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ABSTRACT

We present a Migration Velocity Analysis (MVA) method based on wavefield extrapolation. Similar

to conventional MVA, our method aims at iteratively improving the quality of the migrated image,

as measured by flatness of Angle-Domain Common Image Gathers (ADCIG) over the aperture angle

axis. However, instead of inverting the depth errors measured in ADCIGs using ray-based tomogra-

phy, we invert “image perturbations” using a linearized wave-equation operator. This operator relates

perturbations of the migrated image to perturbations of the migration velocity. We use prestack Stolt

prestack residual migration to define the image perturbations that maximize focusing and flatness of

ADCIGs.

Our linearized operator relates slowness perturbations to image perturbations based on a trunca-

tion of the Born scattering series to the first order term. To avoid divergence of the inversion procedure

when the velocity perturbations are too large for the Born linearization of the wave-equation, we do

not invert directly the image perturbations obtained by residual migration, but a linearized version of

those image perturbations. The linearized image perturbations are computed by a linearized prestack

residual migration operator applied to the background image. We illustrate with numeric examples
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how the backprojection of those linearized image perturbations, i.e. the gradient of our objective

function, is well behaved even in cases when backprojection of the original image perturbations

would mislead the inversion and take it in the wrong direction.

In this paper, we demonstrate with simple synthetic examples that our method converges even

when the starting velocity model is far from the correct one. In a companion paper (Sava and Biondi,

2004), we illustrate the full potential of our method in estimating velocity anomalies under complex

salt bodies.

INTRODUCTION

Seismic imaging is a two-step process: velocity estimation and migration. As the velocity function

becomes more complex, the two steps become more and more interdependent. In complex depth

imaging problems, velocity estimation and migration are applied iteratively in a loop. To ensure that

this iterative imaging process converges to a satisfactory model, it is crucial that the migration and

the velocity estimation are consistent with each other.

Kirchhoff migration often fails in areas of complex geology, such as sub-salt, because the wave-

field is severely distorted by lateral velocity variations leading to complex multipathing. As the

shortcomings of Kirchhoff migration have become apparent (O’Brien and Etgen, 1998), there has

been renewed interest in wave-equation migration and computationally efficient 3-D prestack depth

migration methods have been developed (Biondi and Palacharla, 1996; Biondi, 1997; Mosher et al.,

1997). However, no corresponding progress has been made in the development of Migration Velocity

Analysis (MVA) methods based on the wave-equation. We aim at filling this gap by presenting a

method that, at least in principle, can be used in conjunction with any downward-continuation migra-

tion method. In particular, we have been applying our new methodology to downward continuation
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based on the Double Square Root (Yilmaz, 1979; Claerbout, 1985; Popovici, 1996) or common-

azimuth (Biondi and Palacharla, 1996) equations.

As for migration, Wave-Equation MVA (WEMVA) is intrinsically more robust than ray-based

MVA because it avoids the well-known instability problems that rays encounter when the veloc-

ity model is complex and has sharp boundaries. The transmission component of finite-frequency

wave propagation is mostly sensitive to the smooth variations in the velocity model. Consequently,

WEMVA produces smooth, stable velocity updates. In most cases, no smoothing constraints are

needed to assure stability in the inversion. In contrast, ray-based methods require strong smoothing

constraints to avoid divergence. These smoothing constraints often reduce the resolution of the inver-

sion that would be otherwise possible given the characteristics of the data (e.g. geometry, frequency

content, signal-to-noise ratio, etc.). Eliminating, or substantially reducing, the amount of smoothing

increases the resolution of the final velocity model.

A well-known limitation of wave-equation tomography or MVA is represented by the lineariza-

tion of the wave equation based on the truncation of the Born scattering series to the first order term.

This linearization is hereafter referred to as the Born approximation. If the phase differences between

the modeled and recorded wavefields are larger than a fraction of the wavelet, then the assumptions

made under the Born approximation are violated and the velocity inversion methods diverge (Wood-

ward, 1992; Pratt, 1999; Dahlen et al., 2000; Hung et al., 2000). Overcoming these limitations is

crucial for a practical MVA tool. This goal is easier to accomplish with methods that optimize an

objective function that is defined in the image space (e.g. DSO and our WEMVA) than with methods

that optimize an objective function that is defined in the data space.

