
BASIC EARTH IMAGING (version 3.2)

Jon F. Claerbout Cecil and Ida Green Professor of Geophysics Stanford University

c© September 28, 2008

Contents

1 Field recording geometry 1

1.1 RECORDING GEOMETRY . 1

1.2 TEXTURE . 7

2 Adjoint operators 11

2.1 FAMILIAR OPERATORS . 12

2.2 ADJOINTS AND INVERSES . 21

3 Waves in strata 23

3.1 TRAVEL-TIME DEPTH . 23

3.2 HORIZONTALLY MOVING WAVES . 24

3.3 DIPPING WAVES . 29

3.4 CURVED WAVEFRONTS . 34

4 Moveout, velocity, and stacking 41

4.1 INTERPOLATION AS A MATRIX . 41

4.2 THE NORMAL MOVEOUT MAPPING 44

4.3 COMMON-MIDPOINT STACKING . 46

4.4 VELOCITY SPECTRA . 51

5 Zero-offset migration 61

5.1 MIGRATION DEFINED . 61

5.2 HYPERBOLA PROGRAMMING . 66

CONTENTS

6 Waves and Fourier sums 77

6.1 FOURIER TRANSFORM . 77

6.2 INVERTIBLE SLOW FT PROGRAM . 81

6.3 CORRELATION AND SPECTRA . 83

6.4 SETTING UP THE FAST FOURIER TRANSFORM 86

6.5 SETTING UP 2-D FT . 89

6.6 THE HALF-ORDER DERIVATIVE WAVEFORM 98

6.7 References . 100

7 Downward continuation 101

7.1 MIGRATION BY DOWNWARD CONTINUATION 101

7.2 DOWNWARD CONTINUATION . 105

7.3 PHASE-SHIFT MIGRATION . 109

8 Dip and offset together 125

8.1 PRESTACK MIGRATION . 125

8.2 INTRODUCTION TO DIP . 131

8.3 TROUBLE WITH DIPPING REFLECTORS 135

8.4 SHERWOOD’S DEVILISH . 136

8.5 ROCCA’S SMEAR OPERATOR . 137

8.6 DMO IN THE PROCESSING FLOW . 144

9 Finite-difference migration 151

9.1 THE PARABOLIC EQUATION . 151

9.2 SPLITTING AND SEPARATION . 153

9.3 FINITE DIFFERENCING IN (omega,x)-SPACE 157

9.4 WAVEMOVIE PROGRAM . 165

9.5 HIGHER ANGLE ACCURACY . 174

10 Imaging in shot-geophone space 181

10.1 TOMOGRAPY OF REFLECTION DATA 181

CONTENTS

10.2 SEISMIC RECIPROCITY IN PRINCIPLE AND IN PRACTICE 189

10.3 SURVEY SINKING WITH THE DSR EQUATION 191

10.4 THE MEANING OF THE DSR EQUATION 196

11 Antialiased hyperbolas 199

11.1 MIMICING FIELD ARRAY ANTIALIASING 201

11.2 MIGRATION WITH ANTIALIASING . 208

12 RATional FORtran == Ratfor 215

13 Seplib and SEP software 217

13.1 THE DATA CUBE . 218

13.2 THE HISTORY FILE . 219

13.3 MEMORY ALLOCATION . 220

13.4 SHARED SUBROUTINES . 221

13.5 REFERENCES . 222

Index 223

CONTENTS

Themes

The main theme of this book is to take a good quality reflection seismic data set from the Gulf
of Mexico and guide you through the basic geophysical data processing steps from raw data
to the best-quality final image. Secondary themes are to introduce you (1) to cleaned up but
real working Fortran code that does the job, (2) to the concept of “adjoint operator”, and (3)
to the notion of electronic document.

What it does, what it means, and how it works

A central theme of this book is to merge the abstract with the concrete by linking mathematics
to runnable computer codes. The codes are in a consistent style using nomenclature that
resembles the accompanying mathematics so the two illuminate each other. The code shown
is exactly that used to generate the illustrations. There is little or no mathematics or code that
is not carried through with examples using both synthetic and real data. The code itself is in
a dialect of Fortran more suitable for exposition than standard Fortran. (This "ratfor" dialect
easily translates to standard Fortran). Some codes have been heavily tested while others have
only been tested by the preparation of the illustrations.

Imaging with adjoint (conjugate-transpose) operators

A secondary theme of this book is to develop in the reader an understanding of a universal
linkage beween forward modeling and data processing. Thus the codes here that incarnate
linear operators are written in a style that also incarnates the adjoint (conjugate-transpose)
operator thus enabling both modeling and data processing with the same code. This style of
coding, besides being concise and avoiding redundancy, ensures the consistency required for
estimation by conjugate-gradient optimization as described in my other books.

Adjoint operators link the modeling activity to the model estimation activity. While this
linkage is less sophisticated than formal estimation theory (“inversion”), it is robust, easily
available, and does not put unrealistic demands on the data or imponderable demands on the
interpreter.

i

ii CONTENTS

Electronic document

A goal that we met with the 1992 CD-ROM version of this book was to give the user a full
copy, not only of the book, but of all the software that built the book including not only the
seismic data processing codes but also the word processing, the data, and the whole super-
structure. Although we succeeded for a while having a book that ran on machines of all the
major manufacturers, eventually we were beaten down by a host of incompatibilities. This
struggle continues. With my colleagues, we are now working towards having books on the
World Wide Web where you can grab parts of a book that generates illustrations and modify
them to create your own illustrations.

Acknowledgements

I had the good fortune to be able to establish a summer 1992 collaboration with Jim Black
of IBM in Dallas who, besides bringing fresh eyes to the whole undertaking, wrote the first
version of chapter 8 on dip moveout, made significant contributions to the other chapters, and
organized the raw data.

In this book, as in my previous (and later) books, I owe a great deal to the many students at
the Stanford Exploration Project. The local computing environment from my previous book is
still a benefit, and for this I thank Stew Levin, Dave Hale, and Richard Ottolini. In preparing
this book I am specially indebted to Joe Dellinger for his development of the intermediate
graphics language vplot that I used for all the figures. I am grateful to Kamal Al-Yahya for
converting my thinking from the troff typesetting language to LATEX. Bill Harlan offered
helpful suggestions. Steve Cole adapted vplot to Postscript and X. Dave Nichols introduced
our multivendor environment. Joel M. Schroeder and Matthias Schwab converted from cake
to gmake. Bob Clapp expanded Ratfor for Fortran 90. Martin Karrenbach got us started with
CD-ROMs. Sergey Fomel upgraded the Latex version to “2e” and he implemented the basic
changes taking us from CD-ROM to the WWW, a process which continues to this day in year
2000.

Jon Claerbout
Stanford University
September 28, 2008

Chapter 1

Field recording geometry

The basic equipment for reflection seismic prospecting is a source for impulsive sound waves,
a geophone (something like a microphone), and a multichannel waveform display system. A
survey line is defined along the earth’s surface. It could be the path for a ship, in which case
the receiver is called a hydrophone. About every 25 meters the source is activated, and the
echoes are recorded nearby. The sound source and receiver have almost no directional tuning
capability because the frequencies that penetrate the earth have wavelengths longer than the
ship. Consequently, echoes can arrive from several directions at the same time. It is the
joint task of geophysicists and geologists to interpret the results. Geophysicists assume the
quantitative, physical, and statistical tasks. Their main goals, and the goal to which this book
is mainly directed, is to make good pictures of the earth’s interior from the echoes.

1.1 RECORDING GEOMETRY

Along the horizontal x-axis we define two points, s, where the source (or shot or sender) is
located, and g, where the geophone (or hydrophone or microphone) is located. Then, define
the midpoint y between the shot and geophone, and define h to be half the horizontal offset
between the shot and geophone:

y = g + s

2
(1.1)

h = g − s

2
(1.2)

The reason for using half the offset in the equations is to simplify and symmetrize many later
equations. Offset is defined with g− s rather than with s − g so that positive offset means
waves moving in the positive x direction. In the marine case, this means the ship is presumed
to sail negatively along the x-axis. In reality the ship may go either way, and shot points may
either increase or decrease as the survey proceeds. In some situations you can clarify matters
by setting the field observer’s shot-point numbers to negative values.

Data is defined experimentally in the space of (s, g). Equations (1.1) and (1.2) represent a

1

2 CHAPTER 1. FIELD RECORDING GEOMETRY

change of coordinates to the space of (y, h). Midpoint-offset coordinates are especially useful
for interpretation and data processing. Since the data is also a function of the travel time t , the
full dataset lies in a volume. Because it is so difficult to make a satisfactory display of such a
volume, what is customarily done is to display slices. The names of slices vary slightly from
one company to the next. The following names seem to be well known and clearly understood:

(y, h = 0, t) zero-offset section
(y, h = hmin , t) near-trace section
(y, h = const, t) constant-offset section
(y, h = hmax, t) far-trace section
(y = const, h, t) common-midpoint gather
(s = const, g, t) field profile (or common-shot gather)
(s, g = const, t) common-geophone gather
(s, g, t = const) time slice
(h, y, t = const) time slice

A diagram of slice names is in Figure 1.1. Figure 1.2 shows three slices from the data
volume. The first mode of display is “engineering drawing mode.” The second mode of
display is on the faces of a cube. But notice that although the data is displayed on the surface
of a cube, the slices themselves are taken from the interior of the cube. The intersections of
slices across one another are shown by dark lines.

A common-depth-point (CDP) gather is defined by the industry and by common usage to
be the same thing as a common-midpoint (CMP) gather. But in this book a distinction will be
made. A CDP gather is a CMP gather with its time axis stretched according to some velocity
model, say,

(y = const, h,
√

t2−4h2/v2) common-depth-point gather

This offset-dependent stretching makes the time axis of the gather become more like a depth
axis, thus providing the D in CDP. The stretching is called normal moveout correction (NMO).
Notice that as the velocity goes to infinity, the amount of stretching goes to zero.

There are basically two ways to get two-dimensional information from three-dimensional
information. The most obvious is to cut out the slices defined above. A second possibility is
to remove a dimension by summing over it. In practice, the offset axis is the best candidate
for summation. Each CDP gather is summed over offset. The resulting sum is a single trace.
Such a trace can be constructed at each midpoint. The collection of such traces, a function of
midpoint and time, is called a CDP stack. Roughly speaking, a CDP stack is like a zero-offset
section, but it has a less noisy appearance.

The construction of a CDP stack requires that a numerical choice be made for the moveout-
correction velocity. This choice is called the stacking velocity. The stacking velocity may be
simply someone’s guess of the earth’s velocity. Or the guess may be improved by stacking
with some trial velocities to see which gives the strongest and least noisy CDP stack.

Figures 1.3 and 1.4 show typical marine and land profiles (common-shot gathers). The

1.1. RECORDING GEOMETRY 3

midpoint gather

field profile

co
ns

tan
t

co
m

m
on

or common shot gather

of
fse

t s
ec

tio
n

ge
op

ho
ne

 g
at

he
r

common

g

g g g g gs

s

h

y

Figure 1.1: Top shows field recording of marine seismograms from a shot at location s to
geophones at locations labeled g. There is a horizontal reflecting layer to aid interpretation.
The lower diagram is called a stacking diagram. (It is not a perspective drawing). Each
dot in this plane depicts a possible seismogram. Think of time running out from the plane.
The center geophone above (circled) records the seismogram (circled dot) that may be found
in various geophysical displays. Lines in this (s, g)-plane are planes in the (t ,s, g)-volume.
Planes of various orientations have the names given in the text. fld-sg [NR]

4 CHAPTER 1. FIELD RECORDING GEOMETRY

Figure 1.2: Slices from within a cube of data. Top: Slices displayed as a mechanical drawing.
Bottom: Same slices shown on perspective of cube faces. fld-cube [ER]

1.1. RECORDING GEOMETRY 5

Figure 1.3: A seismic land profile.
There is a gap where there are no re-
ceivers near the shot. You can see
events of three different velocities.
(Western Geophysical). fld-yc02
[ER]

Figure 1.4: A marine profile off the
Aleutian Islands. (Western Geophys-
ical). fld-yc20 [ER]

6 CHAPTER 1. FIELD RECORDING GEOMETRY

land data has geophones on both sides of the source. The arrangement shown is called an
uneven split spread. The energy source was a vibrator. The marine data happens to nicely
illustrate two or three head waves. The marine energy source was an air gun. These field
profiles were each recorded with about 120 geophones.

1.1.1 Fast ship versus slow ship

For marine seismic data, the spacing between shots 1s is a function of the speed of the ship
and the time interval between shots. Naturally we like 1s small (which means more shots)
but that means either the boat slows down, or one shot follows the next so soon that it covers
up late arriving echos. The geophone spacing 1g is fixed when the marine streamer is de-
signed. Modern streamers are designed for more powerful computers and they usually have
smaller 1g. Much marine seismic data is recorded with 1s =1g and much is recorded with
1s =1g/2. There are unexpected differences in what happens in the processing. Figure 1.5
shows 1s =1g, and Figure 1.6 shows 1s =1g/2. When 1s =1g there are some irritating

Figure 1.5: 1g=1s. The zero-offset
section lies under the zeros. Ob-
serve the common midpoint gathers.
Notice that even numbered receivers
have a different geometry than odd
numbers. Thus there are two kinds of
CMP gathers with different values of
the lead-in x0 = x0 fld-geqs [ER]

complications that we do not have for 1s = 1g/2. When 1s = 1g, even-numbered traces
have a different midpoint than odd-numbered traces. For a common-midpoint analysis, the
evens and odds require different processing. The words “lead-in” describe the distance (x0 =
x0) from the ship to the nearest trace. When 1s = 1g the lead-in of a CMP gather depends
on whether it is made from the even or the odd traces. In practice the lead-in is about 31s.
Theoretically we would prefer no lead in, but it is noisy near the ship, the tension on the cable
pulls it out of the water near the ship, and the practical gains of a smaller lead-in are evidently
not convincing.

Figure 1.6: 1g = 21s. This is like
Figure 1.5 with odd valued receivers
omitted. Notice that each common-
midpoint gather has the same geome-
try. fld-geq2s [ER]

1.2. TEXTURE 7

1.2 TEXTURE

Gravity is a strong force for the stratification of rocks, and many places in the world rocks
are laid down in horizontal beds. Yet even in the most ideal environment the bedding is not
mirror smooth; it has some texture. We begin with synthetic data that mimics the most ideal
environment. Such an environment is almost certainly marine, where sedimentary deposition
can be slow and uniform. The wave velocity will be taken to be constant, and all rays will
reflect as from horizontally lying mirrors. Mathematically, texture is introduced by allowing
the reflection coefficients of the beds to be laterally variable. The lateral variation is presumed
to be a random function, though not necessarily with a white spectrum. Let us examine the
appearance of the resulting field data.

1.2.1 Texture of horizontal bedding, marine data

Randomness is introduced into the earth with a random function of midpoint y and depth z.
This randomness is impressed on some geological “layer cake” function of depth z. This is
done in the first half of subroutine synmarine() on this page.

subroutine synmarine (data, nt,nh,ny, nz)

integer nt,nh,ny, nz, it,ih,iy,is,iz, ns, iseed

real data(nt,nh,ny), layer, rand01

temporary real refl(nz,ny), depth(nz)

iseed= 1992; ns = ny

do iz= 1, nz { # 0 < rand01() < 1

depth(iz) = nt * rand01(iseed) # Reflector depth

layer = 2. * rand01(iseed) - 1. # Reflector strength

do iy= 1, ny { # Impose texture on layer

refl(iz,iy) = layer * (1. + rand01(iseed))

}

}

call null(data, nt*nh*ny) # erase data space

do is= 1, ns { # shots

do ih= 1, nh { # down cable h = (g-s)/2

do iz= 1, nz { # Add hyperbola for each layer

iy = (ns-is)+(ih-1) # y = midpoint

iy = 1 + (iy-ny*(iy/ny)) # periodic with midpoint

it = 1 + sqrt(depth(iz)**2 + 25.*(ih-1)**2)

if(it <= nt)

data(it,ih,is) = data(it,ih,is) + refl(iz,iy)

}}}

return; end

The second half of subroutine synmarine() on the current page scans all shot and geophone
locations and depths and finds the midpoint, and the reflection coefficient for that midpoint,
and adds it into the data at the proper travel time.

There are two confusing aspects of subroutine synmarine() on this page. First, refer to
figure 1.1 and notice that since the ship drags the long cable containing the receivers, the ship

8 CHAPTER 1. FIELD RECORDING GEOMETRY

must be moving to the left, so data is recorded for sequentially decreasing values of s. Second,
to make a continuous movie from a small number of frames, it is necessary only to make the
midpoint axis periodic, i.e. when a value of iy is computed beyond the end of the axis ny , then
it must be moved back an integer multiple of ny .

What does the final data space look like? This question has little meaning until we decide
how the three-dimensional data volume will be presented to the eye. Let us view the data much
as it is recorded in the field. For each shot point we see a frame in which the vertical axis is the
travel time and the horizontal axis is the distance from the ship down the towed hydrophone
cable. The next shot point gives us another frame. Repetition gives us the accompanying
program that produces a cube of data, hence a movie. This cube is synthetic data for the ideal
marine environment. And what does the movie show?

Figure 1.7: Output from synma-

rine() subroutine (with temporal fil-
tering on the t-axis). fld-synmarine
[ER,M]

A single frame shows hyperbolas with imposed texture. The movie shows the texture
moving along each hyperbola to increasing offsets. (I find that no sequence of still pictures
can give the impression that the movie gives). Really the ship is moving; the texture of the
earth is remaining stationary under it. This is truly what most marine data looks like, and the
computer program simulates it. Comparing the simulated data to real marine-data movies, I
am impressed by the large amount of random lateral variation required in the simulated data
to achieve resemblance to field data. The randomness seems too great to represent lithologic
variation. Apparently it is the result of something not modeled. Perhaps it results from our
incomplete understanding of the mechanism of reflection from the quasi-random earth. Or
perhaps it is an effect of the partial focusing of waves sometime after they reflect from minor
topographic irregularities. A full explanation awaits more research.

1.2.2 Texture of land data: near-surface problems

Reflection seismic data recorded on land frequently displays randomness because of the irreg-
ularity of the soil layer. Often it is so disruptive that the seismic energy sources are deeply
buried (at much cost). The geophones are too many for burial. For most land reflection data,

1.2. TEXTURE 9

Figure 1.8: Press button for field data
movie. fld-shotmovie [ER,M]

the texture caused by these near-surface irregularities exceeds the texture resulting from the
reflecting layers.

To clarify our thinking, an ideal mathematical model will be proposed. Let the reflecting
layers be flat with no texture. Let the geophones suffer random time delays of several time
points. Time delays of this type are called statics. Let the shots have random strengths. For
this movie, let the data frames be common-midpoint gathers, that is, let each frame show data
in (h, t) -space at a fixed midpoint y. Successive frames will show successive midpoints. The
study of Figure 1.1 should convince you that the traveltime irregularities associated with the
geophones should move leftward, while the amplitude irregularities associated with the shots
should move rightward (or vice versa). In real life, both amplitude and time anomalies are
associated with both shots and geophones.

EXERCISES:

1 Modify the program of Figure 1.7 to produce a movie of synthetic midpoint gathers with
random shot amplitudes and random geophone time delays. Observing this movie you

Figure 1.9: fld-wirecube [NR]

will note the perceptual problem of being able to see the leftward motion along with the
rightward motion. Try to adjust anomaly strengths so that both left-moving and right-
moving patterns are visible. Your mind will often see only one, blocking out the other,
similar to the way you perceive a 3-D cube, from a 2-D projection of its edges.

2 Define recursive dip filters to pass and reject the various textures of shot, geophone, and
midpoint.

10 CHAPTER 1. FIELD RECORDING GEOMETRY

Chapter 2

Adjoint operators

A great many of the calculations we do in science and engineering are really matrix mul-
tiplication in disguise. The first goal of this chapter is to unmask the disguise by showing
many examples. Second, we see how the adjoint operator (matrix transpose) back-projects
information from data to the underlying model.

Geophysical modeling calculations generally use linear operators that predict data from
models. Our usual task is to find the inverse of these calculations; i.e., to find models (or make
maps) from the data. Logically, the adjoint is the first step and a part of all subsequent steps in
this inversion process. Surprisingly, in practice the adjoint sometimes does a better job than
the inverse! This is because the adjoint operator tolerates imperfections in the data and does
not demand that the data provide full information.

Using the methods of this chapter, you will find that once you grasp the relationship be-
tween operators in general and their adjoints, you can obtain the adjoint just as soon as you
have learned how to code the modeling operator.

If you will permit me a poet’s license with words, I will offer you the following table of
operators and their adjoints:

matrix multiply conjugate-transpose matrix multiply
convolve crosscorrelate
truncate zero pad
replicate, scatter, spray sum or stack
spray into neighborhood sum in bins
derivative (slope) negative derivative
causal integration anticausal integration
add functions do integrals
assignment statements added terms
plane-wave superposition slant stack / beam form
superpose on a curve sum along a curve
stretch squeeze
upward continue downward continue

11

12 CHAPTER 2. ADJOINT OPERATORS

hyperbolic modeling normal moveout and CDP stack
diffraction modeling imaging by migration
ray tracing tomography

The left column above is often called “modeling,” and the adjoint operators on the right
are often used in “data processing.”

The adjoint operator is sometimes called the “back projection” operator because informa-
tion propagated in one direction (earth to data) is projected backward (data to earth model). For
complex-valued operators, the transpose goes together with a complex conjugate. In Fourier
analysis, taking the complex conjugate of exp(iωt) reverses the sense of time. With more po-
etic license, I say that adjoint operators undo the time and phase shifts of modeling operators.
The inverse operator does this too, but it also divides out the color. For example, when linear
interpolation is done, then high frequencies are smoothed out, so inverse interpolation must
restore them. You can imagine the possibilities for noise amplification. That is why adjoints
are safer than inverses.

Later in this chapter we relate adjoint operators to inverse operators. Although inverse
operators are more well known than adjoint operators, the inverse is built upon the adjoint so
the adjoint is a logical place to start. Also, computing the inverse is a complicated process
fraught with pitfalls whereas the computation of the adjoint is easy. It’s a natural companion
to the operator itself.

Much later in this chapter is a formal definition of adjoint operator. Throughout the chap-
ter we handle an adjoint operator as a matrix transpose, but we hardly ever write down any
matrices or their transposes. Instead, we always prepare two subroutines, one that performs
y = Ax and another that performs x̃ = A′y. So we need a test that the two subroutines really
embody the essential aspects of matrix transposition. Although the test is an elegant and use-
ful test and is itself a fundamental definition, curiously, that definition does not help construct
adjoint operators, so we postpone a formal definition of adjoint until after we have seen many
examples.

2.1 FAMILIAR OPERATORS

The operation yi =
∑

j bi j xj is the multiplication of a matrix B by a vector x. The adjoint
operation is x̃j =

∑

i bi j yi . The operation adjoint to multiplication by a matrix is multiplication
by the transposed matrix (unless the matrix has complex elements, in which case we need the
complex-conjugated transpose). The following pseudocode does matrix multiplication y=Bx
and multiplication by the transpose x̃= B′y:

2.1. FAMILIAR OPERATORS 13

if operator itself
then erase y

if adjoint
then erase x

do iy = 1, ny {
do ix = 1, nx {

if operator itself
y(iy) = y(iy) + b(iy,ix) × x(ix)

if adjoint
x(ix) = x(ix) + b(iy,ix) × y(iy)

} }

Notice that the “bottom line” in the program is that x and y are simply interchanged. The
above example is a prototype of many to follow, so observe carefully the similarities and
differences between the operation and its adjoint.

A formal subroutine1 for matrix multiply and its adjoint is found below. The first step
is a subroutine, adjnull() , for optionally erasing the output. With the option add=1 , results
accumulate like y=y+B*x .

subroutine adjnull(adj, add, x, nx, y, ny)

integer ix, iy, adj, add, nx, ny

real x(nx), y(ny)

if(add == 0)

if(adj == 0)

do iy= 1, ny

y(iy) = 0.

else

do ix= 1, nx

x(ix) = 0.

return; end

The subroutine matmult() for matrix multiply and its adjoint exhibits the style that we will
use repeatedly.

matrix multiply and its adjoint

#

subroutine matmult(adj, add, bb, x,nx, y,ny)

integer ix, iy, adj, add, nx, ny

real bb(ny,nx), x(nx), y(ny)

call adjnull(adj, add, x,nx, y,ny)

do ix= 1, nx {

do iy= 1, ny {

if(adj == 0)

y(iy) = y(iy) + bb(iy,ix) * x(ix)

1The programming language used in this book is Ratfor, a dialect of Fortran. For more details, see
Appendix A.

14 CHAPTER 2. ADJOINT OPERATORS

else

x(ix) = x(ix) + bb(iy,ix) * y(iy)

}}

return; end

Sometimes a matrix operator reduces to a simple row or a column.

A row is a summation operation.

A column is an impulse response.

If the inner loop of a matrix multiply ranges within a

row, the operator is called sum or pull.

column, the operator is called spray or push.

A basic aspect of adjointness is that the adjoint of a row matrix operator is a column matrix
operator. For example, the row operator [a,b]

y = [a b]
[

x1
x2

]

= ax1+bx2 (2.1)

has an adjoint that is two assignments:
[

x̂1
x̂2

]

=
[

a
b

]

y (2.2)

The adjoint of a sum of N terms is a collection of N assignments.

2.1.1 Adjoint derivative

Given a sampled signal, its time derivative can be estimated by convolution with the filter
(1,−1)/1t , expressed as the matrix-multiply below:

















y1
y2
y3
y4
y5
y6

















=

















−1 1
. −1 1 . . .
. . −1 1 . .
. . . −1 1 .
. . . . −1 1
. 0

































x1
x2
x3
x4
x5
x6

















(2.3)

Technically the output should be n-1 points long, but I appended a zero row, a small loss
of logical purity, so that the size of the output vector will match that of the input. This is a
convenience for plotting and for simplifying the assembly of other operators building on this
one.

2.1. FAMILIAR OPERATORS 15

The filter impulse response is seen in any column in the middle of the matrix, namely
(1,−1). In the transposed matrix, the filter-impulse response is time-reversed to (−1,1). So,
mathematically, we can say that the adjoint of the time derivative operation is the negative
time derivative. This corresponds also to the fact that the complex conjugate of−iω is iω. We
can also speak of the adjoint of the boundary conditions: we might say that the adjoint of “no
boundary condition” is a “specified value” boundary condition.

A complicated way to think about the adjoint of equation (2.3) is to note that it is the
negative of the derivative and that something must be done about the ends. A simpler way to
think about it is to apply the idea that the adjoint of a sum of N terms is a collection of N
assignments. This is done in subroutine igrad1() , which implements equation (2.3) and its
adjoint.

subroutine igrad1(adj, add, xx,n, yy)

integer i, adj, add, n

real xx(n), yy(n)

call adjnull(adj, add, xx,n, yy,n)

do i= 1, n-1 {

if(adj == 0)

yy(i) = yy(i) + xx(i+1) - xx(i)

else {

xx(i+1) = xx(i+1) + yy(i)

xx(i) = xx(i) - yy(i)

}

}

return; end

Notice that the do loop in the code covers all the outputs for the operator itself, and that in the
adjoint operation it gathers all the inputs. This is natural because in switching from operator
to adjoint, the outputs switch to inputs.

As you look at the code, think about matrix elements being +1 or −1 and think about the
forward operator “pulling” a sum into yy(i) , and think about the adjoint operator “pushing”
or “spraying” the impulse yy(i) back into xx() .

You might notice that you can simplify the program by merging the “erase output” activity
with the calculation itself. We will not do this optimization however because in many applica-
tions we do not want to include the “erase output” activity. This often happens when we build
complicated operators from simpler ones.

2.1.2 Zero padding is the transpose of truncation

Surrounding a dataset by zeros (zero padding) is adjoint to throwing away the extended data
(truncation). Let us see why this is so. Set a signal in a vector x, and then to make a longer
vector y, add some zeros at the end of x. This zero padding can be regarded as the matrix
multiplication

y =
[

I
0

]

x (2.4)

16 CHAPTER 2. ADJOINT OPERATORS

The matrix is simply an identity matrix I above a zero matrix 0. To find the transpose to
zero-padding, we now transpose the matrix and do another matrix multiply:

x̃ =
[

I 0
]

y (2.5)

So the transpose operation to zero padding data is simply truncating the data back to its orig-
inal length. Subroutine zpad1() below pads zeros on both ends of its input. Subroutines for
two- and three-dimensional padding are in the library named zpad2() and zpad3() .

Zero pad. Surround data by zeros. 1-D

#

subroutine zpad1(adj,add, data,nd, padd,np)

integer adj,add, d, nd, p, np

real data(nd), padd(np)

call adjnull(adj,add, data,nd, padd,np)

do d= 1, nd { p = d + (np-nd)/2

if(adj == 0)

padd(p) = padd(p) + data(d)

else

data(d) = data(d) + padd(p)

}

return; end

2.1.3 Adjoints of products are reverse-ordered products of adjoints

Here we examine an example of the general idea that adjoints of products are reverse-ordered
products of adjoints. For this example we use the Fourier transformation. No details of
Fourier transformation are given here and we merely use it as an example of a square matrix
F. We denote the complex-conjugate transpose (or adjoint) matrix with a prime, i.e., F′. The
adjoint arises naturally whenever we consider energy. The statement that Fourier transforms
conserve energy is y′y= x′x where y= Fx. Substituting gives F′F= I, which shows that the
inverse matrix to Fourier transform happens to be the complex conjugate of the transpose of
F.

With Fourier transforms, zero padding and truncation are especially prevalent. Most
subroutines transform a dataset of length of 2n, whereas dataset lengths are often of length
m×100. The practical approach is therefore to pad given data with zeros. Padding followed
by Fourier transformation F can be expressed in matrix algebra as

Program = F
[

I
0

]

(2.6)

According to matrix algebra, the transpose of a product, say AB=C, is the product C′ =B′A′

in reverse order. So the adjoint subroutine is given by

Program′ =
[

I 0
]

F′ (2.7)

Thus the adjoint subroutine truncates the data after the inverse Fourier transform. This con-
crete example illustrates that common sense often represents the mathematical abstraction that

2.1. FAMILIAR OPERATORS 17

adjoints of products are reverse-ordered products of adjoints. It is also nice to see a formal
mathematical notation for a practical necessity. Making an approximation need not lead to
collapse of all precise analysis.

2.1.4 Nearest-neighbor coordinates

In describing physical processes, we often either specify models as values given on a uniform
mesh or we record data on a uniform mesh. Typically we have a function f of time t or
depth z and we represent it by f(iz) corresponding to f (z i) for i = 1,2,3, . . . ,nz where zi =
z0+ (i − 1)1z. We sometimes need to handle depth as an integer counting variable i and
we sometimes need to handle it as a floating-point variable z. Conversion from the counting
variable to the floating-point variable is exact and is often seen in a computer idiom such as
either of

do iz= 1, nz { z = z0 + (iz-1) * dz

do i3= 1, n3 { x3 = o3 + (i3-1) * d3

The reverse conversion from the floating-point variable to the counting variable is inexact. The
easiest thing is to place it at the nearest neighbor. This is done by solving for iz , then adding
one half, and then rounding down to the nearest integer. The familiar computer idioms are:

iz = .5 + 1 + (z - z0) / dz

iz = 1.5 + (z - z0) / dz

i3 = 1.5 + (x3 - o3) / d3

A small warning is in order: People generally use positive counting variables. If you also
include negative ones, then to get the nearest integer, you should do your rounding with the
Fortran function NINT() .

2.1.5 Data-push binning

Binning is putting data values in bins. Nearest-neighbor binning is an operator. There is both
a forward operator and its adjoint. Normally the model consists of values given on a uniform
mesh, and the data consists of pairs of numbers (ordinates at coordinates) sprinkled around in
the continuum (although sometimes the data is uniformly spaced and the model is not).

In both the forward and the adjoint operation, each data coordinate is examined and the
nearest mesh point (the bin) is found. For the forward operator, the value of the bin is added
to that of the data. The adjoint is the reverse: we add the value of the data to that of the bin.
Both are shown in two dimensions in subroutine dpbin2() .

Data-push binning in 2-D.

#

18 CHAPTER 2. ADJOINT OPERATORS

subroutine dpbin2 (adj, add, o1,d1,o2,d2, xy, mm,m1,m2, dd, nd)

integer i1,i2, adj, add, id, m1,m2, nd

real o1,d1,o2,d2, xy(2,nd), mm(m1,m2), dd(nd)

call adjnull(adj, add, mm,m1*m2, dd, nd)

do id=1,nd {

i1 = 1.5 + (xy(1,id)-o1)/d1

i2 = 1.5 + (xy(2,id)-o2)/d2

if(1<=i1 && i1<=m1 &&

1<=i2 && i2<=m2)

if(adj == 0)

dd(id) = dd(id) + mm(i1,i2)

else

mm(i1,i2) = mm(i1,i2) + dd(id)

}

return; end

The most typical application requires an additional step, inversion. In the inversion appli-
cations each bin contains a different number of data values. After the adjoint operation is
performed, the inverse operator divides the bin value by the number of points in the bin. It is
this inversion operator that is generally called binning. To find the number of data points in a
bin, we can simply apply the adjoint of dpbin2() to pseudo data of all ones.

2.1.6 Linear interpolation

The linear interpolation operator is much like the binning operator but a little fancier. When
we perform the forward operation, we take each data coordinate and see which two model
mesh points bracket it. Then we pick up the two bracketing model values and weight each of
them in proportion to their nearness to the data coordinate, and add them to get the data value
(ordinate). The adjoint operation is adding a data value back into the model vector; using the
same two weights, this operation distributes the ordinate value between the two nearest points
in the model vector. For example, suppose we have a data point near each end of the model
and a third data point exactly in the middle. Then for a model space 6 points long, as shown
in Figure 2.1, we have the operator in (2.8).

Figure 2.1: Uniformly sampled
model space and irregularly sampled
data space corresponding to (2.8).
conj-helgerud [NR]

d
 1

d
 2

m
 5

m
 4

m
 3

m
 2

m
 1

m
 0

d
 0





d0
d1
d2



 ≈





.8 .2
. . 1 . . .
.5 .5





















m0
m1
m2
m3
m4
m5

















(2.8)

2.1. FAMILIAR OPERATORS 19

The two weights in each row sum to unity. If a binning operator were used for the same data
and model, the binning operator would contain a “1.” in each row. In one dimension (as here),
data coordinates are often sorted into sequence, so that the matrix is crudely a diagonal matrix
like equation (2.8). If the data coordinates covered the model space uniformly, the adjoint
would roughly be the inverse. Otherwise, when data values pile up in some places and gaps
remain elsewhere, the adjoint would be far from the inverse.

Subroutine lint1() does linear interpolation and its adjoint.

Linear interpolation 1-D, uniform model mesh to data coordinates and values.

#

subroutine lint1(adj, add, o1,d1,coordinate, mm,m1, dd, nd)

integer i, im, adj, add, id, m1, nd

real f, fx,gx, o1,d1,coordinate(nd), mm(m1), dd(nd)

call adjnull(adj, add, mm,m1, dd, nd)

do id= 1, nd {

f = (coordinate(id)-o1)/d1; i=f; im= 1+i

if(1<=im && im<m1) { fx=f-i; gx= 1.-fx

if(adj == 0)

dd(id) = dd(id) + gx * mm(im) + fx * mm(im+1)

else {

mm(im) = mm(im) + gx * dd(id)

mm(im+1) = mm(im+1) + fx * dd(id)

}

}

}

return; end

2.1.7 Causal integration

Causal integration is defined as

y(t) =
∫ t

−∞
x(t) dt (2.9)

Sampling the time axis gives a matrix equation which we should call causal summation, but
we often call it causal integration.



































y0
y1
y2
y3
y4
y5
y6
y7
y8
y9



































=



































1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1





































































x0
x1
x2
x3
x4
x5
x6
x7
x8
x9



































(2.10)

20 CHAPTER 2. ADJOINT OPERATORS

(In some applications the 1 on the diagonal is replaced by 1/2.) Causal integration is the
simplest prototype of a recursive operator. The coding is trickier than operators we considered
earlier. Notice when you compute y5 that it is the sum of 6 terms, but that this sum is more
quickly computed as y5 = y4+ x5. Thus equation (2.10) is more efficiently thought of as the
recursion

yt = yt−1+ xt for increasing t (2.11)
(which may also be regarded as a numerical representation of the differential equation dy/dt =
x .)

When it comes time to think about the adjoint, however, it is easier to think of equa-
tion (2.10) than of (2.11). Let the matrix of equation (2.10) be called C. Transposing to get C′

and applying it to y gives us something back in the space of x, namely x̃ = C′y. From it we
see that the adjoint calculation, if done recursively, needs to be done backwards like

x̃t−1 = x̃t + yt−1 for decreasing t (2.12)

We can sum up by saying that the adjoint of causal integration is anticausal integration.

A subroutine to do these jobs is causint() on the current page. The code for anticausal
integration is not obvious from the code for integration and the adjoint coding tricks we learned
earlier. To understand the adjoint, you need to inspect the detailed form of the expression
x̃= C′y and take care to get the ends correct.
causal integration (1’s on diagonal)

#

subroutine causint(adj, add, n,xx, yy)

integer i, n, adj, add; real xx(n), yy(n)

temporary real tt(n)

call adjnull(adj, add, xx,n, yy,n)

if(adj == 0){ tt(1) = xx(1)

do i= 2, n

tt(i) = tt(i-1) + xx(i)

do i= 1, n

yy(i) = yy(i) + tt(i)

}

else { tt(n) = yy(n)

do i= n, 2, -1

tt(i-1) = tt(i) + yy(i-1)

do i= 1, n

xx(i) = xx(i) + tt(i)

}

return; end

Later we will consider equations to march wavefields up towards the earth’s surface, a
layer at a time, an operator for each layer. Then the adjoint will start from the earth’s surface
and march down, a layer at a time, into the earth.

EXERCISES:

1 Modify the calculation in Figure 2.2 to make a triangle waveform on the bottom row.

2.2. ADJOINTS AND INVERSES 21

Figure 2.2: in1 is an input pulse. C

in1 is its causal integral. C’ in1 is
the anticausal integral of the pulse.
in2 is a separated doublet. Its causal
integration is a box and its anticausal
integration is the negative. CC in2

is the double causal integral of in2 .
How can an equilateral triangle be
built? conj-causint [ER]

2.2 ADJOINTS AND INVERSES

Consider a model m and an operator F which creates some theoretical data dtheor.

dtheor = Fm (2.13)

The general task of geophysicists is to begin from observed data dobs and find an estimated
model mest that satisfies the simultaneous equations

dobs = Fmest (2.14)

This is the topic of a large discipline variously called “inversion” or “estimation”. Basically,
it defines a residual r= dobs−dtheor and then minimizes its length r · r. Finding mest this way
is called the least squares method. The basic result (not proven here) is that

mest = (F′F)−1F′dobs (2.15)

In many cases including all seismic imaging cases, the matrix F′F is far too large to be invert-
ible. People generally proceed by a rough guess at an approximation for (F′F)−1. The usual
first approximation is the optimistic one that (F′F)−1 = I. To this happy approximation, the
inverse F−1 is the adjoint F′.

In this book we’ll see examples where F′F≈ I is a good approximation and other examples
where it isn’t. We can tell how good the approximation is. We take some hypothetical data and
convert it to a model, and use that model to make some reconstructed data drecon = FF′dhypo.
Likewise we could go from a hypothetical model to some data and then to a reconstructed
model mrecon = F′Fmhypo. Luckily, it often happens that the reconstructed differs from the
hypothetical in some trivial way, like by a scaling factor, or by a scaling factor that is a function
of physical location or time, or a scaling factor that is a function of frequency. It isn’t always
simply a matter of a scaling factor, but it often is, and when it is, we often simply redefine the
operator to include the scaling factor. Observe that there are two places for scaling functions
(or filters), one in model space, the other in data space.

22 CHAPTER 2. ADJOINT OPERATORS

We could do better than the adjoint by iterative modeling methods (conjugate gradients)
that are also described elsewhere. These methods generally demand that the adjoint be com-
puted correctly. As a result, we’ll be a little careful about adjoints in this book to compute
them correctly even though this book does not require them to be exactly correct.

2.2.1 Dot product test

We define an adjoint when we write a program that computes one. In an abstract logical
mathematical sense, however, every adjoint is defined by a dot product test. This abstract
definition gives us no clues how to code our program. After we have finished coding, however,
this abstract definition (which is actually a test) has considerable value to us.

Conceptually, the idea of matrix transposition is simply a ′i j = aj i . In practice, however, we
often encounter matrices far too large to fit in the memory of any computer. Sometimes it is
also not obvious how to formulate the process at hand as a matrix multiplication. (Examples
are differential equations and fast Fourier transforms.) What we find in practice is that an ap-
plication and its adjoint amounts to two subroutines. The first subroutine amounts to the matrix
multiplication Fx. The adjoint subroutine computes F′y, where F′ is the conjugate-transpose
matrix. Most methods of solving inverse problems will fail if the programmer provides an
inconsistent pair of subroutines for F and F′. The dot product test described next is a simple
test for verifying that the two subroutines really are adjoint to each other.

The matrix expression y′Fx may be written with parentheses as either (y′F)x or y′(Fx).
Mathematicians call this the “associative” property. If you write matrix multiplication using
summation symbols, you will notice that putting parentheses around matrices simply amounts
to reordering the sequence of computations. But we soon get a very useful result. Programs
for some linear operators are far from obvious, for example causint() on page 20. Now we
build a useful test for it.

y′(Fx) = (y′F)x (2.16)
y′(Fx) = (F′y)′x (2.17)

For the dot-product test, load the vectors x and y with random numbers. Compute the vector
ỹ = Fx using your program for F, and compute x̃= F′y using your program for F′. Inserting
these into equation (2.17) gives you two scalars that should be equal.

y′(Fx) = y′ỹ = x̃′x = (F′y)′x (2.18)

The left and right sides of this equation will be computationally equal only if the program
doing F′ is indeed adjoint to the program doing F (unless the random numbers do something
miraculous). Note that the vectors x and y are generally of different lengths.

Of course passing the dot product test does not prove that a computer code is correct, but
if the test fails we know the code is incorrect. More information about adjoint operators, and
much more information about inverse operators is found in my other books, Earth Soundings
Analysis: Processing versus inversion (PVI) and Geophysical Estimation by Example (GEE).

Chapter 3

Waves in strata

The waves of practical interest in reflection seismology are usually complicated because the
propagation velocities are generally complex. In this book, we have chosen to build up the
complexity of the waves we consider, chapter by chapter. The simplest waves to understand
are simple plane waves and spherical waves propagating through a constant-velocity medium.
In seismology however, the earth’s velocity is almost never well approximated by a constant.
A good first approximation is to assume that the earth’s velocity increases with depth. In
this situation, the simple planar and circular wavefronts are modified by the effects of v(z).
In this chapter we study the basic equations describing plane-like and spherical-like waves
propagating in media where the velocity v(z) is a function only of depth. This is a reasonable
starting point, even though it neglects the even more complicated distortions that occur when
there are lateral velocity variations. We will also examine data that shows plane-like waves
and spherical-like waves resulting when waves from a point source bounce back from a planar
reflector.

3.1 TRAVEL-TIME DEPTH

Echo soundings give us a picture of the earth. A zero-offest section, for example, is a planar
display of traces where the horizontal axis runs along the earth’s surface and the vertical axis,
running down, seems to measure depth, but actually measures the two-way echo delay time.
Thus, in practice the vertical axis is almost never depth z; it is the vertical travel time τ . In a
constant-velocity earth the time and the depth are related by a simple scale factor, the speed of
sound. This is analogous to the way that astronomers measure distances in light-years, always
referencing the speed of light. The meaning of the scale factor in seismic imaging is that the
(x ,τ)-plane has a vertical exaggeration compared to the (x , z)-plane. In reconnaissance work,
the vertical is often exaggerated by about a factor of five. By the time prospects have been
sufficiently narrowed for a drill site to be selected, the vertical exaggeration factor in use is
likely to be about unity (no exaggeration).

In seismic reflection imaging, the waves go down and then up, so the traveltime depth τ

23

24 CHAPTER 3. WAVES IN STRATA

is defined as two-way vertical travel time.

τ = 2 z

v
. (3.1)

This is the convention that I have chosen to use throughout this book.

3.1.1 Vertical exaggeration

The first task in interpretation of seismic data is to figure out the approximate numerical value
of the vertical exaggeration. The vertical exaggeration is 2/v because it is the ratio of the
apparent slope 1τ/1x to the actual slope 1z/1x where 1τ = 2 1z/v. Since the velocity
generally increases with depth, the vertical exaggeration generally decreases with depth.

For velocity-stratified media, the time-to-depth conversion formula is

τ (z) =
∫ z

0

2 dz

v(z)
or

dτ

dz
= 2

v
(3.2)

3.2 HORIZONTALLY MOVING WAVES

In practice, horizontally going waves are easy to recognize because their travel time is a linear
function of the offset distance between shot and receiver. There are two kinds of horizontally
going waves, one where the traveltime line goes through the origin, and the other where it does
not. When the line goes through the origin, it means the ray path is always near the earth’s
surface where the sound source and the receivers are located. (Such waves are called “ground
roll” on land or “guided waves” at sea; sometimes they are just called “direct arrivals”.)

When the traveltime line does not pass through the origin it means parts of the ray path
plunge into the earth. This is usually explained by the unlikely looking rays shown in Fig-
ure 3.1 which frequently occur in practice. Later in this chapter we will see that Snell’s law

Figure 3.1: Rays associated with
head waves. wvs-headray [ER]

predicts these rays in a model of the earth with two layers, where the deeper layer is faster and
the ray bottom is along the interface between the slow medium and the fast medium. Mean-
while, however, notice that these ray paths imply data with a linear travel time versus distance
corresponding to increasing ray length along the ray bottom. Where the ray is horizontal in
the lower medium, its wavefronts are vertical. These waves are called “head waves,” perhaps
because they are typically fast and arrive ahead of other waves.

3.2. HORIZONTALLY MOVING WAVES 25

3.2.1 Amplitudes

The nearly vertically-propagating waves (reflections) spread out essentially in three dimen-
sions, whereas the nearly horizontally-going waves never get deep into the earth because, as
we will see, they are deflected back upward by the velocity gradient. Thus horizontal waves
spread out in essentially two dimensions, so that energy conservation suggests that their ampli-
tudes should dominate the amplitudes of reflections on raw data. This is often true for ground
roll. Head waves, on the other hand, are often much weaker, often being visible only because
they often arrive before more energetic waves. The weakness of head waves is explained by
the small percentage of solid angle occupied by the waves leaving a source that eventually
happen to match up with layer boundaries and propagate as head waves. I selected the exam-
ples below because of the strong headwaves. They are nearly as strong as the guided waves.
To compensate for diminishing energy with distance, I scaled data displays by multiplying by
the offset distance between the shot and the receiver.

In data display, the slowness (slope of the time-distance curve) is often called the stepout
p. Other commonly-used names for this slope are time dip and reflection slope. The best way
to view waves with linear moveout is after time shifting to remove a standard linear moveout
such as that of water. An equation for the shifted time is

τ = t− px (3.3)

where p is often chosen to be the inverse of the velocity of water, namely, about 1.5 km/s, or
p = .66s/km and x = 2h is the horizontal separation between the sound source and receiver,
usually referred to as the offset.

