filter wonders what the value is of n1 for the cube coming in,
it makes a subroutine call like call hetch("n1","i",n1). The value returned for n1 will
be the last value of n1 found on the history file. Window also needs to find a different
n1, the one we put on the command line. For this it will invoke something like call
getch("n1","i",n1out). Then, so the next user will know how big the output cube is, it
will call putch("n1","i",n1out). For more details, see the manual pages.

If we want to take input parameters from a file instead of from the command line,
we type something like <in.H Window par=myparfile.p > out.H. The .p is my naming
convention and is wholly optional, as is the .H notation for a history file.

Sepcube programs are self-documenting. When you type the name of the program with
no input cube and no command-line arguments, you should see the self-documentation
(which comes from the initial comment lines in the program).

SEP software supports “pipelining.” For example, we can slice a plane out of a data
cube, make a contour plot, and display the plot, all with the command line

<in.H Window n3=1 | Contour | Tube

where, as in UNIX pipes, the “|” denotes the passage of information from one program
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to the next. Pipelining is a convenience for the user because it saves defining a location
for necessary intermediate files. The history files do flow down UNIX pipes. You may not
have noticed that some location had to be assigned to the data at the intermediate stages,
and when you typed the pipeline above, you were spared that clutter. To write seplib
programs that allow pipelining, you need to read the manual page on hclose() to keep the
history file from intermingling with the data cube itself.

A sample history file follows: this was an old one, so I removed a few anachronisms
manually.

# Texaco Subduction Trench: read from tape by Bill Harlan

n1=1900 n2=2274

o1=2.4 it0=600 d1=.004 d2=50. in=/d5/alaska

Window: bill Wed Apr 13 14:27:57 1983

input() : in ="/d5/alaska"

output() : sets next in="/q2/data/Dalw"

Input: float Fortran (1900,2274,1)

Output: float Fortran (512,128,1)

n1=512 n2=128 n3=1

Swab: root@mazama Mon Feb 17 03:23:08 1986

# input history file /r3/q2/data/Halw

input() : in ="/q2/data/Dalw"

output() : sets next in="/q2/data/Dalw_002870_Rcp"

#ibs=8192 #obs=8192

Rcp: paul Mon Feb 17 03:23:15 PST 1986

Copying from mazama:/r3/q2/data/Halw

to hanauma:/q2/data/Halw

in="/q2/data/Dalw"

Cp: jon@hanauma Wed Apr 3 23:18:13 1991

input() : in ="/q2/data/Dalw"

output() : sets next in="/scr/jon/_junk.H@"

13.3 MEMORY ALLOCATION

Everything below is for Fortran 77. This approach still works, but has been superceded by
a backward compatible Fortran 90 preprocessor by Bob Clapp which is called Ratfor90.

Sepcube programs can be written in Fortran, Ratfor, or C. A serious problem with
Fortran-77 (and hence Ratfor) is that memory cannot be allocated for arrays whose size is
determined at run time. We have worked around this limitation by using two home-grown
preprocessors, one called saw (Stanford Auto Writer) for main programs, and one called sat
(Stanford Auto Temporaries) for subroutines. Both preprocessors transform either Fortran
or Ratfor.

13.3.1 Memory allocation in subroutines with sat

The sat preprocessor allows us to declare temporary arrays of arbitrary dimension, such as
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temporary real*4 data(n1,n2,n3), convolution(j+k-1)

These declarations must follow other declarations and precede the executable statements.

