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SUMMARY
The convergence of conventional reflection tomography is often uncer-
tain when the starting velocity function is too far from the correct one.
The time-domain reflection tomography that we present in this paper
is more robust than conventional depth-domain reflection tomography.
Our new tomographic method avoids some of the instabilities of con-
ventional depth-domain tomography, by solving for a velocity model
and reflector geometry defined in vertical-traveltime domain. These
instabilities are often caused by the coupling between the velocity
function and the depth-mapping of reflectors. Time-domain tomog-
raphy keeps the distinction, which is typical of time processing, be-
tween the velocity function that best focuses the data and the velocity
function that correctly maps the reflectors in depth.
Time-domain reflection tomography is based on a new eikonal equa-
tion that is derived by a transformation of the conventional eikonal
equation from depth coordinates(z; x) into vertical-traveltime coor-
dinates (�; �). The transformed eikonal enables the computation of
reflections traveltimes independent of depth-mapping. This separation
allows the focusing and mapping steps to be performed sequentially
even in the presence of complex velocity functions, that would other-
wise require “depth” migration.
We compute the solutions of the transformed eikonal equation by solv-
ing the associated ray tracing equations. The application of Fermat’s
principle leads to the expression of linear relationships between pertur-
bations in traveltimes and perturbations in focusing velocity. We use
this linearization, in conjunction with ray tracing, for the time-domain
tomographic estimation of focusing velocity.

INTRODUCTION

Velocity has a dual role in reflection-seismic imaging. It is needed to
focus the data through migration, and to map the reflectors in depth
by converting arrival times into depths. These two imaging goals are
often conflicting. The velocity function that best focuses the data is
not necessarily the velocity that performs the correct depth mapping.

The focusingvelocity is the one that best predicts the relative delays
between reflections originated at the same point in the subsurface and
recorded at different offsets and midpoints. We can measure these
relative delays and try to estimate the focusing velocity by solving
an inverse problem. On the contrary, themappingvelocity mostly
affects the absolute delays of the reflections. If we do not know the
depth of the reflectors, we cannot estimate the mapping velocity from
reflection data. To estimate mapping velocity, we need other sources of
information, such as well data and a priori geological information. It
would be natural to keep the distinction between focusing and mapping
velocity estimating the focusing velocity from the recorded data, but
that is not the current practice in performing depth imaging.

The distinction between focusing and mapping velocity is routinely
taken into account when the data are imaged in the time domain, and
is one of the source of robustness of the time-imaging procedure. In
time imaging, the data are first focused by determining stacking and/or
root-mean-square (RMS) velocities, then map-migrated to depth along
the image rays using an appropriate mapping velocity (Hubral, 1977;
Larner et al., 1981). A related advantage of time imaging is that both
the reflectors and the focusing velocity are mapped in time and not in
depth. Consequently the deeper parts of the model are only marginally
sensitive to velocity variations in the shallower parts of the model. Un-
fortunately all these useful features of time imaging are currently not
available when strong lateral velocity variations make prestack depth
migration necessary to focus the data. This shortcoming of depth mi-
gration is not intrinsic, but it is imposed by limitations in current depth-
migration and tomography methods. In this paper we present a time-

domain methodology for both imaging the data and estimating velocity
valid in arbitrarily inhomogeneous media. The method is based on a
coordinate transformation from depth to two-way vertical traveltime
applied to the eikonal equation. We demonstrate that under fairly mild
assumptions on the relation between focusing and mapping velocities,
the traveltimes computed using the transformed eikonal are only func-
tions of the focusing velocity. As a result, we call the transformed
eikonal equation thefocusing eikonal. The focusing eikonal provides
the analytical foundations necessary to apply to depth-migration prob-
lems the same robust two-steps imaging procedure that is possible in
time imaging.