Ground roll and guided waves are typically slow because materials near the earth’s sur-
face typically are slow. Slow waves are steeply sloped on a time-versus-offset display. It is not
surprising that marine guided waves typically have speeds comparable to water waves (near
1.47 km/s approximately 1.5 km/s). It is perhaps surprising that ground roll also often has the
speed of sound in water. Indeed, the depth to underground water is often determined by seis-
mology before drilling for water. Ground roll also often has a speed comparable to the speed
of sound in air, 0.3 km/sec, though, much to my annoyance I could not find a good example of
it today. Figure 3.2 is an example of energetic ground roll (land) that happens to have a speed
close to that of water.

The speed of a ray traveling along a layer interface is the rock speed in the faster layer
(nearly always the lower layer). It is not an average of the layer above and the layer below.

Figures 3.3 and 3.4 are examples of energetic marine guided waves. In Figure 3.3 at τ = 0
(designated t-t_water) at small offset is the wave that travels directly from the shot to the
receivers. This wave dies out rapidly with offset (because it interferes with a wave of opposite
polarity reflected from the water surface). At near offset slightly later than τ = 0 is the water
bottom reflection. At wide offset, the water bottom reflection is quickly followed by multiple
reflections from the bottom. Critical angle reflection is defined as where the head wave comes
tangent to the reflected wave. Before (above) τ = 0 are the head waves. There are two obvious
slopes, hence two obvious layer interfaces. Figure 3.4 is much like Figure 3.3 but the water
bottom is shallower.

26 CHAPTER 3. WAVES IN STRATA

Figure 3.2: Land shot profile (Yilmaz and Cumro) #39 from the Middle East before (left) and
after (right) linear moveout at water velocity. wvs-wzl.34 [ER]

Figure 3.3: Marine shot profile (Yilmaz and Cumro) #20 from the Aleutian Islands.
wvs-wzl.20 [ER]

3.2. HORIZONTALLY MOVING WAVES 27

Figure 3.4: Marine shot profile (Yilmaz and Cumro) #32 from the North Sea. wvs-wzl.32
[ER]

Figure 3.5 shows data where the first arriving energy is not along a few straight line seg-
ments, but is along a curve. This means the velocity increases smoothly with depth as soft
sediments compress.

3.2.2 LMO by nearest-neighbor interpolation

To do linear moveout (LMO) correction, we need to time-shift data. Shifting data requires us
to interpolate it. The easiest interpolation method is the nearest-neighbor method. We begin
with a signal given at times t = t0+dt*(it-1) where it is an integer. Then we can use equa-
tion (3.3), namely τ = t − px . Given the location tau of the desired value we backsolve for
an integer, say itau . In Fortran, conversion of a real value to an integer is done by truncating
the fractional part of the real value. To get rounding up as well as down, we add 0.5 be-
fore conversion to an integer, namely itau=int(1.5+(tau-tau0)/dt) . This gives the nearest
neighbor. The way the program works is to identify two points, one in (t , x)-space and one in
(τ , x)-space. Then the signal value at one point in one space is carried to the other space. The
adjoint operation carries points back again. The subroutine used in the illustrations above is
lmo() on the current page with adj=1 .

linear moveout

#

subroutine lmo(adj,add, slow, tau0, t0,dt, x0,dx, modl,nt,nx, data)

integer adj,add, nt,nx, it,ix,iu

real t, x, tau, slow, tau0, t0,dt, x0,dx, modl(nt,nx), data(nt,nx)

call adjnull(adj,add, modl,nt*nx, data,nt*nx)

do ix= 1, nx { x= x0 + dx * (ix-1)

do it= 1, nt { t= t0 + dt * (it-1)

28 CHAPTER 3. WAVES IN STRATA

Figure 3.5: A common midpoint gather from the Gulf of Mexico before (left) and after (right)
linear moveout at water velocity. Later I hope to estimate velocity with depth in shallow strata.
Press button for movie over midpoint. wvs-wglmo [ER,M]

tau = t - x * slow

iu = 1.5001 + (tau-tau0)/dt

if(0 < iu && iu <= nt)

if(adj == 0)

data(it,ix) = data(it,ix) + modl(iu,ix)

else

modl(iu,ix) = modl(iu,ix) + data(it,ix)

}}

return; end

Nearest neighbor rounding is crude but ordinarily very reliable. I discovered a very rare
numerical roundoff problem peculiar to signal time-shifting, a problem which arises in the
linear moveout application when the water velocity, about 1.48km/sec is approximated by
1.5=3/2. The problem arises only where the amount of the time shift is a numerical value (like
12.5000001 or 12.499999) and the fractional part should be exactly 1/2 but numerical rounding
pushes it randomly in either direction. We would not care if an entire signal was shifted by
either 12 units or by 13 units. What is troublesome, however, is if some random portion of the
signal shifts 12 units while the rest of it shifts 13 units. Then the output signal has places which
are empty while adjacent places contain the sum of two values. Linear moveout is the only
application where I have ever encountered this difficulty. A simple fix here was to modify
the lmo() on the preceding page subroutine changing the “1.5” to “1.5001”. The problem
disappears if we use a more accurate sound velocity or if we switch from nearest-neighbor
interpolation to linear interpolation.

3.3. DIPPING WAVES 29

3.2.3 Muting

Surface waves are a mathematician’s delight because they exhibit many complex phenomena.
Since these waves are often extremely strong, and since the information they contain about
the earth refers only to the shallowest layers, typically, considerable effort is applied to array
design in field recording to suppress these waves. Nevertheless, in many areas of the earth,
these pesky waves may totally dominate the data.

A simple method to suppress ground roll in data processing is to multiply a strip of data by
a near-zero weight (the mute). To reduce truncation artifacts, the mute should taper smoothly
to zero (or some small value). Because of the extreme variability from place to place on the
earth’s surface, there are many different philosophies about designing mutes. Some mute pro-
grams use a data dependent weighting function (such as automatic gain control). Subroutine
mutter() on the current page, however, operates on a simpler idea: the user supplies trajecto-
ries defining the mute zone.

Data is weighted by sine squared inside a mute zone.

The weight is zero when t < x * slope0

The weight is one when t > tp + x * slopep

Suggested defaults: slopep = slope0= 1./1.45 sec/km; tp=.150 sec

#

subroutine mutter(tp, slope0,slopep, dt,dx, t0,x0, data,nt,nx)

integer it,ix, nt,nx

real t,x, wt, tp, slope0,slopep, dt,dx, t0,x0, data(nt,nx)

do ix=1,nx { x= x0+(ix-1)*dx; x = abs(x)

do it=1,nt { t= t0+(it-1)*dt;

if (t < x * slope0) wt = 0

else if(t > tp + x * slopep) wt = 1.

else wt = sin(

0.5 * 3.14159265 * (t-x*slope0)/(tp+x*(slopep-slope0))) ** 2

data(it,ix) = data(it,ix) * wt

}}

return; end

Figure 3.6 shows an example of use of the routine mutter() on this page on the shallow
water data shown in Figure 3.5.

3.3 DIPPING WAVES

Above we considered waves going vertically and waves going horizontally. Now let us con-
sider waves propagating at the intermediate angles. For the sake of definiteness, I have chosen
to consider only downgoing waves in this section. We will later use the concepts developed
here to handle both downgoing and upcoming waves.

30 CHAPTER 3. WAVES IN STRATA

Figure 3.6: Jim’s first gather before and after muting. wvs-mutter [ER]

3.3.1 Rays and fronts

It is natural to begin studies of waves with equations that describe plane waves in a medium of
constant velocity. Figure 3.7 depicts a ray moving down into the earth at an angle θ from the
vertical. Perpendicular to the ray is a wavefront. By elementary geometry the angle between

Figure 3.7: Downgoing ray and
wavefront. wvs-front [NR]

z

x

ray

fro
nt

the wavefront and the earth’s surface is also θ . The ray increases its length at a speed v. The
speed that is observable on the earth’s surface is the intercept of the wavefront with the earth’s
surface. This speed, namely v/sinθ , is faster than v. Likewise, the speed of the intercept of
the wavefront and the vertical axis is v/cosθ . A mathematical expression for a straight line
like that shown to be the wavefront in Figure 3.7 is

z = z0 − x tan θ (3.4)

In this expression z0 is the intercept between the wavefront and the vertical axis. To make

3.3. DIPPING WAVES 31

the intercept move downward, replace it by the appropriate velocity times time:

z = v t

cos θ
− x tan θ (3.5)

Solving for time gives
t(x , z) = z

v
cos θ + x

v
sin θ (3.6)

Equation (3.6) tells the time that the wavefront will pass any particular location (x , z). The
expression for a shifted waveform of arbitrary shape is f (t − t0). Using (3.6) to define the
time shift t0 gives an expression for a wavefield that is some waveform moving on a ray.

moving wavefield = f
(

t − x

v
sin θ − z

v
cos θ

)

(3.7)

3.3.2 Snell waves

In reflection seismic surveys the velocity contrast between shallowest and deepest reflectors
ordinarily exceeds a factor of two. Thus depth variation of velocity is almost always included
in the analysis of field data. Seismological theory needs to consider waves that are just like
plane waves except that they bend to accommodate the velocity stratification v(z). Figure 3.8
shows this in an idealized geometry: waves radiated from the horizontal flight of a supersonic
airplane. The airplane passes location x at time t0(x) flying horizontally at a constant speed.
Imagine an earth of horizontal plane layers. In this model there is nothing to distinguish
any point on the x-axis from any other point on the x-axis. But the seismic velocity varies
from layer to layer. There may be reflections, head waves, shear waves, converted waves,
anisotropy, and multiple reflections. Whatever the picture is, it moves along with the airplane.
A picture of the wavefronts near the airplane moves along with the airplane. The top of
the picture and the bottom of the picture both move laterally at the same speed even if the
earth velocity increases with depth. If the top and bottom didn’t go at the same speed, the
picture would become distorted, contradicting the presumed symmetry of translation. This
horizontal speed, or rather its inverse ∂t0/∂x , has several names. In practical work it is called
the stepout. In theoretical work it is called the ray parameter. It is very important to note that
∂t0/∂x does not change with depth, even though the seismic velocity does change with depth.
In a constant-velocity medium, the angle of a wave does not change with depth. In a stratified
medium, ∂t0/∂x does not change with depth.

Figure 3.9 illustrates the differential geometry of the wave. Notice that triangles have their
hypotenuse on the x-axis and the z-axis but not along the ray. That’s because this figure refers
to wave fronts. (If you were thinking the hypotenuse would measure v1t , it could be you
were thinking of the tip of a ray and its projection onto the x and z axes.) The diagram shows
that

∂t0
∂x

= sin θ

v
(3.8)

∂t0
∂z

= cos θ

v
(3.9)

32 CHAPTER 3. WAVES IN STRATA

speed at depth z
2

speed at depth z
1

Figure 3.8: Fast airplane radiating a sound wave into the earth. From the figure you can deduce
that the horizontal speed of the wavefront is the same at depth z1 as it is at depth z2. This leads
(in isotropic media) to Snell’s law. wvs-airplane [NR]

Figure 3.9: Downgoing fronts and rays in stratified medium v(z). The wavefronts are horizon-
tal translations of one another. wvs-frontz [NR]

3.3. DIPPING WAVES 33

These two equations define two (inverse) speeds. The first is a horizontal speed, measured
along the earth’s surface, called the horizontal phase velocity. The second is a vertical speed,
measurable in a borehole, called the vertical phase velocity. Notice that both these speeds
exceed the velocity v of wave propagation in the medium. Projection of wave fronts onto
coordinate axes gives speeds larger than v, whereas projection of rays onto coordinate axes
gives speeds smaller than v. The inverse of the phase velocities is called the stepout or the
slowness.

Snell’s law relates the angle of a wave in one layer with the angle in another. The con-
stancy of equation (3.8) in depth is really just the statement of Snell’s law. Indeed, we have
just derived Snell’s law. All waves in seismology propagate in a velocity-stratified medium.
So they cannot be called plane waves. But we need a name for waves that are near to plane
waves. A Snell wave will be defined to be the generalization of a plane wave to a stratified
medium v(z). A plane wave that happens to enter a medium of depth-variable velocity v(z)
gets changed into a Snell wave. While a plane wave has an angle of propagation, a Snell wave
has instead a Snell parameter p = ∂t0/∂x .

It is noteworthy that Snell’s parameter p = ∂t0/∂x is directly observable at the surface,
whereas neither v nor θ is directly observable. Since p = ∂t0/∂x is not only observable, but
constant in depth, it is customary to use it to eliminate θ from equations (3.8) and (3.9):

∂t0
∂x

= sin θ

v
= p (3.10)

∂t0
∂z

= cos θ

v
=

√

1
v(z)2 − p2 (3.11)

3.3.3 Evanescent waves

Suppose the velocity increases to infinity at infinite depth. Then equation (3.11) tells us that
something strange happens when we reach the depth for which p2 equals 1/v(z)2. That is the
depth at which the ray turns horizontal. We will see in a later chapter that below this critical
depth the seismic wavefield damps exponentially with increasing depth. Such waves are called
evanescent. For a physical example of an evanescent wave, forget the airplane and think about
a moving bicycle. For a bicyclist, the slowness p is so large that it dominates 1/v(z)2 for all
earth materials. The bicyclist does not radiate a wave, but produces a ground deformation that
decreases exponentially into the earth. To radiate a wave, a source must move faster than the
material velocity.

3.3.4 Solution to kinematic equations

The above differential equations will often reoccur in later analysis, so they are very important.
Interestingly, these differential equations have a simple solution. Taking the Snell wave to go
through the origin at time zero, an expression for the arrival time of the Snell wave at any other

34 CHAPTER 3. WAVES IN STRATA

location is given by

t0(x , z) = sin θ

v
x +

∫ z

0

cos θ

v
dz (3.12)

t0(x , z) = p x +
∫ z

0

√

1
v(z)2 − p2 dz (3.13)

The validity of equations (3.12) and (3.13) is readily checked by computing ∂t0/∂x and
∂t0/∂z, then comparing with (3.10) and (3.11).

An arbitrary waveform f (t) may be carried by the Snell wave. Use (3.12) and (3.13) to
define the time t0 for a delayed wave f [t− t0(x , z)] at the location (x , z).

SnellWave(t , x , z) = f

(

t − p x −
∫ z

0

√

1
v(z)2 − p2 dz

)

(3.14)

Equation (3.14) carries an arbitrary signal throughout the whole medium. Interestingly, it does
not agree with wave propagation theory or real life because equation (3.14) does not correctly
account for amplitude changes that result from velocity changes and reflections. Thus it is
said that Equation (3.14) is “kinematically” correct but “dynamically” incorrect. It happens
that most industrial data processing only requires things to be kinematically correct, so this
expression is a usable one.

3.4 CURVED WAVEFRONTS

The simplest waves are expanding circles. An equation for a circle expanding with velocity v

is
v2 t2 = x2 + z2 (3.15)

Considering t to be a constant, i.e. taking a snapshot, equation (3.15) is that of a circle. Con-
sidering z to be a constant, it is an equation in the (x , t)-plane for a hyperbola. Considered in
the (t , x , z)-volume, equation (3.15) is that of a cone. Slices at various values of t show circles
of various sizes. Slices of various values of z show various hyperbolas.

Converting equation (3.15) to traveltime depth τ we get

v2 t2 = z2 + x2 (3.16)

t2 = τ 2 + x2

v2 (3.17)

The earth’s velocity typically increases by more than a factor of two between the earth’s sur-
face, and reflectors of interest. Thus we might expect that equation (3.17) would have little
practical use. Luckily, this simple equation will solve many problems for us if we know how
to interpret the velocity as an average velocity.

3.4. CURVED WAVEFRONTS 35

3.4.1 Root-mean-square velocity

When a ray travels in a depth-stratified medium, Snell’s parameter p = v−1 sinθ is constant
along the ray. If the ray emerges at the surface, we can measure the distance x that it has
traveled, the time t it took, and its apparent speed dx/dt = 1/p. A well-known estimate v̂ for
the earth velocity contains this apparent speed.

v̂ =
√

x

t

dx

dt
(3.18)

To see where this velocity estimate comes from, first notice that the stratified velocity v(z) can
be parameterized as a function of time and take-off angle of a ray from the surface.

v(z) = v(x , z) = v′(p, t) (3.19)

The x coordinate of the tip of a ray with Snell parameter p is the horizontal component of
velocity integrated over time.

x(p, t) =
∫ t

0
v′(p, t) sinθ (p, t) dt = p

∫ t

0
v′(p, t)2 dt (3.20)

Inserting this into equation (3.18) and canceling p = dt/dx we have

v̂ = vRMS =
√

1
t

∫ t

0
v′(p, t)2 dt (3.21)

which shows that the observed velocity is the “root-mean-square” velocity.

When velocity varies with depth, the traveltime curve is only roughly a hyperbola. If we
break the event into many short line segments where the i -th segment has a slope pi and a
midpoint (ti , xi) each segment gives a different v̂(pi , ti) and we have the unwelcome chore
of assembling the best model. Instead, we can fit the observational data to the best fitting
hyperbola using a different velocity hyperbola for each apex, in other words, find V (τ) so this
equation will best flatten the data in (τ , x)-space.

t2 = τ 2+ x2/V (τ)2 (3.22)

Differentiate with respect to x at constant τ getting

2t dt/dx = 2x/V (τ)2 (3.23)

which confirms that the observed velocity v̂ in equation (3.18), is the same as V (τ) no matter
where you measure v̂ on a hyperbola.

3.4.2 Layered media

From the assumption that experimental data can be fit to hyperbolas (each with a different
velocity and each with a different apex τ) let us next see how we can fit an earth model of

36 CHAPTER 3. WAVES IN STRATA

Figure 3.10: Raypath diagram for
normal moveout in a stratified earth.
wvs-stratrms [ER]

layers, each with a constant velocity. Consider the horizontal reflector overlain by a stratified
interval velocity v(z) shown in Figure 3.10. The separation between the source and geophone,
also called the offset, is 2h and the total travel time is t . Travel times are not be precisely hy-
perbolic, but it is common practice to find the best fitting hyperbolas, thus finding the function
V 2(τ).

t2 = τ 2+ 4h2

V 2(τ)
(3.24)

where τ is the zero-offset two-way traveltime.

An example of using equation (3.24) to stretch t into τ is shown in Figure 3.11. (The
programs that find the required V (τ) and do the stretching are coming up in chapter 4.)

Equation (3.21) shows that V (τ) is the “root-mean-square” or “RMS” velocity defined by
an average of v2 over the layers. Expressing it for a small number of layers we get

V 2(τ) = 1
τ

∑

i

v2
i 1τi (3.25)

where the zero-offset traveltime τ is a sum over the layers:

τ =
∑

i

1τi (3.26)

The two-way vertical travel time τi in the i th layer is related to the thickness 1zi and the
velocity vi by

1τi = 2 1zi

vi
. (3.27)

Next we examine an important practical calculation, getting interval velocities from mea-
sured RMS velocities: Define in layer i , the interval velocity vi and the two-way vertical travel
time 1τi . Define the RMS velocity of a reflection from the bottom of the i -th layer to be Vi .
Equation (3.25) tells us that for reflections from the bottom of the first, second, and third layers
we have

V 2
1 = v2

11τ1

1τ1
(3.28)

3.4. CURVED WAVEFRONTS 37

Figure 3.11: If you are lucky and get a good velocity, when you do NMO, everything turns out
flat. Shown with and without mute. wvs-nmogath [ER]

V 2
2 = v2

11τ1+v2
21τ2

1τ1+1τ2
(3.29)

V 2
3 = v2

11τ1+v2
21τ2+v2

31τ3

1τ1+1τ2+1τ3
(3.30)

Normally it is easy to measure the times of the three hyperbola tops, 1τ1, 1τ1+1τ2 and
1τ1+1τ2+1τ3. Using methods in chapter 4 we can measure the RMS velocities V2 and V3.
With these we can solve for the interval velocity v3 in the third layer. Rearrange (3.30) and
(3.29) to get

(1τ1+1τ2+1τ3)V 2
3 = v2

11τ1+v2
21τ2+v2

31τ3 (3.31)
(1τ1+1τ2)V 2

2 = v2
11τ1+v2

21τ2 (3.32)

and subtract getting the squared interval velocity v2
3

v2
3 = (1τ1+1τ2+1τ3)V 2

3 − (1τ1+1τ2)V 2
2

1τ3
(3.33)

For any real earth model we would not like an imaginary velocity which is what could happen
if the squared velocity in (3.33) happened to be negative. You see that this means that the RMS
velocity we estimate for the third layer cannot be too much smaller than the one we estimate
for the second layer.

38 CHAPTER 3. WAVES IN STRATA

3.4.3 Nonhyperbolic curves

Occasionally data does not fit a hyperbolic curve very well. Two other simple fitting functions
are

t2 = τ 2 + x2

v2 + x4×parameter (3.34)

(t− t0)2 = (τ − t0)2 + x2

v2 (3.35)

Equation (3.34) has an extra adjustable parameter of no simple interpretation other than the
beginning of a power series in x2. I prefer Equation (3.35) where the extra adjustable parame-
ter is a time shift t0 which has a simple interpretation, namely, a time shift such as would result
from a near-surface low velocity layer. In other words, a datum correction.

3.4.4 Velocity increasing linearly with depth

Theoreticians are delighted by velocity increasing linearly with depth because it happens that
many equations work out in closed form. For example, rays travel in circles. We will need
convenient expressions for velocity as a function of traveltime depth and RMS velocity as a
function of traveltime depth. Let us get them. We take the interval velocity v(z) increasing
linearly with depth:

v(z) = v0+αz (3.36)
This presumption can also be written as a differential equation:

dv

dz
= α. (3.37)

The relationship between z and vertical two-way traveltime τ (z) (see equation (3.27)) is also
given by a differential equation:

dτ

dz
= 2

v(z)
. (3.38)

Letting v(τ)= v(z(τ)) and applying the chain rule gives the differential equation for v(τ):
dv

dz

dz

dτ
= dv

dτ
= vα

2
, (3.39)

whose solution gives us the desired expression for interval velocity as a function of traveltime
depth.

v(τ) = v0 eατ/2. (3.40)

3.4.5 Prior RMS velocity

Substituting the theoretical interval velocity v(τ) from equation (3.40) into the definition of
RMS velocity V (τ) (equation (3.25)) yields:

τ V 2(τ) =
∫ τ

0
v2(τ ′) dτ ′ (3.41)

3.4. CURVED WAVEFRONTS 39

= v2
0

eατ −1
α

. (3.42)

Thus the desired expression for RMS velocity as a function of traveltime depth is:

V (τ) = v0

√

eατ −1
ατ

(3.43)

For small values of ατ , this can be approximated as

V (τ) ≈ v0
√

1+ατ/2. (3.44)

40 CHAPTER 3. WAVES IN STRATA

Chapter 4

Moveout, velocity, and stacking

In this chapter we handle data as though the earth had no dipping reflectors. The earth model
is one of stratified layers with velocity a (generally increasing) function of depth. We con-
sider reflections from layers, which we process by normal moveout correction (NMO). The
NMO operation is an interesting example of many general principles of linear operators and
numerical analysis. Finally, using NMO, we estimate the earth’s velocity with depth and we
stack some data, getting a picture of an earth with dipping layers. This irony, that techniques
developed for a stratified earth can give reasonable images of non-stratified reflectors, is one of
the “lucky breaks” of seismic processing. We will explore the limitations of this phenomenon
in the chapter on dip-moveout.

First, a few words about informal language. The inverse to velocity arises more frequently
in seismology than the velocity itself. This inverse is called the “slowness.” In common
speech, however, the word “velocity” is a catch-all, so what is called a “velocity analysis”
might actually be a plane of slowness versus time.

4.1 INTERPOLATION AS A MATRIX

Here we see how general principles of linear operators are exemplified by linear interpola-
tion. Because the subject matter is so simple and intuitive, it is ideal to exemplify abstract
mathematical concepts that apply to all linear operators.

Let an integer k range along a survey line, and let data values xk be packed into a vector x.
(Each data point xk could also be a seismogram.) Next we resample the data more densely, say
from 4 to 6 points. For illustration, I follow a crude nearest-neighbor interpolation scheme
by sprinkling ones along the diagonal of a rectangular matrix that is

y = Bx (4.1)

41

42 CHAPTER 4. MOVEOUT, VELOCITY, AND STACKING

where
















y1
y2
y3
y4
y5
y6

















=

















1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

























x1
x2
x3
x4









(4.2)

The interpolated data is simply y= (x1, x2, x2, x3, x4, x4). The matrix multiplication (4.2) would
not be done in practice. Instead there would be a loop running over the space of the outputs y
that picked up values from the input.

4.1.1 Looping over input space

The obvious way to program a deformation is to take each point from the input space and
find where it goes on the output space. Naturally, many points could land in the same place,
and then only the last would be seen. Alternately, we could first erase the output space, then
add in points, and finally divide by the number of points that ended up in each place. The
biggest aggravation is that some places could end up with no points. This happens where the
transformation stretches. There we need to decide whether to interpolate the missing points,
or simply low-pass filter the output.

4.1.2 Looping over output space

The alternate method that is usually preferable to looping over input space is that our program
have a loop over the space of the outputs, and that each output find its input. The matrix multi-
ply of (4.2) can be interpreted this way. Where the transformation shrinks is a small problem.
In that area many points in the input space are ignored, where perhaps they should somehow
be averaged with their neighbors. This is not a serious problem unless we are contemplating
iterative transformations back and forth between the spaces.

We will now address interesting questions about the reversibility of these deformation
transforms.

4.1.3 Formal inversion

We have thought of equation (4.1) as a formula for finding y from x. Now consider the opposite
problem, finding x from y. Begin by multiplying equation (4.2) by the transpose matrix to

4.1. INTERPOLATION AS A MATRIX 43

define a new quantity x̃:









x̃1
x̃2
x̃3
x̃4









=









1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1

























y1
y2
y3
y4
y5
y6

















(4.3)

x̃ is not the same as x, but these two vectors have the same dimensionality and in many ap-
plications it may happen that x̃ is a good approximation to x. In general, x̃ may be called an
“image” of x. Finding the image is the first step of finding x itself. Formally, the problem is

y = Bx (4.4)

And the formal solution to the problem is

x = (B′B)−1 B′y (4.5)

Formally, we verify this solution by substituting (4.4) into (4.5).

x = (B′B)−1 (B′B)x = Ix = x (4.6)

In applications, the possible nonexistence of an inverse for the matrix (B′B) is always a topic
for discussion. For now we simply examine this matrix for the interpolation problem. We see
that it is diagonal:

B′B =









1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1

























1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

















=









1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2









(4.7)

So, x̃1 = x1; but x̃2 = 2x2. To recover the original data, we need to divide x̃ by the diagonal
matrix B′B. Thus, matrix inversion is easy here.

Equation (4.5) has an illustrious reputation, which arises in the context of “least squares.”
Least squares is a general method for solving sets of equations that have more equations than
unknowns.

Recovering x from y using equation (4.5) presumes the existence of the inverse of B′B.
As you might expect, this matrix is nonsingular when B stretches the data, because then a few
data values are distributed among a greater number of locations. Where the transformation
squeezes the data, B′B must become singular, since returning uniquely to the uncompressed
condition is impossible.

We can now understand why an adjoint operator is often an approximate inverse. This
equivalency happens in proportion to the nearness of the matrix B′B to an identity matrix.
The interpolation example we have just examined is one in which B′B differs from an identity
matrix merely by a scaling.

44 CHAPTER 4. MOVEOUT, VELOCITY, AND STACKING

4.2 THE NORMAL MOVEOUT MAPPING

Recall the traveltime equation (3.17).

v2 t2 = z2 + x2 (4.8)

t2 = τ 2 + x2

v2 (4.9)

where τ is traveltime depth. This equation gives either time from a surface source to a receiver
at depth τ , or it gives time to a surface receiver from an image source at depth τ .

A seismic trace is a signal d(t) recorded at some constant x . We can convert the trace to a
“vertical propagation” signal m(τ)= d(t) by stretching t to τ . This process is called “normal
moveout correction” (NMO). Typically we have many traces at different x distances each
of which theoretically produces the same hypothetical zero-offset trace. Figure 4.1 shows a
marine shot profile before and after NMO correction at the water velocity. You can notice that
the wave packet reflected from the ocean bottom is approximately a constant width on the raw
data. After NMO, however, this waveform broadens considerably—a phenomenon known as
“NMO stretch."

Figure 4.1: Marine data moved out
with water velocity. Input on the
left, output on the right. Press button
for movie sweeping through velocity
(actually through slowness squared).
vela-stretch [ER,M]

The NMO transformation N is representable as a square matrix. The matrix N is a (τ , t)-
plane containing all zeros except an interpolation operator centered along the hyperbola. The
dots in the matrix below are zeros. The input signal dt is put into the vector d. The output
vector m—i.e., the NMO’ed signal—is simply (d6,d6,d6,d7,d7,d8,d8,d9,d10, 0). In real life
examples such as Figure 4.1 the subscript goes up to about one thousand instead of merely to

4.2. THE NORMAL MOVEOUT MAPPING 45

ten.

m = Nd =



































m1
m2
m3
m4
m5
m6
m7
m8
m9
m10



































=



































. 1

. 1

. 1

. 1 . . .

. 1 . . .

. 1 . .

. 1 . .

. 1 .

. 1

.





































































d1
d2
d3
d4
d5
d6
d7
d8
d9
d10



































(4.10)

You can think of the matrix as having a horizontal t-axis and a vertical τ -axis. The 1’s in the
matrix are arranged on the hyperbola t2 = τ 2+ x2

0/v2. The transpose matrix defining some d̃
from m gives synthetic data d̃ from the zero-offset (or stack) model m, namely,

d̃ = N′m =



































d̃1
d̃2
d̃3
d̃4
d̃5
d̃6
d̃7
d̃8
d̃9
d̃10



































=



































.

.

.

.

.
1 1 1
. . . 1 1
. 1 1 . . .
. 1 . .
. 1 .





































































m1
m2
m3
m4
m5
m6
m7
m8
m9
m10



































(4.11)
A program for nearest-neighbor normal moveout as defined by equations (4.10) and (4.11)
is nmo0() . Because of the limited alphabet of programming languages, I used the keystroke z

to denote τ .
subroutine nmo0(adj, add, slow, x, t0, dt, n,zz, tt)

integer it, iz, adj, add, n

real xs, t , z, slow(n), x, t0, dt, zz(n), tt(n)

call adjnull(adj, add, zz,n, tt,n)

do iz= 1, n { z = t0 + dt*(iz-1) # Travel-time depth

xs= x * slow(iz)

t = sqrt (z * z + xs * xs)

it= 1 + .5 + (t - t0) / dt # Round to nearest neighbor.

if(it <= n)

if(adj == 0)

tt(it) = tt(it) + zz(iz)

else

zz(iz) = zz(iz) + tt(it)

}

return; end

A program is a “pull” program if the loop creating the output covers each location in the output
and gathers the input from wherever it may be. A program is a “push” program if it takes each

46 CHAPTER 4. MOVEOUT, VELOCITY, AND STACKING

input and pushes it to wherever it belongs. Thus this NMO program is a “pull” program for
doing the model building (data processing), and it is a “push” program for the data building.
You could write a program that worked the other way around, namely, a loop over t with z
found by calculation z =

√

t2/v2− x2. What is annoying is that if you want a push program
going both ways, those two ways cannot be adjoint to one another.

Normal moveout is a linear operation. This means that data can be decomposed into any
two parts, early and late, high frequency and low, smooth and rough, steep and shallow dip,
etc.; and whether the two parts are NMO’ed either separately or together, the result is the
same. The reason normal moveout is a linear operation is that we have shown it is effectively
a matrix multiply operation and that operation fulfills N(d1+d2)= Nd1+Nd2.

4.3 COMMON-MIDPOINT STACKING

Typically, many receivers record every shot, and there are many shots over the reflectors of
interest. It is common practice to define the midpoint y = (xs + xg)/2 and then to sort the
seismic traces into “common-midpoint gathers”. After sorting, each trace on a common-
midpoint gather can be transformed by NMO into an equivalent zero-offset trace and the traces
in the gather can all be added together. This is often called “common-depth-point (CDP)
stacking” or, more correctly, “common-midpoint stacking”.

The adjoint to this operation is to begin from a model that is identical to the zero-offset
trace and spray this trace to all offsets. There is no “official” definition of which operator of
an operator pair is the operator itself and which is the adjoint. On the one hand, I like to think
of the modeling operation itself as the operator. On the other hand, the industry machinery
keeps churning away at many processes that have well-known names, so people often think
of one of them as the operator. Industrial data-processing operators are typically adjoints to
modeling operators.

Figure 4.2 illustrates the operator pair, consisting of spraying out a zero-offset trace (the
model) to all offsets and the adjoint of the spraying, which is stacking. The moveout and stack
operations are in subroutine stack0() .

subroutine stack0(adj, add, slow, t0,dt, x0,dx, nt,nx, stack, gather)

integer ix, adj, add, nt,nx

real x, slow(nt), t0,dt, x0,dx, stack(nt), gather(nt,nx)

call adjnull(adj, add, stack,nt, gather,nt*nx)

do ix= 1, nx {

x = x0 + dx * (ix-1)

call nmo0(adj, 1, slow, x, t0,dt, nt, stack, gather(1,ix))

}

return; end

Let S′ denote NMO, and let the stack be defined by invoking stack0() with the adj=1 ar-
gument. Then S is the modeling operation defined by invoking stack0() with the adj=0

argument. Figure 4.2 illustrates both. Notice the roughness on the waveforms caused by dif-

4.3. COMMON-MIDPOINT STACKING 47

Figure 4.2: Top is a model trace
m. Center shows the spraying to
synthetic traces, Sm. Bottom is the
stack of the synthetic data, S′Sm.
vela-stack [ER]

ferent numbers of points landing in one place. Notice also the increase of AVO (amplitude
versus offset) as the waveform gets compressed into a smaller space. Finally, notice that the
stack is a little rough, but the energy is all in the desired time window.

We notice a contradiction of aspirations. On the one hand, an operator has smooth outputs
if it “loops over output space” and finds its input where ever it may. On the other hand, it
is nice to have modeling and processing be exact adjoints of each other. Unfortunately, we
cannot have both. If you loop over the output space of an operator, then the adjoint operator
has a loop over input space and a consequent roughness of its output.

4.3.1 Crossing traveltime curves

Since velocity increases with depth, at wide enough offset a deep enough path will arrive
sooner than a shallow path. In other words, traveltime curves for shallow events must cut
across the curves of deeper events. Where traveltime curves cross, NMO is no longer a one-
to-one transformation. To see what happens to the stacking process I prepared Figures 4.3-4.5
using a typical marine recording geometry (although for clarity I used larger (1t ,1x)) and we
will use a typical Texas gulf coast average velocity, v(z) = 1.5+αz where α = .5. First we
repeat the calculation of Figure 4.2 with constant velocity α = 0 and more reflectors. We see
in Figure 4.3 that the stack reconstructs the model except for two details: (1) the amplitude
diminishes with time, and (2) the early waveforms have become rounded. Then we repeat the
calculation with the Gulf coast typical velocity gradient α = 1/2. The polarity reversal on the
first arrival of the wide offset trace in Figure 4.4 is evidence that in practice traveltime curves
do cross. (As was plainly evident in Figures 3.2, 3.3 and 3.4 crossing traveltime curves are
even more significant elsewhere in the world.) Comparing Figure 4.3 to Figure 4.4 we see
that an effect of the velocity gradient is to degrade the stack’s reconstruction of the model.
Velocity gradient has ruined the waveform on the shallowest event, at about 400ms. If the plot
were made on a finer mesh with higher frequencies, we could expect ruined waveforms a little
deeper too.

Our NMO and stack subroutines can be used for modeling or for data processing. In de-

48 CHAPTER 4. MOVEOUT, VELOCITY, AND STACKING

Figure 4.3: Synthetic CMP gather
for constant velocity earth and recon-
struction. vela-nmo0alfa0 [ER]

Figure 4.4: Synthetic CMP gather
for velocity linearly increasing with
depth (typical of Gulf of Mexico) and
reconstruction. vela-nmo0alfa.5
[ER]

4.3. COMMON-MIDPOINT STACKING 49

signing these programs we gave no thought to signal amplitudes (although results showed an
interesting AVO effect in Figure 4.2.) We could redesign the programs so that the modeling
operator has the most realistic amplitude that we can devise. Alternately, we could design the
amplitudes to get the best approximation to S′S ≈ I which should result in “Stack ” being a
good approximation to “Model .” I experimented with various weighting functions until I came
up with subroutines nmo1() on the current page and stack1() (like stack0() on page 46)
which embodies the weighting function (τ/t)(1/

√
t) and which produces the result in Fig-

ure 4.5. The result in Figure 4.5 is very pleasing. Not only is the amplitude as a function

Figure 4.5: Synthetic CMP gather
for velocity linearly increasing
with depth and reconstruction with
weighting functions in subroutine
nmo1() . Lots of adjustable pa-
rameters here. vela-nmo1alfa.5
[ER]

of time better preserved, more importantly, the shallow wavelets are less smeared and have
recovered their rectangular shape. The reason the reconstruction is much better is the cosine
weighting implicit in τ/t . It has muted away much of the energy in the shallow asymptote. I
think this energy near the asymptote is harmful because the waveform stretch is so large there.
Perhaps a similar good result could be found by experimenting with muting programs such as
mutter() on page 29. However, subroutine nmo1() on this page differs from mutter() in two
significant respects: (1) nmo1() is based on a theoretical concept whereas mutter() requires
observational parameters and (2) mutter() applies a weighting in the coordinates of the (t , x)
input space, while nmo1() does that but also includes the coordinate τ of the the output space.
With nmo1() events from different τ depths see different mutes which is good where a shallow
event asymptote crosses a deeper event far from its own asymptote. In practice the problem
of crossing traveltime curves is severe, as evidenced by Figures 3.2-3.4 and both weighting
during NMO and muting should be used.

subroutine nmo1(adj, add, slow, x, t0, dt, n,zz, tt)

integer it, iz, adj, add, n

real xs, t , z, slow(n), x, t0, dt, zz(n), tt(n), wt

call adjnull(adj, add, zz,n, tt,n)

do iz= 1, n { z = t0 + dt*(iz-1)

xs = x * slow(iz)

t = sqrt (z * z + xs * xs) + 1.e-20

wt = z/t * (1./sqrt(t)) # weighting function

it = 1 + .5 + (t - t0) / dt

if(it <= n)

if(adj == 0)

tt(it) = tt(it) + zz(iz) * wt

else

50 CHAPTER 4. MOVEOUT, VELOCITY, AND STACKING

zz(iz) = zz(iz) + tt(it) * wt

}

return; end

It is important to realize that the most accurate possible physical amplitudes are not neces-
sarily those for which S′S≈ I. Physically accurate amplitudes involve many theoretical issues
not covered here. It is easy to include some effects (spherical divergence based on velocity
depth variation) and harder to include others (surface ghosts and arrays). We omit detailed
modeling here because it is the topic of so many other studies.

4.3.2 Ideal weighting functions for stacking

The difference between stacking as defined by nmo0() on page 45 and by nmo1() on the
preceding page is in the weighting function (τ/t)(1/

√
t). This weight made a big difference

in the resolution of the stacks but I cannot explain whether this weighting function is the best
possible one, or what systematic procedure leads to the best weighting function in general.
To understand this better, notice that (τ/t)(1/

√
t) can be factored into two weights, τ and

t−3/2. One weight could be applied before NMO and the other after. That would also be
more efficient than weighting inside NMO, as does nmo1() . Additionally, it is likely that these
weighting functions should take into account data truncation at the cable’s end. Stacking is
the most important operator in seismology. Perhaps some objective measure of quality can be
defined and arbitrary powers of t , x , and τ can be adjusted until the optimum stack is defined.
Likewise, we should consider weighting functions in the spectral domain. As the weights τ

and t−3/2 tend to cancel one another, perhaps we should filter with opposing filters before and
after NMO and stack.

4.3.3 Gulf of Mexico stack and AGC

Next we create a “CDP stack” of our the Gulf of Mexico data set. Recall the moved out
common-midpoint (CMP) gather Figure 3.11. At each midpoint there is one of these CMP
gathers. Each gather is summed over its offset axis. Figure 4.6 shows the result of stacking
over offset, at each midpoint. The result is an image of a cross section of the earth. In Fig-
ure 4.6 the early signals are too weak to see. This results from the small number of traces at
early times because of the mute function. (Notice missing information at wide offset and early
time on Figure 3.11.) To make the stack properly, we should divide by the number of nonzero
traces. The fact that the mute function is tapered rather than cut off abruptly complicates the
decision of what is a nonzero trace. In general we might like to apply a weighting function of
offset. How then should the stack be weighted with time to preserve something like the proper
signal strength? A solution is to make constant synthetic data (zero frequency). Stacking this
synthetic data gives a weight that can be used as a divisor when stacking field data. I prepared
code for such weighted stacking, but it cluttered the NMO and stack program and required
two additional new subroutines, so I chose to leave the clutter in the electronic book and not to
display it here. Instead, I chose to solve the signal strength problem by an old standby method,

4.4. VELOCITY SPECTRA 51

Figure 4.6: Stack done with a given velocity profile for all midpoints. vela-wgstack [ER]

Automatic Gain Control (AGC). A divisor for the data is found by smoothing the absolute val-
ues of the data over a moving window. To make Figure 4.7 I made the divisor by smoothing in
triangle shaped windows about a half second long. To do this, I used subroutine triangle()

on page 222.

4.4 VELOCITY SPECTRA

An important transformation in exploration geophysics takes data as a function of shot-receiver
offset and transforms it to data as a function of apparent velocity. Data is summed along
hyperbolas of many velocities. This important industrial process is adjoint to another that
may be easier to grasp: data is synthesized by a superposition of many hyperbolas. The
hyperbolas have various asymptotes (velocities) and various tops (apexes). Pseudocode for
these transformations is

52 CHAPTER 4. MOVEOUT, VELOCITY, AND STACKING

Figure 4.7: Stack of Figure 4.6 after AGC. vela-agcstack [ER,M]

do v {
do τ {
do x {

t =
√

τ 2+ x2/v2

if hyperbola superposition
data(t , x) = data(t , x) + vspace(τ ,v)

else if velocity analysis
vspace(τ ,v) = vspace(τ ,v) + data(t , x)

}}}

This pseudocode transforms one plane to another using the equation t 2 = τ 2+ x2/v2. This
equation relates four variables, the two coordinates of the data space (t , x) and the two of the
model space (τ ,v). Suppose a model space is all zeros except for an impulse at (τ0,v0). The
code copies this inpulse to data space everywhere where t 2 = τ 2

0 + x2/v2
0 . In other words,

the impulse in velocity space is copied to a hyperbola in data space. In the opposite case
an impulse at a point in data space (t0, x0) is copied to model space everywhere that satisfies
the equation t2

0 = τ 2+ x2
0/v

2. Changing from velocity space to slowness space this equation
t2
0 = τ 2+ x2

0s2 has a name. In (τ ,s)-space it is an ellipse (which reduces to a circle when
x2

0 = 1.

Look carefully in the model spaces of Figure 4.8 and Figure ??. Can you detect any

4.4. VELOCITY SPECTRA 53

ellipses? For each ellipse, does it come from a large x0 or a small one? Can you identify the
point (t0, x0) causing the ellipse?

We can ask the question, if we transform data to velocity space, and then return to data
space, will we get the original data? Likewise we could begin from the velocity space, synthe-
size some data, and return to velocity space. Would we come back to where we started? The
answer is yes, in some degree. Mathematically, the question amounts to this: Given the opera-
tor A, is A′A approximately an identity operator, i.e. is A nearly a unitary operator? It happens
that A′A defined by the pseudocode above is rather far from an identity transformation, but
we can bring it much closer by including some simple scaling factors. It would be a lengthy
digression here to derive all these weighting factors but let us briefly see the motivation for
them. One weight arises because waves lose amplitude as they spread out. Another weight
arises because some angle-dependent effects should be taken into account. A third weight
arises because in creating a velocity space, the near offsets are less important than the wide
offsets and we do not even need the zero-offset data. A fourth weight is a frequency dependent
one which is explained in chapter 6. Basically, the summations in the velocity transformation
are like integrations, thus they tend to boost low frequencies. This could be compensated
by scaling in the frequency domain with frequency as

√
−iω with subroutine halfdifa() on

page 99.

The weighting issue will be examined in more detail later. Meanwhile, we can see nice
quality examples from very simple programs if we include the weights in the physical domain,
w = √1/t

√
x/v τ/t . (Typographical note: Do not confuse the weight w (double you) with

omega ω.) To avoid the coding clutter of the frequency domain weighting
√
−iω I omit

that, thus getting smoother results than theoretically preferable. Figure 4.8 illustrates this
smoothing by starting from points in velocity space, transforming to offset, and then back and
forth again.

There is one final complication relating to weighting. The most symmetrical approach is
to put w into both A and A′. This is what subroutine velsimp() on the current page does.
Thus, because of the weighting by

√
x , the synthetic data in Figure 4.8 is nonphysical. An

alternate view is to define A (by the pseudo code above, or by some modeling theory) and then
for reverse transformation use w2A′.

velsimp --- simple velocity transform

#

subroutine velsimp(adj,add, t0,dt,x0,dx,s0,ds, nt,nx,ns, modl, data)

integer it,ix,is, adj,add, nt,nx,ns, iz,nz

real x,s,sx, t,z, z0,dz,wt, t0,dt,x0,dx,s0,ds, modl(nt,ns),data(nt,nx)

call adjnull(adj,add, modl,nt*ns, data,nt*nx)

nz= nt; z0=t0; dz= dt; # z is travel time depth

do is= 1, ns { s = s0 + (is-1) * ds

do ix= 1, nx { x = x0 + (ix-1) * dx

do iz= 2, nz { z = z0 + (iz-1) * dz

sx = abs(s * x)

t = sqrt(z * z + sx * sx)

it = 1.5 + (t - t0) / dt

if (it <= nt) { wt= (z/t) / sqrt(t)

if(adj == 0)

data(it,ix) = data(it,ix) + modl(iz,is) * sqrt(sx) * wt

54 CHAPTER 4. MOVEOUT, VELOCITY, AND STACKING

Figure 4.8: Iteration between spaces. Left are model spaces. Right are data spaces. Right
derived from left. Lower model space derived from upper data space. vela-velvel [ER]

4.4. VELOCITY SPECTRA 55

else

modl(iz,is) = modl(iz,is) + data(it,ix) * sqrt(sx) * wt

}

}}}

return; end

An example of applying subroutine velsimp() on page 53 to field data is shown in Fig-
ure 4.9. The principal value of this plot is that you can see the energy concentrating along a

Figure 4.9: Transformation of data as a function of offset (left) to data as a function of slowness
(velocity scans) on the right using subroutine velsimp() . vela-mutvel [ER]

trajectory of slowness decreasing with depth, i.e. velocity increasing with depth. Why this
happens and many subtle features of the plot follow from some simple mathematics. Start
with the equation of circles in (x , z) expanding with velocity v.

v2t2 = z2+ x2 (4.12)

Introduce travel-time depth τ = z/v and slowness s = 1/v.

t2 = τ 2+ s2x2 (4.13)

This equation contains four quantities, two from data space (t , x) and two from model space
(τ ,s). An impulse in model space at (τ0,s0) gives a hyperbola in data (x , t)-space. We see
those hyperbolas in Figure 4.9.