Our method employs the Born approximation to linearize the relationship between the velocity

model and the image. However, we “manipulate” the image perturbations to assure that they are
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consistent with the Born approximation, and replace the image perturbations with their linearized

counterparts. We compute image perturbations by analytically linearizing our image-enhancement

operator (e.g prestack residual migration) and applying this linearized operator to the background

image. Therefore, the linearized image perturbations are approximations to the non-linear image

perturbations that are caused by arbitrary changes of the velocity model. Since we linearize both

operators (migration and residual migration) with respect to the amplitude of the images, the resulting

linear operators are consistent with each other. Therefore, the inverse problem converges for a wider

range of velocity anomalies than the one implied by the Born approximation.

Our method is more similar to conventional MVA than other proposed wave-equation methods for

estimating the background velocity model (Noble et al., 1991; Bunks et al., 1995; Forgues et al., 1998)

because it maximizes the migrated image quality instead of matching the recorded data directly. We

define the quality of the migrated image by flatness of the migrated Angle-Domain Common Image

Gathers (ADCIGs) along the aperture angle axis (Sava and Fomel, 2003). In this respect, our method

is related to Differential Semblance Optimization (DSO) (Symes and Carazzone, 1991; Shen, 2003)

and Multiple Migration Fitting (Chavent and Jacewitz, 1995). With respect to DSO, our method has

the advantage that at each iteration it optimizes an objective function that rewards flatness in the

ADCIGs globally (for all the angles at the same time), and not just locally as DSO does (minimizing

the discrepancies between the image at each angle and the image at the adjacent angles). We suggest

that this characteristic should speed-up the convergence, though we have no formal proof of our

assertion.

This paper describes the theoretical foundations of wave-equation MVA with simple examples

illustrating the main concepts and techniques. In a companion paper (Sava and Biondi, 2004), we

present an application of wave-equation MVA to the challenging problem of velocity estimation

under salt. Here, we begin by discussing wavefield scattering in the context of one-way wavefield
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extrapolation methods. Next, we introduce the objective function for optimization and finally address

the limitations introduced by the Born approximation. Two appendices detail the wave-equation

MVA process and the computation of linearized image perturbations.

RECURSIVE WAVEFIELD EXTRAPOLATION

Imaging by wavefield extrapolation (WE) is based on recursive continuation of the wavefields (U)

from a given depth level to the next by means of an extrapolation operator (E):

Uz+1z = Ez
[
Uz
]

. (1)

Here and hereafter, we use the following notation conventions: A [x] means operator A applied to

x , and f (x) means function f of argument x . The subscripts z or z +1z indicate quantities corre-

sponding to the depth levels z and z +1z, respectively.

This recursive equation (1) can also be explicitly written in matrix form as




1 0 0 · · · 0 0

−E0 1 0 · · · 0 0

0 −E1 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · −En−1 1







U0

U1

U2
...

Un




=




D0

0

0
...

0




,

or in a more compact notation as:

(1−E)U = D , (2)

where the vector D stands for data, U for the extrapolated wavefield at all depth levels, E for the

extrapolation operator and 1 for the identity operator. Here and hereafter, we make the distinction

between quantities measured at a particular depth level (e.g. Uz), and the corresponding vectors

denoting such quantities at all depth levels (e.g. U).

After wavefield extrapolation, we obtain an image by applying, at every depth level, an imaging
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operator (Iz) to the extrapolated wavefield Uz:

Rz = Iz
[
Uz
]

, (3)

where Rz stands for the image at some depth level. A commonly used imaging operator (Iz) involves

summation over the temporal frequencies. We can write the same relation in compact matrix form

as:

R = IU . (4)

R stands for the image, and I stands for the imaging operator which is applied to the extrapolated

wavefield U at all depth levels.

A perturbation of the wavefield at some depth level can 1U be derived from the background

wavefield by a simple application of the chain rule of derivation to equation (1):

1Uz+1z = Ez
[
1Uz

]
+1Vz+1z , (5)

where 1Vz+1z = 1Ez
[
Uz
]

represents the scattered wavefield generated at z +1z by the interaction

of the wavefield Uz with a perturbation of the velocity model at depth z. 1Uz+1z is the accumulated

wavefield perturbation corresponding to slowness perturbations at all levels above. It is computed by

extrapolating the wavefield perturbation from the level above 1Uz , plus the scattered wavefield at

this level 1Vz+1z .

