
Streaming nonstationary prediction error (I)

Jon Claerbout

ABSTRACT

A time-adaptive deconvolution filter is estimated and used in a streaming manner.

INTRODUCTION

Most of the time-series literature (perhaps all of its textbooks) presume data spectra
are time invariant (a.k.a. stationary) while most applications involve spectra that
change in time and space. Hence there is a strong need for nonstationary tools.
Textbook theory (GIEE) tells us that PEF (prediction error filter) output is spectrally
white. We design here a TV-PEF (time variable PEF) that pushes output towards
a steady white even while the input spectrum varies. Statistical theory tells us we
need IID residuals. In signal and image estimation practice the statistical term IID
(Independent Identically Distributed) means that signals and images are white (the
leading “I”) and of uniform variance (the “ID”). Here deals only with the first “I”.
The approach here is “streaming,” meaning that the entire data volume need not be
kept in memory—it all flows through the box that I define here.

ALGORITHMS

The regression (1) is a textbook prediction-error regression with a weighting function
wt diminishing from the present time t to the past. We define one step of streaming
as entering a new data row at the bottom while dropping an old one at the top.
The previous best-fitting PEF now needs revision from a to a + ∆a. We set out to
estimate ∆a. Rather than expect “perfection”, at each moment in time we take just
one step in the direction of perfection, and then move on to the next dt.

0 ≈

rt−4

rt−3

rt−2

rt−1

rt

 =

w4 · · · ·
· w3 · · ·
· · w2 · ·
· · · w1 ·
· · · · w0

dt−4 dt−5 dt−6

dt−3 dt−4 dt−5

dt−2 dt−3 dt−4

dt−1 dt−2 dt−3

dt dt−1 dt−2

 1

a1

a2

 = WDa

(1)

SEP 163

Claerbout 2 Streaming PEF

Application types

1. A universal application is whitening residuals while fitting data to a model. The
residual of that modeling is injected here as the data in regression (1).

2. Another application is interpolating data dt having occasional missing values.
In the bottom row of (1) we would assert rt = 0 and then find the missing value
by dt = −a1dt−1−a2dt−2. (To understand why this is a good estimate you could
read in Chapter 7, Multidimensional Autoregression, in GIEE.)

3. Another application is synthesizing random data of a given spectrum. A random
number sequence nt is put in the left column in (1) and a synthetic (or modeled)
data set st associated with the data matrix. The bottom equation in (1) now
defines the synthesized data st recursively by st = nt − a1st−1 − a2st−2. More
interesting than random numbers could be isolated impulses. Then the output
at each spike would be the impulse response of the inverse PEF.

Updating

At every value of t the regression (1) has a different solution for a. Upon a clock tick
a new data value dt arrives, older data values feel a weaker weight, and new residuals
r need be computed. To find the new PEF a starting from the old one we use the
textbook story of steepest descent. The gradient ∆a is the new residual dumped into
the adjoint; and the Newton method tells us the scale α to apply to the gradient for
the update a← a + α∆a.

∆a = DTWT r except that ∆a0 = 0 (2)

∆r = WD∆a (3)

α = − r ·∆r

∆r ·∆r
(4)

Would more iterations be helpful? Perhaps the opposite. Maybe we should scale
down α to avoid pushing hard the filter on the basis of too little data.

For larger data gaps, two streams could run, one forwards another backwards. Gap
values would average the two predictions each weighted by its nearness to known data.

The Clapp summer group code stores the filter a on a coarse mesh. Here we find
no need to store the filter. As soon as it is determined, it is used and then abandoned.
As for computer speed, this algorithm is recursive only in the outer loop.

PRELIMINARY 1-D RESULTS

Coding the first of the three “Application types,” blind deconvolution with nonsta-
tionary PEFs, took me all day Saturday for 1-D and all Sunday for 2-D. Resulting

SEP 163

Claerbout 3 Streaming PEF

codes are short and sweet while the results are fascinating. In Figure 1 we see a
sequence of damped exponential functions step(t − tdelay)e

−αt sin βt. The sequence

Figure 1: A synthetic signal (top), and its nonstationary prediction error (bottom).
Seismologist love it when complicated signals are reduced to a sequence of impulses.
[ER]

begins with high frequency functions. Later the high frequency parts are dissipated
away as you expect in an absorbent earth. In the beginning the damped pulses hardly
overlap, but later on they overlap a lot. A single three term PEF, such as (1, a1, a2), is
also a finite difference equation for a damped sinusoid so it is no surprise that the first
damped sinusoid is collapsed back to a pulse at its onset. Seismologists love it when
that happens. But the quality of the zeros degrades towards the end of the time axis.
That’s where the exponentials are lower frequency and overlap significantly. The PEF
has a harder time getting rid of many frequencies at the same time. The PEF could
do better if I gave it more coefficients (longer wavelet), but that would require more
history to estimate. And, more cost with more iterations.