Instead of taking (τ ,s) to be constants in model space, take constants (t0, x0) in data space.
This gives t2

0 = τ 2+ s2x2
0 which for x0 = 1 is a circle in model (τ ,s) space. More generally it

56 CHAPTER 4. MOVEOUT, VELOCITY, AND STACKING

is an ellipse in model space. When you look at velocity scans of real data you are very likely
to see ellipses. They could come from isolated bad data points, but more commonly they come
from the truncation of data at the beginning of the cable, at the end of the cable, and along the
mute zone. Each point in data space superposes an ellipsoid in slowness space. Everything
in slowness space is made out of ellipsoids. We can see many many ellipsoids in Figure 4.9.
Start by testing yourself with this question: When we see something near a horizontal line in
slowness space, what data points in data space are responsible?

4.4.1 Velocity picking

For many kinds of data analysis, we need to know the velocity of the earth as a function of
depth. To derive such information we begin from Figure 4.9 and draw a line through the
maxima. In practice this is often a tedious manual process, and it needs to be done everywhere
we go. There is no universally accepted way to automate this procedure, but we will consider
one that is simple enough that it can be fully described here, and which works well enough for
these demonstrations. (I plan to do a better job later.)

Theoretically we can define the velocity or slowness as a function of traveltime depth by
the moment function. Take the absolute value of the data scans and smooth them a little on the
time axis to make something like an unnormalized probability function, say p(τ ,s) > 0. Then
the slowness s(τ) could be defined by the moment function, i.e.,

s(τ) =
∑

s s p(τ ,s)
∑

s p(τ ,s)
(4.14)

The problem with defining slowness s(τ) by the moment is that it is strongly influenced by
noises away from the peaks, particularly water velocity noises. Thus, better results can be
obtained if the sums in equation (4.14) are limited to a range about the likely solution. To
begin with, we can take the likely solution to be defined by universal or regional experience.
It is sensible to begin from a one-parameter equation for velocity increasing with depth where
the form of the equation allows a ray tracing solution such as equation (3.43). Experience with
Gulf of Mexico data shows that α ≈ 1/2 sec−1 is reasonable there for equation (3.43), and that
is the smooth curve in Figure 4.10.

Experience with moments, equation (4.14), shows they are reasonable when the desired
result is near the guessed center of the range. Otherwise, the moment is biased towards the
initial guess. This bias can be reduced in stages. At each stage we shrink the width of the zone
used to compute the moment. This procedure is used in subroutine slowfit() on the current
page which after smoothing to be described, gives the oscillatory curve you see in Figure 4.10.

subroutine slowfit(vsurface, alpha, t0,dt, s0,ds, scan,nt,ns, reg, slow)

integer irange, it,is, nt,ns

real num,den, t,s, vsurface, alpha, t0,dt, s0,ds, scan(nt,ns),reg(nt),slow(nt)

do it= 1, nt { t= t0 + dt*(it-1) + dt

reg(it) = 1./(vsurface * sqrt((exp(alpha*t) - 1.)/(alpha*t)))

slow(it) = reg(it)

4.4. VELOCITY SPECTRA 57

}

do irange= ns/4, 5, -1 { # shrink the fairway

do it= 1, nt { t= t0 + dt*(it-1)

do is= 1, ns { s= s0 + ds*(is-1)

if(s > slow(it) + irange*ds) scan(it,is) = 0.

if(s < slow(it) - irange*ds) scan(it,is) = 0.

if(s > 1./1.6) scan(it,is) = 0. # water

}

den= 0.0; num= 0.0

do is= 1, ns { s= s0 + ds*(is-1)

num = num + scan(it,is) * s

den = den + scan(it,is)

}

slow(it) = num / (den + 1.e-20)

if(slow(it) == 0.) slow(it) = 1./vsurface

}}

return; end

A more customary way to view velocity space is to square the velocity scans and normalize
them by the sum of the squares of the signals. This has the advantage that the remaining in-
formation represents velocity spectra and removes variation due to seismic amplitudes. Since
in practice, reliability seems somehow proportional to amplitude the disadvantage of normal-
ization is that reliability becomes more veiled.

An appealing visualization of velocity is shown in the right side of Figure 4.10. This was
prepared from the absolute value of left side, followed by filtering spatially with an antisym-
metric leaky integral function. (See PVI page 57). An example is shown on the right side of
Figure 4.10.

4.4.2 Stabilizing RMS velocity

With velocity analysis, we estimate the RMS velocity. Later we will need both the RMS
velocity and the interval velocity. (The word “interval” designates an interval between two
reflectors.) Recall from chapter 3 equation (3.24)

t2 = τ 2+ 4h2

V 2(τ)

Routine vint2rms() on this page converts from interval velocity to RMS velocity and vice
versa.

Invertible transform from interval velocity to RMS.

#

subroutine vint2rms(inverse, vminallow, dt, vint, nt, vrms)

integer it, wide, inverse, nt

real vmin, vminallow, dt, vint(nt), vrms(nt)

temporary real vis(nt), sum(nt)

if(inverse == 0) { do it= 1, nt

vis(it) = vint(it) ** 2

58 CHAPTER 4. MOVEOUT, VELOCITY, AND STACKING

Figure 4.10: Left is the slowness scans. Right is the slowness scans after absolute value,
smoothing a little in time, and antisymmetric leaky integration over slowness. Overlaying
both is the line of slowness picks. vela-slowfit [ER]

sum(1) = 0.; do it= 2, nt

sum(it) = sum(it-1) + vis(it) * dt

vrms(1) = vint(1); do it= 2, nt

vrms(it) = sqrt(sum(it) / ((it-1)*dt))

}

else { do it= 1, nt

sum(it)= ((it-1)*dt) * amax1(vrms(it)**2, vminallow**2)

vis(1) = vrms(1) ** 2

do it= 2, nt

vis(it) = (sum(it) - sum(it-1))/ dt

wide= 2; repeat {

vmin = vis(1); do it=1,nt { if(vis(it)<vmin) vmin = vis(it) }

if(vmin > vminallow**2) break

call triangle(wide, 1, nt, vis, vis) # smooth vis()

wide = wide + 1

if(wide >= nt/3) call erexit(’Velocity less than allowable.’)

}

do it= 1, nt

vint(it) = sqrt(vis(it))

}

return; end

The forward conversion follows in straightforward steps: square, integrate, square root. The
inverse conversion, like an adjoint, retraces the steps of the forward transform but it does the
inverse at every stage. There is however, a messy problem with nearly all field data that must

4.4. VELOCITY SPECTRA 59

be handled along the inverse route. The problem is that the observed RMS velocity function is
generally a rough function, and it is generally unreliable over a significant portion of its range.
To make matters worse, deriving an interval velocity begins as does a derivative, roughening
the function further. We soon find ourselves taking square roots of negative numbers, which
requires judgement to proceed. The technique used in vint2rms() on page 57 is to average
the squared interval velocity in ever expanding neighborhoods until there are no longer any
negative squared interval velocities. As long as we are restricting v2 from being negative, it is
easy to restrict it to be above some allowable velocity, say vminallow . Figures 4.11 and 4.12
were derived from the velocity scans in Figure 4.10. Figure 4.11 shows the RMS velocity

Figure 4.11: Left is the raw RMS velocity. Right is a superposition of RMS velocities, the raw
one, and one constrained to have realistic interval velocities. vela-rufsmo [ER]

before and after a trip backward and forward through routine vint2rms() on page 57. The
interval velocity associated with the smoothed velocity is in figure 4.12.

Figure 4.12: Interval velocity associ-
ated with the smoothed RMS veloc-
ity of Figure 4.11. Pushbutton al-
lows experimentation with vminal-

low . vela-vrmsint [ER]

60 CHAPTER 4. MOVEOUT, VELOCITY, AND STACKING

Chapter 5

Zero-offset migration

In chapter 4 we discussed methods of imaging horizontal reflectors and of estimating velocity
v(z) from the offset dependence of seismic recordings. In this chapter, we turn our attention
to imaging methods for dipping reflectors. These imaging methods are usually referred to as
“migration” techniques.

Offset is a geometrical nuisance when reflectors have dip. For this reason, we develop
migration methods here and in the next chapter for forming images from hypothetical zero-
offset seismic experiments. Although there is usually ample data recorded near zero-offset,
we never record purely zero-offset seismic data. However, when we consider offset and dip
together in chapter 8 we will encounter a widely-used technique (dip-moveout) that often con-
verts finite-offset data into a useful estimate of the equivalent zero-offset data. For this reason,
zero-offset migration methods are widely used today in industrial practice. Furthermore the
concepts of zero-offset migration are the simplest starting point for approaching the compli-
cations of finite-offset migration.

5.1 MIGRATION DEFINED

The term “migration” probably got its name from some association with movement. A casual
inspection of migrated and unmigrated sections shows that migration causes many reflection
events to shift their positions. These shifts are necessary because the apparent positions of
reflection events on unmigrated sections are generally not the true positions of the reflectors
in the earth. It is not difficult to visualize why such “acoustic illusions” occur. An analysis of
a zero-offset section shot above a dipping reflector illustrates most of the key concepts.

5.1.1 A dipping reflector

Consider the zero-offset seismic survey shown in Figure 5.1. This survey uses one source-
receiver pair, and the receiver is always at the same location as the source. At each position,

61

62 CHAPTER 5. ZERO-OFFSET MIGRATION

denoted by S1, S2, andS3 in the figure, the source emits waves and the receiver records the
echoes as a single seismic trace. After each trace is recorded, the source-receiver pair is
moved a small distance and the experiment is repeated.

Figure 5.1: Raypaths and wave-
fronts for a zero-offset seismic line
shot above a dipping reflector. The
earth’s propagation velocity is con-
stant. krch-reflexpt [ER]

As shown in the figure, the source at S2 emits a spherically-spreading wave that bounces
off the reflector and then returns to the receiver at S2. The raypaths drawn between Si and Ri

are orthogonal to the reflector and hence are called normal rays. These rays reveal how the
zero-offset section misrepresents the truth. For example, the trace recorded at S2 is dominated
by the reflectivity near reflection point R2, where the normal ray from S2 hits the reflector. If
the zero-offset section corresponding to Figure 5.1 is displayed, the reflectivity at R2 will be
falsely displayed as though it were directly beneath S2, which it certainly is not. This lateral
mispositioning is the first part of the illusion. The second part is vertical: if converted to depth,
the zero-offset section will show R2 to be deeper than it really is. The reason is that the slant
path of the normal ray is longer than a vertical shaft drilled from the surface down to R2.

5.1.2 Dipping-reflector shifts

A little geometry gives simple expressions for the horizontal and vertical position errors on
the zero-offset section, which are to be corrected by migration. Figure 5.2 defines the required
quantities for a reflection event recorded at S corresponding to the reflectivity at R. The two-

Figure 5.2: Geometry of the nor-
mal ray of length d and the vertical
“shaft” of length z for a zero-offset
experiment above a dipping reflector.
krch-reflkine [ER]

way travel time for the event is related to the length d of the normal ray by

t = 2d

v
, (5.1)

5.1. MIGRATION DEFINED 63

where v is the constant propagation velocity. Geometry of the triangle C RS shows that the
true depth of the reflector at R is given by

z = d cosθ , (5.2)

and the lateral shift between true position C and false position S is given by

1x = d sinθ = v t

2
sinθ . (5.3)

It is conventional to rewrite equation (5.2) in terms of two-way vertical traveltime τ :

τ = 2 z

v
= t cosθ . (5.4)

Thus both the vertical shift t − τ and the horizontal shift 1x are seen to vanish when the dip
angle θ is zero.

5.1.3 Hand migration

Geophysicists recognized the need to correct these positioning errors on zero-offset sections
long before it was practical to use computers to make the corrections. Thus a number of
hand-migration techniques arose. It is instructive to see how one such scheme works. Equa-
tions (5.3) and (5.4) require knowledge of three quantities: t , v, and θ . Of these, the event
time t is readily measured on the zero-offset section. The velocity v is usually not measurable
on the zero offset section and must be estimated from finite-offset data, as was shown in chap-
ter 4. That leaves the dip angle θ . This can be related to the reflection slope p of the observed
event, which is measurable on the zero-offset section:

p0 = ∂t

∂y
, (5.5)

where y (the midpoint coordinate) is the location of the source-receiver pair. The slope p0
is sometimes called the “time-dip of the event” or more loosely as the “dip of the event”.
It is obviously closely related to Snell’s parameter, which we discussed in chapter 3. The
relationship between the measurable time-dip p0 and the dip angle θ is called “Tuchel’s law”:

sinθ = v p0

2
. (5.6)

This equation is clearly just another version of equation (3.8), in which a factor of 2 has been
inserted to account for the two-way traveltime of the zero-offset section.

Rewriting the migration shift equations in terms of the measurable quantities t and p yields
usable “hand-migration” formulas:

1x = v2 p t

4
(5.7)

τ = t

√

1 − v2 p2

4
. (5.8)

64 CHAPTER 5. ZERO-OFFSET MIGRATION

Hand migration divides each observed reflection event into a set of small segments for which
p has been measured. This is necessary because p is generally not constant along real seismic
events. But we can consider more general events to be the union of a large number of very
small dipping reflectors. Each such segment is then mapped from its unmigrated (y, t) location
to its migrated (y,τ) location based on the equations above. Such a procedure is sometimes
also known as “map migration.”

Equations (5.7) and (5.8) are useful for giving an idea of what goes on in zero-offset
migration. But using these equations directly for practical seismic migration can be tedious
and error-prone because of the need to provide the time dip p as a separate set of input data
values as a function of y and t . One nasty complication is that it is quite common to see
crossing events on zero-offset sections. This happens whenever reflection energy coming from
two different reflectors arrives at a receiver at the same time. When this happens the time dip p
becomes a multi-valued function of the (y, t) coordinates. Furthermore, the recorded wavefield
is now the sum of two different events. It is then difficult to figure out which part of summed
amplitude to move in one direction and which part to move in the other direction.

For the above reasons, the seismic industry has generally turned away from hand-migration
techniques in favor of more automatic methods. These methods require as inputs nothing more
than

• The zero-offset section

• The velocity v .

There is no need to separately estimate a p(y, t) field. The automatic migration program
somehow “figures out” which way to move the events, even if they cross one another. Such
automatic methods are generally referred to as “wave-equation migration” techniques, and are
the subject of the remainder of this chapter. But before we introduce the automatic migration
methods, we need to introduce one additional concept that greatly simplifies the migration of
zero-offset sections.

5.1.4 A powerful analogy

Figure 5.3 shows two wave-propagation situations. The first is realistic field sounding. The
second is a thought experiment in which the reflectors in the earth suddenly explode. Waves
from the hypothetical explosion propagate up to the earth’s surface where they are observed
by a hypothetical string of geophones.

Notice in the figure that the ray paths in the field-recording case seem to be the same as
those in the exploding-reflector case. It is a great conceptual advantage to imagine that the
two wavefields, the observed and the hypothetical, are indeed the same. If they are the same,
the many thousands of experiments that have really been done can be ignored, and attention
can be focused on the one hypothetical experiment. One obvious difference between the two
cases is that in the field geometry waves must first go down and then return upward along

5.1. MIGRATION DEFINED 65

Exploding Reflectors

g gs
g

Zero-offset Section

Figure 5.3: Echoes collected with a source-receiver pair moved to all points on the earth’s
surface (left) and the “exploding-reflectors” conceptual model (right). krch-expref [NR]

the same path, whereas in the hypothetical experiment they just go up. Travel time in field
experiments could be divided by two. In practice, the data of the field experiments (two-way
time) is analyzed assuming the sound velocity to be half its true value.

5.1.5 Limitations of the exploding-reflector concept

The exploding-reflector concept is a powerful and fortunate analogy. It enables us to think
of the data of many experiments as though it were a single experiment. Unfortunately, the
exploding-reflector concept has a serious shortcoming. No one has yet figured out how to
extend the concept to apply to data recorded at nonzero offset. Furthermore, most data is
recorded at rather large offsets. In a modern marine prospecting survey, there is not one hy-
drophone, but hundreds, which are strung out in a cable towed behind the ship. The recording
cable is typically 2-3 kilometers long. Drilling may be about 3 kilometers deep. So in practice
the angles are big. Therein lie both new problems and new opportunities, none of which will
be considered until chapter 8.

Furthermore, even at zero offset, the exploding-reflector concept is not quantitatively cor-
rect. For the moment, note three obvious failings: First, Figure 5.4 shows rays that are not
predicted by the exploding-reflector model. These rays will be present in a zero-offset section.
Lateral velocity variation is required for this situation to exist.

Second, the exploding-reflector concept fails with multiple reflections. For a flat sea floor
with a two-way travel time t1, multiple reflections are predicted at times 2t1, 3t1, 4t1, etc. In
the exploding-reflector geometry the first multiple goes from reflector to surface, then from
surface to reflector, then from reflector to surface, for a total time 3t1. Subsequent multiples
occur at times 5t1, 7t1, etc. Clearly the multiple reflections generated on the zero-offset section
differ from those of the exploding-reflector model.

The third failing of the exploding-reflector model is where we are able to see waves

66 CHAPTER 5. ZERO-OFFSET MIGRATION

s
g

v
1

v
2

s
g

velocity lens

reflector

Figure 5.4: Two rays, not predicted by the exploding-reflector model, that would nevertheless
be found on a zero-offset section. krch-fail [NR]

bounced from both sides of an interface. The exploding-reflector model predicts the waves
emitted by both sides have the same polarity. The physics of reflection coefficients says re-
flections from opposite sides have opposite polarities.

5.2 HYPERBOLA PROGRAMMING

Consider an exploding reflector at the point (z0, x0). The location of a circular wave front
at time t is v2t2 = (x − x0)2 + (z − z0)2. At the surface, z = 0, we have the equation of
the hyperbola where and when the impulse arrives on the surface data plane (t , x). We can
make a “synthetic data plane” by copying the explosive source amplitude to the hyperbolic
locations in the (t , x) data plane. (We postpone including the amplitude reduction caused by
the spherical expansion of the wavefront.) Forward modeling amounts to taking every point
from the (z, x)-plane and adding it into the appropriate hyperbolic locations in the (t , x) data
plane. Hyperbolas get added on top of hyperbolas.

Now let us think backwards. Suppose we survey all day long and record no echos except
for one echo at time t0 that we can record only at location x0. Our data plane is thus filled with
zero values except the one nonzero value at (t0, x0). What earth model could possibly produce
such data?

An earth model that is a spherical mirror with bottom at (z0, x0) will produce a reflection
at only one point in data space. Only when the source is at the center of the circle will all the
reflected waves return to the source. For any other source location, the reflected waves will
not return to the source. The situation is summarized in Figure 5.5.

The analysis for migration imaging is analogous to that of velocity spectrum. Let us again
start with the equation of a circle expanding. This time the circle is not centered at x = 0, but
at x = x0 = y. This time data space is (t , y) and model space is (z, x).

v2t2 = z2+ (x− y)2 (5.9)

5.2. HYPERBOLA PROGRAMMING 67

x

z

y

t

x

z

y

t

 push

pull

 push

pull

Figure 5.5: Point response model to data and converse. krch-yaxun [NR]

An impulse in model space (z0, x0) yields a hyperbola v2t2 = z2
0+ (y− x0)2 in data (t , y)-

space. Likewise an impulse in data space (t0, y0) yields semicircles v2t2
0 = z2+ (x − y0)2 in

model space. Likewise, in practice, the migrated images we create often show semicircles.
The earth almost never contains semicircular reflectors. We see them from various departures
of theoretical data from observed data. For example a trace might be too weak or too strong.
This would create a pattern of concentric semicircles in the model space (migrated data). A
whole lot of traces are missing at the end of the survey. That makes concentric quarter circles
off the end of the survey as well as matching quarter circles of opposite polarity in the interior
of the migrated data.

Velocity (slowness) analysis programs look very much like migration programs. There
are four variables, two in the input space and two in the output space. Any three variables
can be scanned over by the three looping statements. The fourth variable then emerges from
the equation of the conic section. It seems there is a lot of freedom for the programmer, but
normally, two of the three variables being scanned will be chosen to be of the output space.
This avoids the danger of producing an output space with holes in it, although that introduces
more subtle problems connected with sampling gaps in the input space. We’ll return to these
technicalities in a later chapter.

Above explains how an impulse at a point in image space can transform to a hyperbola
in data space, likewise, on return, an impulse in data space can transform to a semicircle in
image space. We can simulate a straight line in either space by superposing points along a

68 CHAPTER 5. ZERO-OFFSET MIGRATION

line. Figure 5.6 shows how points making up a line reflector diffract to a line reflection, and
how points making up a line reflection migrate to a line reflector. First we will look at the

Figure 5.6: Left is a superposition of many hyperbolas. The top of each hyperbola lies along a
straight line. That line is like a reflector, but instead of using a continuous line, it is a sequence
of points. Constructive interference gives an apparent reflection off to the side. Right shows
a superposition of semicircles. The bottom of each semicircle lies along a line that could be
the line of an observed plane wave. Instead the plane wave is broken into point arrivals, each
being interpreted as coming from a semicircular mirror. Adding the mirrors yields a more
steeply dipping reflector. krch-dip [ER]

simplest, most tutorial migration subroutine I could devise. Then we will write an improved
version and look at some results.

5.2.1 Tutorial Kirchhoff code

Subroutine kirchslow() below is the best tutorial Kirchhoff migration-modeling program
I could devise. A nice feature of this program is that it works OK while the edge complica-
tions do not clutter it. The program copies information from data space data(it,iy) to model
space modl(iz,ix) or vice versa. Notice that of these four axes, three are independent (stated

5.2. HYPERBOLA PROGRAMMING 69

by loops) and the fourth is derived by the circle-hyperbola relation t 2 = τ 2+ x2/v2. Subrou-
tine kirchslow() for adj=0 copies information from model space to data space, i.e. from the
hyperbola top to its flanks. For adj=1 , data summed over the hyperbola flanks is put at the
hyperbola top.

Kirchhoff migration and diffraction. (tutorial, slow)

#

subroutine kirchslow(adj, add, velhalf, t0,dt,dx, modl,nt,nx, data)

integer ix,iy,it,iz,nz, adj, add, nt,nx

real x0,y0,dy,z0,dz,t,x,y,z,hs, velhalf, t0,dt,dx, modl(nt,nx), data(nt,nx)

call adjnull(adj, add, modl,nt*nx, data,nt*nx)

x0=0.; y0=0; dy=dx; z0=t0; dz=dt; nz=nt

do ix= 1, nx { x = x0 + dx * (ix-1)

do iy= 1, nx { y = y0 + dy * (iy-1)

do iz= 1, nz { z = z0 + dz * (iz-1) # z = travel-time depth

hs= (x-y) / velhalf

t = sqrt(z * z + hs * hs)

it = 1.5 + (t-t0) / dt

if(it <= nt)

if(adj == 0)

data(it,iy) = data(it,iy) + modl(iz,ix)

else

modl(iz,ix) = modl(iz,ix) + data(it,iy)

}}}

return; end

Notice how this program has the ability to create a hyperbola given an input impulse in (x , z)-
space, and a circle given an input impulse in (x , t)-space.

The three loops in subroutine kirchslow() may be interchanged at will without changing
the result. To emphasize this flexibility, the loops are set at the same indentation level. We tend
to think of fixed values of the outer two loops and then describe what happens on the inner
loop. For example, if the outer two loops are those of the model space modl(iz,ix) , then for
adj=1 the program sums data along the hyperbola into the “fixed” point of model space. When
loops are reordered, we think differently and opportunities arise for speed improvements.

5.2.2 Fast Kirchhoff code

Subroutine kirchslow() can easily be speeded by a factor that is commonly more than 30. The
philosopy of this book is to avoid minor optimizations, but a factor of 30 really is significant,
and the analysis required for the speed up is also interesting. Much of the inefficiency of
kirchslow() arises when xmax� vtmax because then many values of t are computed beyond
tmax. To avoid this, we notice that for fixed offset (ix-iy) and variable depth iz , as depth
increases, time it eventually goes beyond the bottom of the mesh and, as soon as this happens,
it will continue to happen for all larger values of iz . Thus we can break out of the iz loop
the first time we go off the mesh to avoid computing anything beyond as shown in subroutine
kirchfast() . (Some quality compromises, limiting the aperture or the dip, also yield speedup,

70 CHAPTER 5. ZERO-OFFSET MIGRATION

but we avoid those.) Another big speedup arises from reusing square roots. Since the square
root depends only on offset and depth, once computed it can be used for all ix . Finally, these
changes of variables have left us with more complicated side boundaries, but once we work
these out, the inner loops can be devoid of tests and in kirchfast() they are in a form that is
highly optimizable by many compilers.

Kirchhoff migration and diffraction. (greased lightning)

#

subroutine kirchfast(adj, add, vrms, t0,dt,dx, modl,nt,nx, data)

integer ix,iz,it,ib, adj, add, nt,nx

real amp,t,z,b, vrms(nt), t0,dt,dx, modl(nt,nx),data(nt,nx)

call adjnull(adj, add, modl,nt*nx, data,nt*nx)

do ib= -nx, nx { b = dx * ib # b = offset

do iz= 2, nt { z = t0 + dt * (iz-1) # z = travel-time depth

t = sqrt(z**2 + (b*2/vrms(iz))**2)

it = 1.5 + (t - t0) / dt

if(it > nt) break

amp = (z / t) * sqrt(nt*dt / t)

do ix= max0(1, 1-ib), min0(nx, nx-ib)

if(adj == 0)

data(it,ix+ib)=data(it,ix+ib)+modl(iz,ix)*amp

else

modl(iz,ix)=modl(iz,ix)+data(it,ix+ib)*amp

}

}

return; end

Originally the two Kirchhoff programs produced identical output, but finally I could not
resist adding an important feature to the fast program, scale factors z/t = cosθ and 1/

√
t that

are described elsewhere. The fast program allows for velocity variation with depth. When
velocity varies laterally the story becomes much more complicated.

Figure 5.7 shows an example. The model includes dipping beds, syncline, anticline, fault,
unconformity, and buried focus. The result is as expected with a “bow tie” at the buried focus.
On a video screen, I can see hyperbolic events originating from the unconformity and the fault.
At the right edge are a few faint edge artifacts. We could have reduced or eliminated these
edge artifacts if we had extended the model to the sides with some empty space.

5.2.3 Kirchhoff artifacts

Reconstructing the earth model with the adjoint option in kirchfast() on the current page
yields the result in Figure 5.8. The reconstruction generally succeeds but is imperfect in a
number of interesting ways. Near the bottom and right side, the reconstruction fades away,
especially where the dips are steeper. Bottom fading results because in modeling the data we
abandoned arrivals after a certain maximum time. Thus energy needed to reconstruct dipping
beds near the bottom was abandoned. Likewise along the side we abandoned rays shooting off
the frame.

5.2. HYPERBOLA PROGRAMMING 71

Figure 5.7: Left is the model. Right is diffraction to synthetic data. krch-kfgood [ER,M]

Figure 5.8: Left is the original model. Right is the reconstruction. krch-skmig [ER,M]

72 CHAPTER 5. ZERO-OFFSET MIGRATION

Difficult migrations are well known for producing semicircular reflectors. Here we have
controlled everything fairly well so none are obvious, but on a video screen I see some semi-
circles.

Next is the problem of the spectrum. Notice in Figure 5.8 that the reconstruction lacks the
sharp crispness of the original. It is shown in chapter 6 that the spectrum of our reconstruction
loses high frequencies by a scale of 1/|ω|. Philosophically, we can think of the hyperbola
summation as integration, and integration boosts low frequencies. Figure 5.9 shows the aver-
age over x of the relevant spectra. First, notice the high frequencies are weak because there

Figure 5.9: Top is the spectrum of
the the model, i.e. the left side of
Figure 5.8. Bottom is the spec-
trum of the the reconstruction, i.e. the
right side of Figure 5.8. Middle is
the reconstruction times frequency f .
krch-kirspec [ER]

is little high frequency energy in the original model. Then notice that our cavalier approach
to interpolation created more high frequency energy. Finally, notice that multiplying the spec-
trum of our migrated model by frequency, f , brought the important part of the spectral bands
into agreement. This suggests applying an |ω| filter to our reconstruction, or

√
−iω operator

to both the modeling and the reconstruction, an idea implemented in subroutine halfdifa()

on page 99.

Neither of these Kirchhoff codes addresses the issue of spatial aliasing. Spatial aliasing is
a vexing issue of numerical analysis. The Kirchhoff codes shown here do not work as expected
unless the space mesh size is suitably more refined than the time mesh. Figure 5.10 shows an
example of forward modeling with an x mesh of 50 and 100 points. (Previous figures used 200
points on space. All use 200 mesh points on the time.) Subroutine kirchfast() on page 70
does interpolation by moving values to the nearest neighbor of the theoretical location. Had
we taken the trouble to interpolate the two nearest points, our results would have been a little
better, but the basic problem (resolved in chapter 11) would remain.

5.2.4 Sampling and aliasing

Spatial aliasing means insufficient sampling of the data along the space axis. This difficulty
is so universal, that all migration methods must consider it.

Data should be sampled at more than two points per wavelength. Otherwise the wave
arrival direction becomes ambiguous. Figure 5.11 shows synthetic data that is sampled with

5.2. HYPERBOLA PROGRAMMING 73

Figure 5.10: Left is model. Right is synthetic data from the model. Top has 50 points on the
x-axis, bottom has 100. krch-skmod [ER]

74 CHAPTER 5. ZERO-OFFSET MIGRATION

insufficient density along the x-axis. You can see that the problem becomes more acute at high

Figure 5.11: Insufficient spatial sam-
pling of synthetic data. To better per-
ceive the ambiguity of arrival angle,
view the figures at a grazing angle
from the side. krch-alias [ER]

frequencies and steep dips.

There is no generally-accepted, automatic method for migrating spatially aliased data. In
such cases, human beings may do better than machines, because of their skill in recognizing
true slopes. When the data is adequately sampled however, computer migrations give better
results than manual methods.

5.2.5 Kirchhoff migration of field data

Figure 5.12 shows migrated field data.

The on-line movie behind the figure shows the migration before and after amplitude gain
with time. You can get a bad result if you gain up the data, say with automatic gain or with
t2, for display before doing the migration. What happens is that the hyperbola flanks are then
included incorrectly with too much strength.

The proper approach is to gain it first with
√

t which converts it from 3-D wavefields to
2-D. Then migrate it with a 2-D migration like kirchfast() , and finally gain it further for
display (because deep reflectors are usually weaker).

5.2. HYPERBOLA PROGRAMMING 75

Figure 5.12: Kirchhoff migration of Figure 4.7. Press button for movie comparing stack to
migrated stack. krch-wgkirch [ER,M]

76 CHAPTER 5. ZERO-OFFSET MIGRATION

Chapter 6

Waves and Fourier sums

An important concept in wave imaging is the extrapolation of a wavefield from one depth z
to another. Fourier transforms are an essential basic tool. There are many books and chap-
ters of books on the theory of Fourier transformation. The first half of this chapter is an
introduction to practice with Fourier sums. It assumes you already know something of the
theory and takes you through the theory rather quickly emphasizing practice by examining
examples, and by performing two-dimensional Fourier transformation of data and interpreting
the result. For a somewhat more theoretical background, I suggest my previous book PVI at
http://sepwww.stanford.edu/sep/prof/.

The second half of this chapter uses Fourier transformation to explain the Hankel wave-
form we observed in chapter 4 and chapter 5. Interestingly, it is the Fourier transform of√
−iω, which is half the derivative operator.

6.1 FOURIER TRANSFORM

We first examine the two ways to visualize polynomial multiplication. The two ways lead us
to the most basic principle of Fourier analysis that

A product in the Fourier domain is a convolution in the physical domain

Look what happens to the coefficients when we multiply polynomials.

X (Z) B(Z) = Y (Z) (6.1)
(x0+ x1 Z + x2 Z2+·· ·) (b0+b1 Z +b2 Z2) = y0+ y1Z + y2 Z2+·· · (6.2)

Identifying coefficients of successive powers of Z , we get

y0 = x0b0

y1 = x1b0+ x0b1

y2 = x2b0+ x1b1+ x0b2 (6.3)

77

78 CHAPTER 6. WAVES AND FOURIER SUMS

y3 = x3b0+ x2b1+ x1b2

y4 = x4b0+ x3b1+ x2b2

= ·· · · · · · · · · · · · · · · · ·

In matrix form this looks like




















y0
y1
y2
y3
y4
y5
y6





















=





















x0 0 0
x1 x0 0
x2 x1 x0
x3 x2 x1
x4 x3 x2
0 x4 x3
0 0 x4

























b0
b1
b2



 (6.4)

The following equation, called the “convolution equation,” carries the spirit of the group shown
in (6.3)

yk =
∑

i=0
xk−i bi (6.5)

The second way to visualize polynomial multiplication is simpler. Above we did not think
of Z as a numerical value. Instead we thought of it as “a unit delay operator”. Now we think
of the product X (Z)B(Z) = Y (Z) numerically. For all possible numerical values of Z , each
value Y is determined from the product of the two numbers X and B. Instead of considering
all possible numerical values we limit ourselves to all values of unit magnitude Z = eiω for all
real values of ω. This is Fourier analysis, a topic we consider next.

6.1.1 FT as an invertible matrix

A Fourier sum may be written

B(ω) =
∑

t

bt eiωt =
∑

t

bt Z t (6.6)

where the complex value Z is related to the real frequency ω by Z = eiω. This Fourier sum is a
way of building a continuous function of ω from discrete signal values bt in the time domain.
Here we specify both time and frequency domains by a set of points. Begin with an example
of a signal that is nonzero at four successive instants, (b0,b1,b2,b3). The transform is

B(ω) = b0+b1 Z +b2 Z2+b3 Z3 (6.7)

The evaluation of this polynomial can be organized as a matrix times a vector, such as








B0
B1
B2
B3









=









1 1 1 1
1 W W 2 W 3

1 W 2 W 4 W 6

1 W 3 W 6 W 9

















b0
b1
b2
b3









(6.8)

6.1. FOURIER TRANSFORM 79

Observe that the top row of the matrix evaluates the polynomial at Z = 1, a point where also
ω = 0. The second row evaluates B1 = B(Z = W = eiω0), where ω0 is some base frequency.
The third row evaluates the Fourier transform for 2ω0, and the bottom row for 3ω0. The matrix
could have more than four rows for more frequencies and more columns for more time points.
I have made the matrix square in order to show you next how we can find the inverse matrix.
The size of the matrix in (6.8) is N = 4. If we choose the base frequency ω0 and hence W
correctly, the inverse matrix will be









b0
b1
b2
b3









= 1/N









1 1 1 1
1 1/W 1/W 2 1/W 3

1 1/W 2 1/W 4 1/W 6

1 1/W 3 1/W 6 1/W 9

















B0
B1
B2
B3









(6.9)

Multiplying the matrix of (6.9) with that of (6.8), we first see that the diagonals are +1 as
desired. To have the off diagonals vanish, we need various sums, such as 1+W +W 2+W 3

and 1+W 2+W 4+W 6, to vanish. Every element (W 6, for example, or 1/W 9) is a unit vector
in the complex plane. In order for the sums of the unit vectors to vanish, we must ensure
that the vectors pull symmetrically away from the origin. A uniform distribution of directions
meets this requirement. In other words, W should be the N -th root of unity, i.e.,

W = N
√

1 = e2π i/N (6.10)

The lowest frequency is zero, corresponding to the top row of (6.8). The next-to-the-
lowest frequency we find by setting W in (6.10) to Z = eiω0 . So ω0 = 2π/N ; and for (6.9) to
be inverse to (6.8), the frequencies required are

ωk = (0,1,2, . . . , N −1)2π

N
(6.11)

6.1.2 The Nyquist frequency

The highest frequency in equation (6.11), ω = 2π (N −1)/N , is almost 2π . This frequency is
twice as high as the Nyquist frequency ω= π . The Nyquist frequency is normally thought of
as the “highest possible” frequency, because eiπ t , for integer t , plots as (· · · , 1,−1,1,−1,1,−1, · · ·).
The double Nyquist frequency function, ei2π t , for integer t , plots as (· · · , 1,1,1,1,1, · · ·). So
this frequency above the highest frequency is really zero frequency! We need to recall that
B(ω)= B(ω−2π). Thus, all the frequencies near the upper end of the range equation (6.11)
are really small negative frequencies. Negative frequencies on the interval (−π , 0) were moved
to interval (π , 2π) by the matrix form of Fourier summation.

A picture of the Fourier transform matrix is shown in Figure 6.1. Notice the Nyquist
frequency is the center row and center column of each matrix.

6.1.3 Laying out a mesh

In theoretical work and in programs, the unit delay operator definition Z = eiω1t is often
simplified to 1t = 1, leaving us with Z = eiω. How do we know whether ω is given in radians

80 CHAPTER 6. WAVES AND FOURIER SUMS

Figure 6.1: Two different graphical means of showing the real and imaginary parts of the
Fourier transform matrix of size 32×32. ft1-matrix [ER]

6.2. INVERTIBLE SLOW FT PROGRAM 81

per second or radians per sample? We may not invoke a cosine or an exponential unless the
argument has no physical dimensions. So where we see ω without 1t , we know it is in units
of radians per sample.

In practical work, frequency is typically given in cycles/sec or Hertz, f , rather than radi-
ans, ω (where ω = 2π f). Here we will now switch to f . We will design a computer mesh
on a physical object (such as a waveform or a function of space). We often take the mesh
to begin at t = 0, and continue till the end tmax of the object, so the time range trange = tmax.
Then we decide how many points we want to use. This will be the N used in the discrete
Fourier-transform program. Dividing the range by the number gives a mesh interval 1t .

Now let us see what this choice implies in the frequency domain. We customarily take the
maximum frequency to be the Nyquist, either fmax = .5/1t Hz or ωmax = π/1t radians/sec.
The frequency range frange goes from −.5/1t to .5/1t . In summary:

• 1t = trange/N is time resolution.

• frange = 1/1t = N/trange is frequency range.

• 1 f = frange/N = 1/trange is frequency resolution.

In principle, we can always increase N to refine the calculation. Notice that increasing N
sharpens the time resolution (makes 1t smaller) but does not sharpen the frequency resolution
1 f , which remains fixed. Increasing N increases the frequency range, but not the frequency
resolution.

What if we want to increase the frequency resolution? Then we need to choose trange larger
than required to cover our object of interest. Thus we either record data over a larger range, or
we assert that such measurements would be zero. Three equations summarize the facts:

1t frange = 1 (6.12)
1 f trange = 1 (6.13)

1 f 1t = 1
N

(6.14)

Increasing range in the time domain increases resolution in the frequency domain and
vice versa. Increasing resolution in one domain does not increase resolution in the other.

6.2 INVERTIBLE SLOW FT PROGRAM

Typically, signals are real valued. But the programs in this chapter are for complex-valued
signals. In order to use these programs, copy the real-valued signal into a complex array,
where the signal goes into the real part of the complex numbers; the imaginary parts are then
automatically set to zero.

82 CHAPTER 6. WAVES AND FOURIER SUMS

There is no universally correct choice of scale factor in Fourier transform: choice of scale
is a matter of convenience. Equations (6.8) and (6.9) mimic the Z -transform, so their scaling
factors are convenient for the convolution theorem—that a product in the frequency domain
is a convolution in the time domain. Obviously, the scaling factors of equations (6.8) and
(6.9) will need to be interchanged for the complementary theorem that a convolution in the
frequency domain is a product in the time domain. I like to use a scale factor that keeps the
sums of squares the same in the time domain as in the frequency domain. Since I almost never
need the scale factor, it simplifies life to omit it from the subroutine argument list. When a
scaling program is desired, we can use a simple one like scale() on this page. Complex-
valued data can be scaled with scale() merely by doubling the value of n .

subroutine scale(factor, n, data)

integer i, n

real factor, data(n)

do i= 1, n

data(i) = factor * data(i)

return; end

6.2.1 The simple FT code

Subroutine simpleft() on the current page exhibits features found in many physics and en-
gineering programs. For example, the time-domain signal (which is denoted “tt() "), has nt

values subscripted, from tt(1) to tt(nt) . The first value of this signal tt(1) is located in real
physical time at t0 . The time interval between values is dt . The value of tt(it) is at time
t0+(it-1)*dt . We do not use “if ” as a pointer on the frequency axis because if is a keyword
in most programming languages. Instead, we count along the frequency axis with a variable
named ie .

subroutine simpleft(adj, add, t0,dt,tt,nt, f0,df, ff,nf)

integer it,ie, adj, add, nt, nf

complex cexp, cmplx, tt(nt), ff(nf)

real pi2, freq, time, scale, t0,dt, f0,df

call adjnull(adj, add, tt,nt*2, ff,nf*2)

pi2= 2. * 3.14159265; scale = 1./sqrt(1.*nt)

df = (1./dt) / nf

f0 = - .5/dt

do ie = 1, nf { freq= f0 + df*(ie-1)

do it = 1, nt { time= t0 + dt*(it-1)

if(adj == 0)

ff(ie)= ff(ie) + tt(it) * cexp(cmplx(0., pi2*freq*time)) * scale

else

tt(it)= tt(it) + ff(ie) * cexp(cmplx(0.,-pi2*freq*time)) * scale

}}

return; end

The total frequency band is 2π radians per sample unit or 1/1t Hz. Dividing the total interval
by the number of points nf gives 1 f . We could choose the frequencies to run from 0 to 2π

radians/sample. That would work well for many applications, but it would be a nuisance for

6.3. CORRELATION AND SPECTRA 83

applications such as differentiation in the frequency domain, which require multiplication by
−iω including the negative frequencies as well as the positive. So it seems more natural to
begin at the most negative frequency and step forward to the most positive frequency.

6.3 CORRELATION AND SPECTRA

The spectrum of a signal is a positive function of frequency that says how much of each
tone is present. The Fourier transform of a spectrum yields an interesting function called an
“autocorrelation,” which measures the similarity of a signal to itself shifted.

6.3.1 Spectra in terms of Z-transforms

Let us look at spectra in terms of Z -transforms. Let a spectrum be denoted S(ω), where

S(ω) = |B(ω)|2 = B(ω)B(ω) (6.15)

Expressing this in terms of a three-point Z -transform, we have

S(ω) = (b̄0+ b̄1e−iω+ b̄2e−i2ω)(b0+b1eiω+b2ei2ω) (6.16)

S(Z) =
(

b̄0+
b̄1

Z
+ b̄2

Z2

)

(b0+b1 Z +b2 Z2) (6.17)

S(Z) = B

(

1
Z

)

B(Z) (6.18)

It is interesting to multiply out the polynomial B̄(1/Z) with B(Z) in order to examine the
coefficients of S(Z):

S(Z) = b̄2b0

Z2 +
(b̄1b0+ b̄2b1)

Z
+ (b̄0b0+ b̄1b1+ b̄2b2)+ (b̄0b1+ b̄1b2)Z + b̄0b2 Z2

S(Z) = s−2

Z2 +
s−1

Z
+ s0+ s1 Z + s2 Z2 (6.19)

The coefficient sk of Z k is given by

sk =
∑

i

b̄i bi+k (6.20)

Equation (6.20) is the autocorrelation formula. The autocorrelation value sk at lag 10 is s10.
It is a measure of the similarity of bi with itself shifted 10 units in time. In the most fre-
quently occurring case, bi is real; then, by inspection of (6.20), we see that the autocorrelation
coefficients are real, and sk = s−k .

Specializing to a real time series gives

S(Z) = s0+ s1

(

Z + 1
Z

)

+ s2

(

Z2+ 1
Z2

)

(6.21)

84 CHAPTER 6. WAVES AND FOURIER SUMS

S(Z (ω)) = s0+ s1(eiω+ e−iω)+ s2(ei2ω+ e−i2ω) (6.22)
S(ω) = s0+2s1 cosω+2s2 cos2ω (6.23)
S(ω) =

∑

k

sk coskω (6.24)

S(ω) = cosine transform of sk (6.25)

This proves a classic theorem that for real-valued signals can be simply stated as follows:

For any real signal, the cosine transform of the autocorrelation equals the magnitude
squared of the Fourier transform.

6.3.2 Two ways to compute a spectrum

There are two computationally distinct methods by which we can compute a spectrum: (1)
compute all the sk coefficients from (6.20) and then form the cosine sum (6.24) for each ω;
and alternately, (2) evaluate B(Z) for some value of Z on the unit circle, and multiply the
resulting number by its complex conjugate. Repeat for many values of Z on the unit circle.
When there are more than about twenty lags, method (2) is cheaper, because the fast Fourier
transform (coming up soon) can be used.

6.3.3 Common signals

Figure 6.2 shows some common signals and their autocorrelations. Figure 6.3 shows the
cosine transforms of the autocorrelations. Cosine transform takes us from time to frequency
and it also takes us from frequency to time. Thus, transform pairs in Figure 6.3 are sometimes
more comprehensible if you interchange time and frequency. The various signals are given
names in the figures, and a description of each follows:

cos The theoretical spectrum of a sinusoid is an impulse, but the sinusoid was truncated (mul-
tiplied by a rectangle function). The autocorrelation is a sinusoid under a triangle, and
its spectrum is a broadened impulse (which can be shown to be a narrow sinc-squared
function).

sinc The sinc function is sin(ω0t)/(ω0t). Its autocorrelation is another sinc function, and its
spectrum is a rectangle function. Here the rectangle is corrupted slightly by “Gibbs
sidelobes,” which result from the time truncation of the original sinc.

wide box A wide rectangle function has a wide triangle function for an autocorrelation and
a narrow sinc-squared spectrum.

narrow box A narrow rectangle has a wide sinc-squared spectrum.

twin Two pulses.

6.3. CORRELATION AND SPECTRA 85

Figure 6.2: Common signals and one side of their autocorrelations. ft1-autocor [ER]

Figure 6.3: Autocorrelations and their cosine transforms, i.e., the (energy) spectra of the com-
mon signals. ft1-spectra [ER]

86 CHAPTER 6. WAVES AND FOURIER SUMS

2 boxes Two separated narrow boxes have the spectrum of one of them, but this spectrum
is modulated (multiplied) by a sinusoidal function of frequency, where the modulation
frequency measures the time separation of the narrow boxes. (An oscillation seen in the
frequency domain is sometimes called a “quefrency.”)

comb Fine-toothed-comb functions are like rectangle functions with a lower Nyquist fre-
quency. Coarse-toothed-comb functions have a spectrum which is a fine-toothed comb.

exponential The autocorrelation of a transient exponential function is a double-sided expo-
nential function. The spectrum (energy) is a Cauchy function, 1/(ω2+ω2

0). The curious
thing about the Cauchy function is that the amplitude spectrum diminishes inversely
with frequency to the first power; hence, over an infinite frequency axis, the function
has infinite integral. The sharp edge at the onset of the transient exponential has much
high-frequency energy.

Gauss The autocorrelation of a Gaussian function is another Gaussian, and the spectrum is
also a Gaussian.

random Random numbers have an autocorrelation that is an impulse surrounded by some
short grass. The spectrum is positive random numbers.

smoothed random Smoothed random numbers are much the same as random numbers, but
their spectral bandwidth is limited.

6.4 SETTING UP THE FAST FOURIER TRANSFORM

Typically we Fourier transform seismograms about a thousand points long. Under these condi-
tions another Fourier summation method works about a hundred times faster than those already
given. Unfortunately, the faster Fourier transform program is not so transparently clear as the
programs given earlier. Also, it is slightly less flexible. The speedup is so overwhelming,
however, that the fast program is always used in routine work.