Equation (5) is also a recursive equation which can be written in matrix form as




1 0 0 · · · 0 0

−E0 1 0 · · · 0 0

0 −E1 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · −En−1 1







1U0

1U1

1U2
...

1Un




=




0 0 0 · · · 0 0

1E0 0 0 · · · 0 0

0 1E1 0 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 1En−1 0







U0

U1

U2
...

Un




,

or in a more compact notation as:

(1−E)1U = 1EU. (6)
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The operator 1E stands for a perturbation of the extrapolation operator E. The quantity 1EU rep-

resents a scattered wavefield, and is a function of the perturbation in the medium by the scattering

relations derived in Appendix A. For the case of single scattering, we can write that

1Vz+1z ≡ 1Ez
[
Uz
]
= Ez

[
Sz
(
Ũz
)[

1sz
]]

. (7)

The expression for the total wavefield perturbation 1U from equation (5) becomes

1Uz+1z = Ez
[
1Uz

]
+Ez

[
Sz
(
Ũz
)[

1sz
]]

, (8)

which is also a recursive relation that can be written in matrix form as



1 0 0 · · · 0 0

−E0 1 0 · · · 0 0

0 −E1 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · −En−1 1







1U0

1U1

1U2
...

1Un




=




0 0 0 · · · 0 0

E0 0 0 · · · 0 0

0 E1 0 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · En−1 0







S0 0 0 · · · 0

0 S1 0 · · · 0

0 0 S2 · · · 0
...

...
...

...
...

0 0 0 · · · Sn







1s0

1s1

1s2
...

1sn




,

or in a more compact notation as:

(1−E)1U = ES1s. (9)

The vector 1s stands for the slowness perturbation at all depths.

Finally, if we introduce the notation

G = (1−E)−1 ES, (10)

we can write a simple relation between a slowness perturbation 1s and the corresponding wavefield

perturbation 1U:

1U = G1s. (11)

This expression describes wavefield scattering caused by the interaction of the background wavefield

with a perturbation of the medium.
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MIGRATION VELOCITY ANALYSIS

Migration velocity analysis is based on estimating the velocity that optimizes certain properties of

the migrated images. In general, measuring such properties involves making a transformation after

wavefield extrapolation to the migrated image using a function f

Pz = f Iz
[
Uz
]

, (12)

where I is the imaging operator applied to the extrapolated wavefield U. In compact matrix form, we

can write this relation as:

P = f (IU) . (13)

The image P is subject to optimization from which we derive the velocity updates.

Two examples of transformation functions are:

• f (x) = x− t where t is a known target. A WEMVA method based on this criterion optimizes

Pz = Iz
[
Uz
]
− Iz

[
Tz
]

, (14)

where Tz stands for the target wavefield. For this method, we can use the acronym TIF standing

for target image fitting (Biondi and Sava, 1999; Sava and Fomel, 2002).

• f (x) = Dx where D is a known operator. A WEMVA method based on this criterion optimizes

Pz = Dz
[
Iz
[
Uz
]]

. (15)

If D is a differential semblance operator, we can use the acronym DSO standing for differential

semblance optimization (Symes and Carazzone, 1991; Shen, 2003).

In general, such transformations belong to a family of affine functions that can be written as

Pz = Az
[
Iz
[
Uz
]]

−Bz
[
Iz
[
Tz
]]

, (16)
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or in compact matrix form as

P = AIU−BIT , (17)

where the operators A and B are known and take special forms depending on the optimization cri-

terion we use. For example, A = 1 and B = 1 for TIF, and A = D and B = 0 for DSO. 1 stands for

the identity operator, and 0 stands for the null operator. With the definition in equation (16), we can

write the objective function J as:

J (s) =
1
2

∑

z,m,h

|Pz|
2 (18)

=
1
2

∑

z,m,h

∣∣Az
[
Iz
[
Uz
]]

−Bz
[
Iz
[
Tz
]]∣∣2 , (19)

where s is the slowness function, and z,m,h stand respectively for depth, and the midpoint and offset

vectors. In compact matrix form, we can write the objective function as:

J (s) =
1
2

|AIU−BIT |2 . (20)

In the Born approximation, the total wavefield U is related to the background wavefield Ũ by the

linear relation

U ≈ Ũ+G1s . (21)

If we can replace the total wavefield in the objective function equation (20), we obtain

J (s) =
1
2

∣∣AIŨ−BIT +AIG1s
∣∣2 . (22)

Equation (22) describes a linear optimization problem, where we obtain 1s by minimizing the ob-

jective function

J (1s) = |1R−L1s|2 , (23)

where 1R = −
(
AIŨ−BIT

)
, and L = AIG. The operator L is constructed based on the Born

approximation (Lo and Inderweisen, 1994), and involves the pre-computed background wavefield
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through the background medium. A discussion on the implementation details for operator L is pre-

sented in Appendix A. The convex optimization problem defined by the linearization in equation (22)

can be solved using standard conjugate-gradient techniques.