Code

First examine central part of the 1-D code. I explain it on a video. (A long Saturday
but only 44 lines of executable code.(!))

do ia=1,na { aa(ia) = 0.}

aa(1)=1.;

do ir = 1, n1 {

do iter=1,niter {

MATH b = D a (a is a PEF. b is a box of local residuals. D is convolution with data.)

do ib = 1, nb { rb(ib) = 0.} # rb is a box for the local residual.

do ib = 1, min0(nb,ir) {

do ia = 1, min0(na,ir-ib+1) {

rb(ib) += dd(ir-ib-ia+2) * aa(ia)

} }

rr(ir) = rb(1) # Grab result!

MATH da = D’ b (D’ is adjoint D)

do ia = 1, na { da(ia) = 0.}

do ib = 1, min0(nb,ir) {

do ia = 1, min0(na,ir-ib+1) {

SEP 163

Claerbout 4 Streaming PEF

da(ia) += dd(ir-ib-ia+2) * rb(ib)

} }

da(1) = 0. # Constraint

MATH db = D da (db is residual perturbation)

do ib = 1, nb { dr(ib) = 0.}

do ib = 1, min0(nb,ir) {

do ia = 1, min0(na,ir-ib+1) {

dr(ib) += dd(ir-ib-ia+2) * da(ia)

} }

MATH steepest descent

nbmax = min0(nb,ir-na)

nbmax = nb

top=0.; bot=1.e-20

do ib = 1, nbmax {

top += rb(ib) * dr(ib) * (nb-ib+1) # linear taper

bot += dr(ib) * dr(ib) * (nb-ib+1)

}

alpha = - top/bot

do ia = 1, na {

aa(ia) += alpha * da(ia)

}

}

}

TWO PHYSICAL DIMENSIONS

Let us take a look at a fragment of the 2-D code. It is pretty much like the 1-D code,
but for two differences. As you see in GIEE Chapter 4, the 2-D PEF has its impulse
along one side with zero values constrained either above or below the impulse. The
2-D calculation of residuals is an obvious extension of the 1-D code, and likewise the
adjoint. Here’s the fragment. It’s the calculation of the residual.

do ia1=1,na1 {

do ia2=1,na2 {

aa(ia1,ia2) = 0.

}}

lag = (na1+1)/2

aa(lag,1) = 1. # Put spike on side of filter.

do ir2 = 1, n2 {

do ir1 = lag, n1 {

do iter=1,niter {

do ib1=1, nb1{

do ib2=1, nb2{

rb(ib1,ib2) = 0.

}}

do ib1=1, min0(nb1, ir1) {

do ib2=1, min0(nb2, ir2) {

do ia1 = 1, min0(na1, ir1-ib1+1) {

do ia2 = 1, min0(na2, ir2-ib2+1) {

rb(ib1,ib2) += dd(ir1-ib1-ia1+2,ir2-ib2-ia2+2) * aa(ia1,ia2)

} }

} }

rr(ir1-lag+1,ir2) = rb(1,1) # Here goes the output.

etc.

etc.

do ia1= 1, lag {

da(ia1 ,1) = 0. # constrain the 1.0 and the 0.0s

}

etc.

SEP 163

Claerbout 5 Streaming PEF

Ignoring parameter fetching and declarations, the 2-D code is a mere 67 lines which
resembles the 1-D code except with 2-D convolutions like the above fragment.

Figure 2 shows a test case. This example was previously demonstrated by the
Clapp summer group with alternate coding strategies, and by Bob himself with pretty
much this strategy. He and I should get together to make comparisons because
comparisons are unfair without comparable parameters. Bob makes the point that
after dropping off the bottom of the time axis and going to the top point on the space
axis, you don’t have the best guess for the filter (because early times and late times
have different statistics). One option would be to save the top filter from the previous
x. A simpler option is to run a few more steepest descent iterations for the topmost
filters.

Figure 2: Data (left) is dominated by rather flat horizontal reflectors obscuring fault-
plane reflections. Nonstationary 2-D PEF brings them out. We should discuss pa-
rameter choices leading to plots like this one. What you see here is my first wild
guess. na1=5 na2=2 nb1=10 nb2=5 niter=4 [ER]

STABILITY

Stability is not as bad an issue as it sounds. Basically, a prediction-error filter is able
to predict a growing exponential. If your data looks like a growing exponential at
the edge of any gap (or boundary) the predicted data will grow exponentially with
distance into the hole. It is easy enough to put the exponential growth under a
damped exponential. A single parameter must be chosen. This parameter has little
effect in a small hole, so its value doesn’t come into play until you start dealing with
large holes. Simply start diminishing the PEF coefficients with every step into the
hole. For any small ε > 0 in 2-D, alter the estimated PEF by ai,j ← ai,j × (1− ε)|i|+|j|

SEP 163

Claerbout 6 Streaming PEF

where the unit spike is at (i, j) = (0, 0). A similar issue and solution arises with the
third application type.

Reality is that real data is noisy enough that we are unlikely to run into the highly
predictable situations that bring on such growth. We might see it though extending
a data plane where the last seismogram was anomalously larger than earlier ones.

SEP 163