Flexibility may be lost because the basic fast program works with complex-valued signals,
so we ordinarily convert our real signals to complex ones (by adding a zero imaginary part).
More flexibility is lost because typical fast FT programs require the data length to be an inte-
gral power of 2. Thus geophysical datasets often have zeros appended (a process called “zero
padding") until the data length is a power of 2. From time to time I notice clumsy computer
code written to deduce a number that is a power of 2 and is larger than the length of a dataset.
An answer is found by rounding up the logarithm to base 2. The more obvious and the quicker
way to get the desired value, however, is with the simple Fortran function pad2() .

integer function pad2(n)

integer n

pad2 = 1

while(pad2 < n)

pad2 = pad2 * 2

return; end

6.4. SETTING UP THE FAST FOURIER TRANSFORM 87

How fast is the fast Fourier transform method? The answer depends on the size of the
data. The matrix times vector operation in (6.8) requires N 2 multiplications and additions.
That determines the speed of the slow transform. For the fast method the number of adds and
multiplies is proportional to N log2 N . Since 210 = 1024, the speed ratio is typically 1024/10
or about 100. In reality, the fast method is not quite that fast, depending on certain details of
overhead and implementation.

Below is ftu() , a version of the fast Fourier transform program. There are many ver-
sions of the program—I have chosen this one for its simplicity. Considering the complexity
of the task, it is remarkable that no auxiliary memory vectors are required; indeed, the output
vector lies on top of the input vector. To run this program, your first step might be to copy
your real-valued signal into a complex-valued array. Then append enough zeros to fill in the
remaining space.
subroutine ftu(signi, nx, cx)

complex fourier transform with unitary scaling

#

1 nx signi*2*pi*i*(j-1)*(k-1)/nx

cx(k) = -------- * sum cx(j) * e

sqrt(nx) j=1 for k=1,2,...,nx=2**integer

#

integer nx, i, j, k, m, istep, pad2

real signi, scale, arg

complex cx(nx), cmplx, cw, cdel, ct

if(nx != pad2(nx)) call erexit(’ftu: nx not a power of 2’)

scale = 1. / sqrt(1.*nx)

do i= 1, nx

cx(i) = cx(i) * scale

j = 1; k = 1

do i= 1, nx {

if (i<=j) { ct = cx(j); cx(j) = cx(i); cx(i) = ct }

m = nx/2

! "&&" means .AND.

while (j>m && m>1) { j = j-m; m = m/2 }

j = j+m

}

repeat {

istep = 2*k; cw = 1.; arg = signi*3.14159265/k

cdel = cmplx(cos(arg), sin(arg))

do m= 1, k {

do i= m, nx, istep

{ ct=cw*cx(i+k); cx(i+k)=cx(i)-ct; cx(i)=cx(i)+ct }

cw = cw * cdel

}

k = istep

if(k>=nx) break

}

return; end

The following two lines serve to Fourier transform a vector of 1024 complex-valued points,
and then to inverse Fourier transform them back to the original data:

call ftu(1., 1024, cx)

88 CHAPTER 6. WAVES AND FOURIER SUMS

call ftu(-1., 1024, cx)

A reference given at the end of this chapter contains many other versions of the FFT
program. One version transforms real-valued signals to complex-valued frequency functions
in the interval 0≤ ω < π . Others that do not transform data on top of itself may be faster with
specialized computer architectures.

6.4.1 Shifted spectrum

Subroutine simpleft() on page 82 sets things up in a convenient manner: The frequency range
runs from minus Nyquist up to (but not including) plus Nyquist. Thus there is no problem with
the many (but not all) user programs that have trouble with aliased frequencies. Subroutine
ftu() on the page before, however has a frequency range from zero to double the Nyquist.
Let us therefore define a friendlier “front end” to ftu() which looks more like simpleft() .

Recall that a time shift of t0 can be implemented in the Fourier domain by multiplication
by e−iωt0 . Likewise, in the Fourier domain, the frequency interval used by subroutine ftu() on
the preceding page, namely, 0≤ ω < 2π , can be shifted to the friendlier interval−π ≤ ω < π

by a weighting function in the time domain. That weighting function is e−iω0t where ω0
happens to be the Nyquist frequency, i.e. alternate points on the time axis are to be multiplied
by −1. A subroutine for this purpose is fth() .

FT a vector in a matrix, with first omega = - pi

#

subroutine fth(adj,sign, m1, n12, cx)

integer i, adj, m1, n12

real sign

complex cx(m1,n12)

temporary complex temp(n12)

do i= 1, n12

temp(i) = cx(1,i)

if(adj == 0) { do i= 2, n12, 2

temp(i) = -temp(i)

call ftu(sign, n12, temp)

}

else { call ftu(-sign, n12, temp)

do i= 2, n12, 2

temp(i) = -temp(i)

}

do i= 1, n12

cx(1,i) = temp(i)

return; end

To Fourier transform a 1024-point complex vector cx(1024) and then inverse transform it, we
would write

6.5. SETTING UP 2-D FT 89

call fth(0, 1., 1, 1024, cx)

call fth(1, 1., 1, 1024, cx)

You might wonder about the apparent redundancy of using both the argument adj and the
argument sign . Having two arguments instead of one allows us to define the forward transform
for a time axis with the opposite sign as the forward transform for a space axis.

The subroutine fth() is somewhat cluttered by the inclusion of a frequently needed prac-
tical feature—namely, the facility to extract vectors from a matrix, transform the vectors, and
then restore them into the matrix.

6.5 SETTING UP 2-D FT

The program fth() is set up so that the vectors transformed can be either rows or columns of a
two-dimensional array. In any computer language there is a way to extract a vector (column or
row) from a matrix. In some languages the vector can be processed directly without extraction.
To see how this works in Fortran, recall a matrix allocated as (n1,n2) can be subscripted as
a matrix (i1,i2) or as a long vector (i1 + n1*(i2-1),1) , and call sub(x(i1,i2)) passes
the subroutine a pointer to the (i1,i2) element. To transform an entire axis, the subrou-
tines ft1axis() and ft2axis() are given. For a two-dimensional FT, we simply call both
ft1axis() and ft2axis() in either order.

1D Fourier transform on a 2D data set along the 1-axis

#

subroutine ft1axis(adj, sign1, n1,n2, cx)

integer i2, adj, n1,n2

complex cx(n1,n2)

real sign1

do i2= 1, n2

call fth(adj, sign1, 1,n1, cx(1,i2))

return; end

1D Fourier transform on a 2D data set along the 2-axis

#

subroutine ft2axis(adj, sign2, n1,n2, cx)

integer i1, adj, n1,n2

complex cx(n1,n2)

real sign2

do i1= 1, n1

call fth(adj, sign2, n1,n2, cx(i1,1))

return; end

6.5.1 Basics of two-dimensional Fourier transform

Let us review some basic facts about two-dimensional Fourier transform. A two-dimensional
function is represented in a computer as numerical values in a matrix, whereas a one-dimensional

90 CHAPTER 6. WAVES AND FOURIER SUMS

Fourier transform in a computer is an operation on a vector. A 2-D Fourier transform can be
computed by a sequence of 1-D Fourier transforms. We can first transform each column vector
of the matrix and then each row vector of the matrix. Alternately, we can first do the rows and
later do the columns. This is diagrammed as follows:

p(t , x) ←→ P(t , kx)
x



y

x



y

P(ω, x) ←→ P(ω, kx)

The diagram has the notational problem that we cannot maintain the usual convention
of using a lower-case letter for the domain of physical space and an upper-case letter for
the Fourier domain, because that convention cannot include the mixed objects P(t ,kx) and
P(ω, x). Rather than invent some new notation, it seems best to let the reader rely on the
context: the arguments of the function must help name the function.

An example of two-dimensional Fourier transforms on typical deep-ocean data is shown
in Figure 6.4. In the deep ocean, sediments are fine-grained and deposit slowly in flat, regular,
horizontal beds. The lack of permeable rocks such as sandstone severely reduces the potential
for petroleum production from the deep ocean. The fine-grained shales overlay irregular,
igneous, basement rocks. In the plot of P(t ,kx), the lateral continuity of the sediments is
shown by the strong spectrum at low kx . The igneous rocks show a kx spectrum extending to
such large kx that the deep data may be somewhat spatially aliased (sampled too coarsely).
The plot of P(ω, x) shows that the data contains no low-frequency energy. The dip of the sea
floor shows up in (ω,kx)-space as the energy crossing the origin at an angle.

Altogether, the two-dimensional Fourier transform of a collection of seismograms in-
volves only twice as much computation as the one-dimensional Fourier transform of each
seismogram. This is lucky. Let us write some equations to establish that the asserted proce-
dure does indeed do a 2-D Fourier transform. Say first that any function of x and t may be
expressed as a superposition of sinusoidal functions:

p(t , x) =
∫ ∫

e−iωt+ikx x P(ω,kx) dω dkx (6.26)

The double integration can be nested to show that the temporal transforms are done first (in-
side):

p(t , x) =
∫

ei kx x
[∫

e−iωt P(ω,kx) dω

]

dkx

=
∫

ei kx x P(t ,kx) dkx

The quantity in brackets is a Fourier transform over ω done for each and every kx . Alternately,
the nesting could be done with the kx -integral on the inside. That would imply rows first
instead of columns (or vice versa). It is the separability of exp(−iωt + i kx x) into a product
of exponentials that makes the computation easy and cheap.

6.5. SETTING UP 2-D FT 91

Figure 6.4: A deep-marine dataset p(t , x) from Alaska (U.S. Geological Survey) and the real
part of various Fourier transforms of it. Because of the long traveltime through the water, the
time axis does not begin at t = 0. ft1-plane4 [ER]

92 CHAPTER 6. WAVES AND FOURIER SUMS

6.5.2 Signs in Fourier transforms

In Fourier transforming t-, x-, and z-coordinates, we must choose a sign convention for each
coordinate. Of the two alternative sign conventions, electrical engineers have chosen one and
physicists another. While both have good reasons for their choices, our circumstances more
closely resemble those of physicists, so we will use their convention. For the inverse Fourier
transform, our choice is

p(t , x , z) =
∫ ∫ ∫

e−iωt+ ikx x+ ikz z P(ω,kx ,kz) dωdkx dkz (6.27)

For the forward Fourier transform, the space variables carry a negative sign, and time carries
a positive sign.

Let us see the reasons why electrical engineers have made the opposite choice, and why we
go with the physicists. Essentially, engineers transform only the time axis, whereas physicists
transform both time and space axes. Both are simplifying their lives by their choice of sign
convention, but physicists complicate their time axis in order to simplify their many space
axes. The engineering choice minimizes the number of minus signs associated with the time
axis, because for engineers, d/dt is associated with iω instead of, as is the case for us and for
physicists, with −iω. We confirm this with equation (6.27). Physicists and geophysicists deal
with many more independent variables than time. Besides the obvious three space axes are
their mutual combinations, such as midpoint and offset.

You might ask, why not make all the signs positive in equation (6.27)? The reason is that
in that case waves would not move in a positive direction along the space axes. This would
be especially unnatural when the space axis was a radius. Atoms, like geophysical sources,
always radiate from a point to infinity, not the other way around. Thus, in equation (6.27) the
sign of the spatial frequencies must be opposite that of the temporal frequency.

The only good reason I know to choose the engineering convention is that we might com-
pute with an array processor built and microcoded by engineers. Conflict of sign convention
is not a problem for the programs that transform complex-valued time functions to complex-
valued frequency functions, because there the sign convention is under the user’s control. But
sign conflict does make a difference when we use any program that converts real-time func-
tions to complex frequency functions. The way to live in both worlds is to imagine that the
frequencies produced by such a program do not range from 0 to +π as the program descrip-
tion says, but from 0 to −π . Alternately, we could always take the complex conjugate of the
transform, which would swap the sign of the ω-axis.

6.5.3 Simple examples of 2-D FT

An example of a two-dimensional Fourier transform of a pulse is shown in Figure 6.5.
Notice the location of the pulse. It is closer to the time axis than the space axis. This will
affect the real part of the FT in a certain way (see exercises). Notice the broadening of the
pulse. It was an impulse smoothed over time (vertically) by convolution with (1,1) and over
space (horizontally) with (1,4,6,4,1). This will affect the real part of the FT in another way.

6.5. SETTING UP 2-D FT 93

Figure 6.5: A broadened pulse (left) and the real part of its FT (right). ft1-ft2dofpulse [ER]

Another example of a two-dimensional Fourier transform is given in Figure 6.6. This
example simulates an impulsive air wave originating at a point on the x-axis. We see a wave
propagating in each direction from the location of the source of the wave. In Fourier space
there are also two lines, one for each wave. Notice that there are other lines which do not
go through the origin; these lines are called “spatial aliases.” Each actually goes through the
origin of another square plane that is not shown, but which we can imagine alongside the one
shown. These other planes are periodic replicas of the one shown.

Figure 6.6: A simulated air wave (left) and the amplitude of its FT (right). ft1-airwave [ER]

94 CHAPTER 6. WAVES AND FOURIER SUMS

EXERCISES:

1 Most time functions are real. Their imaginary part is zero. Show that this means that
F(ω,k) can be determined from F(−ω,−k).

2 What would change in Figure 6.5 if the pulse were moved (a) earlier on the t-axis, and
(b) further on the x-axis? What would change in Figure 6.5 if instead the time axis were
smoothed with (1,4,6,4,1) and the space axis with (1,1)?

3 What would Figure 6.6 look like on an earth with half the earth velocity?

4 Numerically (or theoretically) compute the two-dimensional spectrum of a plane wave
[δ(t − px)], where the plane wave has a randomly fluctuating amplitude: say, rand(x)
is a random number between ±1, and the randomly modulated plane wave is [(1 +
.2 rand(x))δ(t− px)].

5 Explain the horizontal “layering” in Figure 6.4 in the plot of P(ω, x). What determines
the “layer” separation? What determines the “layer” slope?

6.5.4 Magic with 2-D Fourier transforms

We have struggled through some technical details to learn how to perform a 2-D Fourier trans-
formation. An immediate reward next is a few "magical" results on data.

In this book waves go down into the earth; they reflect; they come back up; and then
they disappear. In reality after they come back up they reflect from the earth surface and go
back down for another episode. Such waves, called multiple reflections, in real life are in
some places negligible while in other places they overwhelm. Some places these multiply
reflected waves can be suppressed because their RMS velocity tends to be slower because they
spend more time in shallower regions. In other places this is not so. We can always think of
making an earth model, using it to predict the multiply reflected waveforms, and subtracting
the multiples from the data. But a serious pitfall is that we would need to have the earth model
in order to find the earth model.

Fortunately, a little Fourier transform magic goes a long way towards solving the problem.
Take a shot profile d(t , x). Fourier transform it to D(ω,kx). For every ω and kx , square this
value D(ω,kx)2. Inverse Fourier transform. In Figure 6.7 we inspect the result. For the squared
part the x-axis is reversed to facilitate comparison at zero offset. A great many reflections
on the raw data (right) carry over into the predicted multiples (left). If not, they are almost
certainly primary reflections. This data shows more multiples than primaries.

Why does this work? Why does squaring the Fourier Transform of the raw data give us
this good looking estimate of the multiple reflections? Recall Z -transforms Z = eiω1t . A
Z -transform is really a Fourier transform. Take a signal that is an impulse of amplitude r at
time t = 1001t . Its Z -transform is r Z 100. The square of this Z -transform is r 2 Z200, just
what we expect of a multiple reflection — squared amplitude and twice the travel time. That

6.5. SETTING UP 2-D FT 95

Figure 6.7: Data (right) with its FT squared (left). ft1-brad1 [ER]

96 CHAPTER 6. WAVES AND FOURIER SUMS

explains vertically propagating waves. When a ray has a horizontal component, an additional
copy of the ray doubles the horizontal distance traveled. Remember what squaring a Fourier
transformation does – a convolution. Here the convolution is over both t and x . Every bit
of the echo upon reaching the earth surface turns around and pretends it is a new little shot.
Mathematically, every point in the upcoming wave d(t , x) launches a replica of d(t , x) shifted
in both time and space – an autoconvolution.

In reality, multiple reflections offer a considerable number of challenges that I’m not men-
tioning. The point here is just that FT is a good tool to have.

6.5.5 Passive seismology

Signals go on and on, practically forever. Sometimes we like to limit our attention to some-
thing more limited such as their spectrum, or equivalently, their autocorrelation. We can com-
pute the autocorrelation in the Fourier domain. We multiply the FT times its complex con-
jugate D(ω,kx)D(ω,kx). Transforming back to the physical domain we see Figure 6.8. We
expect a giant burst at zero offset (upper right corner). We do not see it because it is "clipped",
i.e. plot values above some threshhold are plotted at that threshhold. I could scale the plot to
see the zero-offset burst, but then the interesting signals shown here would be too weak to be
seen.

Figure 6.8 shows us that the 2-D autocorrelation of a shot profile shares a lot in common
with the shot profile itself. This is interesting news. If we had a better understanding of this
we might find some productive applications. We might find a situation where we do not have
(or do not want) the data itself but we do wish to build an earth model. For example, suppose
we have permanently emplaced geophones. The earth is constantly excited by seismic noise.
Some of it is man made; some results from earthquakes elsewhere in the world; most probably
results from natural sources such as ocean waves, wind in trees, etc. Recall every bit of acous-
tic energy that arrives at the surface from below becomes a little bit of a source for a second
reflection seismic experiment. So, by autocorrelating the data of hours and days duration we
convert the chaos of continuing microseismic noise to something that might be the impulse
response of the earth, or something like it. Autocorrelation converts a time axis of length of
days to one of seconds. From the autocorrelation we might be able to draw conclusions in
usual ways, alternately, we might learn how to make earth models from autocorrelations.

Notice from Figure 6.8 that since the first two seconds of the signal vanishes (travel time
to ocean bottom), the last two seconds of the autocorrelation must vanish (longest nonzero lag
on the data).

There are many issues on Figure 6.8 to intrigue an interpreter (starting with signal polarity).
We also notice that the multiples on the autocorrelation die off rapidly with increasing offset
and wonder why, and whether the same is true of primaries. But today is not the day to start
down these paths.

In principal an autocorrelation is not comparable to the raw data or to the ideal shot profile
because forming a spectrum squares amplitudes. We can overcome this difficulty by use of

6.5. SETTING UP 2-D FT 97

Figure 6.8: The 2-D autocorrelation of a shot profile resembles itself. ft1-brad2 [ER]

98 CHAPTER 6. WAVES AND FOURIER SUMS

multidimensional spectral factorization — but that’s an advanced mathematical concept not
defined in this book. See my other book, Image Estimation.

6.5.6 The Stolt method of migration

On most computers the Stolt [1978] method of migration is the fastest one—by a very wide
margin. It’s almost magic! Like other methods, this migration method can be reversed making
it into a modeling program. The most serious drawback of the Stolt method is that it does not
handle depth variation in velocity, although attempts to repair this deficit have been partially
successful. A single line sketch of the Stolt method is this:

p(x , t) → P(kx ,ω) → P ′(kx ,kz =
√

ω2/v2 − k2
x) → p′(x , z) (6.28)

The steps of the algorithm are

1. Double Fourier transform z = 0 data from p(t , x , 0) to P(ω,kx , 0).

2. Interpolate P onto a new mesh so that it is a function of kx and kz.

3. Scale P by the cosine cos θ = |kz|/
√

k2
z + k2

x . (The cosine is the Jacobian of the trans-
formation.)

4. Inverse Fourier transform to (x , z)-space.

The Stolt method is sometimes described as “normal moveout done in the Fourier domain”.
Unfortunately, unlike normal moveout, it does not correctly describe a medium where the
velocity depends on depth z.

6.6 THE HALF-ORDER DERIVATIVE WAVEFORM

Causal integration is represented in the time domain by convolution with a step function. In
the frequency domain this amounts to multiplication by 1/(−iω). (There is also delta function
behavior at ω= 0 which may be ignored in practice and since at ω= 0, wave theory reduces to
potential theory). Integrating twice amounts to convolution by a ramp function, t step(t), which
in the Fourier domain is multiplication by 1/(−iω)2. Integrating a third time is convolution
with t2 step(t) which in the Fourier domain is multiplication by 1/(−iω)3. In general

tn−1 step(t) = FT
(

1
(−iω)n

)

(6.29)

Proof of the validity of equation (6.29) for integer values of n is by repeated indefinite inte-
gration which also indicates the need of an n! scaling factor. Proof of the validity of equa-
tion (6.29) for fractional values of n would take us far afield mathematically. Fractional values

6.6. THE HALF-ORDER DERIVATIVE WAVEFORM 99

of n, however, are exactly what we need to interpret Huygen’s secondary wave sources in 2-D.
The factorial function of n in the scaling factor becomes a gamma function. The poles suggest
that a more thorough mathematical study of convergence is warranted, but this is not the place
for it.

The principal artifact of the hyperbola-sum method of 2-D migration is the waveform
represented by equation (6.29) when n = 1/2. For n = 1/2, ignoring the scale factor, equa-
tion (6.29) becomes

1√
t

step(t) = FT
(

1√
−iω

)

(6.30)

A waveform that should come out to be an impulse actually comes out to be equation (6.30)
because Kirchhoff migration needs a little more than summing or spreading on a hyperbola.
To compensate for the erroneous filter response of equation (6.30) we need its inverse filter.
We need

√
−iω. To see what

√
−iω is in the time domain, we first recall that

d

dt
= FT (−iω) (6.31)

A product in the frequency domain corresponds to a convolution in the time domain. A time
derivative is like convolution with a doublet (1,−1)/1t . Thus, from equation (6.30) and
equation (6.31) we obtain

d

dt

1√
t

step(t) = FT
(√
−iω

)

(6.32)

Thus, we will see the way to overcome the principal artifact of hyperbola summation is to
apply the filter of equation (6.32). In chapter 7 we will learn more exact methods of migration.
There we will observe that an impulse in the earth creates not a hyperbola with an impulsive
waveform but in two dimensions, a hyperbola with the waveform of equation (6.32), and in
three dimensions, a hyperbola of revolution (umbrella?) carrying a time-derivative waveform.

6.6.1 Hankel tail

The waveform in equation (6.32) often arises in practice (as the 2-D Huygens wavelet). Be-
cause of the discontinuities on the left side of equation (6.32), it is not easy to visualize.
Thinking again of the time derivative as a convolution with the doublet (1,−1)/1t , we imag-
ine the 2-D Huygen’s wavelet as a positive impulse followed by negative signal decaying as
−t−3/2. This decaying signal is sometimes called the “Hankel tail.” In the frequency domain
−iω= |ω|e−i90◦ has a 90 degree phase angle and

√
−iω= |ω|1/2e−i45◦ has a 45 degree phase

angle.

Half order causal derivative. OK to equiv(xx,yy)

#

subroutine halfdifa(adj, add, n, xx, yy)

integer n2, i, adj, add, n

real omega, xx(n), yy(n)

complex cz, cv(4096)

100 CHAPTER 6. WAVES AND FOURIER SUMS

n2=1; while(n2<n) n2=2*n2; if(n2 > 4096) call erexit(’halfdif memory’)

do i= 1, n2 { cv(i) = 0.}

do i= 1, n

if(adj == 0) { cv(i) = xx(i)}

else { cv(i) = yy(i)}

call adjnull(adj, add, xx,n, yy,n)

call ftu(+1., n2, cv)

do i= 1, n2 {

omega = (i-1.) * 2.*3.14159265 / n2

cz = csqrt(1. - cexp(cmplx(0., omega)))

if(adj != 0) cz = conjg(cz)

cv(i) = cv(i) * cz

}

call ftu(-1., n2, cv)

do i= 1, n

if(adj == 0) { yy(i) = yy(i) + cv(i)}

else { xx(i) = xx(i) + cv(i)}

return; end

In practice, it is easiest to represent and to apply the 2-D Huygen’s wavelet in the frequency
domain. Subroutine halfdifa() on the page before is provided for that purpose. Instead of
using

√
−iω which has a discontinuity at the Nyquist frequency and a noncausal time function,

I use the square root of a causal representation of a finite difference, i.e.
√

1− Z , which is well
behaved at the Nyquist frequency and has the advantage that the modeling operator is causal
(vanishes when t < t0). Fourier transform is done using subroutine ftu() on page 87. Passing
an impulse function into subroutine halfdifa() gives the response seen in Figure 6.9.

Figure 6.9: Impulse response (de-
layed) of finite difference operator
of half order. Twice applying this
filter is equivalent to once applying
(1,−1). ft1-hankel [ER]

6.7 References

Special issue on fast Fourier transform, June 1969: IEEE Trans. on Audio and Electroacoustics
(now known as IEEE Trans. on Acoustics, Speech, and Signal Processing), AU-17, entire
issue (66-172).

Chapter 7

Downward continuation

7.1 MIGRATION BY DOWNWARD CONTINUATION

Given waves observed along the earth’s surface, some well-known mathematical techniques
that are introduced here enable us to extrapolate (downward continue) these waves down into
the earth. Migration is a simple consequence of this extrapolation.

7.1.1 Huygens secondary point source

Waves on the ocean have wavelengths comparable to those of waves in seismic prospecting
(15-500 meters), but ocean waves move slowly enough to be seen. Imagine a long harbor
barrier parallel to the beach with a small entrance in the barrier for the passage of ships. This
is shown in Figure 7.1. A plane wave incident on the barrier from the open ocean will send
a wave through the gap in the barrier. It is an observed fact that the wavefront in the harbor
becomes a circle with the gap as its center. The difference between this beam of water waves
and a light beam through a window is in the ratio of wavelength to hole size.

Linearity is a property of all low-amplitude waves (not those foamy, breaking waves near
the shore). This means that two gaps in the harbor barrier make two semicircular wavefronts.
Where the circles cross, the wave heights combine by simple linear addition. It is interesting
to think of a barrier with many holes. In the limiting case of very many holes, the barrier
disappears, being nothing but one gap alongside another. Semicircular wavefronts combine to
make only the incident plane wave. Hyperbolas do the same. Figure 7.2 shows hyperbolas
increasing in density from left to right. All those waves at nonvertical angles must somehow
combine with one another to extinguish all evidence of anything but the plane wave.

A Cartesian coordinate system has been superimposed on the ocean surface with x going
along the beach and z measuring the distance from shore. For the analogy with reflection seis-
mology, people are confined to the beach (the earth’s surface) where they make measurements
of wave height as a function of x and t . From this data they can make inferences about the
existence of gaps in the barrier out in the (x , z)-plane. The first frame of Figure 7.3 shows the

101

102 CHAPTER 7. DOWNWARD CONTINUATION

z

z 1

z 2

z 3

z
0

x
beach

harbor

storm barrier

open ocean

incident wave

Huygens Secondary

Point Source

Figure 7.1: Waves going through a gap in a barrier have semicircular wavefronts (if the wave-
length is long compared to the gap size). dwnc-storm [NR]

Figure 7.2: A barrier with many holes (top). Waves, (x , t)-space, seen beyond the barrier
(bottom). dwnc-stormhole [ER]

7.1. MIGRATION BY DOWNWARD CONTINUATION 103

arrival time at the beach of a wave from the ocean through a gap. The earliest arrival occurs

Figure 7.3: The left frame shows the hyperbolic wave arrival time seen at the beach. Frames
to the right show arrivals at increasing distances out in the water. The x-axis is compressed
from Figure 7.1. dwnc-dc [ER]

nearest the gap. What mathematical expression determines the shape of the arrival curve seen
in the (x , t)-plane?

The waves are expanding circles. An equation for a circle expanding with velocity v about
a point (x3, z3) is

(x− x3)2 + (z− z3)2 = v2 t2 (7.1)

Considering t to be a constant, i.e. taking a snapshot, equation (7.1) is that of a circle. Con-
sidering z to be a constant, it is an equation in the (x , t)-plane for a hyperbola. Considered in
the (t , x , z)-volume, equation (7.1) is that of a cone. Slices at various values of t show circles
of various sizes. Slices of various values of z show various hyperbolas. Figure 7.3 shows four
hyperbolas. The first is the observation made at the beach z0 = 0. The second is a hypothetical
set of observations at some distance z1 out in the water. The third set of observations is at z2,
an even greater distance from the beach. The fourth set of observations is at z3, nearly all the
way out to the barrier, where the hyperbola has degenerated to a point. All these hyperbolas
are from a family of hyperbolas, each with the same asymptote. The asymptote refers to a
wave that turns nearly 90◦ at the gap and is found moving nearly parallel to the shore at the
speed dx/dt of a water wave. (For this water wave analogy it is presumed—incorrectly—that
the speed of water waves is a constant independent of water depth).

If the original incident wave was a positive pulse, the Huygens secondary source must
consist of both positive and negative polarities to enable the destructive interference of all but
the plane wave. So the Huygens waveform has a phase shift. In the next section, mathematical
expressions will be found for the Huygens secondary source. Another phenomenon, well
known to boaters, is that the largest amplitude of the Huygens semicircle is in the direction
pointing straight toward shore. The amplitude drops to zero for waves moving parallel to the
shore. In optics this amplitude drop-off with angle is called the obliquity factor.

104 CHAPTER 7. DOWNWARD CONTINUATION

7.1.2 Migration derived from downward continuation

A dictionary gives many definitions for the word run. They are related, but they are distinct.
Similarly, the word migration in geophysical prospecting has about four related but distinct
meanings. The simplest is like the meaning of the word move. When an object at some
location in the (x , z)-plane is found at a different location at a later time t , then we say it
moves. Analogously, when a wave arrival (often called an event) at some location in the (x , t)-
space of geophysical observations is found at a different position for a different survey line at
a greater depth z, then we say it migrates.

To see this more clearly, imagine the four frames of Figure 7.3 being taken from a movie.
During the movie, the depth z changes beginning at the beach (the earth’s surface) and going
out to the storm barrier. The frames are superimposed in Figure 7.4(left). Mainly what happens

Figure 7.4: Left shows a superposi-
tion of the hyperbolas of Figure 7.3.
At the right the superposition incor-
porates a shift, called retardation t ′ =
t+ z/v, to keep the hyperbola tops to-
gether. dwnc-dcretard [ER]

in the movie is that the event migrates upward toward t = 0. To remove this dominating effect
of vertical translation we make another superposition, keeping the hyperbola tops all in the
same place. Mathematically, the time t axis is replaced by a so-called retarded time axis
t ′ = t + z/v, shown in Figure 7.4(right). The second, more precise definition of migration
is the motion of an event in (x , t ′)-space as z changes. After removing the vertical shift, the
residual motion is mainly a shape change. By this definition, hyperbola tops, or horizontal
layers, do not migrate.

The hyperbolas in Figure 7.4 really extend to infinity, but the drawing cuts each one off at
a time equal

√
2 times its earliest arrival. Thus the hyperbolas shown depict only rays moving

within 45◦ of the vertical. It is good to remember this, that the ratio of first arrival time on a
hyperbola to any other arrival time gives the cosine of the angle of propagation. The cutoff on
each hyperbola is a ray at 45◦. Notice that the end points of the hyperbolas on the drawing can
be connected by a straight line. Also, the slope at the end of each hyperbola is the same. In
physical space, the angle of any ray is tan θ = dx/dz. For any plane wave (or seismic event
that is near a plane wave), the slope v dt/dx is sin θ , as you can see by considering a wavefront
intercepting the earth’s surface at angle θ . So, energy moving on a straight line in physical
(x , z)-space migrates along a straight line in data (x , t)-space. As z increases, the energy of
all angles comes together to a focus. The focus is the exploding reflector. It is the gap in
the barrier. This third definition of migration is that it is the process that somehow pushes
observational data—wave height as a function of x and t —from the beach to the barrier.

7.2. DOWNWARD CONTINUATION 105

The third definition stresses not so much the motion itself, but the transformation from the
beginning point to the ending point.

To go further, a more general example is needed than the storm barrier example. The
barrier example is confined to making Huygens sources only at some particular z. Sources
are needed at other depths as well. Then, given a wave-extrapolation process to move data to
increasing z values, exploding-reflector images are constructed with

Image (x , z) = Wave (t = 0, x , z) (7.2)

The fourth definition of migration also incorporates the definition of diffraction as the opposite
of migration.

observations model

z = 0

all t

migration
−→
←−

diffraction

t = 0

all z

Diffraction is sometimes regarded as the natural process that creates and enlarges hyper-
boloids. Migration is the computer process that does the reverse.

Another aspect of the use of the word migration arises where the horizontal coordinate can
be either shot-to-geophone midpoint y, or offset h. Hyperboloids can be downward continued
in both the (y, t)- and the (h, t)-plane. In the (y, t)-plane this is called migration or imaging,
and in the (h, t)-plane it is called focusing or velocity analysis.

7.2 DOWNWARD CONTINUATION

Given a vertically upcoming plane wave at the earth’s surface, say u(t , x , z= 0)= u(t)const(x),
and an assumption that the earth’s velocity is vertically stratified, i.e. v= v(z), we can presume
that the upcoming wave down in the earth is simply time-shifted from what we see on the
surface. (This assumes no multiple reflections.) Time shifting can be represented as a linear
operator in the time domain by representing it as convolution with an impulse function. In
the frequency domain, time shifting is simply multiplying by a complex exponential. This is
expressed as

u(t , z) = u(t , z = 0)∗ δ(t + z/v) (7.3)
U (ω, z) = U (ω, z = 0) e−iωz/v (7.4)

Sign conventions must be attended to, and that is explained more fully in chapter 6.

106 CHAPTER 7. DOWNWARD CONTINUATION

7.2.1 Continuation of a dipping plane wave.

Next consider a plane wave dipping at some angle θ . It is natural to imagine continuing such
a wave back along a ray. Instead, we will continue the wave straight down. This requires the
assumption that the plane wave is a perfect one, namely that the same waveform is observed
at all x . Imagine two sensors in a vertical well bore. They should record the same signal
except for a time shift that depends on the angle of the wave. Notice that the arrival time
difference between sensors at two different depths is greatest for vertically propagating waves,
and the time difference drops to zero for horizontally propagating waves. So the time shift
1t is v−1 cosθ 1z where θ is the angle between the wavefront and the earth’s surface (or the
angle between the well bore and the ray). Thus an equation to downward continue the wave is

U (ω,θ , z+1z) = U (ω,θ , z) exp(−iω1t) (7.5)

U (ω,θ , z+1z) = U (ω,θ , z) exp
(

−iω
1z cosθ

v

)

(7.6)

Equation (7.6) is a downward continuation formula for any angle θ . Following methods of
chapter 3 we can generalize the method to media where the velocity is a function of depth.
Evidently we can apply equation (7.6) for each layer of thickness 1z, and allow the velocity
vary with z. This is a well known approximation that handles the timing correctly but keeps
the amplitude constant (since |eiφ| = 1) when in real life, the amplitude should vary because
of reflection and transmission coefficients. Suffice it to say that in practical earth imaging, this
approximation is almost universally satisfactory.

In a stratified earth, it is customary to eliminate the angle θ which is depth variable, and
change it to the Snell’s parameter p which is constant for all depths. Thus the downward
continuation equation for any Snell’s parameter is

U (ω, p, z+1z) = U (ω, p, z) exp
(

− iω1z

v(z)
√

1− p2v(z)2
)

(7.7)

It is natural to wonder where in real life we would encounter a Snell wave that we could
downward continue with equation (7.7). The answer is that any wave from real life can be
regarded as a sum of waves propagating in all angles. Thus a field data set should first be
decomposed into Snell waves of all values of p, and then equation (7.7) can be used to down-
ward continue each p, and finally the components for each p could be added. This process
akin to Fourier analysis. We now turn to Fourier analysis as a method of downward continu-
ation which is the same idea but the task of decomposing data into Snell waves becomes the
task of decomposing data into sinusoids along the x-axis.

7.2.2 Downward continuation with Fourier transform

One of the main ideas in Fourier analysis is that an impulse function (a delta function) can be
constructed by the superposition of sinusoids (or complex exponentials). In the study of time
series this construction is used for the impulse response of a filter. In the study of functions of

7.2. DOWNWARD CONTINUATION 107

space, it is used to make a physical point source that can manufacture the downgoing waves
that initialize the reflection seismic experiment. Likewise observed upcoming waves can be
Fourier transformed over t and x .

Recall in chapter 3, a plane wave carrying an arbitrary waveform, specified by equa-
tion (3.7). Specializing the arbitrary function to be the real part of the function exp[−iω(t −
t0)] gives

moving cosine wave = cos
[

ω

(x

v
sin θ + z

v
cos θ − t

)]

(7.8)

Using Fourier integrals on time functions we encounter the Fourier kernel exp(−iωt). To use
Fourier integrals on the space-axis x the spatial angular frequency must be defined. Since
we will ultimately encounter many space axes (three for shot, three for geophone, also the
midpoint and offset), the convention will be to use a subscript on the letter k to denote the axis
being Fourier transformed. So kx is the angular spatial frequency on the x-axis and exp(ikx x)
is its Fourier kernel. For each axis and Fourier kernel there is the question of the sign before
the i . The sign convention used here is the one used in most physics books, namely, the one
that agrees with equation (7.8). Reasons for the choice are given in chapter 6. With this
convention, a wave moves in the positive direction along the space axes. Thus the Fourier
kernel for (x , z, t)-space will be taken to be

Fourier kernel = ei kx x ei kz z e− iωt = exp[i (kx x + kzz − ωt)] (7.9)

Now for the whistles, bells, and trumpets. Equating (7.8) to the real part of (7.9), physical
angles and velocity are related to Fourier components. The Fourier kernel has the form of a
plane wave. These relations should be memorized!

Angles and Fourier Components

sinθ = v kx

ω
cosθ = v kz

ω
(7.10)

A point in (ω,kx ,kz)-space is a plane wave. The one-dimensional Fourier kernel extracts
frequencies. The multi-dimensional Fourier kernel extracts (monochromatic) plane waves.

Equally important is what comes next. Insert the angle definitions into the familiar relation
sin2 θ + cos2 θ = 1. This gives a most important relationship:

k2
x + k2

z =
ω2

v2 (7.11)

The importance of (7.11) is that it enables us to make the distinction between an arbitrary
function and a chaotic function that actually is a wavefield. Imagine any function u(t , x , z).
Fourier transform it to U (ω,kx ,kz). Look in the (ω,kx ,kz)-volume for any nonvanishing values
of U . You will have a wavefield if and only if all nonvanishing U have coordinates that satisfy

108 CHAPTER 7. DOWNWARD CONTINUATION

(7.11). Even better, in practice the (t , x)-dependence at z = 0 is usually known, but the z-
dependence is not. Then the z-dependence is found by assuming U is a wavefield, so the
z-dependence is inferred from (7.11).

Equation (7.11) also achieves fame as the “dispersion relation of the scalar wave equa-
tion,” a topic developed more fully in IEI.

Given any f (t) and its Fourier transform F(ω) we can shift f (t) by t0 if we multiply F(ω)
by eiωt0 . This also works on the z-axis. If we were given F(kz) we could shift it from the
earth surface z = 0 down to any z0 by multiplying by eikz z0 . Nobody ever gives us F(kz),
but from measurements on the earth surface z = 0 and double Fourier transform, we can
compute F(ω,kx). If we assert/assume that we have measured a wavefield, then we have
k2

z = ω2/v2− k2
x , so knowing F(ω,kx) means we know F(kz). Actually, we know F(kz ,kx).

Technically, we also know F(kz ,ω), but we are not going to use it in this book.

We are almost ready to extrapolate waves from the surface into the earth but we need to
know one more thing — which square root do we take for kz? That choice amounts to the
assumption/assertion of upcoming or downgoing waves. With the exploding reflector model
we have no downgoing waves. A more correct analysis has two downgoing waves to think
about: First is the spherical wave expanding about the shot. Second arises when upcoming
waves hit the surface and reflect back down. The study of multiple reflections requires these
waves.

7.2.3 Linking Snell waves to Fourier transforms

To link Snell waves to Fourier transforms we merge equations (3.8) and (3.9) with equa-
tions (7.10)

kx

ω
= ∂t0

∂x
= sin θ

v
= p (7.12)

kz

ω
= ∂t0

∂z
= cos θ

v
=

√

1− p2v2

v
(7.13)

The basic downward continuation equation for upcoming waves in Fourier space follows from
equation (7.7) by eliminating p by using equation (7.12). For analysis of real seismic data we
introduce a minus sign because equation (7.13) refers to downgoing waves and observed data
is made from up-coming waves.

U (ω,kx , z+1z) = U (ω,kx , z) exp



− iω1z

v

√

1− v2k2
x

ω2



 (7.14)

In Fourier space we delay signals by multiplying by eiω1t , analogously, equation (7.14) says
we downward continue signals into the earth by multiplying by eikz1z . Multiplication in the
Fourier domain means convolution in time which can be depicted by the engineering diagram
in Figure 7.5.

7.3. PHASE-SHIFT MIGRATION 109

Figure 7.5: Downward continuation of a downgoing wavefield. dwnc-inout [NR]

Downward continuation is a product relationship in both the ω-domain and the kx -domain.
Thus it is a convolution in both time and x . What does the filter look like in the time and space
domain? It turns out like a cone, that is, it is roughly an impulse function of x 2+ z2− v2t2.
More precisely, it is the Huygens secondary wave source that was exemplified by ocean waves
entering a gap through a storm barrier. Adding up the response of multiple gaps in the barrier
would be convolution over x .

A nuisance of using Fourier transforms in migration and modeling is that spaces become
periodic. This is demonstrated in Figure 7.6. Anywhere an event exits the frame at a side,
top, or bottom boundary, the event immediately emerges on the opposite side. In practice, the
unwelcome effect of periodicity is generally ameliorated by padding zeros around the data and
the model.

Figure 7.6: A reflectivity model on the left and synthetic data using a Fourier method on the
right. dwnc-diag [ER]

7.3 PHASE-SHIFT MIGRATION

The phase-shift method of migration begins with a two-dimensional Fourier transform (2D-
FT) of the dataset. (See chapter 6.) This transformed data is downward continued with

110 CHAPTER 7. DOWNWARD CONTINUATION

exp(ikzz) and subsequently evaluated at t = 0 (where the reflectors explode). Of all migra-
tion methods, the phase-shift method most easily incorporates depth variation in velocity. The
phase angle and obliquity function are correctly included, automatically. Unlike Kirchhoff
methods, with the phase-shift method there is no danger of aliasing the operator. (Aliasing the
data, however, remains a danger.)

Equation (7.14) referred to upcoming waves. However in the reflection experiment, we
also need to think about downgoing waves. With the exploding-reflector concept of a zero-
offset section, the downgoing ray goes along the same path as the upgoing ray, so both suffer
the same delay. The most straightforward way of converting one-way propagation to two-way
propagation is to multiply time everywhere by two. Instead, it is customary to divide velocity
everywhere by two. Thus the Fourier transformed data values, are downward continued to a
depth 1z by multiplying by

ei kz1z = exp



 − i
2ω

v

√

1 − v2 k2
x

4ω2 1z



 (7.15)

Ordinarily the time-sample interval 1τ for the output-migrated section is chosen equal to the
time-sample rate of the input data (often 4 milliseconds). Thus, choosing the depth 1z =
(v/2)1τ , the downward-extrapolation operator for a single time step 1τ is

C = exp



 − i ω 1τ

√

1 − v2 k2
x

4ω2



 (7.16)

Data will be multiplied many times by C , thereby downward continuing it by many steps of
1τ .

7.3.1 Pseudocode to working code

Next is the task of imaging. Conceptually, at each depth an inverse Fourier transform is fol-
lowed by selection of its value at t = 0. (Reflectors explode at t = 0). Since only the Fourier
transform at one point, t = 0, is needed, other times need not be be computed. We know the
ω = 0 Fourier component is found by the sum over all time, analogously, the t = 0 compo-
nent is found as the sum over all ω. (This is easily shown by substituting t = 0 into the inverse
Fourier integral.) Finally, inverse Fourier transform kx to x . The migration process, computing
the image from the upcoming wave u, may be summarized in the following pseudo code:

7.3. PHASE-SHIFT MIGRATION 111

U (ω,kx ,τ = 0)= FT [u(t , x)]
For τ =1τ , 21τ , . . . , end of time axis on seismogram

For all kx

For all ω

C = exp(−iω1τ
√

1−v2k2
x/4ω2)

U (ω,kx ,τ)=U (ω,kx ,τ −1τ)∗C
For all kx

Image(kx ,τ)= 0.
For all ω

Image(kx ,τ)= Image(kx ,τ)+U (ω,kx ,τ)
image(x ,τ)= FT [Image(kx ,τ)]

This pseudo code Fourier transforms a wavefield observed at the earth’s surface τ = 0, and then
it marches that wavefield down into the earth (τ > 0) filling up a three-dimensional function,
U (ω,kx ,τ). Then it selects t = 0, the time of the exploding reflectors by summing over all
frequencies ω. (Mathematically, this is like finding the signal at ω= 0 by summing over all t).

Turning from pseudocode to real code, an important practical reality is that computer
memories are not big enough for the three-dimensional function U (ω,kx ,τ). But it is easy
to intertwine the downward continuation with the summation over ω so a three-dimensional
function need not be kept in memory. This is done in the real code in subroutine phasemig() .

subroutine phasemig(up, nt, nx, dt, dx, image, ntau, dtau, vel)

integer nt, nx, ntau, iw,nw,ikx,itau

real dt,dx, w,w0,dw, kx,kx0,dkx,dtau, vel, sig1,sig2,pi, w2, vkx2

complex up(nt,nx), image(ntau,nx), cc

pi = 3.14159265; sig1 = +1.; sig2 = -1.

call ft1axis(0, sig1, nt, nx, up)

call ft2axis(0, sig2, nt, nx, up)

nw = nt; w0 = -pi/dt; dw = 2.*pi/(nt*dt)

kx0 = -pi/dx; dkx= 2.*pi/(nx*dx)

call null(image, ntau*nx*2)

do iw = 2, nw { w = w0 + (iw -1) * dw

do ikx = 2, nx { kx = kx0 + (ikx-1) * dkx

w2 = w * w

vkx2 = vel*vel * kx*kx / 4.

if(w2 > vkx2) {

cc = cexp(cmplx(0., - w * dtau * sqrt(1. - vkx2/w2)))

do itau = 1, ntau {

up(iw,ikx) = up(iw,ikx) * cc

image(itau,ikx) = image(itau,ikx) + up(iw,ikx)

}

}

}}

call ft2axis(1, sig2, ntau, nx, image)

112 CHAPTER 7. DOWNWARD CONTINUATION

return; end

Conjugate migration (modeling) proceeds in much the same way. Beginning from an up-
coming wave that is zero at great depth, the wave is marched upward in steps by multiplication
with exp(ikz1z). As each level in the earth is passed, exploding reflectors from that level are
added into the upcoming wave. Pseudo code for modeling the upcoming wave u is

Image(kx , z)= FT [image(x , z)]
For all ω and all kx

U (ω,kx)= 0.
For all ω {
For all kx {
For z = zmax, zmax−1z, zmax−21z, . . . , 0 {

C = exp(+i1zω
√

v−2− kx
2/ω2)

U (ω,kx)=U (ω,kx)∗C
U (ω,kx)=U (ω,kx)+Image(kx , z)
} } }

u(t , x)= FT [U (ω,kx)]

Some real code for this job is in subroutine phasemod() .

subroutine phasemod(image, nz, nx, dz, dx, up, nt, dt, vel)

integer nz, nx, nt, iw,nw,ikx,iz

real dt,dx,dz, w,w0,dw, kx,kx0,dkx, vel, sig1,sig2,pi, w2, vkx2

complex up(nt,nx), image(nz,nx), cc

pi = 3.14159265; sig1 = +1.; sig2 = -1.

call ft2axis(0, sig2, nz, nx, image)

nw = nt; w0 = -pi/dt; dw = 2.*pi/(nt*dt)

kx0 = -pi/dx; dkx= 2.*pi/(nx*dx)

call null(up, nw*nx*2)

do iw = 2, nw { w = w0 + (iw-1) * dw

do ikx = 2, nx { kx = kx0 + (ikx-1) * dkx

w2 = w * w

vkx2 = vel*vel * kx*kx / 4.

if(w2 > vkx2) {

cc = cexp(cmplx(0., w * dz * sqrt(1. - vkx2/w2)))

do iz = nz, 1, -1

up(iw,ikx) = up(iw,ikx) * cc + image(iz,ikx)

}

}}

call ft1axis(1, sig1, nt, nx, up)

call ft2axis(1, sig2, nt, nx, up)

return; end

The positive sign in the complex exponential is a combination of two negatives, the up
coming wave and the upward extrapolation. In principle, the three loops on ω, kx , and z are

7.3. PHASE-SHIFT MIGRATION 113

interchangeable, however, since this tutorial program uses a velocity v that is a constant func-
tion of depth, I speeded it by a large factor by putting the z-loop on the inside and pulling the
complex exponential out of the inner loop. Figure 7.2 was made with subroutine phasemod()

on the preceding page.