Since, in most practical cases, the inversion problem is not well conditioned, we need to add con-

straints on the slowness model via a regularization operator. In these situations, we use the modified

objective function

J (1s) = |1R−L1s|2 + ε2 |A1s|2 . (24)

Here, A is a regularization operator, and ε is a scalar parameter which balances the relative importance

of the data residual (1R−L1s) and the model residual (A1s).

We illustrate our method with a simple model depicted in Figure 1. The velocity is constant and

the data are represented by an impulse in space and time. We consider two slowness models: one

regarded as the correct slowness sc, and the other as the background slowness s̃. The two slownesses

are related by a scale factor sc
s̃ = ρ. For this example, we consider ρ = 1.001 to ensure that we do not

violate the requirements imposed by the Born approximation.

Next, we migrate the data with the background slowness s̃ and store the extrapolated wavefield

at all depth levels. Figure 1a shows the image corresponding to the background slowness R̃. We also

migrate the data with the correct slowness and obtain a second image Rc. A simple subtraction of

the two images gives the image perturbation in Figure 1b.

Finally, we compute an image perturbation by a simple application of the forward WEMVA oper-

ator defined in equation (23) to the slowness perturbation 1s = sc − s̃ (Figure 1c). Since the slowness

perturbation is very small, the requirements imposed by the Born approximation are fulfilled, and the

two images in Figures 1b and 1c are identical. The image perturbations are phase-shifted by 90◦

relative to the background image.
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A simple illustration of the adjoint operator L defined in equation (23) is depicted in Figure 2.

Panel (a) shows the background image, panels (b) and (c) show image perturbations, and panels

(d) and (e) show slowness perturbations. We extract a small subset of each image perturbation to

create the impulsive image perturbations in Figures 2b and 2c. The left panels (b and d) correspond

to the image perturbation computed as an image difference, while the panels on the right (c and e)

correspond to the image perturbation computed with the forward WEMVA operator. In this way, our

data corresponds to a single point on the surface, and our image perturbation corresponds to a single

point in the subsurface. By backprojecting the image perturbations in Figures 2b and 2c with the

adjoint WEMVA operator, we obtain identical “fat rays” shown in Figures 2d and 2e, respectively.

IMAGE PERTURBATION BY RESIDUAL MIGRATION

Prestack Stolt Residual Migration (PSRM) can be used to create image perturbations (Sava, 2003).

Given an image migrated with the background velocity, we can construct another image by using

an operator K function of a parameter ρ which represents the ratio of the original and modified

velocities. The improved velocity map is unknown explicitly, although it is described indirectly by

the ratio map of the two velocities:

R = K (ρ)
[
R̃
]

. (25)

The simplest form of an image perturbation can be constructed as a difference between an im-

proved image (R) and the background image (R̃):

1R = R− R̃ . (26)

The main challenge with this method of constructing image perturbations for WEMVA is that the two

images can be phase-shifted too much with respect to one-another. Thus, we violate the requirements
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of the Born approximation and risk subtracting images that are out of phase. This problem is com-

mon for all wavefield-based velocity analysis or tomographic methods using the Born approximation

(Woodward, 1992; Pratt, 1999; Dahlen et al., 2000).

A simple illustration of this problem is depicted in Figures 3 and 4. This example is similar with

the one in Figures 1 and 2, except that the velocity ratio linking the two slownesses is much larger:

ρ = 1.20. In this case, the background and correct images are not at all in phase, and when we sub-

tract them we obtain two distinct events, as shown in Figure 3b. In contrast, the image perturbation

obtained by the forward WEMVA operator, Figure 3c, shows only one event as in the previous ex-

ample. The only difference between the image perturbations in Figures 1c and 3c is a scale factor

related to the magnitude of the slowness anomaly.