We present a time-domain reflection tomography method that is sim-
ilar to conventional depth-domain reflection tomography (Stork and
Clayton, 1991), but with an important difference: both the reflectors
and the velocity function are mapped in time and not in depth. There-
fore, time-domain tomography avoids the instability induced by verti-
cal shifts of both the reflectors and velocity function when the veloc-
ity is perturbed in a shallower layer. This instability often forces the
application of reflection tomography in a layer-stripping procedure,
although layer stripping is known to be less accurate than global to-
mography. Global tomography has the advantage over layer stripping
of using the reflections from all layers at the same time. In contrast,
in time-domain tomography the reflector geometry and the position-
ing in depth of velocity anomalies are only weakly dependent on the
velocity of the overburden. This decoupling makes the relationship
between the focusing velocity and the reflection traveltimes more lin-
ear and thus improves the robustness of global tomography and makes
layer stripping unnecessary.

The example that we present shows that time-domain reflection tomog-
raphy converges more robustly, and to a more accurate solution, than
the equivalent tomography in the depth domain (Clapp et al., 1998). In
particular, while the first few non-linear iterations of depth-domain to-
mography required layer stripping to prevent divergence, time-domain
tomography converged towards the desired solution starting from the
first non-linear iteration.

FOCUSING EIKONAL EQUATION

To derive the focusing eikonal equation we apply a coordinate transfor-
mation from depthz to two-ways vertical traveltime� to the eikonal of
the acoustic wave equation. The eikonal equation for the arrival timet

of high-frequency acoustic waves is
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whereVm andVf are respectively themapping velocity and thefo-
cusing velocity. Because we are interested to analyze the effects of
focusing and mapping velocities on reflection traveltimes, we kept the
Vf andVm distinguished in equation (1). Although this equation is
valid for a general elliptical anisotropic medium, in this paper we fo-
cus on isotropic media. Alkhalifah et al. (1998). discuss the focusing
eikonal for a general transversely isotropic media with a vertical axis
of symmetry

The mapping between the depth(z; x) and the vertical traveltime(�; �)
domain are defined by the following transformation of coordinates:
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� (z; x) = x: (3)

This transformation implies the following relationships between the
partial derivatives of the traveltime that appear in the eikonal equa-
tion (1):
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Substituting these partial derivatives in the eikonal equation (1) we
derive thefocusing eikonalequation
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The focusing eikonal depends directly from the the focusing velocity
but only indirectly from the mapping velocity, through thedifferential
mapping factor �m. Furthermore, because�m is the vertical integral
of the horizontal derivative ofVm, whenVm is assumed to be propor-
tional toVf with a constant of proportionality that is only function of
depth; that is,

Vm (z; x) = � (z)Vf (z; x) ; (7)

the focusing eikonal becomes independent fromVm. This property is
easily demonstrated by performing the change of variable fromz to �

defined in equation (2) in the integral that defines�m in equation (5).
This result demonstrates that, as long as the condition of equation (7)
is satisfied, reflection data can be focused without knowledge of the
mapping velocity, and thus that the focusing step and the mapping
step can be performed sequentially.

Notice that in an horizontally stratified medium the focusing eikonal
becomes the eikonal for an elliptical anisotropic medium with normal-
ized vertical “velocity” equal to 2. If the velocity is laterally varying,
neglecting�f is equivalent to neglecting the thin-lens term in finite-
difference time migration (Hatton et al., 1981). Raynaud and Thore
(1993) used this approximation to trace rays in the� domain.

Ray tracing in (�; �)

The solutions to the focusing eikonal can be computed using cur-
rent methods for solving the standard eikonal, either directly by mod-
ern eikonal solvers (Sethian and Popovici, 1997), or by ray tracing.
We chose a ray tracing solution, because for reflection tomography is
handier to have rays than traveltime maps.