7.3.2 Kirchhoff versus phase-shift migration

In chapter 5, we were introduced to the Kirchhoff migration and modeling method by means of
subroutines kirchslow() on page 69 and kirchfast() on page 70. From chapter 6 we know
that these routines should be supplemented by a

√
−iω filter such as subroutine halfdifa()

on page 99. Here, however, we will compare results of the unadorned subroutine kirchfast()

on page 70 with our new programs, phasemig() on page 111 and phasemod() on the preceding
page. Figure 7.7 shows the result of modeling data and then migrating it. Kirchhoff and phase-
shift migration methods both work well. As expected, the Kirchhoff method lacks some of the
higher frequencies that could be restored by

√
−iω. Another problem is the irregularity of

the shallow bedding. This is an operator aliasing problem addressed in chapter 11. Figure 7.8

Figure 7.7: Reconstruction after modeling. Left is by the nearest-neighbor Kirchhoff method.
Right is by the phase shift method. dwnc-comrecon [ER,M]

shows the temporal spectrum of the original sigmoid model, along with the spectrum of the
reconstruction via phase-shift methods. We see the spectra are essentially identical with little
growth of high frequencies as we noticed with the Kirchhoff method in Figure 5.9. Figure 7.9

Figure 7.8: Top is the temporal spec-
trum of the model. Bottom is the
spectrum of the reconstructed model.
dwnc-phaspec [ER]

114 CHAPTER 7. DOWNWARD CONTINUATION

shows the effect of coarsening the space axis. Synthetic data is generated from an increasingly
subsampled model. Again we notice that the phase-shift method of this chapter produces more
plausible results than the simple Kirchhoff programs of chapter 5.

7.3.3 Damped square root

The definition of kz as kz =
√

ω2/v2− k2
x obscures two aspects of kz . First, which of the two

square roots is intended, and second, what happens when k2
x > ω2/v2. For both coding and

theoretical work we need a definition of ikz that is valid for both positive and negative values
of ω and for all kx . Define a function R = ikz(ω,kz) by

R = ikz =
√

(−iω+ ε)2+ k2
x (7.17)

It is important to know that for any ε > 0, and any real ω and real kx that the real part <R > 0
is positive. This means we can extrapolate waves safely with e−Rz for increasing z or with
e+Rz for decreasing z. To switch from downgoing to upcoming we use the complex conjugate
R. Thus we have disentangled the damping from the direction of propagation.

Let us see why<R > 0 is positive for all real values of ω and kx . Recall that for ω ranging
between ±∞, eiω1t rotates around the unit circle in the complex plane. Examine Figure 7.10
which shows the complex functions:

1. f (ω)= ε− iω,

2. −i ω̂ = (1+ ε)− eiω1t ,

3. (−i ω̂)2,

4. (ikz)2 = (−i ω̂)2+ k2
x , and

5. ikz = [(−i ω̂)2+ k2
x]1/2

The first two panels are explained by the first two functions. The first two functions and
the first two panels look different but they become the same in the practical limit of ε→ 0
and 1t → 0. The left panel represents a time derivative in continuous time, and the second
panel likewise in sampled time is for a “causal finite-difference operator” representing a time
derivative. Notice that the graphs look the same near ω = 0. As we sample seismic data
with increasing density, 1t → 0, the frequency content shifts further away from the Nyquist
frequency. Measuring ω in radians/sample, in the limit 1t→ 0, the physical energy is all near
ω = 0.

The third panel in Figure 7.10 shows (−i ω̂)2 which is a cardioid that wraps itself close
up to the negative imaginary axis without touching it. (To understand the shape near the
origin, think about the square of the leftmost plane. You may have seen examples of the
negative imaginary axis being a branch cut.) In the fourth panel a small positive quantity k2

x is
added which shifts the cardioid to the right a bit. Taking the square root gives the last panel

7.3. PHASE-SHIFT MIGRATION 115

Figure 7.9: Modeling with increasing amounts of lateral subsampling. Left is the nearest-
neighbor Kirchhoff method. Right is the phase-shift method. Top has 200 channels, middle
has 100 channels, and bottom has 50 channels. dwnc-commod [ER]

116 CHAPTER 7. DOWNWARD CONTINUATION

Figure 7.10: Some functions in the complex plane. dwnc-francis [ER]

which shows the curve in the right half plane thus proving the important result we need, that
< ikz(ω,kz) > 0 for all real ω. It is also positive for all real kx because any k2

x > 0 shifts the
cardioid to the right. The additional issue of time causality in forward modeling is covered in
IEI.

Luckily the Fortran csqrt() function assumes the phase of the argument is between±180◦
exactly as we need here. Thus the square root itself will have a phase between ±90◦ as we
require. In applications, ε would typically be chosen proportional to the maximum time on the
data. Thus the mathematical expression −iω+ ε might be rendered in Fortran as cmplx(qi,-
omega) where qi=1./tmax and the whole concept implemented as in function eiktau() on
this page. Do not set qi=0 because then the csqrt() function cannot decipher positive from
negative frequencies.

complex function eiktau(dt, w, vkx, qi)

real dt, w, vkx, qi

eiktau = cexp(- dt * csqrt(cmplx(qi, -w) ** 2 + vkx * vkx /4.))

return; end

Finally, you might ask, why bother with all this careful theory connected with the damped
square root. Why not simply abandon the evanescent waves as done by the “if ” statement in
subroutines phasemig() and phasemod() ? There are several reasons:

1. The exploding reflector concept fails for evanescent waves (when ω2 < v2k2
x). Realistic

modeling would have them damping with depth. Rather than trying to handle them cor-
rectly we will make a choice, either (1) to abandon evanescent waves effectively setting
them to zero, or (2) we will take them to be damping. (You might notice that when
we switch from downgoing to upgoing, a damping exponential switches to a growing
exponential, but when we consider the adjoint of applying a damped exponential, that
adjoint is also a damped exponential.)
I’m not sure if there is a practical difference between choosing to damp evanescent
waves or simply to set them to zero, but there should be a noticable difference on syn-
thetic data: When a Fourier-domain amplitude drops abruptly from unity to zero, we
can expect a time-domain signal that spreads widely on the time axis, perhaps dropping
off slowly as 1/t . We can expect a more concentrated pulse if we include the evanes-
cent energy, even though it is small. I predict the following behavior: Take an impulse;
diffract it and then migrate it. When evanescent waves have been truncated, I predict

7.3. PHASE-SHIFT MIGRATION 117

the impulse is turned into a “butterfly” whose wings are at the hyperbola asymptote.
Damping the evanescent waves, I predict, gives us more of a “rounded” impulse.

2. In a later chapter we will handle the x-axis by finite differencing (so that we can handle
v(x). There a stability problem will develop unless we begin from careful definitions as
we are doing here.

3. Seismic theory includes an abstract mathematical concept known as branch-line inte-
grals. Such theory is most easily understood beginning from here.

7.3.4 Adjointness and ordinary differential equations

It is straightforward to adapt the simple programs phasemig() on page 111 and phasemod()

on page 112 to depth variable velocity. As you might suspect, the two processes are adjoint
to each other, and for reasons given at the end of chapter 2 it is desirable to code them to be
so. With differential equations and their boundary conditions, the concept of adjoint is more
subtle than previous examples. Thus, I postponed till here the development of adjoint code for
phase-shift migration. This coding is a little strenuous, but it affords a review of many basic
concepts, so we do so here. (Feel free to skip this section.) It is nice to have a high quality
code for this fundamental operation.

Many situations in physics are expressed by the differential equation

du

dz
− iα u = s(z) (7.18)

In the migration application, u(z) is the up-coming wave, α = −
√

ω2/v2− k2
x , s(z) is the

exploding-reflector source. We take the medium to be layered (v constant in layers) so that α

is constant in a layer, and we put the sources at the layer boundaries. Thus within a layer we
have du/dz− iα u = 0 which has the solution

u(zk+1z) = u(zk) eiα1z (7.19)

For convenience, we use the “delay operator” in the k-th layer Zk = e−iα1z so the delay of
upward propagation is expressed by u(zk)= Zk u(zk+1z). (Since α is negative for upcoming
waves, Zk = e−iα1z has a positive exponent which represents delay.) Besides crossing layers,
we must cross layer boundaries where the (reflection) sources add to the upcoming wave. Thus
we have

uk−1 = Zk−1uk+ sk−1 (7.20)

Recursive use of equation (7.20) across a medium of three layers is expressed in matrix form
as

Mu =









1 −Z0 . .
. 1 −Z1 .
. . 1 −Z2
. . . 1

















u0
u1
u2
u3









=









s0
s1
s2
s3









= s (7.21)

118 CHAPTER 7. DOWNWARD CONTINUATION

A recursive solution begins at the bottom with u3 = s3 and propagates upward.

The adjoint (complex conjugate) of the delay operator Z is the time advance operator Z̄ .
The adjoint of equation (7.21) is given by

M′ s̃ =









1 . . .
−Z̄0 1 . .

. −Z̄1 1 .

. . −Z̄2 1

















s̃0
s̃1
s̃2
s̃3









=









u0
u1
u2
u3









= u (7.22)

where s̃(z) (summed over frequency) is the migrated image. The adjointness of equation (7.21)
and (7.22) seems obvious, but it is not the elementary form we are familiar with because the
matrix multiplies the output (instead of multiplying the usual input). To prove the adjointness,
notice that equation (7.21) is equivalent to u = M−1s whose adjoint, by definition, is s̃ =
(M−1)′u which is s̃ = (M′)−1u (because of the basic mathematical fact that the adjoint of an
inverse is the inverse of the adjoint) which gives M′s̃= u which is equation (7.22).

We observe the wavefield only on the surface z = 0, so the adjointness of equations (7.21)
and (7.22) is academic because it relates the wavefield at all depths with the source at all
depths. We need to truncate u to its first coefficient u0 since the upcoming wave is known only
at the surface. This truncation changes the adjoint in a curious way. We rewrite equation (7.21)
using a truncation operator T that is the row matrix T= [1,0,0, · · ·] getting u0=Tu=TM−1s.
Its adjoint is ŝ= (M−1)′T′u′0 = (M′)−1T′u′0 or M′ŝ= T′u0 which looks like

M′ s̃ =









1 . . .
−Z̄0 1 . .

. −Z̄1 1 .

. . −Z̄2 1

















s̃0
s̃1
s̃2
s̃3









=









u0
0
0
0









(7.23)

The operator 7.23 is a recursion beginning from s̃0 = u0 and continuing downward with

s̃k = Z̄k−1 s̃k−1 (7.24)

A final feature of the migration application is that the image is formed from s̃ by summing
over all frequencies. Although I believe the mathematics above and the code in subroutine
gazadj() on the current page, I ran the dot product test to be sure!

Phase shift modeling and migration. (Warning: destroys its input!)

#

subroutine gazadj(adj, dt,dx, v,nt,nx, modl, data)

integer adj, nt,nx, iw, ikx, iz,nz

complex eiktau, cup, modl(nt,nx), data(nt,nx)

real dt,dx, v(nt), pi, w,w0,dw, kx,kx0,dkx,qi

call adjnull(adj, 0, modl,nt*nx*2, data,nt*nx*2)

pi = 4.*atan(1.); w0 = -pi/dt; dw = 2.*pi/(nt*dt); qi=.5/(nt*dt)

nz = nt; kx0 = -pi/dx; dkx= 2.*pi/(nx*dx)

if(adj == 0) call ft2axis(0, -1., nz, nx, modl)

else { call ft2axis(0, -1., nt, nx, data)

call ft1axis(0, 1., nt, nx, data)

7.3. PHASE-SHIFT MIGRATION 119

}

do ikx = 2, nx { kx = kx0 + (ikx-1) * dkx

do iw = 2, 1+nt/2 { w = w0 + (iw -1) * dw

if(adj== 0) { data(iw,ikx) = modl(nz,ikx)

do iz = nz-1, 1, -1

data(iw,ikx) = data(iw,ikx) * eiktau(dt,w,v(iz)*kx,qi) +

modl(iz,ikx)

}

else { cup = data(iw,ikx)

do iz = 1, nz {

modl(iz,ikx) = modl(iz,ikx) + cup

cup = cup * conjg(eiktau(dt,w,v(iz)*kx,qi))

}

}

}}

if(adj == 0) { call ft1axis(1, 1., nt, nx, data)

call ft2axis(1, -1., nt, nx, data) }

else { call ft2axis(1, -1., nz, nx, modl) }

return; end

Finally, a few small details about the code. The loop on spatial frequency ikx begins at ikx=2 .
The reason for the 2, instead of a 1, is to omit the Nyquist frequency. If the Nyquist frequency
were to be included, it should be divided into one half at positive Nyquist and one half at
negative Nyquist, which would clutter the code without adding practical value. Another small
detail is that the loop on temporal frequency iw begins at iw=1+nt/2 which effectly omits
negative frequencies. This is purely an economy measure. Including the negative frequencies
would assure that the final image be real, no imaginary part. Omitting negative frequencies
simply gives an imaginary part that can be thrown away, and gives the same real image, scaled
by a half. The factor of two speed up makes these tiny compromises well worthwhile.

7.3.5 Vertical exaggeration example

To examine questions of vertical exaggeration and spatial resolution we consider a line of
point scatters along a 45◦ dipping line in (x , z)-space. We impose a linear velocity gradi-
ent such as that typically found in the Gulf of Mexico, i.e. v(z) = v0+αz with α = 1/2s−1.
Viewing our point scatterers as a function of traveltime depth, τ = 2

∫ z
0 dz/v(z) in Figure 7.11

we see, as expected, that the points, although separated by equal intervals in x , are separated
by shorter time intervals with increasing depth. The points are uniformly separated along a
straight line in (x , z)-space, but they are nonuniformly separated along a curved line in (x ,τ)-
space. The curve is steeper near the earth’s surface where v(z) yields the greatest vertical exag-
geration. Here the vertical exaggeration is about unity (no exageration) but deeper the vertical
exaggeration is less than unity (horizontal exaggeration). Applying subroutine gazadj() on
the facing page the points spray out into hyperboloids (like hyperbolas, but not exactly) shown
in Figure 7.12. The obvious feature of this synthetic data is that the hyperboloids appear to
have different asymptotes. In fact, there are no asymptotes because an asymptote is a ray going
horizontal at a more-or-less constant depth, which will not happen in this model because the
velocity increases steadily with depth.

120 CHAPTER 7. DOWNWARD CONTINUATION

Figure 7.11: Points along a 45 degree
slope as seen as a function of travel-
time depth. dwnc-sagmod [ER]

Figure 7.12: The points of Fig-
ure 7.11 diffracted into hyperboloids.
dwnc-sagdat [ER]

7.3. PHASE-SHIFT MIGRATION 121

(I should get energetic and overlay these hyperboloids on top of the exact hyperbolas of
the Kirchhoff method, to see if there are perceptible traveltime differences.)

7.3.6 Vertical and horizontal resolution

In principle, migration converts hyperbolas to points. In practice, a hyperbola does not col-
lapse to a point, it collapses to a focus. A focus has measurable dimensions. Vertical resolution
is easily understood. For a given frequency, higher velocity gives longer vertical wavelength
and thus less resolution. When the result of migration is plotted as a function of traveltime
depth τ instead of true depth z, however, enlargement of focus with depth is not visible.

Horizontal resolution works a little differently. Migration is said to be “good” because it
increases spatial resolution. It squeezes a large hyperbola down to a tiny focus. Study the
focal widths in Figure 7.13. Notice the water-velocity focuses hardly broaden with depth.
We expect some broadening with depth because the late hyperbolas are cut off at their sides
and bottom (an aperture effect), but there is no broadening here because the periodicity of the
Fourier domain means that events are not truncated but wrapped around.

Figure 7.13: Left is migration back to a focus with a constant, water-velocity model. Right
is the same, but with a Gulf of Mexico velocity, i.e. the hyperboloids of Figure 7.12 migrated
back to focuses. Observe focus broadening with depth. dwnc-sagres [ER]

When the velocity increases with depth, wider focuses are found at increasing depth. Why
is this? Consider each hyperbola to be made of many short plane wave segments. Migration
moves all the little segments on top of each other. The sharpness of a focus cannot be narrower
than the width of each of the many plane-wave segments that superpose to make the focus.
The narrowest of these plane-wave segments is at the steepest part of a hyperbola asymptote.
Deeper reflectors (which have later tops) have less steep asymptotes because of the increasing
velocity. Thus deeper reflectors with faster RMS velocities have wider focuses so the deeper
part of the image is more blurred. A second way to understand increased blurring with depth
is from equation (7.12), that the horizontal frequency kx = ωp = ωv−1 sinθ is independent
of depth. The steepest possible angle occurs when |sinθ | = 1. Thus, considering all possible

122 CHAPTER 7. DOWNWARD CONTINUATION

angles, the largest |kx | is |kx | = |ω|/v(z). Larger values of horizontal frequency |kx | could help
us get narrower focuses, but the deeper we go (faster velocity we encounter), the more these
high frequencies are lost because of the evanescent limit |kx | ≤ |ω/v(z)|. The limit is where
the ray goes no deeper but bends around and comes back up again without ever reflecting. Any
ray that does this many times is said to be a surface-trapped wave. It cannot sharpen a deep
focus.

7.3.7 Field data migration

Application of subroutine gazadj() on page 118 to the Gulf of Mexico data set processed in
earlier chapters yields the result in Figure 7.14.

EXERCISES:

1 Devise a mathematical expression for a plane wave that is an impulse function of time
with a propagation angle of 15◦ from the vertical z-axis in the plus z direction. Express
the result in the domain of

(a) (t , x , z)

(b) (ω, x , z)

(c) (ω,kx , z)

(d) (ω, p, z)

(e) (ω,kx ,kz)

(f) (t ,kx ,kz)

7.3. PHASE-SHIFT MIGRATION 123

Figure 7.14: Phase shift migration of Figure 4.7. Press button for movie to compare to stack
and Kirchhoff migration of Figure 4.6. dwnc-wgphase [ER,M]

124 CHAPTER 7. DOWNWARD CONTINUATION

Chapter 8

Dip and offset together

1When dip and offset are combined, some serious complications arise. For many years it was
common industry practice to ignore these complications and to handle dip and offset sepa-
rately. Thus offset was handled by velocity analysis, normal moveout and stack (chapter 4).
And dip was handled by zero-offset migration after stack (chapters 5 and 7). This practice is a
good approximation only when the dips on the section are small. We need to handle large off-
set angles at the same time we handle large dip angles at the same time we are estimating rock
velocity. It is confusing! Here we see the important steps of bootstrapping yourself towards
both the velocity and the image.

8.1 PRESTACK MIGRATION

Prestack migration creates an image of the earth’s reflectivity directly from prestack data.
It is an alternative to the “exploding reflector” concept that proved so useful in zero-offset
migration. In prestack migration, we consider both downgoing and upcoming waves.

A good starting point for discussing prestack migration is a reflecting point within the
earth. A wave incident on the point from any direction reflects waves in all directions. This
geometry is particularly important because any model is a superposition of such point scat-
terers. The point-scatterer geometry for a point located at (x , z) is shown in Figure 8.1. The
equation for travel time t is the sum of the two travel paths is

t v =
√

z2 + (s − x)2 +
√

z2 + (g − x)2 (8.1)

We could model field data with equation (8.1) by copying reflections from any point in (x , z)-
space into (s, g, t)-space. The adjoint program would form an image stacked over all offsets.
This process would be called prestack migration. The problem here is that the real problem is
estimating velocity. In this chapter we will see that it is not satisfactory to use a horizontal layer

1Matt Schwab prepared a draft of the Gardner DMO derivation. Shuki Ronen gave me the “law of cosines”
proof.

125

126 CHAPTER 8. DIP AND OFFSET TOGETHER

Figure 8.1: Geometry of a point scat-
terer. dpmv-pgeometry [NR]

h

g

x

s

h

y

z

approximation to estimate velocity, and then use equation (8.1) to do migration. Migration
becomes sensitive to velocity when wide angles are involved. Errors in the velocity would
spoil whatever benefit could accrue from prestack (instead of poststack) migration.

8.1.1 Cheops’ pyramid

Because of the importance of the point-scatterer model, we will go to considerable lengths
to visualize the functional dependence among t , z, x , s, and g in equation (8.1). This pic-
ture is more difficult—by one dimension—than is the conic section of the exploding-reflector
geometry.

To begin with, suppose that the first square root in (8.1) is constant because everything in
it is held constant. This leaves the familiar hyperbola in (g, t)-space, except that a constant has
been added to the time. Suppose instead that the other square root is constant. This likewise
leaves a hyperbola in (s, t)-space. In (s, g)-space, travel time is a function of s plus a function
of g. I think of this as one coat hanger, which is parallel to the s-axis, being hung from another
coat hanger, which is parallel to the g-axis.

A view of the traveltime pyramid on the (s, g)-plane or the (y,h)-plane is shown in Fig-
ure 8.2a. Notice that a cut through the pyramid at large t is a square, the corners of which have
been smoothed. At very large t , a constant value of t is the square contoured in (s, g)-space,
as in Figure 8.2b. Algebraically, the squareness becomes evident for a point reflector near the
surface, say, z→ 0. Then (8.1) becomes

v t = |s − x| + |g − x| (8.2)

The center of the square is located at (s, g)= (x , x). Taking travel time t to increase downward
from the horizontal plane of (s, g)-space, the square contour is like a horizontal slice through
the Egyptian pyramid of Cheops. To walk around the pyramid at a constant altitude is to walk
around a square. Alternately, the altitude change of a traverse over g (or s) at constant s (or g)
is simply a constant plus an absolute-value function.

More interesting and less obvious are the curves on common-midpoint gathers and constant-
offset sections. Recall the definition that the midpoint between the shot and geophone is y.

8.1. PRESTACK MIGRATION 127

Figure 8.2: Left is a picture of the traveltime pyramid of equation ((8.1)) for fixed x and z.
The darkened lines are constant-offset sections. Right is a cross section through the pyramid
for large t (or small z). (Ottolini) dpmv-cheop [NR]

Also recall that h is half the horizontal offset from the shot to the geophone.

y = g + s

2
(8.3)

h = g − s

2
(8.4)

A traverse of y at constant h is shown in Figure 8.2. At the highest elevation on the traverse,
you are walking along a flat horizontal step like the flat-topped hyperboloids of Figure 8.8.
Some erosion to smooth the top and edges of the pyramid gives a model for nonzero reflector
depth.

For rays that are near the vertical, the traveltime curves are far from the hyperbola asymp-
totes. Then the square roots in (8.1) may be expanded in Taylor series, giving a parabola of
revolution. This describes the eroded peak of the pyramid.

8.1.2 Prestack migration ellipse

Denoting the horizontal coordinate x of the scattering point by y0 Equation (8.1) converted to
(y,h)-space is

t v =
√

z2 + (y − y0 − h)2 +
√

z2 + (y − y0 + h)2 (8.5)

128 CHAPTER 8. DIP AND OFFSET TOGETHER

A basic insight into equation (8.5) is to notice that at constant-offset h and constant travel time
t the locus of possible reflectors is an ellipse in the (y, z)-plane centered at y0. The reason
it is an ellipse follows from the geometric definition of an ellipse. To draw an ellipse, place
a nail or tack into s on Figure 8.1 and another into g. Connect the tacks by a string that is
exactly long enough to go through (y0, z). An ellipse going through (y0, z) may be constructed
by sliding a pencil along the string, keeping the string tight. The string keeps the total distance
tv constant as is shown in Figure 8.3

Figure 8.3: Prestack migration el-
lipse, the locus of all scatterers with
constant traveltime for source S and
receiver G. dpmv-ellipse1 [ER,M]

Replacing depth z in equation (8.5) by the vertical traveltime depth τ = 2z/v = z/vhalf we
get

t = 1
2

(

√

τ 2 + [(y− y0)−h]2/v2
half +

√

τ 2 + [(y− y0)+h]2/v2
half

)

(8.6)

8.1.3 Constant offset migration

Considering h in equation (8.6) to be a constant, enables us to write a subroutine for migrating
constant-offset sections. Subroutine flathyp() on this page is easily prepared from subroutine
kirchfast() on page 70 by replacing its hyperbola equation with equation (8.6).

Flat topped hyperbolas and constant-offset section migration

#

subroutine flathyp(adj, add, vel , h, t0,dt,dx, modl,nt,nx, data)

integer ix,iz,it,ib, adj, add, nt,nx

real t, amp, z,b, vel(nt), h, t0,dt,dx, modl(nt,nx),data(nt,nx)

call adjnull(adj, add, modl,nt*nx, data,nt*nx)

do ib= -nx, nx { b = dx * ib # b = midpt separation y-y0

do iz= 2, nt { z = t0 + dt * (iz-1) # z = zero-offset time

t = .5 * (sqrt(z**2 +((b-h)*2/vel(iz))**2) +

sqrt(z**2 +((b+h)*2/vel(iz))**2))

it = 1.5 + (t - t0) / dt

if(it > nt) break

amp = (z/t)/ sqrt(t)

do ix= max0(1, 1-ib), min0(nx, nx-ib)

if(adj == 0)

data(it,ix+ib)= data(it,ix+ib) + modl(iz,ix) * amp

else

modl(iz,ix)= modl(iz,ix) + data(it,ix+ib) * amp

}

}

return; end

8.1. PRESTACK MIGRATION 129

The amplitude in subroutine flathyp() should be improved when we have time to do so.
Forward and backward responses to impulses of subroutine flathyp() are found in Figures 8.4
and 8.5.

Figure 8.4: Migrating impulses on a
constant-offset section with subrou-
tine flathyp() . Notice that shallow
impulses (shallow compared to h) ap-
pear ellipsoidal while deep ones ap-
pear circular. dpmv-Cos.1 [ER]

Figure 8.5: Forward modeling from
an earth impulse with subroutine
flathyp() . dpmv-Cos.0 [ER]

It is not easy to show that equation (8.5) can be cast in the standard mathematical form of
an ellipse, namely, a stretched circle. But the result is a simple one, and an important one for
later analysis. Feel free to skip forward over the following verification of this ancient wisdom.
To help reduce algebraic verbosity, define a new y equal to the old one shifted by y0. Also
make the definitions

t v = 2 A (8.7)
α = z2 + (y + h)2

130 CHAPTER 8. DIP AND OFFSET TOGETHER

β = z2 + (y − h)2

α − β = 4 y h

With these definitions, (8.5) becomes

2 A = √
α +

√

β

Square to get a new equation with only one square root.

4 A2 − (α + β) = 2
√

αβ

Square again to eliminate the square root.

16 A4 − 8 A2 (α + β) + (α + β)2 = 4 α β

16 A4 − 8 A2 (α + β) + (α − β)2 = 0

Introduce definitions of α and β.

16 A4 − 8 A2 [2 z2 + 2 y2 + 2h2] + 16 y2 h2 = 0

Bring y and z to the right.

A4 − A2 h2 = A2 (z2 + y2) − y2 h2

A2 (A2 − h2) = A2 z2 + (A2 − h2) y2

A2 = z2

1 − h2

A2

+ y2 (8.8)

Finally, recalling all earlier definitions and replacing y by y− y0, we obtain the canonical form
of an ellipse with semi-major axis A and semi-minor axis B:

(y − y0)2

A2 + z2

B2 = 1 , (8.9)

where

A = v t

2
(8.10)

B =
√

A2 − h2 (8.11)

Fixing t , equation (8.9) is the equation for a circle with a stretched z-axis. The above
algebra confirms that the “string and tack” definition of an ellipse matches the “stretched
circle” definition. An ellipse in earth model space corresponds to an impulse on a constant-
offset section.

8.2. INTRODUCTION TO DIP 131

Figure 8.6: Simplest earth model. dpmv-simple [NR]

8.2 INTRODUCTION TO DIP

We can consider a data space to be a superposition of points and then analyze the point re-
sponse, or we can consider data space or model space to be a superposition of planes and then
do an analysis of planes. Analysis of points is often easier than planes, but planes, particularly
local planes, are more like observational data and earth models.

The simplest environment for reflection data is a single horizontal reflection interface,
which is shown in Figure 8.6. As expected, the zero-offset section mimics the earth model.
The common-midpoint gather is a hyperbola whose asymptotes are straight lines with slopes
of the inverse of the velocity v1. The most basic data processing is called common-depth-
point stack or CDP stack. In it, all the traces on the common-midpoint (CMP) gather are
time shifted into alignment and then added together. The result mimics a zero-offset trace.
The collection of all such traces is called the CDP-stacked section. In practice the CDP-
stacked section is often interpreted and migrated as though it were a zero-offset section. In
this chapter we will learn to avoid this popular, oversimplified assumption.

The next simplest environment is to have a planar reflector that is oriented vertically rather
than horizontally. This might not seem typical, but the essential feature (that the rays run
horizontally) really is common in practice (see for example Figure 8.9.) Also, the effect of
dip, while generally complicated, becomes particularly simple in the extreme case. If you
wish to avoid thinking of wave propagation along the air-earth interface you can take the
reflector to be inclined a slight angle from the vertical, as in Figure 8.7.

Figure 8.7 shows that the travel time does not change as the offset changes. It may seem
paradoxical that the travel time does not increase as the shot and geophone get further apart.
The key to the paradox is that midpoint is held constant, not shotpoint. As offset increases,
the shot gets further from the reflector while the geophone gets closer. Time lost on one path
is gained on the other.

132 CHAPTER 8. DIP AND OFFSET TOGETHER

Figure 8.7: Near-vertical reflector, a gather, and a section. dpmv-vertlay [NR]

A planar reflector may have any dip between horizontal and vertical. Then the common-
midpoint gather lies between the common-midpoint gather of Figure 8.6 and that of Figure 8.7.
The zero-offset section in Figure 8.7 is a straight line, which turns out to be the asymptote of
a family of hyperbolas. The slope of the asymptote is the inverse of the velocity v1.

It is interesting to notice that at small dips, information about the earth velocity is essen-
tially carried on the offset axis whereas at large dips, the velocity information is essentially on
the midpoint axis.

8.2.1 The response of two points

Another simple geometry is a reflecting point within the earth. A wave incident on the point
from any direction reflects waves in all directions. This geometry is particularly important
because any model is a superposition of such point scatterers. Figure 8.8 shows an example.
The curves in Figure 8.8 include flat spots for the same reasons that some of the curves in
Figures 8.6 and 8.7 were straight lines.

8.2.2 The dipping bed

While the traveltime curves resulting from a dipping bed are simple, they are not simple to
derive. Before the derivation, the result will be stated: for a bed dipping at angle α from the
horizontal, the traveltime curve is

t2 v2 = 4(y− y0)2 sin2 α + 4h2 cos2 α (8.12)

For α = 45◦, equation (8.12) is the familiar Pythagoras cone—it is just like t 2 = z2 + x2. For
other values of α, the equation is still a cone, but a less familiar one because of the stretched
axes.

8.2. INTRODUCTION TO DIP 133

Figure 8.8: Response of two point scatterers. Note the flat spots. dpmv-twopoint [NR]

For a common-midpoint gather at y = y1 in (h, t)-space, equation (8.12) looks like t2 =
t2
0 + 4h2/v2

apparent. Thus the common-midpoint gather contains an exact hyperbola, regardless
of the earth dip angle α. The effect of dip is to change the asymptote of the hyperbola, thus
changing the apparent velocity. The result has great significance in applied work and is known
as Levin’s dip correction [1971]:

vapparent = vearth

cos(α)
(8.13)

(See also Slotnick [1959]). In summary, dip increases the stacking velocity.

Figure 8.10 depicts some rays from a common-midpoint gather. Notice that each ray
strikes the dipping bed at a different place. So a common-midpoint gather is not a common-
depth-point gather. To realize why the reflection point moves on the reflector, recall the basic
geometrical fact that an angle bisector in a triangle generally doesn’t bisect the opposite side.
The reflection point moves up dip with increasing offset.

Finally, equation (8.12) will be proved. Figure 8.11 shows the basic geometry along with
an “image” source on another reflector of twice the dip. For convenience, the bed intercepts the
surface at y0 = 0. The length of the line s ′g in Figure 8.11 is determined by the trigonometric
Law of Cosines to be

t2 v2 = s2 + g2 − 2s g cos 2α

t2 v2 = (y − h)2 + (y + h)2 − 2(y − h)(y + h) cos 2α

t2 v2 = 2(y2 + h2) − 2(y2−h2) (cos2 α − sin2 α)
t2 v2 = 4 y2 sin2 α + 4h2 cos2 α

which is equation (8.12).

Another facet of equation (8.12) is that it describes the constant-offset section. Surpris-
ingly, the travel time of a dipping planar bed becomes curved at nonzero offset—it too becomes
hyperbolic.

134 CHAPTER 8. DIP AND OFFSET TOGETHER

Figure 8.9: Undocumented data from a recruitment brochure. This data may be assumed to
be of textbook quality. The speed of sound in water is about 1500 m/sec. Identify the events
at A, B, and C. Is this a common-shotpoint gather or a common-midpoint gather? (Shell Oil
Company) dpmv-shell [NR]

8.3. TROUBLE WITH DIPPING REFLECTORS 135

Figure 8.10: Rays from a common-
midpoint gather. dpmv-dipray
[NR]

yyo

Figure 8.11: Travel time from image
source at s ′ to g may be expressed by
the law of cosines. dpmv-lawcos
[NR]

o s y
g

s ’

8.3 TROUBLE WITH DIPPING REFLECTORS

The “standard process” is NMO, stack, and zero-offset migration. Its major shortcoming is the
failure of NMO and stack to produce a section that resembles the true zero-offset section. In
chapter 4 we derived the NMO equations for a stratified earth, but then applied them to seismic
field data that was not really stratified. That this works at all is a little surprising, but it turns
out that NMO hyperbolas apply to dipping reflectors as well as horizontal ones. When people
try to put this result into practice, however, they run into a nasty conflict: reflectors generally
require a dip-dependent NMO velocity in order to produce a “good” stack. Which NMO
velocity are we to apply when a dipping event is near (or even crosses) a horizontal event?
Using conventional NMO/stack techniques generally forces velocity analysts to choose which
events they wish to preserve on the stack. This inability to simultaneously produce a good
stack for events with all dips is a serious shortcoming, which we now wish to understand more
quantitatively.

8.3.1 Gulf of Mexico example

Recall the Gulf of Mexico dataset presented in chapter 4. We did a reasonably careful job of
NMO velocity analysis in order to produce the stack shown in Figure 4.7. But is this the best
possible stack? To begin to answer this question, Figure 8.12 shows some constant-velocity
stacks of this dataset done with subroutine velsimp() on page 53. This figure clearly shows
that there are some very steeply-dipping reflections that are missing in Figure 4.7. These
steep reflections appear only when the NMO velocity is quite high compared with the velocity
that does a good job on the horizontal reflectors. This phenomenon is consistent with the
predictions of equation (8.12), which says that dipping events require a higher NMO velocity

136 CHAPTER 8. DIP AND OFFSET TOGETHER

than nearby horizontal events.

Figure 8.12: Stacks of Gulf of Mexico data with two different constant NMO velocities.
Press button to see a movie in which each frame is a stack with a different constant veloc-
ity. dpmv-cvstacks [ER,M]

Another way of seeing the same conflict in the data is to look at a velocity-analysis panel
at a single common-midpoint location such as the panel shown in Figure 8.13 made by sub-
routine velsimp() on page 53. In this figure it is easy to see that the velocity which is good
for the dipping event at 1.5 sec is too high for the horizontal events in its vicinity.

8.4 SHERWOOD’S DEVILISH

The migration process should be thought of as being interwoven with the velocity estimation
process. J.W.C. Sherwood [1976] indicated how the two processes, migration and velocity
estimation, should be interwoven. The moveout correction should be considered in two parts,

8.5. ROCCA’S SMEAR OPERATOR 137

Figure 8.13: Velocity analysis panel
of one of the panels in Figure 8.12
before (left) and after (right) DMO.
Before DMO, at 2.2 sec you can
notice two values of slowness, the
main branch at .5 sec/km, and an-
other at .4 sec/km. The faster veloc-
ity s = .4 is a fault-plane reflection.
dpmv-velscan [ER,M]

one depending on offset, the NMO, and the other depending on dip. This latter process was
conceptually new. Sherwood described the process as a kind of filtering, but he did not pro-
vide implementation details. He called his process Devilish, an acronym for “dipping-event
velocity inequalities licked.” The process was later described more functionally by Yilmaz
as prestack partial migration, and now the process is usually called dip moveout (DMO)
although some call it MZO, migration to zero offset. We will first see Sherwood’s results,
then Rocca’s conceptual model of the DMO process, and finally two conceptually distinct,
quantitative specifications of the process.

Figure 8.14 contains a panel from a stacked section. The panel is shown several times;
each time the stacking velocity is different. It should be noted that at the low velocities, the
horizontal events dominate, whereas at the high velocities, the steeply dipping events domi-
nate. After the Devilish correction was applied, the data was restacked as before. Figure 8.15
shows that the stacking velocity no longer depends on the dip. This means that after Devilish,
the velocity may be determined without regard to dip. In other words, events with all dips
contribute to the same consistent velocity rather than each dipping event predicting a different
velocity. So the Devilish process should provide better velocities for data with conflicting dips.
And we can expect a better final stack as well.

8.5 ROCCA’S SMEAR OPERATOR

Fabio Rocca developed a clear conceptual model for Sherwood’s dip corrections. Start with
an impulse on a common offset section, and migrate it getting ellipses like in Figure 8.4.
We did this with subroutine flathyp() on page 128 using some constant-offset h . Although
the result is an ellipsoidal curve, think of it as a row of many points along an ellipsoidal

138 CHAPTER 8. DIP AND OFFSET TOGETHER

Figure 8.14: Conventional stacks with varying velocity. (distributed by Digicon, Inc.)
dpmv-digicon [NR]

Figure 8.15: Devilish stacks with varying velocity. (distributed by Digicon, Inc.)
dpmv-devlish [NR]

8.5. ROCCA’S SMEAR OPERATOR 139

curve. Then diffract the image thus turning each of the many points into a hyperbola. We do
this with the return path of the same subroutine flathyp() , however the path back is taken
with h=0 . The result is shown in Figure 8.16. To enhance the appearance of the figure, I
injected an intermediate step of converting the ellipsoid curve into a trajectory of dots on the
ellipse. Notice that the hyperbola tops are not on the strong smear function that results from
the superposition.

The strong smear function that you see in Figure 8.16 is Rocca’s DMO+NMO operator,
the operator that converts a point on a constant-offset section to a zero-offset section. The
important feature of this operator is that the bulk of the energy is in a much narrower region
than the big ellipse of migration. The narrowness of the Rocca operator is important since
it means that energies will not move far, so the operator will not have a drastic effect and
be unduly affected by remote data. (Being a small operator also makes it cheaper to apply).
The little signals you see away from the central burst in Figure 8.16 result mainly from my
modulating the ellipse curve into a sequence of dots. However, noises from sampling and
nearest-neighbor interpolation also yield a figure much like Figure 8.16. This warrants a more
careful theoretical study to see how to represent the Rocca operator directly (rather than as a
sequence of two nearly opposite operators).

Figure 8.16: Rocca’s prestack partial-
migration operator is a superposition
of hyperbolas, each with its top on an
ellipse. dpmv-frocca [ER]

To get a sharper, more theoretical view of the Rocca operator, Figure 8.17 shows line
drawings of the curves in a Rocca construction. It happens, and we will later show, that the
Rocca operator lies along an ellipse that passes through ±h (and hence is independent of
velocity!) Curiously, we see something we could not see on Figure 8.16, that the Rocca curve
ends part way up the ellipse and it does not reach the surface. The place where the Rocca
operator ends and the velocity independent ellipse continues is, however, velocity dependent
as we will see. The Rocca operator is along the curve of osculation in Figure 8.17, i.e., the
smile-shaped curve where the hyperbolas reinforce one another.

8.5.1 Push and pull

Migration and diffraction operators can be conceived and programmed in two different ways.
Let Et denote data and Ez denote the depth image. We have

Ez = Ch Et spray or push an ellipse into the output (8.14)

140 CHAPTER 8. DIP AND OFFSET TOGETHER

Figure 8.17: Rocca’s smile. (Ronen) dpmv-rocca2 [NR]

Et = Hh Ez spray or push a flattened hyperbola into the output (8.15)

where h is half the shot-geophone offset. The adjoints are
Et = C′h Ez sum or pull a semiCircle from the input (8.16)
Ez = H′h Et sum or pull a flattened Hyperbola from the input (8.17)

In practice we can choose either of C ≈ H′. A natural question is which is more correct or
better. The question of “more correct” applies to modeling and is best answered by theoreti-
cians (who will find more than simply a hyperbola; they will find its waveform including its
amplitude and phase as a function of frequency). The question of “better” is something else.
An important practical issue is that the transformation should not leave miscellaneous holes in
the output. It is typically desirable to write programs that loop over all positions in the output
space, “pulling” in whatever inputs are required. It is usually less desirable to loop over all
positions in the input space, “pushing” or “spraying” each input value to the appropriate loca-
tion in the output space. Programs that push the input data to the output space might leave the
output too sparsely distributed. Also, because of gridding, the output data might be irregularly
positioned. Thus, to produce smooth outputs, we usually prefer the summation operators H′

for migration and C′ for diffraction modeling. Since one could always force smooth outputs
by lowpass filtering, what we really seek is the highest possible resolution.

Given a nonzero-offset section, we seek to convert it to a zero-offset section. Rocca’s
concept is to first migrate the constant offset data with an ellipsoid push operator Ch and
then take each point on the ellipsoid and diffract it out to a zero-offset hyperbola with a push
operator H0. The product of push operators R=H0Ch is known as Rocca’s smile. This smile
operator includes both normal moveout and dip moveout. (We could say that dip moveout is
defined by Rocca’s smile after restoring the normal moveout.)

Because of the approximation H ≈ C′, we have four different ways to express the Rocca
smile:

R = H0Ch ≈ H0H′h ≈ C′0H′h ≈ C′0Ch (8.18)

8.5. ROCCA’S SMEAR OPERATOR 141

H0H′h says sum over a flat-top and then spray a regular hyperbola.

The operator C′0H′h , having two pull operators should have smoothest output. Sergey
Fomel suggests an interesting illustration of it: Its adjoint is two push operators, R′ =HhC0.
R′ takes us from zero offset to nonzero offset first by pushing a data point to a semicircle and
then by pushing points on the semicircle to flat-topped hyperbolas. As before, to make the
hyperbolas more distinct, I broke the circle into dots along the circle and show the result in
Figure 8.18. The whole truth is a little more complicated. Subroutine flathyp() on page 128
implements H and H′. Since I had no subroutine for C, figures 8.16 and 8.18 were actually
made with only H and H′. We discuss the C′0Ch representation of R in the next section.

Figure 8.18: The adjoint of Rocca’s
smile is a superposition of flattened
hyperbolas, each with its top on a cir-
cle. dpmv-sergey [ER]

8.5.2 Dip moveout with v(z)

It is worth noticing that the concepts in this section are not limited to constant velocity but
apply as well to v(z). However, the circle operator C presents some difficulties. Let us see why.
Starting from the Dix moveout approximation, t 2 = τ 2+ x2/v(τ)2, we can directly solve for
t(τ , x) but finding τ (t , x) is an iterative process at best. Even worse, at wide offsets, hyperbolas
cross one another which means that τ (t , x) is multivalued. The spray (push) operators C and H
loop over inputs and compute the location of their outputs. Thus Ez=Ch Et requires we compute
τ from t so it is one of the troublesome cases. Likewise, the sum (pull) operators C′ and H′

loop over outputs. Thus Et=C′h Ez causes us the same trouble. In both cases, the circle operator
turns out to be the troublesome one. As a consequence, most practical work is done with the
hyperbola operator.

A summary of the meaning of the Rocca smile and its adjoint is found in Figures 8.19 and
8.20, which were computed using subroutine flathyp() on page 128.

8.5.3 Randomly dipping layers

On a horizontally layered earth, a common shotpoint gather looks like a common midpoint
gather. For an earth model of random dipping planes the two kinds of gathers have quite
different traveltime curves as we see in Figure 8.21.

142 CHAPTER 8. DIP AND OFFSET TOGETHER

Figure 8.19: Impulses on a zero-offset section migrate to semicircles. The corresponding
constant-offset section contains the adjoint of the Rocca smile. dpmv-yalei2 [ER]

Figure 8.20: Impulses on a constant-offset section become ellipses in depth and Rocca smiles
on the zero-offset section. dpmv-yalei1 [ER]

Figure 8.21: Seismic arrival times on an earth of random dipping planes. Left is for CSP. Right
is for CMP. dpmv-randip [ER]

8.5. ROCCA’S SMEAR OPERATOR 143

The common-shot gather is more easily understood. Although a reflector is dipping, a
spherical wave incident remains a spherical wave after reflection. The center of the reflected
wave sphere is called the image point. The traveltime equation is again a cone centered at
the image point. The traveltime curves are simply hyperbolas topped above the image point
having the usual asymptotic slope. The new feature introduced by dip is that the hyperbola
is laterally shifted which implies arrivals before the fastest possible straight-line arrivals at
vt = |g|. Such arrivals cannot happen. These hyperbolas must be truncated where vt = |g|.
This discontinuity has the physical meaning of a dipping bed hitting the surface at geophone
location |g| = vt . Beyond the truncation, either the shot or the receiver has gone beyond the
intersection. Eventually both are beyond. When either is beyond the intersection, there are no
reflections.

On the common-midpoint gather we see hyperbolas all topping at zero offset, but with
asymptotic velocities higher (by the Levin cosine of dip) than the earth velocity. Hyperbolas
truncate, now at |h| = tv/2, again where a dipping bed hits the surface at a geophone.

On a CMP gather, some hyperbolas may seem high velocity, but it is the dip, not the earth
velocity itself that causes it. Imagine Figure 8.21 with all layers at 90◦ dip (abandon curves and
keep straight lines). Such dip is like the backscattered groundroll seen on the common-shot
gather of Figure 8.9. The backscattered groundroll becomes a “flat top” on the CMP gather in
Figure 8.21.