Figure 4 depicts fat rays for each kind of image perturbation: on the left, the image perturbations

obtained by subtraction of the two images, and on the right, the image perturbation obtained with the

forward WEMVA operator. The fat rays corresponding to the ideal image perturbation (panels c and

e) do not change from the previous example, except for a scale factor. However, in case we use image

differences (panels b and d), we violate the requirements of the Born approximation. In this case, we

see slowness backprojections of opposite sign relative to the true anomaly, and we also see the two

characteristic migration ellipsoidal side-events indicating cycle-skipping (Woodward, 1992).

We address this problem by employing linearized image perturbations. If we define 1ρ = ρ −1,

we can write a discrete version of the image perturbation using a Taylor series expansion of equa-

tion (25) as

1R ≈ K
′
∣∣∣
ρ=1

[
R̃
]
1ρ , (27)

where the ′ sign denotes derivation relative to the velocity ratio parameter ρ. For the image per-

turbations computed with equation (27), we use the name linearized image perturbations. Figure 5
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graphically illustrates this procedure.

The linearized PSRM operator K′ ∣∣
ρ=1 can be computed analytically, as described in Appendix

B. With this operator, we can compute linearized image perturbations in two steps. First, we run

residual migration for a large range of velocity ratios and pick at every image point the ratio which

maximizes flatness of the gathers. Then, we apply the operator in equation (27) to the background

image R̃ and scale the result with the picked 1ρ.

The linearized image perturbations approximate the non-linear image perturbations caused by

arbitrary velocity model changes. They are based on the gradient of the image change relative to a

velocity model change, and are less restrictive than the Born approximation limits.

Figure 6 shows how the linearized image perturbation methodology applies to the synthetic ex-

ample used earlier in this paper. All panels are similar to the ones in Figures 2 and 4, except that the

left panels (b and d) correspond to linearized image perturbations, instead of simple image perturba-

tions. Again, we compare image and slowness perturbations with the ideal perturbations obtained by

the forward WEMVA operator (c and e). Both the image and slowness perturbations are identical in

shape and magnitude.

Inversion example

Our next example concerns linearized image perturbations computed for prestack images. We use

another simple model with flat reflectors and constant velocity. The image perturbation methodology

is identical to the one outlined in the preceding paragraphs. The main point of this example is to

illustrate our methodology in a situation when the requirements of the first-order Born approximation

are clearly violated. In this case, the slowness perturbation is 50% of the background slowness.

Figure 7 shows representative common-image gathers in the angle-domain (Sava and Fomel,
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2003) for the background image (a), the correct image (b), the image perturbation obtained as a

difference of the two images (c), the image perturbation obtained using the forward WEMVA oper-

ator (d), and the linearized image perturbation (e). Panels (d) and (e) are identical within numeric

precision, indicating that our methodology can successfully be employed to create correct image

perturbations well beyond the limits of the first-order Born approximation.

Finally, we apply our migration velocity analysis algorithm to the example in Figure 7. First, we

compute the background wavefield represented by the background image (Figures 7a and 8a). Next,

we compute the linearized image perturbation, shown in Figure 9a (stack) and in Figure 7e (angle

gather from the middle of the image).

From this image perturbation, we invert for the slowness perturbation (Figure 9b). We stop the

inversion after 19 linear iterations when the data residual has stopped decreasing (Figure 9c). The

slowness updates occur in the upper half of the model. Since no reflectors exist in the bottom part of

the model, no slowness update is computed for this region.

Finally, we remigrate the data using the updated slowness and obtain the image in Figure 8b. For

comparison, Figure 8c depicts the image obtained after migration with the correct slowness. The two

images are identical in the upper half where we have updated the slowness model. Further updates to

the model would require more non-linear iterations.

CONCLUSION

We present a new migration velocity analysis method using wavefield-extrapolation techniques that

can address the challenges posed by velocity estimation in complicated media with sharp contrasts

and fine-scale features. Our method is formulated in the migrated image space, with an objective

function aimed at improving the image quality. The method is based on a linearization of the down-
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ward continuation operator that relates perturbations of slowness models to perturbations of migrated

images. Since our method is based on finite-difference extrapolation of band-limited waves, it nat-

urally takes into account the multipathing that characterizes wave propagation in complex environ-

ments with large and sharp velocity contrasts. It also takes into account the full wavefield informa-

tion, and not only selectively picked traveltimes, as it is currently done in state-of-the-art traveltime

tomography.