To derive the ray-tracing system for the focusing eikonal we begin by
writing its associated Hamiltonian as a function of the ray parameters
p� andp�,
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The associated ray-tracing equation are:
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Rays can be traced in(�; �) by solving the ray-tracing equations in (10)
by a standard ODE solver. The appropriate initial conditions for the
ray parametersp� andp� when the source is at(�0; �0) and the take-
off angle is�� are:
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To test the accuracy of our derivations we numerically solved the ray
tracing equations (10) for a heterogeneous velocity function, and com-
pared the results with a ray-tracing solution of the standard eikonal
equation. As expected,� -rays map exactly intoz-rays, for all velocity
fields. Figure 1 and Figure 2 show an example of the ray field when
the velocity function is a Gaussian-shaped negative velocity anomaly
superimposed onto a constant velocity background. Notice that the
focusing eikonal handles correctly the caustic and wavefront triplica-
tion below the anomaly. Figure 3 shows the effects of neglecting the
differential mapping factor�f . It shows the� -rays computed setting
�f to zero, and remapped into(z; x). The wavefronts are distorted
compared to the true wavefronts shown in Figure 1

REFLECTION TOMOGRAPHY IN (�; �)

To perform reflection tomography, in addition to ray tracing, we need
to compute the gradient of traveltimes with respect to the velocity
function. In this section we derive the traveltime gradients for� -rays.
The derivation is straightforward and is based on Fermat principle ap-
plied to the� -rays.

The transformation of variables defined in equations (2) and (3) im-
plies the following relationships between the differential quantities
(dz; dx) and(d�; d�).
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Applying this transformations to the expression of the time increment
along az-ray, leads to the equivalent expression for the the time incre-
ment along a� -ray,
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whereSf is the focusing slowness. The first derivative of the time
incrementdt with respect to the focusing slowness is given by
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Figure 1: Ray field in(z; x) domain with a negative velocity anomaly
in constant background.

Figure 2: Ray field in(�; �) domain with a negative velocity anomaly
in constant background. This ray field maps exactly into the one shown
in Figure 1.
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where the tildes on the variables indicate that they are evaluated along
the raypath.

Applying Fermat principle, the first order perturbations in the travel-
times�t caused by perturbations in slowness�Sf are given by the
following integral evaluated along the unperturbed raypath� -ray,

�t =

Z
��ray

d (dt)

dSf
�Sf dl; (15)

wheredl is the path-length increment. Notice that the� -ray is not
stationary in the(z; x) domain, but that the term in equation (14) that
includes e�f takes into account the perturbation of the raypath in the
(z; x) domain.

Tracking reflectors movements
One of the most challenging problems of reflection tomography is to

Figure 3: Ray field in(z; x) domain computed assuming the differen-
tial mapping factor� equal to zero. This ray field is different than the
one shown in Figure 1.

track correctly the movement of reflectors caused by changes in veloc-
ity. Usually the reflectors are parametrized independently from veloc-
ity and large reflectors movement can cause instability in the inversion
process. One of the advantages of(�; �) tomography over(z; x) to-
mography is that reflectors move less in the(�; �) than in the(z; x)
domain, and that they move more consistently with the velocity func-
tion. In time-domain tomography the vertical component of the reflec-
tor movement is automatically taken into account by the linearization
introduced in equation (14). In contrast,(z; x) tomography needs an
additional term to take into account the reflectors movements. In the
examples shown in this paper we used the following adaptation of the
expression presented by Stork and Clayton (1991) to correct for the
residual mapping in(z; x) tomography:

�t = �z
�
pz+ + pz*

�
; (16)

where�z is the reflector vertical movement, whilepz+ andpz* are
respectively the vertical ray parameters of the incident and reflected
rays at the reflection point. To be consistent in the comparison be-
tween(�; �) domain tomography and(z; x) domain tomography, we
computed�z as a residual mapping along the vertical path. A more
accurate reflector movement could be computed by performing a resid-
ual map migration of the zero-offset arrivals. This residual migration
term could be added to both(�; �) domain tomography and(z; x) do-
main tomography.