Such strong horizontal events near zero offset will match any velocity, particularly higher
velocities such as primaries. Unfortunately such noise events thus make a strong contribution
to a CMP stack. Let us see how these flat-tops in offset create the diagonal streaks you see in
midpoint in Figure 8.22.

Consider 360 rocks of random sizes scattered in an exact circle of 2 km diameter on the
ocean floor. The rocks are distributed along one degree intervals. Our survey ship sails from
south to north towing a streamer across the exact center of the circle, coincidentally crossing
directly over rock number 180 and number 0. Let us consider the common midpoint gather
corresponding to the midpoint in the center of the circle. Rocks 0 and 180 produce flat-top
hyperbolas. The top is flat for 0 < |h| < 1 km. Rocks 90 and 270 are 90◦ out of the plane
of the survey. Rays to those rocks propagate entirely within the water layer. Since this is a
homogeneous media, the travel time expression of these rocks is a simple hyperbola of water
velocity. Now our CMP gather at the circle center has a “flat top” and a simple hyperbola both
going through zero offset at time t = 2/v (diameter 2 km, water velocity). Both curves have
the same water velocity asymptote and of course the curves are tangent at zero offset.

Now consider all the other rocks. They give curves inbetween the simple water hyperbola
and the flat top. Near zero offset, these curves range in apparent velocity between water
velocity and infinity. One of these curves will have an apparent velocity that matches that of
sediment velocity. This rock (and all those near the same azimuth) will have velocities that
are near the sediment velocity. This noise will stack very well. The CDP stack at sediment
velocity will stack in a lot of water borne noise. This noise is propagating somewhat off the
survey line but not very far off it.

144 CHAPTER 8. DIP AND OFFSET TOGETHER

Figure 8.22: CDP stack with water noise from the Shelikof Strait, Alaska. (by permission
from Geophysics, Larner et al.[1983]) dpmv-shelikof [NR]

Now let us think about the appearance of the CDP stack. We turn attention from offset
to midpoint. The easiest way to imagine the CDP stack is to imagine the zero-offset section.
Every rock has a water velocity asymptote. These asymptotes are evident on the CDP stack in
Figure 8.22. This result was first recognized by Ken Larner.

Thus, backscattered low-velocity noises have a way of showing up on higher-velocity
stacked data. There are two approaches to suppressing this noise: (1) mute the inner traces,
and as we will see, (2) dip moveout processing.

8.6 DMO IN THE PROCESSING FLOW

Instead of implementing equation (??) in one step we can split it into two steps. The first step
converts raw data at time th to NMOed data at time tn.

t2
n = t2

h −
h2

v2
half

(8.19)

The second step is the DMO step which like Kirchhoff migration itself is a convolution over
the x-axis (or b-axis) with

t2
0 = t2

n

(

1− b2

h2

)

(8.20)

and it converts time tn to time t0. Substituting (8.19) into (8.20) leads back to (??). As equation
(8.20) clearly states, the DMO step itself is essentially velocity independent, but the NMO step

8.6. DMO IN THE PROCESSING FLOW 145

naturally is not. Now the program. Backsolving equation (8.20) for tn gives

t2
n = t2

0
1−b2/h2 . (8.21)

Like subroutine flathyp() on page 128, our DMO subroutine dmokirch() on this page is
based on subroutine kirchfast() on page 70. It is just the same, except where kirchfast()

has a hyperbola we put equation (8.21). In the program, the variable t0 is called z and the
variable tn is called t . Note, that the velocity velhalf does exclusively occur in the break
condition (which we have failed to derive, but which is where the circle and ellipse touch at
z = 0).

subroutine dmokirch(adj, add, velhalf, h, t0,dt,dx, modl,nt,nx, data)

integer ix,iz,it,ib, adj, add, nt,nx

real amp,t,z,b, velhalf, h, t0,dt,dx, modl(nt,nx),data(nt,nx)

call adjnull(adj, add, modl,nt*nx, data,nt*nx)

if(h == 0) call erexit(’h=0’)

do ib= -nx, nx { b = dx * ib # b = midpt separation

do iz= 2, nt { z = t0 + dt * (iz-1) # z = zero-offset time

if(h**2 <= b**2) next

t= sqrt(z**2 / (1-b**2/h**2))

amp= sqrt(t) * dx/h

if(velhalf*abs(b) * t*t > h**2*z) break

it = 1.5 + (t - t0) / dt

if(it > nt) break

do ix= max0(1, 1-ib), min0(nx, nx-ib)

if(adj == 0)

data(it,ix+ib) = data(it,ix+ib) + modl(iz,ix) * amp

else

modl(iz,ix) = modl(iz,ix) + data(it,ix+ib) * amp

}

}

return; end

Figures 8.23 and 8.24 were made with subroutine dmokirch() on this page. Notice the big
noise reduction over Figure 8.16.

8.6.1 Residual NMO

Unfortunately, the theory above shows that DMO should be performed after NMO. DMO
is a convolutional operator, and significantly more costly than NMO. This is an annoyance
because it would be much nicer if it could be done once and for all, and not need to be redone
for each new NMO velocity.

Much practical work is done with using constant velocity for the DMO process. This is
roughly valid since DMO, unlike NMO, does little to the data so the error of using the wrong
velocity is much less.

146 CHAPTER 8. DIP AND OFFSET TOGETHER

Figure 8.23: Impulse response of
DMO and NMO dpmv-dmatt [ER]

Figure 8.24: Synthetic Cheop’s pyra-
mid dpmv-coffs [ER]

8.6. DMO IN THE PROCESSING FLOW 147

It is not easy to find a theoretical impulse response for the DMO operator in v(z) media,
but you can easily compute the impulse response in v(z) by using R = H0H′h from equation
(8.18).

8.6.2 Results of our DMO program

We now return to the field data from the Gulf of Mexico, which we have processed earlier in
this chapter and in chapter 4.

148 CHAPTER 8. DIP AND OFFSET TOGETHER

Figure 8.25: Stack after the dip-moveout correction. Compare this result with Figure 4.7. This
one has fault plane reflections to the right of the faults. dpmv-wgdmostk [ER,M]

8.6. DMO IN THE PROCESSING FLOW 149

Figure 8.26: Kirchhoff migration of the previous figure. Now the fault plane reflections jump
to the fault. dpmv-wgdmomig [ER,M]

150 CHAPTER 8. DIP AND OFFSET TOGETHER

Chapter 9

Finite-difference migration

This chapter is a condensation of wave extrapolation and finite-difference basics from IEI
which is now out of print. On the good side, this new organization is more compact and
several errors have been corrected. On the bad side, to follow up on many many interesting
details you will need to find a copy of IEI (http://sepwww.stanford.edu/sep/prof/).

In chapter 7 we learned how to extrapolate wavefields down into the earth. The process
proceeded simply, since it is just a multiplication in the frequency domain by exp[ikz(ω,kx)z].
In this chapter instead of multiplying a wavefield by a function of kx to downward continue
waves, we will convolve them along the x-axis with a small filter that represents a differential
equation. On space axes, a concern is the seismic velocity v. With lateral velocity variation,
say v(x), then the operation of extrapolating wavefields upward and downward can no longer
be expressed as a product in the kx -domain. (Wave-extrapolation procedures in the spatial
frequency domain are no longer multiplication, but convolution.) The alternative we choose
here is to go to finite differences which are convolution in the physical x domain. This is what
the wave equation itself does.

9.1 THE PARABOLIC EQUATION

Here we derive the most basic migration equation via the dispersion relation, equation (7.11).
Recall this equation basically says cosθ =

√

1− sin2 θ .

kz = ω

v

√

1 − v2k2
x

ω2 (9.1)

The dispersion relation above is the foundation for downward continuing wavefields by Fourier
methods in chapter 7. Recall that nature extrapolates forward in time from t = 0 whereas a
geophysicist extrapolates information in depth from z = 0. We get ideas for our task, and then
we hope to show that our ideas are consistent with nature. Suppose we substitute ikz = ∂/∂z

151

152 CHAPTER 9. FINITE-DIFFERENCE MIGRATION

into equation (9.1), multiply by P , and interpret velocity as depth variable.

∂ P

∂z
= i ω

v(z)

√

1 − v(z)2 k2
x

ω2 P (9.2)

Since the above steps are unorthodox, we need to enquire about their validity. Suppose that
equation (9.2) were valid. Then we could restrict it to constant velocity and take a trial solu-
tion P = P0 exp(−ikzz) and we would immediately have equation (9.1). Why do we believe
the introduction of v(z) in equation (9.2) has any validity? We can think about the phase shift
migration method in chapter 7. It handled v(z) by having the earth velocity being a staircase
function of depth. Inside a layer we had the solution to equation (9.2). To cross a layer bound-
ary, we simply asserted that the wavefield at the bottom of one layer would be the same as
the wavefield at the top of the next which is also the solution to equation (9.2). (Let 1z→ 0
be the transition from one layer to the next. Then 1P = 0 since ∂ P/∂z is finite.) Although
equation (9.2) is consistent with chapter 7, it is an approximation of limited validity. It as-
sumes there is no reflection at a layer boundary. Reflection would change part of a downgoing
wave to an upcoming wave and the wave that continued downward would have reduced am-
plitude because of lost energy. Thus, by our strong desire to downward continue wavefields
(extrapolate in z) whereas nature extrapolates in t , we have chosen to ignore reflection and
transmission coefficients. Perhaps we can recover them, but now we have bigger fish to fry.
We want to be able to handle v(x , z), lateral velocity variation. This requires us to get rid of
the square root in equation (9.2). Make a power series for it and drop higher terms.

∂ P

∂z
= i ω

v(z)

(

1 − v(z)2 k2
x

2ω2

)

P + ·· · (9.3)

The first dropped term is sin4 θ where θ is the dip angle of a wavefront. The dropped terms in-
crease slowly with angle, but they do increase, and dropping them will limit the range of angles
that we can handle with this equation. This is a bitter price to pay for the benefit of handling
v(x , z), and we really will return to patch it up (unlike the transmission coefficient problem).
There are many minus signs cropping up, so I give you another equation to straighten them
out.

∂ P

∂z
=

(

i ω

v(z)
− v(z)k2

x

− i ω2

)

P (9.4)

Now we are prepared to leap to our final result, an equation for downward continuing waves
in the presence of depth and lateral velocity variation v(x , z). Substitute ∂xx = −k2

x into
equation (9.4) and revise interpretation of P from P(ω,kx , z) to P(ω, x , z).

∂ P

∂z
= i ω

v(x , z)
P + v(x , z)

− i ω2
∂2 P

∂x2 (9.5)

As with v(z), there is a loss of lateral transmission and reflection coefficients. We plan to forget
this minor problem. It is the price of being a data handler instead of a modeler. Equation (9.5)
is the basis for our first program and examples.

9.2. SPLITTING AND SEPARATION 153

9.2 SPLITTING AND SEPARATION

Two processes, A and B, which ordinarily act simultaneously, may or may not be intercon-
nected. The case where they are independent is called full separation. In this case it is often
useful, for thought and for computation, to imagine process A going to completion before
process B is begun. Where the processes are interconnected it is possible to allow A to run for
a short while, then switch to B, and continue in alternation. This alternation approach is called
splitting.

9.2.1 The heat-flow equation

We wish to solve equation (9.5) by a method involving splitting. Since equation (9.5) is
an unfamiliar one, we turn to the heat-flow equation which besides being familiar, has no
complex numbers. A two-sentence derivation of the heat-flow equation follows. (1) The
heat flow Hx in the x-direction equals the negative of the gradient −∂/∂x of temperature T
times the heat conductivity σ . (2) The decrease of temperature −∂T/∂t is proportional to the
divergence of the heat flow ∂ Hx/∂x divided by the heat storage capacity C of the material.
Combining these, extending from one dimension to two, taking σ constant and C = 1, gives
the equation

∂T

∂t
=

(

σ
∂2

∂x2 + σ
∂2

∂y2

)

T (9.6)

9.2.2 Splitting

The splitting method for numerically solving the heat-flow equation is to replace the two-
dimensional heat-flow equation by two one-dimensional equations, each of which is used on
alternate time steps:

∂T

∂t
= 2σ

∂2T

∂x2 (all y) (9.7)

∂T

∂t
= 2σ

∂2T

∂y2 (all x) (9.8)

In equation (9.7) the heat conductivity σ has been doubled for flow in the x-direction and
zeroed for flow in the y-direction. The reverse applies in equation (9.8). At odd moments in
time heat flows according to (9.7) and at even moments in time it flows according to (9.8).
This solution by alternation between (9.7) and (9.8) can be proved mathematically to converge
to the solution to (9.6) with errors of the order of 1t . Hence the error goes to zero as 1t goes
to zero.

154 CHAPTER 9. FINITE-DIFFERENCE MIGRATION

9.2.3 Full separation

Splitting can turn out to be much more accurate than might be imagined. In many cases there
is no loss of accuracy. Then the method can be taken to an extreme limit. Think about a
radical approach to equations (9.7) and (9.8) in which, instead of alternating back and forth
between them at alternate time steps, what is done is to march (9.7) through all time steps.
Then this intermediate result is used as an initial condition for (9.8), which is marched through
all time steps to produce a final result. It might seem surprising that this radical method can
produce the correct solution to equation (9.6). But if σ is a constant function of x and y, it
does. The process is depicted in Figure 9.1 for an impulsive initial disturbance. A differen-

Figure 9.1: Temperature distribution in the (x , y)-plane beginning from a delta function (left).
After heat is allowed to flow in the x-direction but not in the y-direction the heat is located in
a “wall” (center). Finally allowing heat to flow for the same amount of time in the y-direction
but not the x-direction gives the same symmetrical Gaussian result that would have been found
if the heat had moved in x- and y-directions simultaneously (right). fdm-temperature [CR]

tial equation like (9.6) is said to be fully separable when the correct solution is obtainable
by the radical method. It should not be too surprising that full separation works when σ is
a constant, because then Fourier transformation may be used, and the two-dimensional so-
lution exp[−σ (k2

x + k2
y)t] equals the succession of one-dimensional solutions exp(−σ k2

x t)
exp(−σ k2

yt). It turns out, and will later be shown, that the condition required for applicability
of full separation is that σ ∂2/∂x2 should commute with σ ∂2/∂y2, that is, the order of differ-
entiation should be irrelevant. Technically there is also a boundary-condition requirement, but
it creates no difficulty when the disturbance dies out before reaching a boundary.

9.2. SPLITTING AND SEPARATION 155

There are circumstances which dictate a middle road between splitting and full separa-
tion, for example if σ were a slowly variable function of x or y. Then you might find that
although σ ∂2/∂x2 does not strictly commute with σ ∂2/∂y2, it comes close enough that a
number of time steps may be made with (9.7) before you transpose the data and switch over
to (9.8). Circumstances like this one but with more geophysical interest arise with the wave-
extrapolation equation that is considered next.

9.2.4 Splitting the parabolic equation

In discussing and solving the parabolic wave equation it is convenient to rearrange it to
recognize the role of an averaged stratified medium of velocity of v̄(z) and departures from it.

∂ P

∂z
= i ω

(

1
v̄(z)

)

P + i ω

(

1
v(x , z)

− 1
v̄(z)

)

P +
(

v(x , z)
− i ω2

∂2

∂x2

)

P (9.9)

= A P + B P + C P

= shift + thin lens + diffraction

The shift term in (9.9) commutes with the thin-lens term, that is, AB P = B AP . the shift term
also commutes with the diffraction term because AC P = C AP . But the thin-lens term and
the diffraction term do not commute with one another because (BC−C B)P 6= 0, because

0 6= (BC−C B)P = v(x , z)
[(

−2
d2

dx2
1

v(x , z)

)

+ 1
v(x , z)2

dv(x , z)
dx

∂

∂x

]

P

(9.10)

Mathematicians look at the problem this way: Consider any fixed wave propagation angle
so vkx/ω is a constant. Now let frequency ω (and hence kx) tend together to infinity. The
terms in BC P and C B P grow in proportion to the second power of frequency, whereas those
in (BC −C B)P grow as lower powers. There is however, a catch. The material properties
have a “wavelength” too. We can think of (dv/dx)/v as a spatial wavenumber for the material
just as kx is a spatial wavenumber for the wave. If the material contains a step function
change in its properties, that is an infinite spatial frequency (dv/dx)/v for the material. Then
the (BC −C B)P terms dominate near the place where one material changes to another. If
we drop the (BC −C B)P terms, we’ll get the transmission coefficient incorrect, although
everything would be quite fine everywhere else except at the boundary.

A question is, to what degree do the terms commute? The problem is just that of focusing
a slide projector. Adjusting the focus knob amounts to repositioning the thin-lens term in
comparison to the free-space diffraction term. There is a small range of knob positions over
which no one can notice any difference, and a larger range over which the people in the back
row are not disturbed by misfocus. Much geophysical data processing amounts to downward
extrapolation of data. The lateral velocity variation occurring in the lens term is known only
to a limited accuracy and we often wish to determine v(x) by the extrapolation procedure.

In practice it seems best to forget the (BC −C B)P terms because we hardly ever know
the material properties very well anyway. Then we split, doing the shift and the thin-lens part
analytically while doing the diffraction part by a numerical method.

156 CHAPTER 9. FINITE-DIFFERENCE MIGRATION

9.2.5 Validity of the splitting and full-separation concepts

Feel free to skip forward over this subsection which is merely a mathematical proof.

When Fourier transformation is possible, extrapolation operators are complex numbers
like eikz z . With complex numbers a and b there is never any question that ab = ba. Then
both splitting and full separation are always valid.

Suppose Fourier transformation has not been done, or could not be done because of some
spatial variation of material properties. Then extrapolation operators are built up by combi-
nations of differential operators or their finite-difference representations. Let A and B denote
two such operators. For example, A could be a matrix containing the second x differencing
operator. Seen as matrices, the boundary conditions of a differential operator are incorpo-
rated in the corners of the matrix. The bottom line is whether AB=BA, so the question clearly
involves the boundary conditions as well as the differential operators.

Extrapolation downward a short distance can be done with the operator (I+A1z). Let p
denote a vector where components of the vector designate the wavefield at various locations on
the x-axis. Numerical analysis gives us a matrix operator, say A, which enables us to project
forward, say,

p(z+ 1z) = A1 p(z) (9.11)

The subscript on A denotes the fact that the operator may change with z. To get a step further
the operator is applied again, say,

p(z+21z) = A2 [A1 p(z)] (9.12)

From an operational point of view the matrix A is never squared, but from an analytical point
of view, it really is squared.

A2 [A1 p(z)] = (A2 A1) p(z) (9.13)

To march some distance down the z-axis we apply the operator many times. Take an
interval z1− z0, to be divided into N subintervals. Since there are N intervals, an error pro-
portional to 1/N in each subinterval would accumulate to an unacceptable level by the time
z1 was reached. On the other hand, an error proportional to 1/N 2 could only accumulate to a
total error proportional to 1/N . Such an error would disappear as the number of subintervals
increased.

To prove the validity of splitting, we take 1z = (z1− z0)/N . Observe that the operator
I+ (A+B)1z differs from the operator (I+A1z)(I+B1z) by something in proportion to
1z2 or 1/N2. So in the limit of a very large number of subintervals, the error disappears.

It is much easier to establish the validity of the full-separation concept. Commutativity is
whether or not AB = BA. Commutativity is always true for scalars. With finite differencing
the question is whether the two matrices commute. Taking A and B to be differential operators,
commutativity is defined with the help of the family of all possible wavefields P . Then A and
B are commutative if AB P = BA P .

9.3. FINITE DIFFERENCING IN (OMEGA,X)-SPACE 157

The operator representing ∂ P/∂z will be taken to be A+B. The simplest numerical inte-
gration scheme using the splitting method is

P(z0 + 1z) = (I + A1z) (I + B1z) P(z0) (9.14)

Applying (9.14) in many stages gives a product of many operators. The operators A and B are
subscripted with j to denote the possibility that they change with z.

P(z1) =
N
∏

j=1
[(I + Aj 1z)(I + Bj 1z)] P(z0) (9.15)

As soon as A and B are assumed to be commutative, the factors in (9.15) may be rearranged
at will. For example, the A operator could be applied in its entirety before the B operator is
applied:

P(z1) =





N
∏

j=1
(I + Bj 1z)









N
∏

j=1
(I + Aj 1z)



 P(z0) (9.16)

Thus the full-separation concept is seen to depend on the commutativity of operators.

9.3 FINITE DIFFERENCING IN (omega,x)-SPACE

The basic method for solving differential equations in a computer is finite differencing. The
nicest feature of the method is that it allows analysis of objects of almost any shape, such as
earth topography or geological structure. Ordinarily, finite differencing is a straightforward
task. The main pitfall is instability. It often happens that a seemingly reasonable approach to a
reasonable physical problem leads to wildly oscillatory, divergent calculations. Luckily, a few
easily learned tricks go a long way, and we will be covering them here.

9.3.1 The lens equation

The parabolic wave-equation operator can be split into two parts, a complicated part called
the diffraction or migration part, and an easy part called the lens part. The lens equation
applies a time shift that is a function of x . The lens equation acquires its name because it
acts just like a thin optical lens when a light beam enters on-axis (vertically). Corrections
for nonvertical incidence are buried somehow in the diffraction part. The lens equation has
an analytical solution, namely, exp[iωt0(x)]. It is better to use this analytical solution than
to use a finite-difference solution because there are no approximations in it to go bad. The
only reason the lens equation is mentioned at all in a chapter on finite differencing is that the
companion diffraction equation must be marched forward along with the lens equation, so the
analytic solutions are marched along in small steps.

158 CHAPTER 9. FINITE-DIFFERENCE MIGRATION

9.3.2 First derivatives, explicit method

The inflation of money q at a 10% rate can be described by the difference equation

qt+1 − qt = .10 qt (9.17)
(1.0) qt+1 + (−1.1)qt = 0 (9.18)

This one-dimensional calculation can be reexpressed as a differencing star and a data table. As
such it provides a prototype for the organization of calculations with two-dimensional partial-
differential equations. Consider

Differencing Star Data Table

− 1.1

+ 1.0

2.000

2.200

2.420

2.662

time
↓

Since the data in the data table satisfy the difference equations (9.17) and (9.18), the dif-
ferencing star may be laid anywhere on top of the data table, the numbers in the star may be
multiplied by those in the underlying table, and the resulting cross products will sum to zero.
On the other hand, if all but one number (the initial condition) in the data table were missing
then the rest of the numbers could be filled in, one at a time, by sliding the star along, taking
the difference equations to be true, and solving for the unknown data value at each stage.

Less trivial examples utilizing the same differencing star arise when the numerical constant
.10 is replaced by a complex number. Such examples exhibit oscillation as well as growth and
decay.

9.3.3 First derivatives, implicit method

Let us solve the equation
dq

dt
= 2 r q (9.19)

9.3. FINITE DIFFERENCING IN (OMEGA,X)-SPACE 159

by numerical methods. The most obvious (but not the only) approach is the basic definition of
elementary calculus. For the time derivative, this is

dq

dt
≈ q(t+1t) − q(t)

1t
(9.20)

Using this in equation (9.19) yields the the inflation-of-money equations (9.17) and (9.18),
where 2r = .1. Thus in the inflation-of-money equation the expression of dq/dt is centered
at t +1t/2, whereas the expression of q by itself is at time t . There is no reason the q on
the right side of equation (9.19) cannot be averaged at time t with time t+1t , thus centering
the whole equation at t +1t/2. When writing difference equations, it is customary to write
q(t +1t) more simply as qt+1. (Formally one should say t = n1t and write qn+1 instead of
qt+1, but helpful mnemonic information is carried by using t as the subscript instead of some
integer like n.) Thus, a centered approximation of (9.19) is

qt+1 − qt = 2r 1t
qt+1 + qt

2
(9.21)

Letting α = r1t , this becomes

(1−α) qt+1 − (1+α) qt = 0 (9.22)

which is representable as the difference star

−1−α

+1−α

t
↓

For a fixed 1t this star gives a more accurate solution to the differential equation (9.19) than
does the star for the inflation of money. The reasons for the names “explicit method” and
“implicit method” above will become clear only after we study a more complicated equation
such as the heat-flow equation.

9.3.4 Explicit heat-flow equation

The heat-flow equation (9.6) is a prototype for migration. Let us recopy the heatflow equation
letting q denote the temperature.

∂q

∂t
= σ

C

∂2 q

∂x2 (9.23)

160 CHAPTER 9. FINITE-DIFFERENCE MIGRATION

Data Table x →
i n i t i a l

s s
i star i
d −α 2α−1 −α d
e 1 e

t

Table 9.1: Differencing star and table for one-dimensional heat-flow equation.

Implementing (9.23) in a computer requires some difference approximations for the partial
differentials. As before we use a subscript notation that allows (9.20) to be compacted into

∂q

∂t
≈ qt+1 − qt

1t
(9.24)

where t +1t is denoted by t + 1. The second-derivative formula may be obtained by doing
the first derivative twice. This leads to qt+2−2qt+1+qt . The formula is usually treated more
symmetrically by shifting it to qt+1− 2qt + qt−1. These two versions are equivalent as 1t
tends to zero, but the more symmetrical arrangement will be more accurate when 1t is not
zero. Using superscripts to describe x-dependence gives a finite-difference approximation to
the second space derivative:

∂2q

∂x2 ≈ qx+1 − 2qx + qx−1

1x2 (9.25)

Inserting the last two equations into the heat-flow equation (and using = to denote ≈) gives

qx
t+1 − qx

t

1t
= σ

C

qx+1
t − 2qx

t + qx−1
t

1x2 (9.26)

(Of course it is not justified to use = to denote≈, but the study of errors must be deferred until
the concepts have been laid out. Errors are studied in IEI chapter 4. Letting α= σ 1t/(C 1x 2),
equation (9.26) becomes

qx
t+1 − qx

t − α (qx+1
t − 2qx

t + qx−1
t) = 0 (9.27)

Equation (9.27) can be explicitly solved for q for any x at the particular time t +1 given q at
all x for the particular time t and hence the name explicit method.

Equation (9.27) can be interpreted geometrically as a computational star in the (x , t)-plane,
as depicted in Table 9.1. By moving the star around in the data table you will note that it can
be positioned so that only one number at a time (the 1) lies over an unknown element in the
data table. This enables the computation of subsequent rows beginning from the top. By doing

9.3. FINITE DIFFERENCING IN (OMEGA,X)-SPACE 161

this you are solving the partial-differential equation by the finite-difference method. There are
many possible arrangements of initial and side conditions, such as zero-value side conditions.
Next is a computer program for the job and its result.

Explicit heat-flow equation

real q(12), qp(12)

nx = 12

do ia= 1, 2 { # stable and unstable cases

alpha = ia*.3333; write(6,’(/"alpha =",f5.2)’) alpha

do ix= 1,6 { q(ix) = 0.} # Initial temperature step

do ix= 7,12 { q(ix) = 1.}

do it= 1, 6 {

write(6,’(20f6.2)’) (q(ix),ix=1,nx)

do ix= 2, nx-1

qp(ix) = q(ix) + alpha*(q(ix-1)-2.*q(ix)+q(ix+1))

qp(1) = qp(2); qp(nx) = qp(nx-1)

do ix= 1, nx

q(ix) = qp(ix)

}

}

call exit(0); end

alpha = 0.33

0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.00 0.00 0.00 0.00 0.33 0.67 1.00 1.00 1.00 1.00 1.00

0.00 0.00 0.00 0.00 0.11 0.33 0.67 0.89 1.00 1.00 1.00 1.00

0.00 0.00 0.00 0.04 0.15 0.37 0.63 0.85 0.96 1.00 1.00 1.00

0.00 0.00 0.01 0.06 0.19 0.38 0.62 0.81 0.94 0.99 1.00 1.00

0.00 0.00 0.02 0.09 0.21 0.40 0.60 0.79 0.91 0.98 1.00 1.00

alpha = 0.67

0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.00 0.00 0.00 0.00 0.67 0.33 1.00 1.00 1.00 1.00 1.00

0.00 0.00 0.00 0.00 0.44 0.00 1.00 0.56 1.00 1.00 1.00 1.00

0.00 0.00 0.00 0.30 -0.15 0.96 0.04 1.15 0.70 1.00 1.00 1.00

0.00 0.00 0.20 -0.20 0.89 -0.39 1.39 0.11 1.20 0.80 1.00 1.00

0.13 0.13 -0.20 0.79 -0.69 1.65 -0.65 1.69 0.21 1.20 0.87 0.87

9.3.5 The leapfrog method

A difficulty with the given program is that it doesn’t work for all possible numerical values
of α. You can see that when α is too large (when 1x is too small) the solution in the interior
region of the data table contains growing oscillations. What is happening is that the low-
frequency part of the solution is OK (for a while), but the high-frequency part is diverging.
The mathematical reason the divergence occurs is the subject of mathematical analysis found
in IEI section 2.8. Intuitively, at wavelengths long compared to 1x or 1t , we expect the dif-
ference approximation to agree with the true heat-flow equation, smoothing out irregularities
in temperature. At short wavelengths the wild oscillation shows that the difference equation
can behave in a way almost opposite to the way the differential equation behaves. The short

162 CHAPTER 9. FINITE-DIFFERENCE MIGRATION

wavelength discrepancy arises because difference operators become equal to differential oper-
ators only at long wavelengths. The divergence of the solution is a fatal problem because the
subsequent round-off error will eventually destroy the low frequencies too.

By supposing that the instability arises because the time derivative is centered at a slightly
different time t+1/2 than the second x-derivative at time t , we are led to the so-called leapfrog
method, in which the time derivative is taken as a difference between t−1 and t+1:

∂q

∂t
≈ qt+1 − qt−1

2 1t
(9.28)

Here the result is even worse. An analysis found in IEI shows that the solution is now divergent
for all real numerical values of α. Although it was a good idea to center both derivatives in the
same place, it turns out that it was a bad idea to express a first derivative over a span of more
mesh points. The enlarged operator has two solutions in time instead of just the familiar one.
The numerical solution is the sum of the two theoretical solutions, one of which, unfortunately
(in this case), grows and oscillates for all real values of α.

To avoid all these problems (and get more accurate answers as well), we now turn to some
slightly more complicated solution methods known as implicit methods.

9.3.6 The Crank-Nicolson method

The Crank-Nicolson method solves both the accuracy and the stability problem. Recall the
difference representation of the heat-flow equation (9.27).

qx
t+1 − qx

t = a
(

qx+1
t −2qx

t +qx−1
t

)

(9.29)

Now, instead of expressing the right-hand side entirely at time t , it will be averaged at t and
t+1, giving

qx
t+1−qx

t = a

2

[

(

qx+1
t −2qx

t +qx−1
t

)

+
(

qx+1
t+1 −2qx

t+1+qx−1
t+1

)]

(9.30)

This is called the Crank-Nicolson method. Defining a new parameter α= a/2, the difference
star is

x

−α 2α−1 −α

−α 2α+1 −α

t

(9.31)

9.3. FINITE DIFFERENCING IN (OMEGA,X)-SPACE 163

When placing this star over the data table, note that, typically, three elements at a time cover
unknowns. To say the same thing with equations, move all the t+1 terms in (9.30) to the left
and the t terms to the right, obtaining

−αqx+1
t+1 + (1+2α)q x

t+1 − αqx−1
t+1 = αqx+1

t + (1−2α)q x
t + αqx−1

t (9.32)

Now think of the left side of equation (9.32) as containing all the unknown quantities and the
right side as containing all known quantities. Everything on the right can be combined into a
single known quantity, say, d x

t . Now we can rewrite equation (9.32) as a set of simultaneous
equations. For definiteness, take the x-axis to be limited to five points. Then these equations
are:











eleft
−α

0
0
0

−α

1+2α

−α

0
0

0
−α

1+2α

−α

0

0
0
−α

1+2α

−α

0
0
0
−α

eright





















q1
t+1

q2
t+1

q3
t+1

q4
t+1

q5
t+1











=











d1
t

d2
t

d3
t

d4
t

d5
t











(9.33)

Equation (9.32) does not give us each q x
t+1 explicitly, but equation (9.33) gives them implicitly

by the solution of simultaneous equations.

The values eleft and eright are adjustable and have to do with the side boundary conditions.
The important thing to notice is that the matrix is tridiagonal, that is, except for three central
diagonals all the elements of the matrix in (9.33) are zero. The solution to such a set of
simultaneous equations may be economically obtained. It turns out that the cost is only about
twice that of the explicit method given by (9.27). In fact, this implicit method turns out to
be cheaper, since the increased accuracy of (9.32) over (9.27) allows the use of a much larger
numerical choice of 1t . A program that demonstrates the stability of the method, even for
large 1t , is given next.

A tridiagonal simultaneous equation solving subroutine rtris() explained in the next
section. The results are stable, as you can see.

a = 8.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00

0.17 0.17 0.21 0.30 0.47 0.76 0.24 0.53 0.70 0.79 0.83 0.83

0.40 0.40 0.42 0.43 0.40 0.24 0.76 0.60 0.57 0.58 0.60 0.60

0.44 0.44 0.44 0.44 0.48 0.68 0.32 0.52 0.56 0.56 0.56 0.56

Implicit heat-flow equation

real q(12),d(12)

nx=12; a = 8.; write(6,’(/"a =",f5.2)’) a; alpha = .5*a

do ix= 1,6 { q(ix) = 0.} # Initial temperature step

do ix= 7,12 { q(ix) = 1.}

do it= 1,4 {

write(6,’(20f6.2)’) (q(ix),ix=1,nx)

d(1) = 0.; d(nx) = 0.

do ix= 2, nx-1

d(ix) = q(ix) + alpha*(q(ix-1)-2.*q(ix)+q(ix+1))

call rtris(nx, alpha, -alpha, (1.+2.*alpha), -alpha, alpha, d, q)

}

call exit(0); end

164 CHAPTER 9. FINITE-DIFFERENCE MIGRATION

9.3.7 Solving tridiagonal simultaneous equations

Much of the world’s scientific computing power gets used up solving tridiagonal simultane-
ous equations. For reference and completeness the algorithm is included here.

Let the simultaneous equations be written as a difference equation

aj qj+1 + bj qj + cj qj−1 = dj (9.34)

Introduce new unknowns ej and f j , along with an equation

qj = ej qj+1 + f j (9.35)

Write (9.35) with shifted index:

qj−1 = ej−1 qj + f j−1 (9.36)

Insert (9.36) into (9.34)

aj qj+1 + bj qj + cj (ej−1 qj + f j−1) = dj (9.37)

Now rearrange (9.37) to resemble (9.35)

qj = − aj

bj + cj ej−1
qj+1 +

dj − cj f j−1

bj + cj ej−1
(9.38)

Compare (9.38) to (9.35) to see recursions for the new unknowns ej and f j :

ej = − aj

bj + cj ej−1
(9.39)

f j = dj − cj f j−1

bj + cj ej−1
(9.40)

First a boundary condition for the left-hand side must be given. This may involve one or
two points. The most general possible end condition is a linear relation like equation (9.35) at
j = 0, namely, q0 = e0q1+ f0. Thus, the boundary condition must give us both e0 and f0.
With e0 and all the aj ,bj ,cj , we can use (9.39) to compute all the ej .

On the right-hand boundary we need a boundary condition. The general two-point
boundary condition is

cn−1 qn−1 + eright qn = dn (9.41)
Equation (9.41) includes as special cases the zero-value and zero-slope boundary conditions.
Equation (9.41) can be compared to equation (9.36) at its end.

qn−1 = en−1 qn + fn−1 (9.42)

Both qn and qn−1 are unknown, but in equations (9.41) and (9.42) we have two equations, so
the solution is easy. The final step is to take the value of qn and use it in (9.36) to compute
qn−1, qn−2, qn−3, etc. The subroutine rtris() solves equation (9.33) for q where n=5 , endl =
eleft, endr = eright, a=c =−α, and b= 1−2α.

9.4. WAVEMOVIE PROGRAM 165

real tridiagonal equation solver

subroutine rtris(n, endl, a, b, c, endr, d, q)

integer i, n

real q(n), d(n), a, b, c, den, endl, endr

temporary real f(n), e(n)

e(1) = -a/endl; f(1) = d(1)/endl

do i= 2, n-1 {

den = b+c*e(i-1); e(i) = -a/den; f(i) = (d(i)-c*f(i-1))/den

}

q(n) = (d(n)-c*f(n-1)) / (endr+c*e(n-1))

do i= n-1, 1, -1

q(i) = e(i) * q(i+1) + f(i)

return; end

If you wish to squeeze every last ounce of power from your computer, note some facts
about this algorithm. (1) The calculation of ej depends on the medium through aj , bj , cj , but
it does not depend on the solution qj (even through dj). This means that it may be possible to
save and reuse ej . (2) In many computers, division is much slower than multiplication. Thus,
the divisor in (9.39) or (9.40) can be inverted once (and perhaps stored for reuse).

9.3.8 Finite-differencing in the time domain

IEI develops time-domain finite differencing methods. Since the earth velocity is unvarying in
time, a “basics only” book such as this omits this topic since you can, in principle, accomplish
the same goals in the ω-domain. There are some applications, however, that give rise to
time-variable coefficients in their partial differential equations. Recursive dip filtering is one
application. Residual migration is another. Some formulations of DMO are another.

9.4 WAVEMOVIE PROGRAM

Here we see solutions to exercises stated in figure captions. The problems and solutions were
worked over by former teaching assistants. (Lynn, Gonzalez, JFC, Hale, Li, Karrenbach,
Fomel). The various figures are all variations of the computer subroutine wavemovie() . It
makes a movie of a sum of monochromatic waves. As it stands it will produce a movie
(three-dimensional matrix) of waves propagating through a focus. The whole process from
compilation through computation to finally viewing the film loop takes a few seconds. A
sample frame of the movie is in Figure 9.2. It shows a snapshot of the (x , z)-plane. Collapsing
spherical waves enter from the top, go through a focus and then expand again. Notice that the
wavefield is small but not zero in the region of geometrical shadow. In the shadow region you
see waves that appear to be circles emanating from point sources at the top corners. Notice that
the amplitudes of expanding spherical waves drop off with distance and collapsing spherical
waves grow towards the focus. We will study the program that made this figure and see many
features of waves and mathematics.

166 CHAPTER 9. FINITE-DIFFERENCE MIGRATION

Figure 9.2: First frame of movie gen-
erated by wavemovie() . (Press but-
ton for movie.) fdm-Mfocus1590
[ER,M]

9.4.1 Earth surface boundary condition

The program that created Figure 9.2 begins with an initial condition along the top bound-
ary, and then this initial wavefield is extrapolated downward. So, the first question is: what
is the mathematical function of x that describes a collapsing spherical (actually cylindrical)
wave? An expanding spherical wave has an equation exp[−iω(t−r/v)], where the radial dis-
tance is r =

√

(x− x0)2+ (z− z0)2 from the source. For a collapsing spherical wave we need
exp[−iω(t+ r/v)]. Parenthetically, I’ll add that the theoretical solutions are not really these,
but something more like these divided by

√
r ; actually they should be a Hankel functions,

but the picture is hardly different when the exact initial condition is used. If you have been
following this analysis, you should have little difficulty changing the initial conditions in the
program to create the downgoing plane wave shown in Figure 9.3. Notice the weakened waves

Figure 9.3: Specify program changes
that give an initial plane wave propa-
gating downward at an angle of 15◦
to the right of vertical. (Movie)
fdm-Mdipplane90 [ER,M]

in the zone of theoretical shadow that appear to arise from a point source on the top corner of

9.4. WAVEMOVIE PROGRAM 167

the plot. You have probably learned in physics classes of “standing waves”. This is what you
will see near the reflecting side boundary if you recompute the plot with a single frequency
nw=1 . Then the plot will acquire a “checkerboard” appearance near the reflecting boundary.
Even this figure with nw=4 shows the tendency.

9.4.2 Frames changing with time

For a film loop to make sense to a viewer, the subject of the movie must be periodic, and orga-
nized so that the last frame leads naturally into the first. In the movie created by wavemovie()

there is a parameter lambda that controls the basic repetition rate of wave pulses fired onto the
screen from the top. When a wavelet travels one-quarter of the way down the frame, another
is sent in. This is defined by the line

lambda = nz * dz / 4 = Nz 1z

4

Take any point in (x , z)-space. The signal there will be a superposition of sinusoids of
various frequencies, ωj . We can choose what frequencies we will use in the calculation and
what amplitudes and phases we will attach to the initial conditions at those frequencies. Here
we will simply take uniformly spaced sinusoids of unit amplitude and no phase. The nw

frequencies are ωj =1ω, 21ω, ..., nw 1ω. The lowest frequency dw = 1ω must be inversely
proportional to the wavelength lambda = λ

dw = v * pi2 / lambda =
2π v

λ

Finally, the time duration of the film loop must equal the period of the lowest-frequency
sinusoid

Nt 1t = 2π

1ω

This latter equation defines the time interval on the line

dt = pi2 / (nt * dw)

If you use more frequencies, you might like the result better because the wave pulses will be
shorter, and the number of wavelengths between the pulses will increase. Thus the quiet zones
between the pulses will get quieter. The frequency components can be weighted differently—
but this becomes a digression into simple Fourier analysis.

from par: integer n3:nt=12, n2:nx=48, n1:nz=96, nw=2, nlam=4

from par: real dx=2, dz=1, v=1

#

subroutine wavemovie(nt, nx, nz, nw, nlam, dx,dz,v, p, cd, q)

integer it,nt,ix,nx,iz,nz,iw,nw, nlam

real dx,dz,v, phase,pi2,z0,x0,dt,dw,lambda,w,wov,x, p(nz,nx,nt)

complex aa,a,b,c,cshift, cd(nx),q(nx)

lambda=nz*dz/nlam; pi2=2.*3.141592; dw=v*pi2/lambda; dt=pi2/(nt*dw)

168 CHAPTER 9. FINITE-DIFFERENCE MIGRATION

x0 = nx*dx/3; z0 = nz*dz/3

call null(p, nz*nx*nt)

do iw = 1,nw { # superimpose nw frequencies

w = iw*dw; wov = w/v # frequency / velocity

do ix = 1,nx { # initial conditions for a

x = ix*dx-x0; # collapsing spherical wave

phase = -wov*sqrt(z0**2+x**2)

q(ix) = cexp(cmplx(0.,phase))

}

aa = (0.,1.)*dz/(4.*dx**2*wov) # tridiagonal matrix coefficients

a = -aa; b = 1.+2.*aa; c = -aa

do iz = 1,nz { # extrapolation in depth

do ix = 2,nx-1 # diffraction term

cd(ix) = aa*q(ix+1) + (1.-2.*aa)*q(ix) + aa*q(ix-1)

cd(1) = 0.; cd(nx) = 0.

call ctris(nx,-a,a,b,c,-c,cd,q)

Solves complex tridiagonal equations

cshift = cexp(cmplx(0.,wov*dz))

do ix = 1,nx # shifting term

q(ix) = q(ix) * cshift

do it=1,nt { # evolution in time

cshift = cexp(cmplx(0.,-w*it*dt))

do ix = 1,nx

p(iz,ix,it) = p(iz,ix,it) + q(ix)*cshift

}

}

}

return; end

9.4.3 Internals of the film-loop program

The differential equation solved by the program is equation (9.5), copied here as

∂ P

∂z
= i ω

v(x , z)
P + v

− i ω2
∂2 P

∂x2 (9.43)

For each 1 z-step the calculation is done in two stages. The first stage is to solve

∂ P

∂z
= v

− i ω2
∂2 P

∂x2 (9.44)

Using the Crank-Nicolson differencing method this becomes

px
z+1− px

z

1z
= v

−iω2

(

px+1
z −2px

z + px−1
z

21x2 + px+1
z+1 −2px

z+1+ px−1
z+1

21x2

)

(9.45)

Absorb all the constants into one and define

α = v1z

− i ω41x2 (9.46)

getting

px
z+1 − px

z = α

[

(px+1
z − 2 px+

z px−1
z) + (px+1

z+1 − 2 px
z+1 + px−1

z+1)
]

(9.47)

9.4. WAVEMOVIE PROGRAM 169

Bring the unknowns to the left:

−αpx+1
z+1 + (1+2α)px

z+1 − αpx−1
z+1 = αpx+1

z + (1−2α)px
z + αpx−1

z (9.48)

We will solve this as we solved equations (9.32) and (9.33). The second stage is to solve the
equation

∂ P

∂z
= i ω

v
P (9.49)

analytically by
P(z+1z) = P(z) ei1z ω/v (9.50)

By alternating between (9.48) and (9.50), which are derived from (9.44) and (9.49), the
program solves (9.43) by a splitting method. The program uses the tridiagonal solver dis-
cussed earlier, like subroutine rtris() on page 164 except that version needed here, ctris() ,
has all the real variables declared complex.

Figure 9.4 shows a change of initial conditions where the incoming wave on the top frame
is defined to be an impulse, namely, p(x , z = 0)= (· · · , 0,0,1,0,0, · · ·). The result is alarmingly
noisy. What is happening is that for any frequencies anywhere near the Nyquist frequency, the
difference equation departs from the differential equation that it should mimic. This problem
is addressed, analyzed, and ameliorated in IEI. For now, the best thing to do is to avoid sharp
corners in the initial wave field.

Figure 9.4: Observe and describe var-
ious computational artifacts by test-
ing the program using a point source
at (x , z) = (xmax/2,0) . Such a source
is rich in the high spatial frequencies
for which difference equations do not
mimic their differential counterparts.
(Movie) fdm-Mcompart90 [ER,M]

9.4.4 Side-boundary analysis

In geophysics, we usually wish the side-boundary question did not arise. The only real reason
for side boundaries is that either our survey or our processing activity is necessarily limited

170 CHAPTER 9. FINITE-DIFFERENCE MIGRATION

in extent. Given that side boundaries are inevitable, we must think about them. The subrou-
tine wavemovie() included zero-slope boundary conditions. This type of boundary treatment
resulted from taking

d(1) = 0. ; d(nx) = 0.

and in the call to ctris taking

endl = - a ; endr = - c

A quick way to get zero-value side-boundary conditions is to take

Figure 9.5: Given that the domain
of computation is 0 ≤ x ≤ xmax and
0 ≤ z ≤zmax , how would you modify
the initial conditions at z = 0 to
simulate a point source at (x , z) =
(xmax/3, -zmax/2) ? (Movie)
fdm-Mexpandsphere90 [ER,M]

endl = endr = 1030 ≈ ∞

Compare the side-boundary behavior of Figures 9.5 and 9.6.

Figure 9.6: Modify the program so
that zero-slope side boundaries are
replaced by zero-value side bound-
aries. (Movie) fdm-Mzeroslope90
[ER,M]

9.4. WAVEMOVIE PROGRAM 171

The zero slope boundary condition is explicitly visible as identical signal on the two end
columns. Likewise, the zero-value side boundary condition has a column of zero-valued signal
on each side.

9.4.5 Lateral velocity variation

Lateral velocity variation v = v(x) has not been included in the program, but it is not difficult
to install. It enters in two places. It enters first in equation (9.50). If the wavefield is such
that kx is small enough, then equation (9.50) is the only place it is needed. Second, it enters in
the tridiagonal coefficients through the v in equation (9.46). The so-called thin-lens approx-
imation of optics seems to amount to including the equation (9.50) part only. An example of
lateral velocity variation is in Figure 9.7.