We use prestack Stolt residual migration to define image perturbations by maximizing focusing

and flatness of angle-domain common-image gathers. In general, the image perturbations computed

with this method can be too different from the background image, and we are in danger of subtracting

images that are not in phase, violating our first-order Born approximation assumption. We avoid

divergence of the inversion procedure when the velocity perturbations are too large, by not inverting

directly the image perturbations obtained by residual migration, but by inverting linearized versions

of them. Thus, we achieve a method which is robust with respect to large model perturbations, a

crucial step for a practical MVA method.

We illustrate our method with simple numeric examples, and show that our method is well be-

haved even for large slowness perturbations, well beyond the limits of the first-order Born approxi-

mation. A companion paper (Sava and Biondi, 2004) illustrates the full potential of our method with

more complex examples.
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APPENDIX A

THE SCATTERING OPERATOR

Imaging by wavefield extrapolation (WE) is based on recursive continuation of wavefields U from

a given depth level to the next by means of an extrapolation operator E. Within every extrapolation

slab, we can write that

Uz+1z = Ez
[
Uz
]

, (A-1)

where Uz is the wavefield at the top of the slab, and Uz+1z is the wavefield at the bottom of the slab.

The operator E involves a spatially-dependent phase shift described by:

Ez [] = eikz 1z, (A-2)

where kz represents the depth wavenumber, and 1z the wavefield extrapolation depth step. The

relation (A-1) corresponds to the analytical solution of the differential equation

U
′(z) = ikzU(z) (A-3)

which describes depth extrapolation of monochromatic plane waves (Claerbout, 1985). The ′ sign

represents a derivative with respect to the depth z. The depth wavenumber kz is given by the one-way

wave equation, also known as the single square root (SSR) equation

kz =
√

ω2s2 −|k|2, (A-4)

where ω is the temporal frequency, s is the laterally variable slowness of the medium, and k is

the horizontal wavenumber. We use the laterally variable s and the horizontal wavenumber k in

equation (A-4) just for conciseness, although such a notation not mathematically correct in laterally

varying media.
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Since downward continuation by Fourier-domain phase shift can be applied for slowness models

that only vary with depth, we need to split the operator E into two parts: a constant slowness con-

tinuation operator applied in the ω − k domain, which accounts for the propagation in depth, and a

screen operator applied in the ω −x domain, which accounts for the wavefield perturbations due to

the lateral slowness variations. In essence, we approximate the vertical wavenumber kz with its con-

stant slowness counterpart kz0, corrected by a term describing the spatial variability of the slowness

function (Ristow and Ruhl, 1994).

Furthermore, we can separate the depth wavenumber kz into two components, one which corre-

sponds to the background medium k̃z and one which corresponds to a perturbation of the medium:

kz = k̃z +1kz . (A-5)

In a first-order approximation, we can relate those two depth wavenumbers by a Taylor series expan-

sion:

kz ≈ k̃z +
dkz

ds

∣∣∣∣
s=s̃

(s − s̃) (A-6)

≈ k̃z +ω
ωs̃√

ω2s̃2 −|k|2
(s − s̃) , (A-7)

where s (z,x) is the slowness corresponding to the perturbed medium, and s̃ (z,x) is the background

slowness.

Within any depth slab, we can extrapolate the wavefield from the top either in the perturbed

or in the background medium. The wavefields at the bottom of the slab, Ũz+1z = Uzeik̃z 1z and

Uz+1z = Uzeikz 1z are related by the relation

Uz+1z ≈ Ũz+1zei1kz 1z . (A-8)

Equation (A-8) is a direct statement of the Rytov approximation (Lo and Inderweisen, 1994), since the

wavefields at the bottom of the slab correspond to different phase shifts related by a linear equation.
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The wavefield perturbation 1V at the bottom of the slab is obtained by subtracting the back-

ground wavefield Ũ from the perturbed wavefield U:

1Vz+1z ≈ Uz+1z −Ũz+1z (A-9)

≈
(
ei1kz 1z −1

)
Ũz+1z (A-10)

≈ eik̃z 1z
(

e
i dkz

ds

∣∣∣
s=s̃

1sz1z
−1

)
Ũz , (A-11)

where 1s = s − s̃ is the perturbation between the correct and the background slownesses at depth z.