TOMOGRAPHY IN (�; �) VS. TOMOGRAPHY (Z ;X )

We compare the performances of time-domain tomography with the
performances of depth-domain tomography on the estimation of the
velocity model shown in Figure 4 (depth domain) and Figure 5 (time
domain). We used the traveltimes of the reflections from the four re-
flectors superimposed as solid lines onto the velocity models. At each
iteration the reflector geometry is estimated by map-migrating the true
zero-offset arrivals assuming the velocity model obtained by the pre-
vious iteration. The reflector geometry corresponding to the starting
velocity model (layered medium) are shown by the dashed lines su-
perimposed onto the velocity models. Notice that the starting reflec-
tion geometry for time-domain tomography is almost undistinguish-
able from the correct one. In contrast, in the depth-domain the starting
reflectors show a significant pull-up. Because the velocity estimation
problem is poorly constrained we regularized the tomographic inver-
sion by imposing a smoothness constrain on the model. In particular,
we applied the inverse of a Laplacian as smoothing function, within
the inversion framework described by Clapp et al. (1998).

Figure 6 shows the perturbations from the initial model estimated by
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Figure 4: Correct velocity model and reflector geometries in depth.

Figure 5: Correct velocity model and reflector geometries in time.

depth-domain tomography after few non-linear iterations. Layer strip-
ping was required to prevent depth-domain tomography from diverg-
ing. Figure 7 shows the results of the time-domain tomography after
just one non-linear iteration. It compares very favorably with Figure 6.
The time-domain tomography convergeed toward the correct solution
in one single iteration, without the need of applying layer stripping.

CONCLUSIONS

We introduced a new tomographic method for estimating velocity func-
tions and reflectors geometry in the time domain. A comparison be-
tween conventional depth-domain tomography and the new time-domain
tomography on a simple estimation problem indicates that reflection
tomography in the time domain converges faster and more robustly
than the equivalent tomography in the depth domain. Reflection to-
mography in the time domain is made straightforward by our deriva-
tion of the focusing eikonal equation. We showed that the focusing
eikonal equation exactly models the traveltimes in a heterogeneous
medium parametrized by the vertical traveltime� in place of depthz.
The solutions of the focusing eikonal can be efficiently computed by
solving the associated ray tracing equations.

ACKNOWLEDGMENTS

We would like to thank the sponsors of the Stanford Exploration Project
for their financial support.

REFERENCES

Alkhalifah, T., Biondi, B., and Fomel, S., 1998, Time-domain pro-

Figure 6: Velocity perturbations estimated by depth-domain tomogra-
phy.

Figure 7: Velocity perturbations estimated by time-domain tomogra-
phy.

cessing in arbitrarily inhomogeneous media: 68th Ann. Internat.
Meeting, Soc. Expl. Geophys., Expanded Abstracts, submitted.

Clapp, B., Biondi, B. L., Fomel, S., and Claerbout, J., 1998, Regu-
larizing velocity estimation using geologic dip information: 68th
Ann. Internat. Meeting, Soc. Expl. Geophys., Expanded Abstracts,
submitted.

Hatton, L., Larner, K. L., and Gibson, B. S., 1981, Migration of seis-
mic data from inhomogeneous media: Geophysics,46, no. 5, 751–
767.

Hubral, P., 1977, Time migration - some ray theoretical aspects: Geo-
phys. Prosp.,25, no. 4, 738–745.

Larner, K. L., Hatton, L., Gibson, B. S., and Hsu, I. C., 1981, Depth
migration of imaged time sections: Geophysics,46, no. 5, 734–
750.

Raynaud, B. A., and Thore, P., 1993, Real time migration operators
simulated by anisotropic ray tracing: 55th Mtg. Eur. Assoc. Expl
Geophys., Abstracts.

Sethian, J. A., and Popovici, A. M., 1997, Three-dimensional travel-
time computation using the fast marching method: submitted to
Geophysics.

Stork, C., and Clayton, R. W., 1991, Linear aspects of tomographic
velocity analysis: Geophysics,56, no. 4, 483–495.