Figure 9.7: Make changes to the
program to include a thin-lens term
with a lateral velocity change of
40% across the frame produced by
a constant slowness gradient. Iden-
tify other parts of the program which
are affected by lateral velocity varia-
tion. You need not make these other
changes. Why are they expected to be
small? (Movie) fdm-Mlateralvel90
[ER,M]

9.4.6 Migration in (omega,x)-space

The migration program is similar to the film loop program. But there are some differences.
The film loop program has “do loops” nested four deep. It produces results for many values
of t . Migration requires a value only at t = 0. So one loop is saved, which means that for the
same amount of computer time, the space volume can be increased. Unfortunately, loss of a
loop seems also to mean loss of a movie. With ω-domain migration, it seems that the only
interesting thing to view is the input and the output.

The input for this process will probably be field data, unlike for the film loop movie,
so there will not be an analytic representation in the ω-domain. The input will be in the
time domain and will have to be Fourier transformed. The beginning of the program defines
some pulses to simulate field data. The pulses are broadened impulses and should migrate to

172 CHAPTER 9. FINITE-DIFFERENCE MIGRATION

approximate semicircles. Exact impulses were not used because the departure of difference
operators from differential operators would make a noisy mess.

Next the program Fourier transforms the pseudodata from the time domain into the ω-
frequency domain.

Then comes the downward continuation of each frequency. This is a loop on depth z and
on frequency ω. Either of these loops may be on the inside. The choice can be made for
machine-dependent efficiency.

For migration an equation for upcoming waves is required, unlike the downgoing wave
equation required for the film loop program. Change the sign of the z-axis in equation (9.43).
This affects the sign of aa and the sign of the phase of cshift .

Another difference with the film loop program is that the input now has a time axis whereas
the output is still a depth axis. It is customary and convenient to reorganize the calculation to
plot traveltime depth, instead of depth, making the vertical axes on both input and output the
same. Using τ = z/v , equivalently dτ/dz = 1/v , the chain rule gives

∂

∂z
= ∂τ

∂z

∂

∂τ
= 1

v

∂

∂τ
(9.51)

Substitution into (9.43) gives

∂ P

∂τ
= − i ω P − v2

− i ω2
∂2 P

∂x2 (9.52)

In the program, the time sample size dt = 1t and the traveltime depth sample dtau = 1τ

are taken to be unity, so the maximum frequency is the Nyquist. Notice that the frequency
loop covers only the negative frequency axis. The positive frequencies serve only to keep the
time function real, a task that is more quickly done by simply taking the real part. A program
listing follows

#% Migration in the (omega,x,z)-domain

program kjartjac{

real p(48,64), pi, alpha, dt, dtau, dw, w0, omega

complex cp(48,64), cd(48), ce(48), cf(48), aa, a, b, c, cshift

integer ix, nx, iz, nz, iw, nw, it, nt, esize

nt= 64; nz= nt; nx= 48; pi= 3.141592

dt= 1.; dtau= 1.; w0=-pi/dt; dw= 2*pi/(dt*nt); nw= nt/2;

alpha = .25 # alpha = v*v*dtau/(4*dx*dx)

do iz= 1, nz { do ix=1,nx { p(ix,iz) = 0.; cp(ix,iz)=0. }}

do it= nt/3, nt, nt/4{

Broadened impulse source

do ix= 1, 4 { cp(ix,it) = (5.-ix); cp(ix,it+1) = (5.-

ix) }}

call ft2axis(0, 1., nx,nt, cp)

do iz= 1, nz {

do iw= 2, nw { omega = w0 + dw*(iw-1)

9.4. WAVEMOVIE PROGRAM 173

aa = - alpha /((0.,-1.)*omega)

a = -aa; b = 1.+2.*aa; c = -aa

do ix= 2, nx-1

cd(ix) = aa*cp(ix+1,iw) + (1.-2.*aa)*cp(ix,iw) + aa*cp(ix-1,iw)

cd(1) = 0.; cd(nx) = 0.

call ctris(nx, -a, a, b, c, -c, cd, cp(1,iw))

cshift = cexp(cmplx(0.,-omega*dtau))

do ix= 1, nx

cp(ix,iw) = cp(ix,iw) * cshift

do ix= 1, nx

p(ix,iz) = p(ix,iz)+cp(ix,iw) # p(t=0) = Sum P(omega)

}}

esize=4

to history: integer n1:nx, n2:nz, esize

call srite(’out’, p, nx*nz*4)

call hclose()

}

The output of the program is shown in Figure 9.8. Mainly, you see semicircle approxima-
tions. There are also some artifacts at late time that may be ω-domain wraparounds. The input
pulses were apparently sufficiently broad-banded in dip that the figure provides a preview of
the fact, to be proved later, that the actual semicircle approximation is an ellipse going through
the origin.

Figure 9.8: Output of the pro-
gram kjartjac : semicircle approxi-
mations. fdm-kjartjac [ER]

Notice that the waveform of the original pulses was a symmetric function of time, whereas
the semicircles exhibit a waveform that is neither symmetric nor antisymmetric, but is a 45◦
phase-shifted pulse. Waves from a point in a three-dimensional world would have a phase shift
of 90◦. Waves from a two-dimensional exploding reflector in a three-dimensional world have
the 45◦ phase shift.

174 CHAPTER 9. FINITE-DIFFERENCE MIGRATION

9.5 HIGHER ANGLE ACCURACY

A wave-extrapolation equation is an expression for the derivative of a wavefield (usually in
the depth z direction). When the wavefield and its derivative are known, extrapolation can
proceed by various numerical representations of

P(z + 1z) = P(z) + 1z
d P

dz
(9.53)

Extrapolation is moving information from z to z+1z and what we need to do it is a way
to find d P/dz. Two theoretical methods for finding d P/dz are the original transformation
method and the newer dispersion-relation method.

9.5.1 Another way to the parabolic wave equation

Here we review the historic “transformation method” of deriving the parabolic wave equation.

A vertically downgoing plane wave is represented mathematically by the equation

P(t , x , z) = P0 e− iω (t− z/v) (9.54)

In this expression, P0 is absolutely constant. A small departure from vertical incidence can
be modeled by replacing the constant P0 with something, say, Q(x , z), which is not strictly
constant but varies slowly.

P(t , x , z) = Q(x , z) e− i ω (t− z/v) (9.55)

Inserting (9.55) into the scalar wave equation Pxx + Pzz = Pt t/v
2 yields

∂2

∂x2 Q +
(

iω

v
+ ∂

∂z

)2
Q = − ω2

v2 Q

∂2Q

∂x2 +
2 iω

v

∂ Q

∂z
+ ∂2 Q

∂z2 = 0 (9.56)

The wave equation has been reexpressed in terms of Q(x , z). So far no approximations have
been made. To require the wavefield to be near to a plane wave, Q(x , z) must be near to a
constant. The appropriate means (which caused some controversy when it was first introduced)
is to drop the highest depth derivative of Q, namely, Qzz . This leaves us with the parabolic
wave equation

∂ Q

∂z
= v

−2 iω

∂2Q

∂x2 (9.57)

I called equation (9.57) the 15◦ equation. After using it for about a year I discovered a way
to improve on it by estimating the dropped ∂zz term. Differentiate equation (9.57) with respect
to z and substitute the result back into equation (9.56) getting

∂2 Q

∂x2 +
2 iω

v

∂ Q

∂z
+ v

−2 iω

∂3 Q

∂z∂x2 = 0 (9.58)

9.5. HIGHER ANGLE ACCURACY 175

I named equation (9.58) the 45◦ migration equation. It is first order in ∂z , so it requires only
a single surface boundary condition, however, downward continuation will require something
more complicated than equation (9.53).

The above approach, the transformation approach, was and is very useful. But people were
confused by the dropping and estimating of the ∂zz derivative, and a philosophically more
pleasing approach was invented by Francis Muir, a way of getting equations to extrapolate
waves at wider angles by fitting the dispersion relation of a semicircle by polynomial ratios.

9.5.2 Muir square-root expansion

Muir’s method of finding wave extrapolators seeks polynomial ratio approximations to a
square-root dispersion relation. Then fractions are cleared and the approximate dispersion
relation is inverse transformed into a differential equation. Recall equation (9.1)

kz =
ω

v

√

1 − v2 k2
x

ω2 (9.59)

To inverse transform the z-axis we only need to recognize that ikz corresponds to ∂/∂z.
Getting into the x-domain, however, is not simply a matter of substituting a second x derivative
for k2

x . The problem is the meaning of the square root of a differential operator. The square
root of a differential operator is not defined in undergraduate calculus courses and there is
no straightforward finite difference representation. The square root becomes meaningful only
when it is regarded as some kind of truncated series expansion. It is shown in IEI that the
Taylor series is a poor choice. Francis Muir showed that my original 15◦ and 45◦ methods
were just truncations of a continued fraction expansion. To see this, define

X = vkx

ω
and R = vkz

ω
(9.60)

With the definitions (9.60) equation (9.59) is more compactly written as

R =
√

1 − X2 (9.61)

which you recognize as meaning that cosine is the square root of one minus sine squared.
The desired polynomial ratio of order n will be denoted Rn , and it will be determined by the
recurrence

Rn+1 = 1 − X2

1 + Rn
(9.62)

The recurrence is a guess that we verify by seeing what it converges to (if it converges). Set
n =∞ in (9.62) and solve

R∞ = 1 − X2

1 + R∞
R∞ (1 + R∞) = 1 + R∞ − X2

R2 = 1 − X2 (9.63)

176 CHAPTER 9. FINITE-DIFFERENCE MIGRATION

The square root of (9.63) gives the required expression (9.61). Geometrically, (9.63) says that
the cosine squared of the incident angle equals one minus the sine squared and truncating the
expansion leads to angle errors. Muir said, and you can verify, that his recurrence relationship
formalizes what I was doing by re-estimating the ∂zz term. Although it is pleasing to think of
large values of n, in real life only the low-order terms in the expansion are used. The first four
truncations of Muir’s continued fraction expansion beginning from R0 = 1 are

5◦ : R0 = 1 (9.64)

15◦ : R1 = 1− X2

2

45◦ : R2 = 1− X2

2− X2

2

60◦ : R3 = 1− X2

2− X2

2− X2

2

For various historical reasons, the equations in the above equations are often referred to as
the 5◦, 15◦, and 45◦ equations, respectively, the names giving a reasonable qualitative (but poor
quantitative) guide to the range of angles that are adequately handled. A trade-off between
complexity and accuracy frequently dictates choice of the 45◦ equation. It then turns out that a
slightly wider range of angles can be accommodated if the recurrence is begun with something
like R0 = cos 45◦. Figure 9.9 shows some plots.

Figure 9.9: Dispersion relation of equation (9.65). The curve labeled 45◦+ was constructed
with R0 = cos45◦. It fits exactly at 0◦ and 45◦. fdm-disper [NR]

9.5. HIGHER ANGLE ACCURACY 177

9.5.3 Dispersion relations

Substituting the definitions (9.60) into equation (9.65) et. seq. gives dispersion relationships
for comparison to the exact expression (9.59).

5◦ : kz = ω

v
(9.65)

15◦ : kz = ω

v
− vk2

x

2ω

45◦ : kz = ω

v
− k2

x

2
ω

v
− vk2

x

2ω

Identification of ikz with ∂/∂z converts the dispersion relations (9.65) into the differential
equations

5◦ :
∂ P

∂z
= i

(

ω

v

)

P (9.66)

15◦ :
∂ P

∂z
= i

(

ω

v
− vk2

x

2ω

)

P

45◦ :
∂ P

∂z
= i









ω

v
− k2

x

2
ω

v
− vk2

x

2ω









P

which are extrapolation equations for when velocity depends only on depth.

The differential equations above in Table 9.4 were based on a dispersion relation that
in turn was based on an assumption of constant velocity. Surprisingly, these equations also
have validity and great utility when the velocity is depth-variable, v = v(z). The limitation is
that the velocity be constant over each depth “slab” of width 1z over which the downward-
continuation is carried out.

9.5.4 The xxz derivative

The 45◦ diffraction equation differs from the 15◦ equation by the inclusion of a ∂3/∂x2∂z
-derivative. Luckily this derivative fits on the six-point differencing star

1
1x2 1z

−1 2 −1

1 −2 1

178 CHAPTER 9. FINITE-DIFFERENCE MIGRATION

So other than modifying the six coefficients on the star, it adds nothing to the computational
cost. Using this extra term allows in programs like subroutine wavemovie() on page 167 yields
wider angles.

Figure 9.10: Figure 9.2 including
the 45◦ term, ∂xxz , for the collaps-
ing spherical wave. What changes
must be made to subroutine wave-

movie() to get this result? Mark an
X at the theoretical focus location.
fdm-Mfortyfive90 [ER,M]

Figure 9.11: The accuracy of the
x-derivative may be improved by a
technique that is analyzed in IEI p
262-265. Briefly, instead of rep-
resenting k2

x 1x2 by the tridiagonal
matrix T with (−1,2,−1) on the main
diagonal, you use T/(I−T/6). Mod-
ify the extrapolation analysis by mul-
tiplying through by the denominator.
Make the necessary changes to the
45◦ collapsing wave program. Left
without 1/6 trick; right, with 1/6 trick.
fdm-Mhi45b90 [ER,M]

Theory predicts that in two dimensions, waves going through a focus suffer a 90◦ phase
shift. You should be able to notice that a symmetrical waveform is incident on the focus, but
an antisymmetrical waveform emerges. This is easily seen in Figure 9.11.

In migrations, waves go just to a focus, not through it. So the migration impulse response
in two dimensions carries a 45◦ phase shift. Even though real life is three dimensional, the two-
dimensional response is appropriate for migrating seismic lines where focusing is presumed
to arise from cylindrical, not spherical, reflectors.

9.5. HIGHER ANGLE ACCURACY 179

9.5.5 Time-domain parabolic equation

The parabolic wave extrapolation equation (9.57) is readily expressed in the time domain
(instead of the ω-domain). Simply replace −iω by a time derivative.

∂2q

∂z ∂t
= v

2
∂2q

∂x2 (9.67)

In principal we never need the time domain because the earth velocity is a constant function
of time. In practice, processes (like DMO) might involve time-dependent coefficients. In the
time domain, a more complicated numerical procedure is required (details in my earlier book
FGDP). An advantage of the time domain is that there is absolutely zero noise preceding a first
arrival — no time-domain wraparound. Another advantage is that all signals are real valued —
no complex arithmetic. A disadvantage arises when the t-axis is not sampled densely enough
— the propagation velocity becomes frequency dispersive.

9.5.6 Wavefront healing

When a planar (or spherical) wavefront encounters an inhomogeneity it can be said to be
“damaged”. If it continues to propagate for a long time, it might be said to “heal”. Here we
construct an example of this phenomena and see that while there is some healing on the front
edge, the overall destruction continues. The original simplicity of the wavefield is further
destroyed by further propagation.

We begin with a plane wave. Then we deform it as though it had propagated through a slow
lens of thickness h(x) = sin x . This is shown in the first frame of Figure 9.12. In subsequent
frames the wavefront has been extrapolated in z using equation (9.67).

Figure 9.12: Snapshots of a wavefront propagating to the right. The picture frame moves along
with the wavefront. (Press button for movie.) fdm-heal [ER,M]

In the second frame we notice convex portions of the wavefront weakening by something
like spherical divergence while concave portions of the wavefront strengthen by focusing.

180 CHAPTER 9. FINITE-DIFFERENCE MIGRATION

In the third frame we have moved beyond the focus and we see something like a parabolic
wavefront emerge from each focus. Now we notice that the original waveform was a doublet
whereas the parabolic wavefronts all have a single polarity. Focusing in 2-D has turned an
asymmetrical wavelet into a symmetrical one.

In the fourth frame we see the paraboloids enlarging and crossing over one another. Inspect
the top or the bottom edges of the 4th and 5th frames. You’ll notice that the intersections of
the wavefronts on these side boundaries are moving forward — towards the initial onset. This
is peculiar. The phase fronts are moving forward while the energy is falling further behind the
original onset.

Finally, in the last frame, we notice the that the front edge of the wave packet has “healed”
into a plane wave — a plane wave like before encounting the original sin(x) velocity lens. I
felt some delight on first viewing this picture. I had spent a couple years of my life looking
at seismograms of earthquakes and nuclear explosions. For each event I had a seismic trace
at each of about a dozen locations. Each trace would have about a hundred wiggles. Nothing
would be consistent from trace to trace except for maybe the half wavelength of the first
arrivals. Quite often these all would luckily begin with the same polarity but then become
rapidly incoherent. Take a dozen random locations on the (vertical) x-axis of the last frame
in Figure 9.12. You’ll find the dozen time signals agree on the first arrival but are randomly
related at later times just as usually seen with nuclear explosion data.

Perhaps if we had very dense recordings of earthquakes we could extrapolate the wavefield
back towards its source and watch the waveform get simpler as we proceeded backward. Often
throughout my career I’ve wondered how I might approach this goal. As we step back in z
we wish, at each step, that we could find the best lens(x). My next book (GEE) has some
clues, but nothing yet concrete enough to begin. We need to optimize some (yet unknown)
expression of simplicity of the wavefield(t , x) at the next z as a function of the lens between
here and there.

Chapter 10

Imaging in shot-geophone space

Till now, we have limited our data processing to midpoint-offset space. We have not analyzed
reflection data directly in shot-geophone space. In practice this is often satisfactory. Some-
times it is not. The principal factor that drives us away from (y,h)-space into (s, g)-space is
lateral velocity variation v(x , z) 6= v(z). In this chapter, we will see how migration can be
performed in the presence of v(x , z) by going to (s, g)-space.

Unfortunately, this chapter has no prescription for finding v(x , z), although we will see
how the problem manifests itself even in apparently stratified regions. We will also see why,
in practice, amplitudes are dangerous.

10.1 TOMOGRAPY OF REFLECTION DATA

Sometimes the earth strata lie horizontally with little irregularity. There we may hope to
ignore the effects of migration. Seismic rays should fit a simple model with large reflection
angles occurring at wide offsets. Such data should be ideal for the measurement of reflection
coefficient as a function of angle, or for the measurement of the earth acoustic absorptivity
1/Q. In his doctoral dissertation, Einar Kjartansson reported such a study. The results were
so instructive that the study will be thoroughly reviewed here. I don’t know to what extent the
Grand Isle gas field typifies the rest of the earth, but it is an excellent place to begin learning
about the meaning of shot-geophone offset.

10.1.1 The grand isle gas field: a classic bright spot

The dataset Kjartansson studied was a seismic line across the Grand Isle gas field, off the
shore of Louisiana. The data contain several classic “bright spots” (strong reflections) on
some rather flat undisturbed bedding. Of interest are the lateral variations in amplitude on
reflections at a time depth of about 2.3 seconds on Figure 10.3. It is widely believed that such
bright spots arise from gas-bearing sands.

181

182 CHAPTER 10. IMAGING IN SHOT-GEOPHONE SPACE

Theory predicts that reflection coefficient should be a function of angle. For an anoma-
lous physical situation like gas-saturated sands, the function should be distinctive. Evidence
should be found on common-midpoint gathers like those shown in Figure 10.1. Looking at
any one of these gathers you will note that the reflection strength versus offset seems to be
a smooth, sensibly behaved function, apparently quite measurable. Using layered media the-
ory, however, it was determined that only the most improbably bizarre medium could exhibit
such strong variation of reflection coefficient with angle, particularly at small angles of inci-
dence. (The reflection angle of the energy arriving at wide offset at time 2.5 seconds is not a
large angle. Assuming constant velocity, arccos(2.3/2.6) = 28◦). Compounding the puzzle,
each common-midpoint gather shows a different smooth, sensibly behaved, measurable func-
tion. Furthermore, these midpoints are near one another, ten shot points spanning a horizontal
distance of 820 feet.

10.1.2 Kjartansson’s model for lateral variation in amplitude

The Grand Isle data is incomprehensible in terms of the model based on layered media theory.
Kjartansson proposed an alternative model. Figure 10.2 illustrates a geometry in which rays
travel in straight lines from any source to a flat horizontal reflector, and thence to the receivers.
The only complications are “pods” of some material that is presumed to disturb seismic rays
in some anomalous way. Initially you may imagine that the pods absorb wave energy. (In the
end it will be unclear whether the disturbance results from energy focusing or absorbing).

Pod A is near the surface. The seismic survey is affected by it twice—once when the pod
is traversed by the shot and once when it is traversed by the geophone. Pod C is near the
reflector and encompasses a small area of it. Pod C is seen at all offsets h but only at one
midpoint, y0. The raypath depicted on the top of Figure 10.2 is one that is affected by all pods.
It is at midpoint y0 and at the widest offset hmax. Find the raypath on the lower diagram in
Figure 10.2.

Pod B is part way between A and C. The slope of affected points in the (y,h)-plane is part
way between the slope of A and the slope of C.

Figure 10.3 shows a common-offset section across the gas field. The offset shown is the
fifth trace from the near offset, 1070 feet from the shot point. Don’t be tricked into thinking
the water was deep. The first break at about .33 seconds is wide-angle propagation.

The power in each seismogram was computed in the interval from 1.5 to 3 seconds. The
logarithm of the power is plotted in Figure 10.4a as a function of midpoint and offset. Notice
streaks of energy slicing across the (y,h)-plane at about a 45◦ angle. The strongest streak
crosses at exactly 45◦ through the near offset at shot point 170. This is a missing shot, as is
clearly visible in Figure 10.3. Next, think about the gas sand described as pod C in the model.
Any gas-sand effect in the data should show up as a streak across all offsets at the midpoint
of the gas sand—that is, horizontally across the page. I don’t see such streaks in Figure 10.4a.
Careful study of the figure shows that the rest of the many clearly visible streaks cut the plane
at an angle noticeably less than±45◦. The explanation for the angle of the streaks in the figure
is that they are like pod B. They are part way between the surface and the reflector. The angle

10.1. TOMOGRAPY OF REFLECTION DATA 183

Figure 10.1: Top left is shot point 210; top right is shot point 220. No processing has been
applied to the data except for a display gain proportional to time. Bottom shows shot points
305 and 315. (Kjartansson) sg-kjcmg [NR]

184 CHAPTER 10. IMAGING IN SHOT-GEOPHONE SPACE

A AA

AAAA
AAAA

AA

AA

AAAAAAAA

AA

AA

B B
B

B
B

B

B
B

B
B

B

B
BB

B
B

B
B

B
B

B
B

B
B

C
C

C
C

C
C

C
C

y

g

h

z

s 0

y

y

y

h

h

0

max

reflector

max

Figure 10.2: Kjartansson’s model. The model on the top produces the disturbed data space
sketched below it. Anomalous material in pods A, B, and C may be detected by its effect on
reflections from a deeper layer. sg-kjidea [NR]

10.1. TOMOGRAPY OF REFLECTION DATA 185

Figure 10.3: A constant-offset section across the Grand Isle gas field. The offset shown is the
fifth from the near trace. (Kjartansson, Gulf) sg-kjcos [NR]

186 CHAPTER 10. IMAGING IN SHOT-GEOPHONE SPACE

Figure 10.4: (a) amplitude (h,y), (b) timing (h,y) (c) amplitude (z,y), (d) timing (d,y) sg-kja
[NR]

10.1. TOMOGRAPY OF REFLECTION DATA 187

determines the depth. Being closer to 45◦ than to 0◦, the pods are closer to the surface than to
the reflector.

Figure 10.4b shows timing information in the same form that Figure 10.4a shows ampli-
tude. A CDP stack was computed, and each field seismogram was compared to it. A residual
time shift for each trace was determined and plotted in Figure 10.4b. The timing residuals on
one of the common-midpoint gathers is shown in Figure 10.5.

Figure 10.5: Midpoint gather 220
(same as timing of (h,y) in Fig-
ure 10.4b) after moveout. Shown is
a one-second window centered at 2.3
seconds, time shifted according to an
NMO for an event at 2.3 seconds, us-
ing a velocity of 7000 feet/sec. (Kjar-
tansson) sg-kjmid [NR]

The results resemble the amplitudes, except that the results become noisy when the am-
plitude is low or where a “leg jump” has confounded the measurement. Figure 10.4b clearly
shows that the disturbing influence on timing occurs at the same depth as that which disturbs
amplitudes.

The process of inverse slant stack (not described in this book) enables one to determine
the depth distribution of the pods. This distribution is displayed in figures 10.4c and 10.4d.

10.1.3 Rotten alligators

The sediments carried by the Mississippi River are dropped at the delta. There are sand bars,
point bars, old river bows now silted in, a crow’s foot of sandy distributary channels, and be-
tween channels, swampy flood plains are filled with decaying organic material. The landscape
is clearly laterally variable, and eventually it will all sink of its own weight, aided by growth
faults and the weight of later sedimentation. After it is buried and out of sight the lateral vari-
ations will remain as pods that will be observable by the seismologists of the future. These
seismologists may see something like Figure 10.6. Figure 10.6 shows a three-dimensional
seismic survey, that is, the ship sails many parallel lines about 70 meters apart. The top plane,
a slice at constant time, shows buried river meanders.

188 CHAPTER 10. IMAGING IN SHOT-GEOPHONE SPACE

Figure 10.6: Three-dimensional seismic data from the Gulf of Thailand. Data planes from
within the cube are displayed on the faces of the cube. The top plane shows ancient river
meanders now submerged. (Dahm and Graebner) sg-meander [ER]

10.1.4 Focusing or absorption?

Highly absorptive rocks usually have low velocity. Behind a low velocity pod, waves should
be weakened by absorption. They should also be strengthened by focusing. Which effect
dominates? How does the phenomenon depend on spatial wavelength? Maybe you can figure
it out knowing that black on Figure 10.4c denotes low amplitude or high absorption, and black
on Figure 10.4d denotes low velocities.

I’m inclined to believe the issue is focusing, not absorption. Even with that assumption,
however, a reconstruction of the velocity v(x , z) for this data has never been done. This falls
within the realm of “reflection tomography”, a topic too difficult to cover here. Tomography
generally reconstructs a velocity model v(x , z) from travel time anomalies. It is worth noticing
that with this data, however, the amplitude anomalies seem to give more reliable information.

EXERCISES:

1 Consider waves converted from pressure P waves to shear S waves. Assume an S-wave
speed of about half the P-wave speed. What would Figure 10.2 look like for these waves?

10.2. SEISMIC RECIPROCITY IN PRINCIPLE AND IN PRACTICE 189

10.2 SEISMIC RECIPROCITY IN PRINCIPLE AND IN PRACTICE

The principle of reciprocity says that the same seismogram should be recorded if the locations
of the source and geophone are exchanged. A physical reason for the validity of reciprocity is
that no matter how complicated a geometrical arrangement, the speed of sound along a ray is
the same in either direction.

Mathematically, the reciprocity principle arises because symmetric matrices arise. The
final result is that very complicated electromechanical systems mixing elastic and electromag-
netic waves generally fulfill the reciprocal principle. To break the reciprocal principle, you
need something like a windy atmosphere so that sound going upwind has a different velocity
than sound going downwind.

Anyway, since the impulse-response matrix is symmetric, elements across the matrix di-
agonal are equal to one another. Each element of any pair is a response to an impulsive source.
The opposite element of the pair refers to an experiment where the source and receiver have
had their locations interchanged.

A tricky thing about the reciprocity principle is the way antenna patterns must be handled.
For example, a single vertical geophone has a natural antenna pattern. It cannot see horizon-
tally propagating pressure waves nor vertically propagating shear waves. For reciprocity to
be applicable, antenna patterns must not be interchanged when source and receiver are inter-
changed. The antenna pattern must be regarded as attached to the medium.

I searched our data library for split-spread land data that would illustrate reciprocity under
field conditions. The constant-offset section in Figure 10.7 was recorded by vertical vibrators
into vertical geophones. The survey was not intended to be a test of reciprocity, so there likely
was a slight lateral offset of the source line from the receiver line. Likewise the sender and
receiver arrays (clusters) may have a slightly different geometry. The earth dips in Figure 10.7
happen to be quite small although lateral velocity variation is known to be a problem in this
area.

In Figure 10.8, three seismograms were plotted on top of their reciprocals. Pairs were
chosen at near offset, at mid range, and at far offset. You can see that reciprocal seismograms
usually have the same polarity, and often have nearly equal amplitudes. (The figure shown is
the best of three such figures I prepared).

Each constant time slice in Figure 10.9 shows the reciprocity of many seismogram pairs.
Midpoint runs horizontally over the same range as in Figure 10.7. Offset is vertical. Data is
not recorded near the vibrators leaving a gap in the middle. To minimize irrelevant variations,
moveout correction was done before making the time slices. (There is a missing source that
shows up on the left side of the figure). A movie of panels like Figure 10.9 shows that the
bilateral symmetry you see in the individual panels is characteristic of all times. On these
slices, you notice that the long wavelengths have the expected bilateral symmetry whereas the
short wavelengths do not.

In the laboratory, reciprocity can be established to within the accuracy of measurement.
This can be excellent. (See White’s example in FGDP). In the field, the validity of reciprocity

190 CHAPTER 10. IMAGING IN SHOT-GEOPHONE SPACE

Figure 10.7: Constant-offset section from the Central Valley of California. (Chevron)
sg-toldi [ER]

Figure 10.8: Overlain reciprocal seismograms. sg-reciptrace [ER]

10.3. SURVEY SINKING WITH THE DSR EQUATION 191

Figure 10.9: Constant time slices after NMO at 1 second and 2.5 seconds. sg-recipslice
[ER]

will be dependent on the degree that the required conditions are fulfilled. A marine air gun
should be reciprocal to a hydrophone. A land-surface weight-drop source should be recipro-
cal to a vertical geophone. But a buried explosive shot need not be reciprocal to a surface
vertical geophone because the radiation patterns are different and the positions are slightly
different. Under varying field conditions Fenati and Rocca found that small positioning errors
in the placement of sources and receivers can easily create discrepancies much larger than the
apparent reciprocity discrepancy.

Geometrical complexity within the earth does not diminish the applicability of the prin-
ciple of linearity. Likewise, geometrical complexity does not reduce the applicability of reci-
procity. Reciprocity does not apply to sound waves in the presence of wind. Sound goes
slower upwind than downwind. But this effect of wind is much less than the mundane ir-
regularities of field work. Just the weakening of echoes with time leaves noises that are not
reciprocal. Henceforth we will presume that reciprocity is generally applicable to the analysis
of reflection seismic data.

10.3 SURVEY SINKING WITH THE DSR EQUATION

Exploding-reflector imaging will be replaced by a broader imaging concept, survey sinking.
A new equation called the double-square-root (DSR) equation will be developed to implement
survey-sinking imaging. The function of the DSR equation is to downward continue an entire
seismic survey, not just the geophones but also the shots. Peek ahead at equation (10.13) and
you will see an equation with two square roots. One represents the cosine of the wave arrival
angle. The other represents the takeoff angle at the shot. One cosine is expressed in terms of
kg, the Fourier component along the geophone axis of the data volume in (s, g, t)-space. The
other cosine, with ks , is the Fourier component along the shot axis.

192 CHAPTER 10. IMAGING IN SHOT-GEOPHONE SPACE

10.3.1 The survey-sinking concept

The exploding-reflector concept has great utility because it enables us to associate the seismic
waves observed at zero offset in many experiments (say 1000 shot points) with the wave
of a single thought experiment, the exploding-reflector experiment. The exploding-reflector
analogy has a few tolerable limitations connected with lateral velocity variations and multiple
reflections, and one major limitation: it gives us no clue as to how to migrate data recorded at
nonzero offset. A broader imaging concept is needed.

Start from field data where a survey line has been run along the x-axis. Assume there
has been an infinite number of experiments, a single experiment consisting of placing a point
source or shot at s on the x-axis and recording echoes with geophones at each possible location
g on the x-axis. So the observed data is an upcoming wave that is a two-dimensional function
of s and g, say P(s, g, t).

Previous chapters have shown how to downward continue the upcoming wave. Downward
continuation of the upcoming wave is really the same thing as downward continuation of the
geophones. It is irrelevant for the continuation procedures where the wave originates. It could
begin from an exploding reflector, or it could begin at the surface, go down, and then be
reflected back upward.

To apply the imaging concept of survey sinking, it is necessary to downward continue the
sources as well as the geophones. We already know how to downward continue geophones.
Since reciprocity permits interchanging geophones with shots, we really know how to down-
ward continue shots too.

Shots and geophones may be downward continued to different levels, and they may be
at different levels during the process, but for the final result they are only required to be at
the same level. That is, taking zs to be the depth of the shots and zg to be the depth of the
geophones, the downward-continued survey will be required at all levels z = zs = zg.

The image of a reflector at (x , z) is defined to be the strength and polarity of the echo seen
by the closest possible source-geophone pair. Taking the mathematical limit, this closest pair
is a source and geophone located together on the reflector. The travel time for the echo is zero.
This survey-sinking concept of imaging is summarized by

Image(x , z) = Wave(s = x , g = x , z, t = 0) (10.1)

For good quality data, i.e. data that fits the assumptions of the downward-continuation method,
energy should migrate to zero offset at zero travel time. Study of the energy that doesn’t do so
should enable improvement of the model. Model improvement usually amounts to improving
the spatial distribution of velocity.

10.3.2 Survey sinking with the double-square-root equation

An equation was derived for paraxial waves. The assumption of a single plane wave means
that the arrival time of the wave is given by a single-valued t(x , z). On a plane of constant z,

10.3. SURVEY SINKING WITH THE DSR EQUATION 193

such as the earth’s surface, Snell’s parameter p is measurable. It is

∂t

∂x
= sin θ

v
= p (10.2)

In a borehole there is the constraint that measurements must be made at a constant x , where
the relevant measurement from an upcoming wave would be

∂t

∂z
= − cos θ

v
= −

√

1
v2 −

(

∂t

∂x

)2
(10.3)

Recall the time-shifting partial-differential equation and its solution U as some arbitrary func-
tional form f :

∂U

∂z
= − ∂t

∂z

∂U

∂t
(10.4)

U = f

(

t −
∫ z

0

∂t

∂z
dz

)

(10.5)

The partial derivatives in equation (10.4) are taken to be at constant x , just as is equation
(10.3). After inserting (10.3) into (10.4) we have

∂U

∂z
=

√

1
v2 −

(

∂t

∂x

)2
∂U

∂t
(10.6)

Fourier transforming the wavefield over (x , t), we replace ∂/∂t by − iω. Likewise, for the
traveling wave of the Fourier kernel exp(− iωt + ikx x), constant phase means that ∂t/∂x =
kx/ω. With this, (10.6) becomes

∂U

∂z
= − iω

√

1
v2 −

k2
x

ω2 U (10.7)

The solutions to (10.7) agree with those to the scalar wave equation unless v is a function of z,
in which case the scalar wave equation has both upcoming and downgoing solutions, whereas
(10.7) has only upcoming solutions. We go into the lateral space domain by replacing ikx by
∂/∂x . The resulting equation is useful for superpositions of many local plane waves and for
lateral velocity variations v(x).

10.3.3 The DSR equation in shot-geophone space

Let the geophones descend a distance dzg into the earth. The change of the travel time of the
observed upcoming wave will be

∂t

∂zg
= −

√

1
v2 −

(

∂t

∂g

)2
(10.8)

194 CHAPTER 10. IMAGING IN SHOT-GEOPHONE SPACE

Suppose the shots had been let off at depth dzs instead of at z = 0. Likewise then,

∂t

∂zs
= −

√

1
v2 −

(

∂t

∂s

)2
(10.9)

Both (10.8) and (10.9) require minus signs because the travel time decreases as either geo-
phones or shots move down.

Simultaneously downward project both the shots and geophones by an identical vertical
amount dz = dzg = dzs . The travel-time change is the sum of (10.8) and (10.9), namely,

dt = ∂t

∂zg
dzg +

∂t

∂zs
dzs =

(

∂t

∂zg
+ ∂t

∂zs

)

dz (10.10)

or
∂t

∂z
= −





√

1
v2 −

(

∂t

∂g

)2
+
√

1
v2 −

(

∂t

∂s

)2


 (10.11)

This expression for ∂t/∂z may be substituted into equation (10.4):

∂U

∂z
= +





√

1
v2 −

(

∂t

∂g

)2
+
√

1
v2 −

(

∂t

∂s

)2




∂U

∂t
(10.12)

Three-dimensional Fourier transformation converts upcoming wave data u(t ,s, g) to U (ω,ks ,kg).
Expressing equation (10.12) in Fourier space gives

∂U

∂z
= − i ω





√

1
v2 −

(

kg

ω

)2
+
√

1
v2 −

(

ks

ω

)2


 U (10.13)

Recall the origin of the two square roots in equation (10.13). One is the cosine of the arrival
angle at the geophones divided by the velocity at the geophones. The other is the cosine of the
takeoff angle at the shots divided by the velocity at the shots. With the wisdom of previous
chapters we know how to go into the lateral space domain by replacing ikg by ∂/∂g and iks

by ∂/∂s. To incorporate lateral velocity variation v(x), the velocity at the shot location must
be distinguished from the velocity at the geophone location. Thus,

∂U

∂z
=





√

(− iω

v(g)

)2
− ∂2

∂g2 +
√

(− iω

v(s)

)2
− ∂2

∂s2



 U (10.14)

Equation (10.14) is known as the double-square-root (DSR) equation in shot-geophone
space. It might be more descriptive to call it the survey-sinking equation since it pushes
geophones and shots downward together. Recalling the section on splitting and full separation
we realize that the two square-root operators are commutative (v(s) commutes with ∂/∂g), so
it is completely equivalent to downward continue shots and geophones separately or together.
This equation will produce waves for the rays that are found on zero-offset sections but are
absent from the exploding-reflector model.

10.3. SURVEY SINKING WITH THE DSR EQUATION 195

10.3.4 The DSR equation in midpoint-offset space

By converting the DSR equation to midpoint-offset space we will be able to identify the famil-
iar zero-offset migration part along with corrections for offset. The transformation between
(g,s) recording parameters and (y,h) interpretation parameters is

y = g + s

2
(10.15)

h = g − s

2
(10.16)

Travel time t may be parameterized in (g,s)-space or (y,h)-space. Differential relations for
this conversion are given by the chain rule for derivatives:

∂t

∂g
= ∂t

∂y

∂y

∂g
+ ∂t

∂h

∂h

∂g
= 1

2

(

∂t

∂y
+ ∂t

∂h

)

(10.17)

∂t

∂s
= ∂t

∂y

∂y

∂s
+ ∂t

∂h

∂h

∂s
= 1

2

(

∂t

∂y
− ∂t

∂h

)

(10.18)

Having seen how stepouts transform from shot-geophone space to midpoint-offset space,
let us next see that spatial frequencies transform in much the same way. Clearly, data could
be transformed from (s, g)-space to (y,h)-space with (10.15) and (10.16) and then Fourier
transformed to (ky ,kh)-space. The question is then, what form would the double-square-root
equation (10.13) take in terms of the spatial frequencies (ky ,kh)? Define the seismic data field
in either coordinate system as

U (s, g) = U ′(y,h) (10.19)

This introduces a new mathematical function U ′ with the same physical meaning as U but,
like a computer subroutine or function call, with a different subscript look-up procedure for
(y,h) than for (s, g). Applying the chain rule for partial differentiation to (10.19) gives

∂U

∂s
= ∂y

∂s

∂U ′

∂y
+ ∂h

∂s

∂U ′

∂h
(10.20)

∂U

∂g
= ∂y

∂g

∂U ′

∂y
+ ∂h

∂g

∂U ′

∂h
(10.21)

and utilizing (10.15) and (10.16) gives
∂U

∂s
= 1

2

(

∂U ′

∂y
− ∂U ′

∂h

)

(10.22)

∂U

∂g
= 1

2

(

∂U ′

∂y
+ ∂U ′

∂h

)

(10.23)

In Fourier transform space where ∂/∂x transforms to ikx , equations (10.22) and (10.23), when
i and U =U ′ are cancelled, become

ks = 1
2

(ky − kh) (10.24)

kg = 1
2

(ky + kh) (10.25)

196 CHAPTER 10. IMAGING IN SHOT-GEOPHONE SPACE

Equations (10.24) and (10.25) are Fourier representations of (10.22) and (10.23). Substituting
(10.24) and (10.25) into (10.13) achieves the main purpose of this section, which is to get the
double-square-root migration equation into midpoint-offset coordinates:

∂

∂z
U = − i

ω

v





√

1 −
(

vky + vkh

2ω

)2
+
√

1 −
(

vky − vkh

2ω

)2


 U (10.26)

Equation (10.26) is the takeoff point for many kinds of common-midpoint seismogram
analyses. Some convenient definitions that simplify its appearance are

G = v kg

ω
(10.27)

S = v ks

ω
(10.28)

Y = v ky

2 ω
(10.29)

H = v kh

2 ω
(10.30)

The new definitions S and G are the sines of the takeoff angle and of the arrival angle of a ray.
When these sines are at their limits of ±1 they refer to the steepest possible slopes in (s, t)-
or (g, t)-space. Likewise, Y may be interpreted as the dip of the data as seen on a seismic
section. The quantity H refers to stepout observed on a common-midpoint gather. With these
definitions (10.26) becomes slightly less cluttered:

∂

∂z
U = − iω

v

(

√

1− (Y +H)2+
√

1− (Y −H)2
)

U (10.31)

EXERCISES:

1 Adapt equation (10.26) to allow for a difference in velocity between the shot and the
geophone.

2 Adapt equation (10.26) to allow for downgoing pressure waves and upcoming shear waves.

10.4 THE MEANING OF THE DSR EQUATION

The double-square-root equation is not easy to understand because it is an operator in a four-
dimensional space, namely, (z,s, g, t). We will approach it through various applications, each
of which is like a picture in a space of lower dimension. In this section lateral velocity variation
will be neglected (things are bad enough already!).

10.4. THE MEANING OF THE DSR EQUATION 197

One way to reduce the dimensionality of (10.14) is simply to set H = 0. Then the two
square roots become the same, so that they can be combined to give the familiar paraxial
equation:

dU

dz
= − iω

2
v

√

1 −
v2 k2

y

4ω2 U (10.32)

In both places in equation (10.32) where the rock velocity occurs, the rock velocity is divided
by 2. Recall that the rock velocity needed to be halved in order for field data to correspond
to the exploding-reflector model. So whatever we did by setting H = 0, gave us the same
migration equation we used in chapter 7. Setting H = 0 had the effect of making the survey-
sinking concept functionally equivalent to the exploding-reflector concept.

10.4.1 Zero-dip stacking (Y = 0)

When dealing with the offset h it is common to assume that the earth is horizontally layered so
that experimental results will be independent of the midpoint y. With such an earth the Fourier
transform of all data over y will vanish except for ky = 0, or, in other words, for Y = 0. The
two square roots in (10.14) again become identical, and the resulting equation is once more
the paraxial equation:

dU

dz
= − iω

2
v

√

1 − v2 k2
h

4ω2 U (10.33)

Using this equation to downward continue hyperboloids from the earth’s surface, we find the
hyperboloids shrinking with depth, until the correct depth where best focus occurs is reached.
This is shown in Figure 10.10.

Figure 10.10: With an earth model of three layers, the common-midpoint gathers are three
hyperboloids. Successive frames show downward continuation to successive depths where
best focus occurs. sg-dc2 [NR]

The waves focus best at zero offset. The focus represents a downward-continued exper-
iment, in which the downward continuation has gone just to a reflector. The reflection is

198 CHAPTER 10. IMAGING IN SHOT-GEOPHONE SPACE

strongest at zero travel time for a coincident source-receiver pair just above the reflector. Ex-
tracting the zero-offset value at t = 0 and abandoning the other offsets amounts to the conven-
tional procedure of summation along a hyperbolic trajectory on the original data. Naturally
the summation can be expected to be best when the velocity used for downward continuation
comes closest to the velocity of the earth.

Actually, the seismic energy will not all go precisely to zero offset; it goes to a focal region
near zero offset. A further analysis (not begun here) can analyze the focal region to upgrade
the velocity estimation. Dissection of this focal region can also provide information about
reflection strength versus angle.

10.4.2 Giving up on the DSR

The DSR operator defined by (10.31) is fun to think about, but it doesn’t really go to any
very popular place very easily. There is a serious problem with it. It is not separable into a
sum of an offset operator and a midpoint operator. Nonseparable means that a Taylor series
for (10.14) contains terms like Y 2 H 2. Such terms cannot be expressed as a function of Y
plus a function of H . Nonseparability is a data-processing disaster. It implies that migration
and stacking must be done simultaneously, not sequentially. The only way to recover pure
separability would be to return to the space of S and G.

This chapter tells us that lateral velocity variation is very important. Where the velocity
is known, we have the DSR equation in shot-geophone space to use for migration. A popular
test data set is called the Marmousi data set. The DSR equation is particularly popular with it
because with synthetic data, the velocity really is known. Estimating velocity v(x , z) with real
data is a more difficult task, one that is only crudely handled by by methods in this book. In
fact, it is not easily done by the even best of current industrial practice.

Chapter 11

Antialiased hyperbolas

A most universal practical problem in geophysics is that we never have enough recordings.
This leads to the danger of spatial aliasing of data. There is no universal cure for this problem
(although there are some specialized techniques of limited validity). A related, but less severe
problem arises with Kirchhoff type operators. This problem is called “operator-aliasing”. It
has a cure, which we investigate in this chapter.

Fourier and finite-difference methods of migration are immune to the operator-aliasing
malady suffered by hyperbola summation (Kirchhoff) migration. Here we will see a way to
overcome the operator-aliasing malady shared by all Kirchhoff-like operators and bring them
up to the quality of phase-shift methods. The antialiasing methods we develop here also lead
to natural ways of handling irregularly sampled data.

We like to imagine that our data is a continuum and that our sums are like integrals. For
practical purposes, our data is adequately sampled in time, but often it is not adequately sam-
pled in space. Sometimes the data is sampled adequately in space, but our operators, such
as hyperbolic integrations, are not adequately represented by a summation ranging over the
x-coordinate picking a value at the nearest time t(x). First we could improve nearest-neighbor
interpolation by using linear interpolation. Linear interpolation, however, is not enough. Trou-
ble arises when we jump from one trace to the next, x→ x+1x , and find that t(x) jumps more
than a single 1t . Then we need a bigger “footprint” on the time axis than the two neighboring
points used by linear interpolation. See Figure 11.1. Note that in some places each value of
x corresponds to several values of t , and other places it is the opposite where one value of t
corresponds to several values of x . An aliasing problem arises when we approximate a line
integral by a simple sum of points, one for each value on the x-axis instead of using the more
complicated trajectory that you see in Figure 11.1.

11.0.1 Amplitude pitfall

In geophysics we often discuss signal amplitude versus offset distance. It sounds easy, but
there are some serious pitfalls. Such pitfalls are one reason why mathematicians often use

199

200 CHAPTER 11. ANTIALIASED HYPERBOLAS

Figure 11.1: To integrate along hy-
perbolas without aliasing, you should
include (at least) the points shown.
trimo-nmotraj [ER]

nonintuitive weasel words. The best way for you to appreciate the pitfall is for me to push you
into the pit.

Suppose we are writing a seismogram modeling program and we wish to model an impul-
sive plane wave of unit amplitude. Say the signal seen at x is (· · · , 0,0,1,0,0, · · ·). At x+1x
the plane wave is shifted in time so that the impulse lies half way between two points, say it
is (· · · , 0,0,a,a, 0,0, · · ·). The question is, “what should be the value of a?” There are three
contradictory points of view:

1. The amplitude a should be 1 so that the peak amplitude is constant with x .

2. The amplitude a should be 1/
√

2 so that both seismic signals have the same energy.

3. The amplitude a should be 1/2 so that both seismic signals have the same area.

Make your choice before reading further.