In operator form we can write

1Vz+1z = Ez
[
Rz
(
Ũz
)[

1sz
]]

, (A-12)

where Ez represents the downward continuation operator at depth z, and Rz represents the Rytov

scattering operator which is dependent on the background wavefield Ũz and the slowness perturbation

1sz at that depth level:

Rz
(
Ũz
)[

1sz
]
=

(
e

i dkz
ds

∣∣∣
s=s̃

1sz1z
−1

)
Ũz . (A-13)

In this approximation, we assume that the scattered wavefield is generated only by the back-

ground wavefield and we ignore all multi-scattering effects. For the Born approximation (Lo and

Inderweisen, 1994), we further assume that the wavefield differences are small, such we can lin-

earize the exponential according to the relation ei1φ ≈ 1 + i1φ. With this new approximation, the

expression for the downward-continued scattered wavefield becomes:

1Vz+1z ≈ eik̃z 1z
(

i
dkz

ds

∣∣∣∣
s=s̃

1sz1z
)

Ũz . (A-14)

In operator form, we can write the scattered wavefield at z as

1Vz+1z = Ez
[
Sz
(
Ũz
)[

1sz
]]

(A-15)
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where Ez represents the downward continuation operator at depth z, and Sz represents the Born

scattering operator which is dependent on the background wavefield and operates on the slowness

perturbation at that depth level.

The linear scattering operator S is a mixed-domain operator similar to the extrapolation operator

E. This operator depends on the background wavefield and background slowness by the expression:

Sz
(
Ũz
)[

1sz
]
≈ i

dkz

ds

∣∣∣∣
s=s̃

1z1szŨz . (A-16)

In practice, we can implement the scattering operator described by equation (A-16) in different ways.

• One option is to implement the Born operator (A-16) in the space domain using an expansion

(Huang et al., 1999) like

dkz

ds

∣∣∣∣
s=s̃

≈ ω

(
1+

1
2

[
|k|

ωs̃

]2

+
3
8

[
|k|

ωs̃

]4

+
5
16

[
|k|

ωs̃

]6

+
35
128

[
|k|

ωs̃

]8

+ . . .

)
. (A-17)

In practice, the summation of the terms in equation (A-17) involves forward and inverse Fast

Fourier Transforms (FFT and IFT) and multiplication in the space domain with the spatially

variable s̃:

1Vz = iω1z1sz


1+

∑

j=1,...

cj
1

(ωs̃)2 j IFT
[
|k|2 jFFT

[
Ũz
]]

 , (A-18)

where cj = 1
2 , 3

8 , . . .

• Another option is to implement the Born operator (A-16) in the Fourier domain relative to the

constant reference slowness in any individual slab. In this case, we can write

dkz

ds

∣∣∣∣
s=so

≈ ω
ωso√

ω2so
2 − (1− iη)2|k|2

, (A-19)

where η as a damping parameter which avoids division by zero (de Hoop et al., 1996). In

practice, the implementation of equation (A-19) involves forward and inverse Fast Fourier
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Transforms (FFT and IFT):

1Vz = i1z IFT

[
dkz

ds

∣∣∣∣
s=so

FFT
[
Ũz1sz

]
]

. (A-20)
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APPENDIX B

DIFFERENTIAL IMAGE PERTURBATIONS

A differential image perturbation is computed using a residual migration operator (K) using a relation

like

1R ≈ K
′
∣∣∣
ρ=1

[
R̃
]
1ρ . (B-1)

The operator K depends on the scalar parameter ρ which is a ratio of the velocity to which we

residually migrate and the background velocity. The background image corresponds to ρ = 1.

Using the chain rule of differentiation, we can write

1R ≈
dK
dkz

dkz

dρ

∣∣∣∣
ρ=1

[
R̃
]
1ρ , (B-2)

where kz is the depth wavenumber defined for PSRM.

Equation (B-2) offers the possibility to build the image perturbation directly, by computing three

elements: the derivative of the image with respect to the depth wavenumber, and two weighting

functions, one for the derivative of the depth wavenumber with respect to the velocity ratio parameter

(ρ), and the other one for the magnitude of the 1ρ perturbation from the reference to the improved

image.

Firstly, the image derivative in the Fourier domain, dK
dkz

, is straightforward to compute in the space

domain as

dK
dkz

∣∣∣∣
ρ=1

[
R̃
]
= −i zR̃ . (B-3)

The derivative image is nothing but the imaginary part of the migrated image, scaled by depth.

