Estimating an image of Galilee

Jon Claerbout and Antoine Guitton
Estimating an image of Galilee

- Inverse theory says data is imperfect and should be understood to have additive noise.
- In practice I find the modeling less perfect than the data.
- The Galilee data set illustrates the usual case, that the data requires a more complicated model.
Image estimation is nontrivial inversion

- Largest easily invertible matrix has 10,000 columns.
- A small image (say 100x100) has 10,000 values.

Conclusion:

- Image estimation requires iterative methods.
- Speed of convergence is a significant issue.

These complicated issues mostly ignored here today.
Estimating an image of Galilee

Next three slides

1. Model is depth $h(x,y)$.

2. Data is (x,y,z) at 132,044 locations.

3. Operator (sparse matrix) is the transpose of binning.
Fitting drift
module bin2 {
Data-push binning in 2-D.
integer :: m1, m2
real :: o1,d1,o2,d2
real, dimension (::,:), pointer :: xy

#_init(m1,m2, o1,d1,o2,d2,xy)
#_lop (mm (m1,m2), dd (:))
integer i1,i2, id

do id = 1, size(dd) {
 i1 = 1.5 + (xy(id,1)-o1)/d1
 i2 = 1.5 + (xy(id,2)-o2)/d2
 if(1<=i1 && i1<=m1 &&
 1<=i2 && i2<=m2)
 if(transpose)
 mm(i1,i2) = mm(i1,i2) + dd(id)
 else
 dd(id) = dd(id) + mm(i1,i2)
 }
}
Data binned, coarse and fine

Coarse Binning

Fine Binning
Roughen with east-west derivative
Regularize the empty bins

- Binned
- Missing filled
Depth $h(x, y)$ is a poor variable.

- It is too smooth for viewing convenience.
- Iterative convergence prefers an IID variable.

Define a “preconditioned” variable

$$p(x, y) = \text{roughened } h(x, y)$$

$$\text{roughening filter} = FT \sqrt{k_x^2 + k_y^2}$$

We call it a “helix derivative.”

Equivalent to regularizing with the Laplacian.
Model the drift along the track

The “track axis” is an integer \(s \) going with the boat.

Drift (on \(s \) axis) is output of random numbers (unknowns) into a low-pass filter.

Adjust \(h(x, y) \) and drift, to minimize the residual

\[
0 \approx \text{bin}^T h(x, y) + \text{drift}(s) - \text{data}(s)
\]

The free variables in the conjugate gradient iterations are \(p(x, y) \) and the random numbers (into the low-pass filter on \(s \)).

Both free variable sets require regularization.
Modeling drift on track

Ignoring acquisition drift

Fitting drift
I could stop here and take questions,

or examine the residuals

and see some failed ideas.
Data subset: raw, modeled, drift, residual
Data subset: raw, modeled, drift, residual
Data drift in model space

Data residual in model space
L2 and L1 norms
L2 and L1 norms

L2 norm

L1 norm
Median stack in each bin
Failure: Minimize \(\frac{d}{ds} \) residual

Minimum \(\frac{d}{ds} \) residual

Fitting drift
That’s all folks!

More details on-line.

Google for “Claerbout” to find free book.