What is important in the signal is not the high frequencies especially those near the
Nyquist. We cannot model the continuous universe with sampled data at frequencies above the
Nyquist frequency nor can we do it well or easily at frequencies approaching the Nyquist. For
example, at half the Nyquist frequency, a derivative is quite different from a finite difference.
What we must try to handle correctly is the low frequencies (the adequately sampled signals).
The above three points of view are contradictory at low frequencies. Examine only the zero
frequency of each. Sum over time. Only by choosing equal areas a = 1/2 do the two signals
have equal strength. The appropriate definition of amplitude on a sampled representation of
the continuum is the area per unit time. Think of each signal value as representing the integral
of the continuous amplitude from t−1t/2 to t+1t/2. Amplitude defined in this way cannot
be confounded by functions oscillating between the sampled values.

Consider the task of abandoning data: We must reduce data sampled at a two millisecond
rate to data sampled at a four millisecond rate. A method with aliasing is to abandon alternate
points. A method with reasonably effective antialiasing is to convolve with the rectangle (1,1)
(add two neighboring values) and then abandon alternate values. Without the antialiasing,
you could lose the impulse on the (· · · , 0,0,1,0,0, · · ·) signal. A method with no aliasing is
to multiply in the frequency domain by a rectangle function between ± Nyquist/2 (equivalent
to convolving with a sinc function) and then abandoning alternate data points. This method
perfectly preserves all frequencies up to the new Nyquist frequency (which is half the original).

11.1. MIMICING FIELD ARRAY ANTIALIASING 201

11.1 MIMICING FIELD ARRAY ANTIALIASING

In geophysical data recording there is usually a local array whose elements are added locally
before a single channel is recorded. For example, the SEP student group once laid out more
than 4056 geophones in a two-dimensional array of 13× 13 recorders with 24 geophones
added at each recorder. We may think of the local superposition as an integration over a small
interval of space to create a sampled space function from a continuous one. With vibrator
sources, it is also customary to vibrate on various nearby source locations and sum them into
a single signal. Figure 11.2 is a caricature of what happens. On the left a data field appears to
be a continuous function of space (it is actually 500 spatial locations) with various impulsive
signals at different times and distances. For simplicity, all signals have unit amplitude. The

Figure 11.2: Quasicontinuous field (left) added in groups (right). trimo-oversamp [ER]

500 signals are segregated into 10 groups of 50 and each group of 50 is summed into a single
channel. The various signals sum to functions that could be called “slump shouldered rectan-
gles.” If both x and t-meshes were refined further, the “slump shoulders” on the rectangles
would diminish in importance and we would notice that the rectangles were still imperfect.
This is because the rectangle approximation arises from the approximation that the hyperbola
is a straight line within the group. In reality, there is curvature and the effect of curvature is
strongest near the apex, so the rectangle approximation is poor at the apex.

Some of the rectangles are longer than others. The narrow ones are tall and the wide
ones are short because the area of each rectangle must be 50 (being the sum of 50 channels
each holding a 1). Since the rectangles all have the same area, were we to lowpass filter the
sparse data we would recover the original characteristic that all these signals have the same
amplitude.

Figure 11.3 shows a quasisinusoidal signal and compares subsampling to antialiasing via
field arrays as in Figure 11.2. We see that aliased energy has been surpressed but not removed.
Let us see how we can understand the result and how we could do better (but we won’t). Sup-
pose that the 500 channels had been individually recorded. The right panel in Figure 11.3 was
computed simply by adding in groups of 25. A lengthier explanation of the calculation is that

202 CHAPTER 11. ANTIALIASED HYPERBOLAS

Figure 11.3: 500 channels (left), subsampled to 20 (middle), added in groups of 25(right).
trimo-subsampvrsaa [ER]

the 500 channels were convolved along the horizontal x-axis with a 25 point long rectangle
function. Then the 500 channel output was subsampled to 20 channels. This lengthier calcu-
lation gives the same result but has a simple Fourier explanation: Convolving with a rectangle
function of x is the Fourier equivalent to multiplying by a sinc function sin(kx1x)/(kx1x)
in the Fourier domain. We have convolved with a rectangle in the physical domain which
amounts to multiplication by a sinc function in the Fourier domain. Theoretically we would
prefer to have done it the other way around, convolved with a sinc in the physical domain,
equivalently multiplying with a rectangle in the Fourier domain. The Fourier rectangle would
drop to zero at half Nyquist and thus subsampling would not fold back any energy from above
the half Nyquist to below it. Although Figure 11.3 shows that the aliased information is
strongly suppressed, you can see that it has not been eliminated. Had we instead convolved
with a sinc on the x-axis, the Fourier function would have been a rectangle. You would see the
wavefronts in Figure 11.3 (right panel) vanishing where the dip reached a critical threshhold
instead of seeing the wavefronts gradually tapering off and weak aliased events still being
visible.

11.1.1 Adjoint of data acquisition

Knowing how data is recorded, or how we would like it to be recorded, suggests various
possibilities for data processing. Should we ignore the little rectangle functions, or should
we include them in the data processing? Figure 11.4 shows a simple model and its implied
data, along with migrations, with and without attention to aliasing the horizontal space axis.
The figure shows that migration without attention to aliasing leads to systematic noise and
(apparently) random noise.

This figure is based on realistic parameters except that I compute and display the results
on a very coarse mesh (20× 100) to enable you to see clearly the phenomena of numerical
analysis. No additional values were used between mesh points or off the edges of what is

11.1. MIMICING FIELD ARRAY ANTIALIASING 203

Figure 11.4: Top left is a synthetic image. Top right is synthetic data from the synthetic image.
Bottom are migrations of the data with and without antialiasing. trimo-migalias [ER]

shown.

The practical need to limit operator aliasing is often reduced by three indirect measures.
First is temporal low pass filtering which has the unfortunate side effect of reducing the tem-
poral bandwidth. Second is dip limiting (limiting the aperture of the hyperbola) which has
the unfortunate side effect of limiting the dip bandwidth. Third is interlacing the data traces.
Interpolating the data also interpolates the operator so if enough trace interpolation is done,
the operator is no longer subsampled. A disadvantage of data interpolation is that the data
becomes more bulky. Here we attack the operator aliasing problem directly.

A simple program designed for antialiasing gave the result in Figure 11.5. A zero-offset
signal is input to adjoint NMO to make synthetic data which is then NMO’ed and stacked.
Notice that the end of each rectangle is the beginning of the rectangle at the next offset. You
might fear the coding that led up to Figure 11.5 is a fussy and inefficient business because of
all the short little summation loops. Luckily, there is a marvelous little formula that allows
us to express the integral under any of the little rectangles, no matter how many points it
contains, by a single subtraction. Integration is the key. It is only necessary to realize that
the sums are, like a definite integral, representable by the difference of the indefinite integral
at each end. In other words, to find the sum of all the values between it and it+n we begin
with a recursive summation such as qq(it)=qq(it-1)+pp(it) . Then, any sum of values like
pp(it)+ · · ·+p(it+n) is simply qq(it+n+1) - qq(it) .

Figure 11.5 is not fully consistent with Figure 11.1. In Figure 11.5 notice that the last
point in each rectangular area overlaps the next rectangular area by one point. Overlap could

204 CHAPTER 11. ANTIALIASED HYPERBOLAS

Figure 11.5: Rectangle smoothing
during NMO and stacking. Notice
that the end of one rectangle exactly
coincides with the beginning of the
rectangle at next larger offset. Thus,
rectangle width increases with off-
set and decreases with time. (an-
tialias=1.) trimo-boxmo1 [ER]

be avoided by shortening each rectangle by one point, but then rectangles near the apex of
the hyperbola would have zero length which is wholly unacceptable. Should we write a code
to match Figure 11.1? This would be better, but far from perfect. Notice in Figure 11.1 that
a horizontal sum of the number of boxes is not a smooth function of time. To achieve more
smoothness, we later turn to triangles, but first we look at some implementation details for
rectangles.

11.1.2 NMO and stack with a rectangle footprint

A subroutine for causal summation is subroutine causint() on page 20. Recall that the adjoint
of causal integration is anticausal integration. For each reflector, data modeling proceeds by
throwing out two pulses of opposite polarity. Then causal summation produces a rectangle
between the pulses (sometimes called “box car”). Since the last step in the modeling operator
is causal summation, the first step in the adjoint operator (which does NMO) is anticausal
summation. Thus each impulse in the data becomes a rectangle from the impulse to t = 0.
Then subtracting values at rectangle ends gives the desired integral of data in the rectangle.
The code is in subroutines boxmo() and boxstack() . The traveltime depth τ is denoted by
z in the code. The inverse of the earth velocity v(τ), called the slowness s(τ), is denoted by
slow(iz) .

subroutine boxmo(adj, add, t0,dt, dx, x, nt,slow, antialias, zz, tt)

integer it,iz,itp,adj, add, nt

real t, tp, z, amp, t0,dt, dx, x, slow(nt), antialias, zz(nt), tt(nt)

11.1. MIMICING FIELD ARRAY ANTIALIASING 205

temporary real ss(nt)

call null(ss,nt); call adjnull(adj, add, zz,nt, tt,nt)

if(adj != 0) call causint(1, 0, nt, ss, tt)

do iz= 2, nt { z = t0 + dt*(iz-1)

t = sqrt(z**2 + (slow(iz)* abs(x))**2); it = 1.5 + (t -t0)/dt

tp= sqrt(z**2 + (slow(iz)*(abs(x)+abs(dx)))**2)

tp = t + antialias * (tp - t) + dt; itp= 1.5 + (tp-t0)/dt

amp = sqrt(nt*dt/t) * z/t / (itp - it)

if (itp < nt) {

if(adj == 0) { ss(it) = ss(it) + amp * zz(iz)

ss(itp) = ss(itp) - amp * zz(iz)

}

else { zz(iz) = zz(iz) + amp * ss(it)

zz(iz) = zz(iz) - amp * ss(itp)

}

}

}

if(adj == 0) call causint(0, add, nt, ss, tt)

return; end

subroutine boxstack(adj,add,slow,antialias, t0,dt,x0,dx,nt,nx, stack, gather)

integer adj, add, ix, nx, nt

real x, slow(nt),antialias, t0,dt,x0,dx, stack(nt), gather(nt,nx)

call adjnull(adj, add, stack, nt, gather, nt*nx)

do ix= 1, nx { x = x0 + dx * (ix-1)

call boxmo(adj,1, t0,dt,dx,x,nt, slow,antialias, stack, gather(1,ix))

}

return; end

To find the end points of the rectangular intervals, given the vertical travel time, I get the
time t , in the usual way. Likewise I get the time, tp , on the next further-out trace for the
ending location of the rectangle wavelet. I introduce a parameter called antialias that can be
used to increase or decrease the tp-t gap. Normally antialias=1.

Theoretical solutions to various problems lead to various expressions for amplitude along
the hyperbola. I set the amplitude amp by a complicated expression that I do not defend or
explain fully here but merely indicate that: a “divergence” correction is in the factor 1/

√
t ; a

cosine like “obliquity” scale is z/t ; and the wavelet area must be conserved, so the height is
inversely proportional to the pulse width (itp - it) . Wavelet area is conserved to assure that
after low-pass filtering, the strength of a wave is independent of whether it straddled two mesh
points as (.5, .5) or lay wholly on one of them as (1,0).

To test a limiting case, I set the antialias parameter to zero and show the result in Fig-
ure 11.6 which is the same as the simple prescription to “sum over the x-axis.” We notice that
the final stack is not the perfect impulses that we began with. The explanation is: information
can be expanded in time and then compressed with no loss, but here it is compressed first
and then expanded, so the original location is smeared. Notice also that the full amplitude is
not recovered on the latest event. The explanation is that a significant fraction of the angular
aperture has been truncated at the widest offset.

206 CHAPTER 11. ANTIALIASED HYPERBOLAS

Figure 11.6: Rectangles shortened to
one point duration. (antialias=0.)
trimo-boxmo0 [ER]

11.1.3 Coding a triangle footprint

We should take some care with anti-aliasing in data processing. The anti-aliasing measures we
take, however, need not match the field recording. If the field arrays were rectangles, we could
use triangles or sincs in the data processing. It happens that triangles are an easy extension of
the rectangle work that we have been doing and triangles make a big step in the right direction.

For an input pulse, the output of integration is a step. The output of a second integration is
a ramp. For an input triplet (1,0,0,−2,0,0,1) the output of two integrations is a short triangle.
An easy way to assure time alignment of the triangle center with the triplet center is to integrate
once causally and once anticausally as done in subroutine doubint() on this page.

Double integration, first causal, then anticausal.

#

subroutine doubint(adj, add, n, pp , qq)

integer adj, add, n; real pp(n), qq(n)

temporary real tt(n)

call adjnull(adj, add, pp,n, qq,n)

if(adj == 0) { call causint(0, 0, n,pp, tt)

call causint(1, add, n,qq, tt)

}

else { call causint(1, 0, n,tt, qq)

call causint(0, add, n,tt, pp)

}

return; end

You can imagine placing the ends and apex of each triangle at a nearest neighbor mesh
point as we did with the rectangles. Instead I place these ends more precisely on the mesh
with linear interpolation. Subroutine lint1() on page 19 does linear interpolation, but here
we need weighted results as provided by spotw() on this page.

Scaled linear interpolation.

#

subroutine spotw(adj, add, scale, nt,t0,dt, t, val, vec)

integer it,itc, adj, add, nt

11.1. MIMICING FIELD ARRAY ANTIALIASING 207

real tc, fraction, scale, t0,dt, t, val, vec(nt)

call adjnull(adj, add, val,1, vec,nt)

tc = .5+ (t-t0) / dt; itc = tc; it = 1 + itc; fraction = tc - itc

if(1 <= it && it < nt) {

if(adj == 0) {

vec(it) = vec(it) + (1.-fraction) * val * scale

vec(it+1) = vec(it+1) + fraction * val * scale

}

else

val = val + ((1.-fraction) * vec(it) +

fraction * vec(it+1)) * scale

}

else

call erexit(’spotw: at boundary’)

return; end

Using these subroutines, I assembled the stacking subroutine tristack() and the NMO
routine trimo() with triangle wavelets. The triangle routines are like those for rectangles
except for some minor changes. Instead of computing the theoretical locations of impulses on
nearer and further traces, I assumed a straight line tangent to the hyperbola t 2 = τ 2+ x2/v2.
Differentiating by x at constant τ gives the slope dt/dx = x/(v2t). As before, the area of the
the wavelets, now triangles must be preserved. The area of a triangle is proportional to the
base times the height. Since the triangles are built from double integration ramp functions, the
height is proportional to the base length. Thus to preserve areas, each wavelet is scaled by the
inverse squared of the triangle’s base length. Results are shown in Figures 11.7 and 11.8.

Figure 11.7: Triangle wavelets, ac-
curately positioned, but aliased (an-
tialias=0.) trimo-trimo0 [ER]

Modeling and stacking using triangle weighted moveout.

#

subroutine tristack(adj,add, slow,anti,t0,dt,x0,dx, nt,nx, stack, gather)

integer ix, adj,add, nt,nx

real x, slow(nt),anti,t0,dt,x0,dx, stack(nt), gather(nt,nx)

call adjnull(adj, add, stack,nt, gather,nt*nx)

do ix= 1, nx { x = x0 + dx * (ix-1)

call trimo(adj,1,t0,dt,dx, x, nt,slow,0.,1.,anti,stack, gather(1,ix))

}

return; end

208 CHAPTER 11. ANTIALIASED HYPERBOLAS

Figure 11.8: Antialiased triangle
wavelets. (antialias=1.) Where
ever triangle duration is more than
about three points, the end of one
triangle marks the apex of the next.
trimo-trimo1 [ER]

moveout with triangle shaped smoothing window.

#

subroutine trimo(adj, add, t0,dt, dx,x, nt, slow, s02, wt, anti, zz, tt)

integer iz,itp,itm,adj, add, nt

real t0,dt, dx,x, slow(nt), s02, wt, anti, zz(nt),tt(nt)

real z, t,tm,tp, amp, slope

temporary real ss(nt)

call null(ss,nt); call adjnull(adj, add, zz,nt, tt,nt)

if(adj != 0) call doubint(1, 0, nt, ss, tt)

do iz= 2, nt { z = t0 + dt * (iz-1)

t = sqrt(z**2 + (slow(iz) * x)**2)

slope = anti * (slow(iz)**2 - s02) * x / t

tm = t - abs(slope * dx) - dt; itm = 1.5 + (tm-t0) / dt

if(itm <= 1) next

tp = t + abs(slope * dx) + dt; itp = 1.5 + (tp-t0) / dt

if(itp >= nt) break

amp = wt * sqrt(nt*dt/t) * z/t * (dt/(dt+tp-tm)) ** 2

call spotw(adj, 1, -amp, nt,t0,dt,tm, zz(iz), ss)

call spotw(adj, 1, 2*amp, nt,t0,dt,t , zz(iz), ss)

call spotw(adj, 1, -amp, nt,t0,dt,tp, zz(iz), ss)

}

if(adj == 0) call doubint(0, add, nt, ss, tt)

return; end

From the stack reconstruction of the model in Figure 11.8 we see the reconstruction is more
blured with antialiasing than it was without in Figure 11.7. The benefit of antialiasing will
become clear next in more complicated examples where events cross.

11.2 MIGRATION WITH ANTIALIASING

Subroutine aamig() below does migration and diffraction modeling using subroutine trimo()

as the workhorse.

anti-aliased kirchhoff migration (adj=1) and modeling (adj=0)

11.2. MIGRATION WITH ANTIALIASING 209

#

subroutine aamig(adj,add, slow,antialias,t0,dt, dx, nt,nx, image, data)

integer adj, add, ix, nx, nt, iy

real h, slow(nt),antialias,t0,dt, dx, image(nt,nx), data(nt,nx)

call adjnull(adj, add, image,nt*nx, data,nt*nx)

do ix= 1, nx {

do iy= 1, nx {

h = dx * (iy - ix)

call trimo(adj, 1, t0,dt,dx, h, nt,slow, 0., 1., antialias, _

image(1,iy), data(1,ix))

}}

return; end

Figure 11.9 shows the synthetic image that is used for testing. There is a horizontal layer, a
dipping layer, and a few impulses. The impulses are chosen stronger than the layers because
they will spread out in the synthetic data. The velocity is taken constant. Figure 11.10 shows

Figure 11.9: Model image for migra-
tion study. trimo-aamod [ER]

synthetic data made without regard for aliasing. The hyperbolas look fine—the way we expect.
The horizontal layer, however, is followed by many pseudo layers. These pseudo layers are
the result of modeling with an operator that is spatially aliased. Figure 11.11 shows how the
synthetic data improves dramatically when aliasing is taken into account. The layers look fine
now. The hyperbolas, however, have a waveform that is rapidly changing with offset from the
apex. This changing waveform is an inevitable consequence of the anti-aliasing. The apex
has a huge amplitude because the temporal bandwidth is widest at the apex (because the dip
is zero there, there is no filtering away of high spatial frequencies). Simple low-pass temporal
filtering (not shown) will cause the wavelet to be largely independent of offset.

Do not confuse aliased data with synthetic data made by an aliased operator. To make
aliased data, you would start from good data, such as Figure 11.11, and throw out alternate
traces. More typically, the earth makes good data and we fail to record all the needed traces
for the quality of our field arrays.

The horizontal layer in Figure 11.11 has a waveform that resembles a damped step function
which is related to the Hankel tail we studied in chapter 6 where subroutine halfdifa() on

210 CHAPTER 11. ANTIALIASED HYPERBOLAS

Figure 11.10: Synthetic data with-
out regard for aliasing. Made from
model image with aamig() taking
antialias=0. trimo-aad0 [ER]

Figure 11.11: Synthetic data ac-
counting for aliasing. Made from
model image with aamig() taking
antialias=1. trimo-aad1 [ER]

11.2. MIGRATION WITH ANTIALIASING 211

page 99 was introduced to provide the filter required to convert the waveform on the horizontal
layer in Figure 11.11 back to an impulse. This was done in Figure 11.12. You can see the final
flat-layer waveform is roughly the zero-phase shape we started with. Figure 11.13 shows my

Figure 11.12: Best synthetic data.
Made from model image using
aamig() with antialias=1 followed
by a causal half-order time deriva-
tive. Lowpass temporal filtering
would make wavelets more inde-
pendent of location on a hyperbola.
trimo-aad1h [ER]

best migration of my best synthetic data. All the features of the original model are apparent.
Naturally, high frequencies are lost, more on the dipping bed than the level one. Likewise the
broadening of the deeper point scatterer compared to the shallow one is a well known aperture
effect. Figure 11.14 shows what happens when antialiasing is ignored in migration. Notice

Figure 11.13: Best migration of
best synthetic data. Uses aamig()

with antialias=2 followed by an
anticausal half-order time derivative.
trimo-aamig2 [ER]

many false layers above the given horizontal layer. Notice semicircles above the impulses.
Notice apparent noise everywhere. But notice also that the dipping bed is sharper than the
antialiased result in Figure 11.13.

11.2.1 Use of the antialiasing parameter

Migration requires antialiasing, even where the earth has zero dip. This is because the earth’s
horizontal layers cut across the migration hyperbola. An interesting extension is where the

212 CHAPTER 11. ANTIALIASED HYPERBOLAS

Figure 11.14: Migration of best
synthetic data without regard for
aliasing. Uses aamig() with an-

tialias=0. (and an anticausal half-
order time derivative) trimo-aamig0
[ER]

earth has dipping layers. There the slope parameter could be biased to account for it.

Where the earth contains hyperbolas, they will cut steeply across our migration hyperbola.
Figure 11.15 suggests that such hyperbolas require an antialias parameter greater than unity,
say antialias=2.

Figure 11.15: Crossing hyperbolas
that do not touch. Thus the points
shown are not enough to prevent
spatial aliasing a line integral along
one trajectory of signal on the other.
trimo-croshyp [ER]

11.2.2 Orthogonality of crossing plane waves

Normally, waves do not contain zero frequency. Thus the time integral of a waveform normally
vanishes. Likewise, for a dipping plane wave, the time integral vanishes. Likewise, a line
integral across the (t , x)-plane along a straight line that crosses a plane wave or a dipping
plane wave vanishes. Likewise, two plane waves with different slopes should be orthogonal if
one of them has zero mean.

I suggest that spatial aliasing may be defined and analyzed with reference to plane waves
rather than with reference to frequencies. Aliasing is when two planes that should be orthogo-
nal, are not. This is like two different frequency sinusoids. They are orthogonal except perhaps

11.2. MIGRATION WITH ANTIALIASING 213

if there is aliasing.

214 CHAPTER 11. ANTIALIASED HYPERBOLAS

Chapter 12

RATional FORtran == Ratfor

Bare-bones Fortran is our most universal computer language for computational physics. For
general programming, however, it has been surpassed by C. “Ratfor" is Fortran with C-like
syntax. I believe Ratfor is the best available expository language for mathematical algorithms.
Ratfor was invented by the people who invented C. Ratfor programs are converted to Fortran
with the Ratfor preprocessor. Since the preprocessor is publicly available, Ratfor is practi-
cally as universal as Fortran.1

You will not really need the Ratfor preprocessor or any precise definitions if you already
know Fortran or almost any other computer language, because then the Ratfor language will
be easy to understand. Statements on a line may be separated by “;". Statements may be
grouped together with braces { }. Do loops do not require statement numbers because { }
defines the range. Given that if() is true, the statements in the following { } are done. else{
} does what you expect. We may not contract else if to elseif . We may always omit the
braces { } when they contain only one statement. break will cause premature termination of
the enclosing { }. break 2 escapes from {{ }}. while() { } repeats the statements in { }
while the condition () is true. repeat { ... } until() is a loop that tests at the bottom.
A looping statement more general than do is for(initialize; condition; reinitialize) { } . An
example of one equivalent to do i=0,n-1 is the looping statement for(i=0;i <n;i=i+i) . The
statement next causes skipping to the end of any loop and a retrial of the test condition.
next is rarely used, but when it is, we must beware of an inconsistency between Fortran and
C-language. Where Ratfor uses next , the C-language uses continue (which in Ratfor and
Fortran is merely a place holder for labels). The Fortran relational operators .gt. , .ge. , .ne. ,
etc. may be written >, >=, !=, etc. The logical operators .and. and .or. may be written
& and |. Anything from a # to the end of the line is a comment. Anything that does not
make sense to the Ratfor preprocessor, such as Fortran input-output, is passed through without
change. (Ratfor has a switch statement but we never use it because it conflicts with the
implicit undefined declaration. Anybody want to help us fix the switch in public domain

1Kernighan, B.W. and Plauger, P.J., 1976, Software Tools: Addison-Wesley. Ratfor was invented at
AT&T, which makes it available directly or through many computer vendors. The original Ratfor trans-
forms Ratfor code to Fortran 66. See http://sepwww.stanford.edu/sep/prof for a public-domain Ratfor
translator to Fortran 77.

215

216 CHAPTER 12. RATIONAL FORTRAN == RATFOR

Ratfor?)

Indentation in Ratfor is used for readability. It is not part of the Ratfor language. Choose
your own style. I have overcondensed. There are two pitfalls associated with indentation.
The beginner’s pitfall is to assume that a do loop ends where the indentation ends. The loop
ends after the first statement. A larger scope for the do loop is made by enclosing multiple
statements in braces. The other pitfall arises in any construction like if() ... if() ...

else . The else goes with the last if() regardless of indentation. If you want the else with
the earlier if() , you must use braces like if() { if() ... } else

The most serious limitation of Fortran-77 is its lack of ability to allocate temporary mem-
ory. I have written a preprocessor to Ratfor or Fortran to overcome this memory-allocation
limitation. This program, named sat , allows subroutines to include the declaration temporary

real data(n1,n2) , so that memory is allocated during execution of the subroutine where the
declaration is written. Fortran-77 forces us to accomplish something like this More recently
Bob Clapp has prepared Ratfor90, a Perl-based preprocessor to Fortran 90 that incorporates
the desireable features of both ratfor and Fortran 90 and is backward compatible to the codes
of this book.

Chapter 13

Seplib and SEP software

Most of the seismic utility software at SEP1 Stanford Exploration Project (SEP) software
handles seismic data as a rectangular lattice or “cube” of numbers. Each cube-processing
program appends to the history file for the cube. Preprocessors extend Fortran (or Ratfor) to
enable it to allocate memory at run time, to facilitate input and output of data cubes, and to
facilitate self-documenting programs.

At SEP, a library of subroutines known as seplib evolved for routine operations. These
subroutines mostly handle data in the form of cubes, planes, and vectors. A cube is defined by
14 parameters with standard names and two files: one the data cube itself, and the other con-
taining the 14 parameters and a history of the life of the cube as it passed through a sequence
of cube-processing programs. Most of these cube-processing programs have been written by
researchers, but several nonscientific cube programs have become highly developed and are
widely shared. Altogether there are (1) a library of subroutines, (2) a library of main programs,
(3) some naming conventions, and (4) a graphics library called vplot . The subroutine library
has good manual pages. The main programs rarely have manual pages, their documentation
being supplied by the on-line self-documentation that is extracted from the comments at the
beginning of the source file. Following is a list of the names of popular main programs:

Byte Scale floats to brightness bytes for raster display.
Cat Concatenate conforming cubes along the 3-axis.
Contour Contour plot a plane.
Cp Copy a cube.
Dd Convert between ASCI, floats, complex, bytes, etc.
Dots Plot a plane of floats.
Ft3d Do three-dimensional Fourier transform.
Graph Plot a line of floats.
In Check the validity of a data cube.
Merge Merge conforming cubes side by side on any axis.

1Old reports of the Stanford Exploration Project can be found in the library of the Society of Exploration
Geophysicists in Tulsa, Oklahoma.

217

218 CHAPTER 13. SEPLIB AND SEP SOFTWARE

Movie View a cube with Rick Ottolini’s cube viewer.
Noise Add noise to data.
Reverse Reverse a cube axis.
Spike Make a plane wave of synthetic data.
Ta2vplot Convert a byte format to raster display with vplot .
Tpow Scale data by a power of time t (1-axis).
Thplot Make a hidden line plot.
Transpose Transpose cube axes.
Tube View a vplot file on a screen.
Wiggle Plot a plane of floats as “wiggle traces.”
Window Find a subcube by truncation or subsampling.

To use the cube-processing programs, read this document, and then for each command,
read its on-line self-documentation. To write cube-processing programs, read the manual page
for seplib and the subroutines mentioned there and here. To write vplot programs, see the
references on vplot .

13.1 THE DATA CUBE

The data cube itself is like a Fortran three-dimensional matrix. Its location in the computer
file system is denoted by in=PATHNAME , where in= is the literal occurrence of those three char-
acters, and PATHNAME is a directory tree location like /data/western73.F . Like the Fortran
cube, the data cube can be real, complex, double precision, or byte, and these cases are distin-
guished by the element size in bytes. Thus the history file contains one of esize=4 , esize=8 ,
or esize=1 , respectively. Embedded blanks around the “=” are always forbidden. The cube
values are binary information; they cannot be printed or edited (without the intervention of
something like a Fortran “format”). To read and write cubes, see the manual pages for such
routines as reed, sreed, rite, srite, snap .

A cube has three axes. The number of points on the 1-axis is n1 . A Fortran declaration of
a cube could be real mydata(n1,n2,n3) . For a plane, n3=1 , and for a line, n2=1 . In addition,
many programs take “1” as the default for an undefined value of n2 or n3 . The physical
location of the single data value mydata(1,1,1) , like a mathematical origin (o1,o2,o3), is
denoted by the three real variables o1 , o2 , and o3 . The data-cube values are presumed to
be uniformly spaced along these axes like the mathematical increments (11,12,13), which
may be negative and are denoted by the three real variables d1 , d2 , and d3 . Each axis has a
label, and naturally these labels are called label1 , label2 , and label3 . Examples of labels
are kilometers , sec , Hz , and "offset, km" . Most often, label1="time, sec" . Altogether
that is 2+3×4 parameters, and there is an optional title parameter that is interpreted by most
of the plot programs. An example is title="Yilmaz and Cumro Canada profile 25" . We
reserve the names n4,o4,d4, and label4 (a few programs support them already), and please
do not use n5 etc. for anything but a five-dimensional cubic lattice.

13.2. THE HISTORY FILE 219

13.2 THE HISTORY FILE

The 15 parameters above, and many more parameters defined by authors of cube-processing
programs, are part of the “history file" (which is ASCI, so we can print it). A great many
cube-processing programs are simple filters—i.e., one cube goes in and one cube comes out—
and that is the case I will describe in detail here. For other cases, such as where two go in
and one comes out, or none go in and one comes out (synthetic data), or one goes in and none
come out (plotting program), I refer you to the manual pages, particularly to subroutine names
beginning with aux (as in “auxiliary").

Let us dissect an example of a simple cube-processing program and its use. Suppose
we have a seismogram in a data cube and we want only the first 500 points on it, i.e., the
first 500 points on the 1-axis. A utility cube filter named Window will do the job. Our com-
mand line looks like < mygiven.H Window n1=500 > myshort.H On this command line,
mygiven.H is the name of the history file of the data we are given, and myshort.H is the his-
tory file we will create. The moment Window , or any other seplib program, begins, it copies
mygiven.H to myshort.H ; from then on, information can only be appended to myshort.H .
When Window learns that we want the 1-axis on our output cube to be 500, it does call

putch(’n1’,’i’,500) , which appends n1=500 to myshort.H . But before this, some other
things happen. First, seplib ’s internals will get our log-in name, the date, the name of the
computer we are using, and Window ’s name (which is Window), and append these to myshort.H .
The internals will scan mygiven.H for in=somewhere to find the input data cube itself, and will
then figure out where we want to keep the output cube. Seplib will guess that someone named
professor wants to keep his data cube at some place like /scr/professor/_Window.H@ . You
should read the manual page for datapath to see how you can set up the default location for
your datasets. The reason datapath exists is to facilitate isolating data from text, which is
usually helpful for archiving.

When a cube-processing filter wonders what the value is of n1 for the cube coming in, it
makes a subroutine call like call hetch("n1","i",n1) . The value returned for n1 will be the
last value of n1 found on the history file. Window also needs to find a different n1 , the one we
put on the command line. For this it will invoke something like call getch("n1","i",n1out) .
Then, so the next user will know how big the output cube is, it will call putch("n1","i",n1out) .
For more details, see the manual pages.

If we want to take input parameters from a file instead of from the command line, we type
something like <in.H Window par=myparfile.p > out.H . The .p is my naming convention
and is wholly optional, as is the .H notation for a history file.

Sepcube programs are self-documenting. When you type the name of the program with no
input cube and no command-line arguments, you should see the self-documentation (which
comes from the initial comment lines in the program).

SEP software supports “pipelining.” For example, we can slice a plane out of a data cube,
make a contour plot, and display the plot, all with the command line <in.H Window n3=1 |

Contour | Tube where, as in UNIX pipes, the “|” denotes the passage of information from
one program to the next. Pipelining is a convenience for the user because it saves defining a

220 CHAPTER 13. SEPLIB AND SEP SOFTWARE

location for necessary intermediate files. The history files do flow down UNIX pipes. You
may not have noticed that some location had to be assigned to the data at the intermediate
stages, and when you typed the pipeline above, you were spared that clutter. To write seplib

programs that allow pipelining, you need to read the manual page on hclose() to keep the
history file from intermingling with the data cube itself.

A sample history file follows: this was an old one, so I removed a few anachronisms
manually.

Texaco Subduction Trench: read from tape by Bill Harlan

n1=1900 n2=2274

o1=2.4 it0=600 d1=.004 d2=50. in=/d5/alaska

Window: bill Wed Apr 13 14:27:57 1983

input() : in ="/d5/alaska"

output() : sets next in="/q2/data/Dalw"

Input: float Fortran (1900,2274,1)

Output: float Fortran (512,128,1)

n1=512 n2=128 n3=1

Swab: root@mazama Mon Feb 17 03:23:08 1986

input history file /r3/q2/data/Halw

input() : in ="/q2/data/Dalw"

output() : sets next in="/q2/data/Dalw_002870_Rcp"

#ibs=8192 #obs=8192

Rcp: paul Mon Feb 17 03:23:15 PST 1986

Copying from mazama:/r3/q2/data/Halw

to hanauma:/q2/data/Halw

in="/q2/data/Dalw"

Cp: jon@hanauma Wed Apr 3 23:18:13 1991

input() : in ="/q2/data/Dalw"

output() : sets next in="/scr/jon/_junk.H@"

13.3 MEMORY ALLOCATION

Everything below is for Fortran 77. This approach still works, but has been superceded
by a backward compatible Fortran 90 preprocessor by Bob Clapp which is called Ratfor90.
Sepcube programs can be written in Fortran, Ratfor, or C. A serious problem with Fortran-77
(and hence Ratfor) is that memory cannot be allocated for arrays whose size is determined at
run time. We have worked around this limitation by using two home-grown preprocessors,
one called saw (Stanford Auto Writer) for main programs, and one called sat (Stanford Auto
Temporaries) for subroutines. Both preprocessors transform either Fortran or Ratfor.

13.3.1 Memory allocation in subroutines with sat

The sat preprocessor allows us to declare temporary arrays of arbitrary dimension, such as
temporary real*4 data(n1,n2,n3), convolution(j+k-1) These declarations must follow
other declarations and precede the executable statements.

13.4. SHARED SUBROUTINES 221

13.3.2 The main program environment with saw

The saw preprocessor also calls an essential initialization routine initpar() , organizes the
self-doc, and simplifies data-cube input. See the on-line self-documentation or the manual
pages for full details. Following is a complete saw program for a simple task:

<in.H Scale scaleval=1. > out.H

#

Copy input to output and scale by scaleval

keyword generic scale

#%

integer n1, n2, n3, esize

from history: integer n1, n2, n3, esize

if (esize !=4) call erexit(’esize != 4’)

allocate: real x(n1,n2)

subroutine scaleit(n1,n2, x)

integer i1,i2, n1,n2

real x(n1,n2), scaleval

from par: real scaleval=1.

call hclose() # no more parameter handling.

call sreed(’in’, x, 4*n1*n2)

do i1=1,n1

do i2=1,n2

x(i1,i2) = x(i1,i2) * scaleval

call srite(’out’, x, 4*n1*n2)

return; end

13.4 SHARED SUBROUTINES

The following smoothing subroutines are described in PVI and used in both PVI and BEI.

subroutine boxconv(nb, nx, xx, yy)

inputs: nx, xx(i), i=1,nx the data

nb the box length

output: yy(i),i=1,nx+nb-1 smoothed data

integer nx, ny, nb, i

real xx(nx), yy(1)

temporary real bb(nx+nb)

"||" means .OR.

if(nb < 1 || nb > nx) call erexit(’boxconv’)

ny = nx+nb-1

do i= 1, ny

bb(i) = 0.

bb(1) = xx(1)

do i= 2, nx

bb(i) = bb(i-1) + xx(i) # make B(Z) = X(Z)/(1-Z)

do i= nx+1, ny

bb(i) = bb(i-1)

do i= 1, nb

yy(i) = bb(i)

do i= nb+1, ny

yy(i) = bb(i) - bb(i-nb) # make Y(Z) = B(Z)*(1-Z**nb)

222 CHAPTER 13. SEPLIB AND SEP SOFTWARE

do i= 1, ny

yy(i) = yy(i) / nb

return; end

Convolve with triangle

#

subroutine triangle(nr, m1, n12, uu, vv)

input: nr rectangle width (points) (Triangle base twice as wide.)

input: uu(m1,i2),i2=1,n12 is a vector of data.

output: vv(m1,i2),i2=1,n12 may be on top of uu

integer nr,m1,n12, i,np,nq

real uu(m1, n12), vv(m1, n12)

temporary real pp(n12+nr-1), qq(n12+nr+nr-2), tt(n12)

do i=1,n12 { qq(i) = uu(1,i) }

if(n12 == 1)

do i= 1, n12

tt(i) = qq(i)

else {

call boxconv(nr, n12, qq, pp); np = nr+n12-1

call boxconv(nr, np , pp, qq); nq = nr+np-1

do i= 1, n12

tt(i) = qq(i+nr-1)

do i= 1, nr-1 # fold back near end

tt(i) = tt(i) + qq(nr-i)

do i= 1, nr-1 # fold back far end

tt(n12-i+1) = tt(n12-i+1) + qq(n12+(nr-1)+i)

}

do i=1,n12 { vv(1,i) = tt(i) }

return; end

smooth by convolving with triangle in two dimensions.

#

subroutine triangle2(rect1, rect2, n1, n2, uu, vv)

integer i1,i2, rect1, rect2, n1, n2

real uu(n1,n2), vv(n1,n2)

temporary real ss(n1,n2)

do i1= 1, n1

call triangle(rect2, n1, n2, uu(i1,1), ss(i1,1))

do i2= 1, n2

call triangle(rect1, 1, n1, ss(1,i2), vv(1,i2))

return; end

13.5 REFERENCES

Claerbout, J., 1990, Introduction to seplib and SEP utility software: SEP–70, 413–436.

Cole, S., and Dellinger, J., Vplot: SEP’s plot language: SEP-60, 349–389.

Dellinger, J., 1989, Why does SEP still use Vplot?: SEP–61, 327–335.

Index

45 degree phase angle, 99, 178

full separation, 153

aamig subroutine, 208
adjnull subroutine, 13
adjoint, 11, 16, 46
alias, 72, 199
amplitude, 47, 49, 50, 53, 57
antialias, 211

migration, 208
stack, 204, 206

artifacts, 70
autocorrelation, 83, 84
AVO, 47, 49

back projection, 12
basement rock, 90
boundary, 156
boundary condition, 156, 163, 164
boxconv subroutine, 221
boxmo subroutine, 204
Byte program, 217

C, 215
Cat program, 217
Cauchy function, 86
causal integration, 19
causint subroutine, 20
CDP, 46
CDP gather, 2
CDP stack, 131
Cheops’ pyramid, 126
CMP gather, 2
comb, 86
common-depth-point stack, 131
common-midpoint, 46
common-midpoint stack, 46
constant-offset migration, 128

Contour program, 217
Cp program, 217
Crank-Nicolson method, 162, 168
crossing traveltime curves, 47

damped square root, 114
data-push binning, 17
Dd program, 217
delay operator, 117
derivative, 14
differential equation, 20
diffraction, 105
dip, 106
dipping bed, 132
direct arrivals, 24
DMO, 137, 139, 144, 145
dmokirch subroutine, 145
dot product test, 22
Dots program, 217
doubint subroutine, 206
double-sided exponential, 86
downward continue, 101
dpbin2 subroutine, 17
DSR equation, 191

eiktau subroutine, 116
ellipse, 128, 130
evanescent, 33
explicit method, 159, 160, 163
exploding reflector, 64, 125
exponential, 86
exponential

double-sided, 86

fast Fourier transform, 87
field array, 201
filter impulse response, 15
finite difference, 151

223

224 INDEX

flathyp subroutine, 128
focus, 105
Fortran, 89, 215–217, 220
Fourier analysis, 12
Fourier downward continuation, 106
Fourier sum, 78
Fourier transform

discrete, 77
fast, 87
inverse, 87
two-dimensional, 89, 90, 92

Fourier transformation, 16
front, 30
ft1axis subroutine, 89
ft2axis subroutine, 89
Ft3d program, 217
fth subroutine, 88
ftu subroutine, 87
full separation, 153, 154, 156, 157

Gaussian, 86
gazadj subroutine, 118
Gibbs sidelobes, 84
Graph program, 217
ground roll, 24, 25, 29
guided wave, 24, 25

halfdifa subroutine, 99
hand migration, 63
Hankel function, 166
Hankel tail, 99
head wave, 24, 25
heat-flow equation, 153, 159–162
Hertz, 81
history file, 219
hyperbolic, non, 38

igrad1 subroutine, 15
implicit method, 159, 162, 163
In program, 217
index, 223
interpolation, nearest-neighbor, 41
interval velocity, 36, 38, 57, 59
inverse Fourier transform, 87
inversion, 11

kirchfast subroutine, 70
Kirchhoff migration, 61, 68
kirchslow subroutine, 69
Kjartansson, 181

lateral velocity variation, 151, 152, 155, 171
lead-in, 6
leapfrog method, 162
least squares, 21, 43
lens equation, 157
lens term, 155, 171
linear interpolation, 18
linear moveout, 25, 27
lint1 subroutine, 19
LMO, 27
lmo subroutine, 27

matmult subroutine, 13
matrix multiply, 11–13
Merge program, 217
mesh, 81
midpoint, 1
migration

constant-offset, 128
hand, 63
Kirchhoff, 61
phase-shift, 109
prestack, 125
prestack partial, 137

migration, defined, 105
modeling, 12
movie, 8, 9, 28, 44, 136, 165, 167, 171
Movie program, 218
Muir, 175, 176
multiple reflection, 65
mutter subroutine, 29

near-trace section, 2
nearest neighbor binning, 17
nearest neighbor coordinates, 17
nearest-neighbor interpolation, 41
nearest-neighbor normal moveout, 45
negative frequency, 83
NMO, 50
nmo0 subroutine, 45
nmo1 subroutine, 49

INDEX 225

Noise program, 218
nonhyperbolic, 38
normal moveout, 2, 44
normal moveout, nearest neighbor, 45
normal rays, 62
Nyquist frequency, 79

offset, 1, 25, 47
operator, 11

pad2 subroutine, 86
parabolic wave equation, 151, 155, 174
phase velocity, 33
phasemig subroutine, 111
phasemod subroutine, 112
pitfall, 216
preprocessor, 215, 216
prestack migration, 125
prestack partial migration, 137
processing, 12
profile, 2
pseudocode, 12

quefrency, 86

random, 86
Ratfor, 215–217
ray, 30, 31
ray parameter, 31
rays, normal, 62
reciprocity, 189
rectangle function, 84
recursion, downward continuation, 118
recursion, integration, 20
reflection slope, 25
residual NMO, 145
resolution, 81, 119, 121
Reverse program, 218
RMS velocity, 35
Rocca, 137
root-mean-square, 35
rtris subroutine, 164

sat, 216, 220
saw, 220, 221
scale factor, 82

scale subroutine, 82
section

near-trace, 2
zero-offset, 2

SEP, 217, 219, 222
seplib, 217
Sherwood, 136
shrink, 42
sign convention, 92
simpleft subroutine, 82
sinc, 84
slant stack, 187
slowfit subroutine, 56
slowness, 33
Snell parameter, 33
Snell wave, 33, 106, 108
Snell’s law, 33
spatial alias, 90, 93
spectrum, 83
Spike program, 218
split spread, 6
splitting, 153, 154, 156, 157, 169
spotw subroutine, 206
square root, 175
stack, 46, 47, 50
stack, antialias, 204
stack0 subroutine, 46
stacking diagram, 3
stepout, 25, 31, 33
streamer, 6
stretch, 42
subroutine

aamig , antialias migration, 208
adjnull , erase output, 13
boxconv , smooth, 221
boxmo , box footprint, 204
causint , causal integral, 20
dmokirch , fast Kirchhoff dip-moveout,

145
doubint , double integration, 206
dpbin2 , push data into bin, 17
eiktau , exp ikz, 116
flathyp , const offset migration, 128
ft1axis , FT 1-axis, 89
ft2axis , FT 2-axis, 89

226 INDEX

fth , FT, Hale style, 88
ftu , unitary FT, 87
gazadj , phase shift mig., 118
halfdifa , half derivative, 99
igrad1 , first difference, 15
kirchfast , hyperbola sum, 70
kirchslow , hyperbola sum, 69
lint1 , linear interp, 19
lmo , linear moveout, 27
matmult , matrix multiply, 13
mutter , mute, 29
nmo0 , normal moveout, 45
nmo1 , weighted NMO, 49
pad2 , round up to power of two, 86
phasemig , migration, 111
phasemod , diffraction, 112
rtris , real tridiagonal solver, 164
scale , scale an array, 82
simpleft , slow FT, 82
slowfit , velocity est., 56
spotw , weighted linear interp., 206
stack0 , NMO stack, 46
synmarine , synthetic marine, 7
triangle2 , 2-D smooth, 222
triangle , smooth, 222
trimo , triangle footprint, 208
tristack , stack with triangle footprint,

207
velsimp , velocity spectra, 53
vint2rms , interval to/from RMS vel,

57
wavemovie , 2-D wave movie, 167
zpad1 , zero pad 1-D, 16

survey sinking, 191
synmarine subroutine, 7

Ta2vplot program, 218
texture, 7
Thplot program, 218
time dip, 25, 63
time slice, 2
tomography, 12, 181, 188
Tpow program, 218
trace, 44
transpose matrix, 42

Transpose program, 218
traveltime curves, crossing, 47
traveltime depth, 23
triangle footprint, 206
triangle subroutine, 222
triangle2 subroutine, 222
tridiagonal, 163, 164, 169, 171, 178
trimo subroutine, 208
tristack subroutine, 207
truncation, 15, 16
Tube program, 218
Tuchel’s law, 63

velocity
dip dependent, 133
interval, 57
laterally variable, 151, 152, 155, 171
picking, 56
RMS, 57

velocity spectrum, 51
velsimp subroutine, 53
vertical exaggeration, 24, 119
vint2rms subroutine, 57
vplot, 217

wave equation, 108
wavemovie subroutine, 167
weighting function, 49
Wiggle program, 218
wind, 191
Window program, 218

Yilmaz, 137

zero pad, 15, 16, 86
zero-offset migration, 61
zero-offset section, 2
zpad1 subroutine, 16

227

228 INDEX