Secondly, we can obtain the weighting representing the derivative of the depth wavenumber with

respect to the velocity ratio parameter, dkz
dρ

∣∣∣
ρ=1

, starting from the double square root (DSR) equation

24



written for prestack Stolt residual migration (Sava, 2003):

kz = kzs + kzr

=
1
2

√
ρ2µ2 −|ks |

2 +
1
2

√
ρ2µ2 −|kr |

2 ,

where µ is given by the expression:

µ2 =

[
4
(
kz0
)2

+ (kr −ks)2
][

4
(
kz0
)2

+ (kr +ks)2
]

16kz0
2 . (B-4)

The derivative of kz with respect to ρ is

dkz

dρ
= ρ

(
µ2

4kzs
+

µ2

4kzr

)
, (B-5)

therefore

dkz

dρ

∣∣∣∣
ρ=1

=
µ2

2
√

µ2 −|ks|
2
+

µ2

2
√

µ2 −|kr |
2

. (B-6)
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LIST OF FIGURES

1 Comparison of image perturbations obtained as a difference between two migrated images

(b) and as the result of the forward WEMVA operator applied to the known slowness perturbation

(c). Panel (a) depicts the background image corresponding to the background slowness. Since the

slowness perturbation is small (0.1%), the image perturbations in panels (b) and (c) are practically

identical.

2 Comparison of slowness backprojections using the WEMVA operator applied to image per-

turbations computed as a difference between two migrated images (b,d) and as the result of the

forward WEMVA operator applied to a known slowness perturbation (c,e). Panel (a) depicts the

background image corresponding to the background slowness. Since the slowness perturbation is

small (0.1%), the image perturbations in panels (b) and (c), and the fat rays in panels (d) and (e) are

practically identical.

3 Comparison of image perturbations obtained as a difference between two migrated images

(b) and as the result of the forward WEMVA operator applied to the known slowness perturbation

(c). Panel (a) depicts the background image corresponding to the background slowness. Since the

slowness perturbation is large (20%), the image perturbations in panels (b) and (c) are different from

each-other.

4 Comparison of slowness backprojections using the WEMVA operator applied to image per-

turbations computed as a difference between two migrated images (b,d) and as the result of the

forward WEMVA operator applied to a known slowness perturbation (c,e). Panel (a) depicts the

background image corresponding to the background slowness. Since the slowness perturbation is

large (20%), the image perturbations in panels (b) and (c) and the fat rays in panels (d) and (e) are

different from each-other. Panel (d) shows the typical behavior associated with the breakdown of the
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Born approximation.

5 A schematic description of our method for computing linearized image perturbations, de-

picting images on the vertical axis function of velocity on the horizontal axis. The dashed line cor-

responds to image changes described by residual migration with various values of the velocity ratio

parameter (ρ). The straight solid line corresponds to the linearized image perturbation computed with

an image gradient operator applied to the reference image scaled at every point by the difference of

the velocity ratio parameter 1ρ.

6 Comparison of slowness backprojections using the WEMVA operator applied to image per-

turbations computed with the differential image perturbation operator (b,d) and as the result of the

forward WEMVA operator applied to a known slowness perturbation (c,e). Panel (a) depicts the

background image corresponding to the background slowness. Despite the fact that the slowness per-

turbation is large (20%), the image perturbations in panels (b) and (c) and the fat rays in panels (d)

and (e) are practically identical, both in shape and in magnitude.

7 Comparison of common-image gathers for image perturbations obtained as a difference be-

tween two migrated images (c), as the result of the forward WEMVA operator applied to the known

slowness perturbation (d), and as the result of the differential image perturbation operator applied to

the background image (e). Panel (a) depicts the background image corresponding to the background

slowness, and panel (b) depicts an improved image obtained from the background image using resid-

ual migration. Despite the fact that the slowness perturbation is large (50%), the image perturbations

in panels (b) and (c) are identical within numeric precision.

8 WEMVA applied to a simple model with flat reflectors. The background image (a), the

image updated after one non-linear iteration (b), and the image computed with the correct slowness

(c).

9 WEMVA applied to a simple model with flat reflectors. The zero-offset of the image per-
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turbation (a), the slowness update after the first non-linear iteration (b), and the convergence curve of

the first linear iterations (c).
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