13.3.2 The main program environment with saw

The saw preprocessor also calls an essential initialization routine initpar(), organizes the
self-doc, and simplifies data-cube input. See the on-line self-documentation or the manual
pages for full details. Following is a complete saw program for a simple task:

# <in.H Scale scaleval=1. > out.H

#

# Copy input to output and scale by scaleval

# keyword generic scale

#%

integer n1, n2, n3, esize

from history: integer n1, n2, n3, esize

if (esize !=4) call erexit(’esize != 4’)

allocate: real x(n1,n2)

subroutine scaleit( n1,n2, x)

integer i1,i2, n1,n2

real x(n1,n2), scaleval

from par: real scaleval=1.

call hclose() # no more parameter handling.

call sreed(’in’, x, 4*n1*n2)

do i1=1,n1

do i2=1,n2

x(i1,i2) = x(i1,i2) * scaleval

call srite( ’out’, x, 4*n1*n2)

return; end

13.4 SHARED SUBROUTINES

The following smoothing subroutines are described in PVI and used in both PVI and BEI.

smooth.rt
subrout ine boxconv ( nb , nx , xx , yy )
# i nputs : nx , xx ( i ) , i =1,nx the data
# nb the box length
# output : yy ( i ) , i =1,nx+nb−1 smoothed data
i n t e g e r nx , ny , nb , i
r e a l xx (nx ) , yy (1 )
temporary r e a l bb (nx+nb)
# ” | | ” means .OR.
i f ( nb < 1 | | nb > nx ) c a l l e r e x i t ( ’ boxconv ’ )
ny = nx+nb−1
do i= 1 , ny

bb( i ) = 0 .
bb (1 ) = xx (1)
do i= 2 , nx

bb( i ) = bb( i −1) + xx ( i ) # make B(Z) = X(Z)/(1−Z)
do i= nx+1, ny



216 CHAPTER 13. SEPLIB AND SEP SOFTWARE

bb( i ) = bb( i −1)
do i= 1 , nb

yy ( i ) = bb( i )
do i= nb+1, ny

yy ( i ) = bb( i ) − bb( i−nb) # make Y(Z) = B(Z)∗(1−Z∗∗nb)
do i= 1 , ny

yy ( i ) = yy ( i ) / nb
return ; end

smooth.rt
# Convolve with t r i a n g l e
#
subrout ine t r i a n g l e ( nr , m1, n12 , uu , vv )
# input : nr r e c t ang l e width ( po in t s ) ( Tr iang l e base twice as wide . )
# input : uu (m1, i 2 ) , i 2 =1,n12 i s a vec to r o f data .
# output : vv (m1, i 2 ) , i 2 =1,n12 may be on top o f uu
i n t e g e r nr ,m1, n12 , i , np , nq
r e a l uu ( m1, n12 ) , vv ( m1, n12 )
temporary r e a l pp ( n12+nr−1) , qq ( n12+nr+nr−2) , t t ( n12 )
do i =1,n12 { qq ( i ) = uu (1 , i ) }
i f ( n12 == 1 )

do i= 1 , n12
t t ( i ) = qq ( i )

else {
c a l l boxconv ( nr , n12 , qq , pp ) ; np = nr+n12−1
c a l l boxconv ( nr , np , pp , qq ) ; nq = nr+np−1
do i= 1 , n12

t t ( i ) = qq ( i+nr−1)
do i= 1 , nr−1 # f o l d back near end

t t ( i ) = t t ( i ) + qq ( nr−i )
do i= 1 , nr−1 # f o l d back f a r end

t t ( n12−i +1) = t t ( n12−i +1) + qq ( n12+(nr−1)+ i )
}

do i =1,n12 { vv (1 , i ) = t t ( i ) }
return ; end

2-D smooth.rt
# smooth by convo lv ing with t r i a n g l e in two dimensions .
#
subrout ine t r i a n g l e 2 ( rect1 , rect2 , n1 , n2 , uu , vv )
i n t e g e r i1 , i2 , rect1 , rect2 , n1 , n2
r e a l uu (n1 , n2 ) , vv (n1 , n2 )
temporary r e a l s s (n1 , n2 )
do i 1= 1 , n1

c a l l t r i a n g l e ( rect2 , n1 , n2 , uu ( i1 , 1 ) , s s ( i1 , 1 ) )
do i 2= 1 , n2

c a l l t r i a n g l e ( rect1 , 1 , n1 , s s (1 , i 2 ) , vv (1 , i 2 ) )
return ; end
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